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ABSTRACT 
 
The role of various parameters governing bond behavior is investigated in this 
paper taking advantage of a simple but efficient finite-element model, whose 
fundamental aspects are briefly recalled. Several well-documented test results on 
bond are examined in order to clarify the relevance of some aspects of bond 
phenomenological behavior,  and to study a few bond situations where testing has 
been scarce in the past, as in the case of push-in tests. Parametric studies are 
performed as well, with reference to the loading mode (pull-out and push-in), to 
bar elastic and strain-hardening  moduli, to  steel  yield  strength  and to bar lateral 
contraction/expansion, both in the elastic and in the plastic domain. Beside 
contributing to a better understanding of the role of the above-mentioned 
parameters, the paper confirms at the same time the uniqueness of the local bond 
stress-slip law, and the necessity of introducing a corrective factor, in order to take 
care of the damage to bond caused by the cone-shaped microcracks radiating from 
the bar close to the transverse cracks in tension ties and to the flexural cracks in 
R/C beams subjected to bending.     
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1. INTRODUCTION 
 
Bond governs many phenomena in structural concrete, from first loading 
(cracking, tension–stiffening) to failure (structural ductility). Bond is activated 
under various actions (pure tension, pull–out, push–in ...) and depends on many 
geometrical parameters (short/long embedment-length, small/large concrete cover, 
small/large bar diameter ...), and on the physical properties of both the reinforcing 
bars (elastic and hardening moduli, yield strength ...) and the concrete 
(compressive strength, confinement level ...). 
     In this paper, a finite-element model is used with the aim of investigating bond 
mechanics and thus the role of the aforementioned parameters. Several available 
test results are analyzed and the phenomena governing bond are explained on the 
basis of the numerical simulations. The FE model is also used (a) to perform 
several parametric studies for values of the parameters other than those concerning 
the tests, and (b) to perform a few numerical tests in a number of cases where test 
results are scanty or even unavailable. The following topics are investigated in this 
paper:  

1. Local bond law in long anchored bars.  
2. Role of the lateral expansion/contraction of a reinforcing bar and of its 

longitudinal strain (both in the elastic and plastic domains) on bond 
behavior.  

3. Role of the yield strength and hardening modulus on the post–yield 
response of bond.  

4. Effect that the development of conical microcracks (close to the flexural 
cracks of a member in bending or to the end sections of a tension tie) has on 
the bond–stress distribution. 

The numerical results, together with the physical interpretations given in the 
paper, provide further justification of: 

− the affinity hypothesis of the bond–slip curves for long anchored bars 
(Fernández Ruiz et al., 2007); 

− the local bond-strength reduction close to the end sections of a tension tie; and 
− the role of the bond coefficient introduced by the authors in a previous work 

(Fernández Ruiz et al., 2007). 
 
 
2. FINITE-ELEMENT MODEL 
 
The choice of the finite-element method for bond modeling allows to consider 
several coupled phenomena (plasticity, contact, cracking ...). This is the reason 
why FEM has been applied to bond modeling by several researchers, from the 
pioneer work of Ngo and Scordelis (1967) to the most recent advancements 
(Lundgren, 2001; Salem and Maekawa, 2004; Bamonte et al., 2003; Bamonte and 



Gambarova, 2007; an extended synthesis of the previous work on bond and on the 
ongoing developments can be found in FIB Bulletin No.10, 2000). In this paper a 
simple but efficient finite-element model (implemented into the FE code ANSYS, 
from ANSYS Inc.) is used to investigate some phenomenological aspects 
concerning bond. Some details of the finite-element model are shown in Fig.1. 
 
 
(a) (b) (c)

Contact surface

Concrete

axis
Axisymmetry

Reinforcing bar

Discrete crack

X

Y

Z

 
 
Fig. 1 - Finite-element model: (a) one quarter of the axi-symmetric specimen; (b) 
outline of the axi-symmetric model and of the contact elements; and (c) details of 
the mesh. 
 
     The bond problem is described by means of an axial-symmetric bi–dimensional 
model with finite deformations. For the ribs, an equivalent geometry with the same 
bond index (iR) as in the actual ribs is adopted in order to simplify the numerical 
problem (iR usually ranges between 0.05 and 0.10). The concrete and the 
reinforcing bar have been modeled by using eight–node elements with compatible 
displacement shapes and 2 × 2 integration points. 
     The reinforcing steel is assumed to have an elastic–plastic behavior controlled 
by Von Mises’ yield criterion and with strain hardening. For the concrete, an 
elastic–plastic constitutive law has been adopted, but discrete cracking is 
introduced as well. Under compression, the stresses are moderate (far below the 
crushing strength of the material) except in the zones closest to the ribs, where 
concrete is highly confined and exhibits a ductile post–yield response with strain 
hardening (Schenkel, 1998). In order to describe this behavior, the Von Mises’ 
yield criterion with strain hardening has been adopted even if other criteria (for 
instance Drucker–Prager’s criterion) are in principle more suitable for concrete in 
compression. Both criteria are compared in Fig.2, where according to Von Mises’ 
criterion the cylinder representing the yield surface expands, as the material 
hardens with increasing plastic strains. 
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Fig. 2 - Concrete yield surface: Von Mises’ yield criterion with strain hardening 
and Drucker–Prager’s criterion. 
 
    Although the response of concrete is reasonably well reproduced in 
compression with Von Mises’ criterion, unrealistic stresses are obtained in tension. 
In the actual bond conditions, the tensile stresses are moderate (and acceptable) 
except close to the ribs, where high tensile stresses develop at an angle between 
45° and 80° with respect to bar axis. In order to avoid such large stresses, inclined 
discrete cracks have been introduced (Fig.1), where the optimal crack orientation 
has been identified by performing an elastic (uncracked) analysis of the system. 
     As for the interface between the bar and the concrete, surface–to–surface 
contact elements formulated with an augmented Lagrange multiplier have been 
defined. These elements have 3 nodes (since the underlying solid elements have 
mid-side nodes) with two integration points. The friction coefficient at the steel–
concrete interface has been given the value 0.30. No cohesion has been considered 
at the interface. Similar contact elements are introduced along the inclined cracks, 
to guarantee that compression stresses can be transmitted across the closed part of 
each crack. 
     Two solvers were tested, a full Newton–Raphson and an un-symmetric full 
Newton–Raphson (because of the contact elements). Finally, the un-symmetric 
solver was adopted, because of its better performance.  
     Although the model has certain limitations, its behavior is reasonably accurate 
in the various cases examined in the following, and a good agreement with the 
experimental data has been found. 
 
 
3. PULL–OUT TESTS 
 
Pull–out tests on short anchored bars (L/φs ≤ 5, Fig.3) are generally performed to 
determine the local bond stress–slip law (τs(δ)). In these specimens (be they 



cylinders or cubes), the slip is approximately constant along the bonded length L 
of the bar and the bond stress is roughly uniform : τs(δ) = F/(π·φs·L). Concrete 
strength and rib geometry are the key parameters controlling bar response.  
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Fig. 3 - Setup of the pull–out tests on short anchored bars: τs = mean bond stress, 
and τ  = local bond stress; in short anchored bars τ  ≅ τs  (L/φs ≤ 5).  
 
     In long anchored bars, however, the pull–out response is different since bond 
failure is preceded by bar yielding (if enough concrete cover and/or confinement 
are provided) and the relative steel–concrete slip is no longer constant along the 
bonded length. As a result, bond is not only influenced by the relative slip, but also 
by the variable strain in the bar (Shima et al. 1987a, 1987b; Bigaj 1999). In the 
following, the FEM results are used to investigate bond mechanics of long pull–
out specimens, as well as to assess the influence that the strain in the bar has on 
the local bond response. 
 
3.1 Tests by Shima et al. 
 
Shima et al. (1987a) performed several pull–out tests on long specimens to study 
the effect that bar yielding has on bond behavior (Fig.4a). As shown in Fig.4b, the 
numerical results fit rather well the test results (specimen SD–70), both before and 
after bar yielding, though the extent of the plasticized zone predicted by FE 
analysis is smaller than that measured by Shima. In Fig.4c the plots of τ  versus δ 
and εs are shown for all sections of the bar and for all load steps. It is interesting to 
note that a unique relationship is found between δ and εs (and consequently 
between τ  and εs) for any load step. This result confirms the hypothesis of affinity 
proposed by Fernández Ruiz et al. (2007) that allows a simple analytical treatment 
of bond problems. 
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Fig. 4 - Test SD–70 by Shima et al. (1987a): (a) test set–up (fc = 19 MPa, fy = 820 
MPa, Es = 190 GPa and Eh = 2 GPa); (b) experimental and FEM results along the 
axis of the bar after yielding for P/Pyield = 1.05; and (c) various diagrams (bond 
stress versus bar slip and bar strain, and bar strain versus bar slip) for all load steps 
and bar sections. 



     FEM results also confirm the uniqueness of the bond law τ(δ), that is 
independent of the load step and of the position of the rib, as shown also in Fig.5c, 
where the values of τ  versus δ are aligned along the same curve for all the 
sections of the bar (0 ≤ x ≤ L), at the onset of yielding (a) and at the last load step 
(b). 
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Fig. 5 - Test SD–70 by Shima et al. (1987a): (a) numerical results at the onset of 
bar yielding (P/Pyield = 1); (b) results at the last load step (P/Pyield = 1.05); and (c) 
superposition of both cases. 
 
 
3.2 Tests by Bigaj 
 
Bigaj (1995) performed several tests on the post–yield behavior of long anchored 
bars. A comparison between the experimental results and those obtained with 
FEM is presented in Fig.6, where again the agreement is good and the 
development of the plasticized zone is properly described. 
 
 
4. PUSH–IN TESTS 
 
In push–in tests, the bar is not pulled out from one end but is pushed into the 
concrete from the other. Again, short and long embedment lengths exhibit 
different behaviors. In short anchored bars, the behavior is similar to that of pull–
out tests. The bar slip is constant and bond is controlled by concrete strength and 
rib geometry. 
    In long specimens, the response is affected by the strains in the bar. 
Unfortunately, no experimental results have been found on this topic, though some 
theoretical works have been performed (see for instance Russo and Romano, 
1991). For such reasons, the layout of the specimen SD–70 tested by Shima in the 
pull–out mode has been used in order to reproduce a push–in test and to make 
comparisons (Fig.7). 
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Fig. 6 - Test 16.16.1 by Bigaj (1995, fc = 27 MPa, fy = 540 MPa, Es = 210 GPa and 
Eh = 0.8 GPa): (a) test set–up; and (b) comparison with FEM results at different 
load steps. 
 
 
     Figure 7 shows the results obtained when the bar is pushed into the concrete 
from the opposite end with respect to the reaction plate. It is interesting to note 
that - contrary to pull–out tests - the bond stress increases once the bar yields 
(Fig.7c). This fact can be explained by the lateral expansion of the bar in 
compression that improves the wedging effect of the bar (known as Hoyer’s 
effect), contrary to the lateral contraction of the bar in pull–out tests (that reduces 
bond stress as previously shown in Fig.4c). This mechanism of lateral 
expansion/contraction is thus identified as a main phenomenon governing bond 
strength. 
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Fig. 7 - Numerical tests in the push–in and pull-out modes: (a) assumed test set–up 
(very close to Test SD-70 by Shima et al., 1987a); (b) FEM results along the axis 
of the bar at different load steps; and (c) various diagrams (bond stress versus bar 
slip and bar strain, and bar strain versus bar slip) for all load steps and bar 
sections. 
 
     



5. PARAMETRIC STUDY OF LONG PULL–OUT TESTS 
 
This section studies the influence of various parameters in bond response, in order 
to explain their relevance to bond mechanics and their physical role. 
 
5.1 Elastic modulus 
 
The influence of the elastic modulus in the response of a bar was studied by Shima 
et al. (1987c), who performed some pull-out tests with steel bars (Es = 190 GPa) 
and with aluminium bars (Es = 70 GPa). Figure 8 presents a comparison between 
the test results and FEM analysis. Note that in Fig.8 the elastic modulus of the bar 
is always indicated with Es, but Es = 190 GPa stands for “steel” and Es = 70 GPa 
stands for “aluminium”. The values Es = 10 and 10000 GPa represent two limit 
cases (very soft material the former case and very stiff material the latter case). 
Furthermore, Figure 8b shows that the larger the stiffness of the bar, the more 
constant the slip, since the bar tends to behave like a rigid body and the long–bar 
behavior tends to coincide with the short-bar behavior. 
     As for the fitting of the test results by Shima et al. (1987c), Fig.8d shows that 
the agreement is rather satisfactory for low-modulus bars (aluminium bars with Es 
= 70 GPa), but unsatisfactory for high-modulus bars (steel bars with Es = 190 
GPa). The trend, however, is suitably reproduced. 
 
5.2 Hardening modulus 
 
The hardening modulus of a reinforcing bar (Eh) is one of the main parameters 
controlling the post–yield response of bond. Figure 9 shows the results obtained 
for the geometry and properties of specimen SD–70 (Shima et al. 1987a) by means 
of FEM analysis, for different values of Eh (= 0-0.25⋅Es = 0-50 GPa). It can be 
observed that the plasticized zone becomes smaller and a greater decrease in the 
post–yield bond stresses occurs when smaller values of the hardening modulus are 
considered. 
     This result is very reasonable, since for a given increase of the strains in the 
plasticized zone, the difference in terms of longitudinal stresses (that have to be 
transmitted by bond) is smaller as the hardening modulus decreases. In any case, 
one should note that the yielding of the material develops gradually, leading to a 
gradual decrease of the bond stresses. 
 
 5.3 Yield strength 
 
The influence of the yield strength in the post–yield response of bond was also 
studied by Shima et al. (1987c). The results of three specimens tested by Shima 
with three different yield strengths for the bars (fy = 350, 610 and 820 MPa) are 
considered. FEM results are compared with the experimental measurements in Fig.  
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Fig. 8 - Influence of the elastic modulus on bond response: (a) pull–out tests by 
Shima et al. (1987c) on steel and aluminium bars; (b) FEM results concerning the 
relative steel–concrete slip for different values of the elastic modulus; (c) FEM 
results concerning the bond stress versus the relative slip; and (d) comparison of 
FEM results with the tests by Shima et al. (1987c). 
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Fig. 9 - FEM results with the geometry and properties of specimen SD–70 (Shima 
et al., 1987a), for different hardening moduli of the bar (Eh): (a) strain profiles; and 
(b) various diagrams (bar strain and bond stress versus bar slip, and bond stress 
versus bar strain) for all load steps and bar sections. 
 
10, where a rather satisfactory agreement is achieved for the three cases and a 
similar shape of the post–yield branch is observed for the different specimens.  
     The similarity in the descending branches (Fig.10d) confirms that adopting a 
bond coefficient to correct the local bond-slip law in the post-yield phase of a bar 
(see Fernández Ruiz et al., 2007) is sound, as will be shown later. 
 
 
5.4 Radial strains 
 
A reinforcing bar undergoes a lateral expansion/contraction when it is loaded, both 
in the elastic domain (controlled by the Poisson’s coefficient νe) and in the plastic 
domain (where the volume of the bar remains constant according to Von Mises’ 
yield criterion for steel). 
     The influence of this phenomenon has been studied by means of finite 
elements, with the geometry and properties of the previously-described specimen 
SD–70. The elastic and plastic responses of bond have been analyzed under 
different situations concerning the lateral strain in the bar. 
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Fig. 10 - Influence of the yield strength in the post–yield response of bond: (a) 
comparison of FEM results with the tests by Shima et al. (1987a); and (b) 
numerical results (bar strain and bond stress versus bar slip, and bond stress versus 
bar strain). 
 
 
     The influence of Poisson’s coefficient seems to be somewhat limited as shown 
in Fig.11a for various values of νe. In any case, larger bond stresses in the elastic 
domain of the bar are obtained when νe is small or zero (because of the smaller 
lateral contraction of the bar). However, once the bar yields, the tendency of the 
volume to remain constant becomes the determinant factor and the role of 
Poisson’s coefficient becomes negligible. 
     Figure 11c shows the results of a numerical test where the radial displacements 
of the reinforcing bar have been blocked at the interface with the concrete, as 
sketched in Fig.11b. In this case, even in the post–yield domain of the steel, the 
bond stresses increase because the bar undergoes no lateral contraction (in 
accordance with the results obtained in push–in tests). This response allows to 
identify the lateral contraction of the bar in the plastic domain as one of the main 
parameters controlling the post–yield behavior of bond. 
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Fig. 11 - Influence of the lateral contraction of the bar on bond response in pull-
out tests : (a) various diagrams (bar strain and bond stress versus bar slip, and 
bond stress versus bar strain) obtained with FE analysis, for different values of the 
Poisson’s coefficient; (b) details concerning the additional restraints  introduced 
into the analysis to prevent bar contraction; (c) various diagrams with fully-
prevented lateral contraction (laterally-restrained bar); and (d) comparison 
between the elastic-plastic laterally-restrained bar (top in left and middle figures, 
and bottom in right figure) and a fully-elastic laterally-free bar. 
 



 
     Finally, in Fig.11d a comparison is made between the case of the elastic-plastic 
laterally-restrained bar (EPLR, as in Fig.11c) and that of a fully-elastic laterally-
free bar (FELF). The middle figure shows that the difference between EPLR (top) 
and FELF (bottom) is very limited, this being a demonstration that the lateral 
strain has little effect on bond, as long as the bar is in the elastic domain. 
 
 
5.5 Local influence of previous parameters on bond stresses 
 
The previous analyses demonstrate that several phenomena (strain hardening, 
lateral contraction/expansion of the bar ...) affect the local response of bond in 
embedded bars, where two regimes (before and after bar yielding) occur. 
     The post–yield behavior of bond is greatly influenced by the radial strains in 
the bar that lead to sizable differences in the response of the members subjected to 
pull-out and of those subjected to push-in. In order to introduce this phenomenon 
in the local response of bond, the bond stress should be in some way corrected, 
whenever the effects of the lateral strains cannot be neglected, by multiplying τs by 
a bond coefficient Kb (≤ 1). For this coefficient a formulation is proposed in the 
following as a function of the longitudinal strain in the bar, since the lateral strain 
is directly related to the longitudinal strain:  
 
 

τ  = Kb(εs/ εy) · τs   
 
 
where τs is the local stress equal to the mean stress in the pull-out test of a short 
anchored bar.   
     The coefficient Kb can be computed for any given configuration to take into 
account the influence of the various properties of the bar, of the concrete and of 
their interface. As previously seen, the influence of the lateral strain on bond 
response is limited in the elastic domain of the bar (for both short- and long-
embedment lengths). Consequently, in these cases Kb should be equal to unity (τ = 
τs). 
     Figure 12b shows for instance the values of the bond coefficient Kb in the 
reinforcing bars having different yield strengths (same values for fy as in Fig.10). It 
can be seen that –regardless of the yield strength– all curves follow a similar 
pattern. 
     A general formulation of the bond coefficient, valid for any reinforcing bar, as 
well as an application of this coefficient in the analytical modeling of bond in 
reinforced concrete is further discussed in Fernández Ruiz et al. (2007). 
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Fig. 12 - Bond coefficient (Kb): (a) numerical results concerning the bond stress as 
a function of the relative slip for different yield-strength values (elastic response); 
and (b) computed values of the bond coefficient for the 3 values of the yield 
strength of the steel introduced in Fig.10. 
 
 
6. TENSION TIES 
 
Tension ties are reinforced–concrete specimens that represent the concrete prism 
limited by two contiguous flexural cracks and reinforced by a bar pulled at both 
ends. In the literature, numerous results can be found on both tension ties (concrete 
cylinders reinforced with a single bar, see Engström, 1992; and Kankam, 1997) 
and reinforced beams subjected to pure bending (Kenel, 2002; and Harajli, 2004; 
Laurencet, 1999). 
 
6.1 Elastic behavior of the reinforcing bar 
 
Kankam (1997) performed several tensile tests on short R/C ties. Figure 13 shows 
the distribution of the strains measured by Kankam on a 25–mm cold–worked 
ribbed bar for different load levels. Though FEM results are more than 
satisfactory, some differences appear in the response at very-low strain values. 
One explanation may be that the model does not consider concrete softening in 
tension along the inner inclined cracks, but it is doubtful whether at low strain 
levels there are any sizable inclined cracks. 
 
6.2 Elastic–plastic behavior of the reinforcing bar 
 
Five reinforced- and prestressed–concrete beams were tested by Kenel and Marti 
(2001), who measured the strains in the reinforcement, by means of Bragg grating 
sensors, before and after bar yielding. In FE modeling, the stress distribution in the 
tensile reinforcement (top bars in Fig.14a) is assumed to be uniform, and the 
tensile stresses in the concrete between two contiguous flexural cracks and along 
the crack faces are assumed to be zero. 
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Fig. 13 - Tests by Kankam (1997): (a) test set–up (Es = 200 GPa, concrete 
cylindrical strength fc = 42 MPa); and (b) fitting of test results for different load 
levels. 
 
 
     Figure 14 (b) shows a satisfactory agreement between testing and modeling, in 
terms of steel strains as a function of the section coordinate. In Fig.14c the bond 
stress is plotted as a function of both the slip and the steel strain, the latter being in 
turn plotted as a function of the former. In each picture of Fig.14c, there are 3 
curves, each of them referring to a specific section of the specimen, starting from 
the plane containing a flexural crack. Sections A and B are one and two rib-
spacing apart, while Section C is three or more rib-spacing apart. While the curves 
τ (δ), τ (εs) and εs (δ) of Sections B and C tend to coincide (or are very close), the 
curves of  Section A denote a marked decay of bond performance. 
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Fig. 14 - Test on Beam B4 (Es = 208 GPa, fy = 584 MPa, Eh = 2.8 GPa, fc = 37 
MPa) by Kenel and Marti (2001): (a) test set–up (sections A and B defined by the 
ribs closest to the flexural cracks, and C representing any other section containing 
a rib); (b) FE analysis and test results concerning the steel strain profiles at 
different load levels (max. strain in the reinforcement not available for the last 
load step); and (c) various plots of the numerical results. LS = Load Step. 



     The reason of this difference is the development of conical microcracks close to 
the flexural cracks (see Fig.14a), that weaken bond response close to the flexural 
cracks, because of the local punching of the concrete. In this case, the local bond 
stress–slip law should be corrected, as already mentioned. This effect – that 
depends on the rib shape and on the load level of the bar (since the larger the load, 
the more extended the inclined microcracks) – agrees with the bond reduction 
factor for tension ties introduced by Fernández Ruiz et al. (2007). 
 

 
7. CONCLUSIONS 
 
Bond mechanics is modeled in this paper by means of finite elements, in order to 
study various bond–related problems, that have been so far hardly or little 
investigated for a number of objective experimental difficulties. The agreement 
with the test data (whenever available)  is satisfactory, and the cross-examination 
of the numerical and experimental results leads to the following main findings 
with reference to both bond response and failure modes:  

1. Finite-element analysis confirms the uniqueness of the bond stress–slip law 
for short and long anchored bars, on condition that the section considered is 
at least 3 or more rib-spacing apart from any through crack (due to bending 
in beams or to tensile forces in tension ties).  

2. A unique steel strain–slip relationship can be worked out, this being a 
demonstration of the validity of the affinity hypothesis proposed by 
Fernández Ruiz et al. (2007). 

3. Bar yielding marks the threshold between two different regimes, with 
sizable consequences on the relationships between the bond stress, the bar 
slip and the steel strain.  

4. For tension bars in cracked concrete, finite elements confirm that bond is 
weaker close to the through cracks due to the formation of local cone–
shaped microcracks (“punching” microcracks). The influence of these 
microcracks depends on the load level and on the size of the member, but is 
limited to a distance – from any through crack - close to 3 times the rib 
spacing. This result is in agreement with the bond reduction factor proposed 
in Fernández Ruiz et al. (2007). 

5. The main parameters controlling bond response before bar yielding 
(provided that concrete cover prevents any concrete splitting) are rib 
geometry, concrete strength and bar stiffness (elastic modulus), while the 
influence of Poisson’s ratio in this phase is rather limited.  

6. Concerning the post–yield response of an anchored bar, the hardening 
modulus of the steel seems to be the main parameter controlling bond 



behavior, whereas other parameters – such as the strength at yielding – have 
a rather limited influence.  

7. The post–yield response of bond is influenced by the radial strains in the 
bar. The occurrence of these strains explains why in the pull–out mode the 
behavior of long specimens markedly differs from that in the push–in mode. 
With regard to this point, the role of the radial strains has been investigated 
by performing a few analyses with fully–blocked radial displacements at 
the bar–concrete interface: the lack of lateral contraction makes the 
behavior of the yielded bar very close to that of an elastic bar, in terms of 
bond–stress distribution. This is a demonstration of the major role played 
by bar lateral contraction in the post-yield phase. 

8. Bond modeling in the post–yield phase can be performed by introducing a 
“bond coefficient” taking into account  the hardening modulus and the 
longitudinal strain in the bar (in this way, the effects of the radial strain are 
properly considered, since this strain is directly related to the longitudinal 
strain). The bond coefficient is constant, and has a unit value, as long as the 
local bar strain remains below the yield threshold, while decreases sharply 
above the yield threshold. Consequently, in the pull–out tests of plasticized 
bars the bond strength – and more generally – the bond-stress/slip law 
exhibit reduced values, compared to the elastic case. 

 
 

Notation 
 
Es , Eh     =  elastic and hardening moduli of the steel 
F =  force 
Kb =  bond coefficient 
L =  bonded length 
c =  concrete cover 
fc =  concrete cylindrical compressive strength (wherever necessary, the 
                 cylindrical-to-cubic strength ratio is assumed to be 0.83) 
fy =  steel strength at yielding 
δ =  relative bar–concrete slip 
εs , εy =  strain in a rebar ; steel strain at yielding 
νe =  Poisson’s coefficient 
φs =  bar diameter 
λ =  local punching coefficient 
σs =  stress in a steel bar 
σi =  principal stresses (i=1, 2, 3) 
τ =  local bond stress (at any point of a bar) 
τs =  bond stress in a short anchored bar (almost constant for L/φs ≤ 5) 
τmax =  maximum bond stress 
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