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Punching Shear Strength of Reinforced Concrete Slabs
without Transverse Reinforcement

by Aurelio Muttoni

A mechanical explanation of the phenomenon of punching shear in
slabs without transverse reinforcement is presented on the basis of
the opening of a critical shear crack. It leads to the formulation of
a new failure criterion for punching shear based on the rotation of
a slab. This criterion correctly describes punching shear failures
observed in experimental testing, even in slabs with low reinforcement
ratios. Its application requires the knowledge of the load-rotation
relationship of the slab, for which a simple mechanical model is
proposed. The resulting approach is shown to give better results
than current design codes, with a very low coefficient of variation
(COV). Parametric studies demonstrate that it correctly predicts
several aspects of punching shear previously observed in testing as
size effect (decreasing nominal shear strength with increasing size
of the member). Accounting for the proposed failure criterion and
load-rotation relationship of the slab, the punching shear strength
of a flat slab is shown to depend on the span of the slab, rather
than on its thickness as often proposed.

Keywords: critical shear crack; interior slab-column connection; punching
shear; two-way shear.

INTRODUCTION

Reinforced concrete slabs on columns were initially
developed in the U.S. and Europe at the beginning of the
20th century.l’2 Their designs typically included large
mushroom-shaped column capitals to facilitate the local
introduction of forces from the slab to the column. In the
1950s, flat slabs without capitals started to become prevalent.
Because of their simplicity, both for construction and for use
(simple formwork and reinforcement, flat soffit allowing an
easy placement of equipment, and installation underneath
the slab), they have become very common for medium
height residential and office buildings as well as for parking
garages. The design of flat slabs is mostly governed by
serviceability conditions on the one side (with relatively
large deflections in service) and by the ultimate limit state of
punching shear (also called two-way shear) on the other side.
These two criteria typically lead to the selection of the
appropriate slab thickness.

Punching shear has been the object of an intense experimental
effort since the 1950s. In most cases, the phenomenon is
investigated by considering an isolated slab element. This
element typically represents the surface of the slab
surrounding a column and is delimited by the line of
contraflexure for radial moments, which are zero at a
distance r, ~ 0.22L (according to a linear-elastic estimate),
where L is the axis-to-axis spacing of the columns. In recent
years, several state-of-the-art reports and synthesis papers
have been published on this topic.3'5

Most design codes base their verifications on a critical
section, with the punching shear strength of slabs without
shear reinforcement defined as a function of the concrete
compressive strength and often of the reinforcement ratio.
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Some codes also account for size effect, membrane effect, or
the ratio of column size to the depth of the slab. Equation (1)
shows the ACI 318-05% expression for square or circular
columns of moderate dimensions relative to the thickness of
the slab

Vy = %bod@ (ST units: MPa, mm) 0

Vi = 4b0djj7 (U.S. customary units: psi, in.)

where d is the average flexural depth of the slab, b is the
perimeter of the critical section located d/2 from the face of the
column, and f," is the specified concrete compressive strength.
The current version of Eurocode 27 also includes a formu-
lation for estimating the punching shear strength of slabs

1
Vg = 0.18b,d(100p,£")° (ST units: MPa, mm)
1
Ve = 5.0b0d§(100p]]2’)3 (U.S. customary units: psi, in.)

2

where by is the control perimeter located 2d from the face of
the column, p; accounts for the bending reinforcement ratio
(with a maximum value of 0.02) and & is a factor accounting
for size effect defined by the following expression

g=14 200mm _ ., 78700 _p0 (3
d d

In the early 1960s, Kinnunen and Nylander8 tested a series
of slabs in punching, varying amongst other parameters the
amount of flexural reinforcement in the slab (refer to Fig. 1).
The following observations can be made from the load-rotation
relationships of the tests:

e For low reinforcement ratios (test with p = 0.5%), the
observed behavior is ductile, with yielding of the entire
flexural reinforcement, as illustrated by the horizontal
asymptote of the load-rotation curve. In this case, the
strength of the slab is limited by its flexural capacity
and punching occurs only after large plastic deformations.
The punching failure at the end of the plastic plateau
remains brittle and leads to a sudden drop in strength;
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e For intermediate reinforcement ratios (tests with p =
1.0%/0.5% and 1.0%), some yielding of the reinforcement
is present in the immediate vicinity of the column, but
punching occurs before yielding of the entire slab
reinforcement. In this case, the strength of the slab is
lower than its flexural capacity;

e For large reinforcement ratios (test with p =2.1%/1.0%),
punching occurs before any yielding of the reinforcement
takes place, in a very brittle manner. In this case, the
strength of the slab is significantly lower than its
flexural capacity;

* Increasing the reinforcement ratio increases the punching
capacity, but strongly decreases the deformation capacity
of the slab; and

e The ACI design equation is also plotted in the figure. It
predicts a constant strength independent from the
reinforcement ratio. As observed by Alexander and
Hawkins,’ Eq. (1) is basically a design equation; as such, it
does not account for the effect of the flexural reinforcement.

On the basis of their test results, Kinnunen and N ylandelr8
developed a rational theory for the estimation of the
punching shear strength in the early 1960s based on the
assumption that the punching strength is reached for a given
critical rotation . This rotation was calculated by

simplifying the kinematics of the slab and assuming a

bilinear moment-curvature relationship. Thus far, this proposal

remains one of the best models for the phenomenon of
punching. Recently, some improvements were proposed by

Hallgren10 and Broms!! to account for size effects and high-

strength concrete. While very elegant and leading to good

results, this model was never directly included in codes of prac-
tice because its application is too complex. It served as a basis,
however, for the Swedish and Swiss design codes of the 1960s.

RESEARCH SIGNIFICANCE

Rational models and design formulas for punching shear,
or two-way shear, are based on the results of experimental
tests performed mostly on thin slabs (d = 0.1 to 0.2 m [4 to
8 in.]). Design codes, however, are generally also applicable
to thick slabs and footings (0.4 m [16 in.] and more). The few
available tests performed on thick slabs exhibit a notable size
effect. As a consequence, there is a need for a rational model
correctly describing punching shear and accounting for size
effect (defined as decreasing nominal shear strength with
increasing size of the member).

In this paper, a new failure criterion for punching shear based
on the critical shear crack theory is presented. This criterion
describes the relationship between the punching shear strength
of a slab and its rotation at failure, it is consistent with the works
of Kinnunen and Nylander8 and it accounts for size effect. The
resulting equations are presented in a code-friendly formulation.

FAILURE CRITERION BASED ON CRITICAL
SHEAR CRACK THEORY
Critical shear crack theory
As shown in Fig. 1, the punching shear strength decreases
with increasing rotation of the slab. This has been explained
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by Muttoni and Schwartz!? as follows: the shear strength is
reduced by the presence of a critical shear crack that propagates
through the slab into the inclined compression strut carrying
the shear force to the column (Fig. 2(b)). Some evidences
supporting the role of the shear critical crack in the punching
shear strength are detailed in the following:

1. It has been shown experimentally&13 that the radial
compressive strain in the soffit of the slab near the column,
after reaching a maximum for a certain load level, begins to
decrease (Fig. 2(d)). Shortly before punching, tensile strains
may be observed. This phenomenon can be explained by the
development of an elbow-shaped strut with a horizontal
tensile member along the soffit due to the development of the
critical shear crack!? (Fig. 2(c)). A similar phenomenon has
been observed in beams without shear reinforcementlz; and

2. Experimental results by Bollinger14 also confirm the
role of the critical shear crack in the punching strength of
slabs. The tested slab shown in Fig. 3(b) was reinforced by
concentric rings placed at the boundary of the slab element
only. With this particular reinforcement layout, only radial
cracks developed and the formation of circular cracks in the
critical region was avoided. Thus, the punching shear
strength of this test was significantly larger than that of a
similar slab with an additional ring in the critical region
(Fig. 3(c)). For this test, the presence of an additional ring in
the vicinity of the critical region initiated the development of
a crack in that region, with a subsequent reduction of the
punching shear strength of approximately 43%.

Punching shear strength as function of
slab rotation

The opening of the critical shear crack reduces the strength
of the inclined concrete compression strut carrying shear and
eventually leads to the punching shear failure. According to
Muttoni and Schwartz,12 the width of the critical crack can
be assumed to be proportional to the product yd (Fig. 4),
leading to a semi-empirical failure criterion formulated in 1991 as
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Fig. 1—Plots of load-rotation curves for tests by Kinnunen
and Nylander® (geometric and mechanical parameters of
tests defined in Fig. 8).
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Fig. 2—Test PG-3 by Guandalini and Muttoni'3 ( geometric and mechanical parameters of
test defined in Fig. 9): (a) cracking pattern of slab after failure; (b) theoretical strut
developing across the critical shear crack; (c) elbow-shaped strut; and (d) plots of
measured radial strains in soffit of slab as function of applied load.
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Fig. 3—Tests by BollingerM with ring reinforcements, effect
of additional reinforcement in vicinity of critical shear
crack on load-carrying capacity: (a) test results; and (b)
and (c) reinforcement layout of Specimens 11 and 12.
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Fig. 4—Correlation between opening of critical shear
crack, thickness of slab, and rotation y.
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The amount of shear that can be transferred across the critical
shear crack depends on the roughness of the crack, which in
its turn is a function of the maximum aggregate SIZC
According to Walraven' and Vecchio and Collins,'® the
roughness of the critical crack and its capacity to carry the
shear forces can be accounted for by dividing the nominal
crack width yd by the quantity (dgo + d,), where d is the
maximum aggregate size, and d, is a reference size equal to
16 mm (0.63 in.). It should be noted that the value of dg has
to be set to zero for lightweight aggregate concrete to
account for cracks developlng through aggregates. On that
basis, in 2003 Muttoni!’ proposed an improved formulation
for the failure criterion

Vi = 3/4 (ST units: N, mm)
bodJf. 1+15-¥4_
dyo+d, )
Yk = 2 (U.S. customary units: psi, in.)
bod ff. 1+15-¥4_
g0 T 4y

Figure 5 compares the results obtained with Eq. (5) to the
results of 99 punching tests from the literature, for which
Table 1 provides additional information. In this figure, the
slab rotation was either obtained from direct measurements
or calculated by the author from the measured deflection,
assuming a conical deformation of the slab outside the
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column region. In cases where different reinforcement ratios
were placed along orthogonal directions, the maximum rotation
of the slab was considered. The rotation y is multiplied by
the factor d/(dy + d,) to cancel the effects of slab thickness
and aggregate size. Tests in which punching shear failure
occurred after reaching the flexural strength Vj,, are also
considered (shown as empty squares in the flgure)

The expression provided in ACI 318- 05% is also plotted in
Fig. 5. It can be noted that for small values of yd/(d, + d,),
the code gives rather conservative results. This is also the area of
the plot in which the majority of the tests are located. For large
values of yd/(dy + d,), however, the ACI equation predicts
significantly larger punching shear strengths than effectively
observed in tests. This fact can be traced back to two causes:

1. When the ACI formula was originally proposed in the
early 1960s,>! only tests with relatively small effective
depths were available and the influence of size effect was
thus not apparent; and

2. Tests in which punching failure occurred after reaching
the flexural strength but with limited rotation capacity are
considered in the comparison (empty squares).

LOAD-ROTATION RELATIONSHIP

Comparing Fig. 1 and 5, it is clear that the punching failure
occurs at the intersection of the load-rotation curve of the
slab with the failure criterion. To enable a calculation of the
punching shear strength according to Eq. (5), the relationship
between the rotation y and the applied load V needs to be
known. In the most general case, the load-rotation relationship
can be obtained by a nonlinear numerical simulation of the
flexural behavior of the slab, using, for example, a nonlinear
finite element code. In axisymmetric cases, a numerical
integration of the moment curvature relationship can be
performed dlrectly This allows to account for bending
moment redistributions in flat slabs and to account for the
increase on punching shear strength due to in-plane confinement
given by the flat slab in the portions of the slab near columns.?®

The axisymmetric case of an isolated slab element can also
be treated analytically after some simplifications. As already
described, the tangential cracks and the radial curvature are
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Fig. 5—Failure criterion: punching shear strength as function
of width of critical shear crack compared with 99 experimental
results and ACI 318-05° design equation, refer to details of
test series in Table 1.
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concentrated in the vicinity of the column. Outside the critical
shear crack, located at a radius ry (assumed to be at a distance
d from the face of the column), the radial moment, and thus
the radial curvature, decreases rapidly as shown in Fig. 6(d)
and (e). Consequently, it can be assumed that the corresponding
slab portion deforms following a conical shape with a
constant slab rotation y (Fig. 6(a)).

In the region inside the radius ry, the radial moment is
considered constant because the equilibrium of forces is
performed along cross sections defined by the shape of the
inclined cracks (Fig. 6(b) and (c)), where the force in the
reinforcement remains constant (due to the fact that the shear
force is introduced in the column by an inclined strut developing
from outside the shear critical crack (Fig. 2(b) and (c)).

The full development of the express1ons for the load-rotation
relationship of the slab is given in Appendix 1.” Considering a
quadrilinear moment-curvature relationship for the reinforced
concrete section (Fig. 7), the following expression results

sz_n[ i (ry =)+ ELy (In(ry) — In(r,)) + j(@
Ta=Te\ ELyrs(ri—ry) +m,(r,—r) +Ely(In(r,) - In(r,))

where m, is the radial moment per unit length acting in the slab
portion at r = ry and the operator (x) is x for x >0 and O for x < 0.

A simpler moment-curvature relationship can be adopted
by neglecting the tensile strength of concrete f,, and the
effect of tension stiffening, leading to a blhnear relationship
similar to that of Kinnunen and Nylander shown as a dotted
line in Fig. 7. The analytical expression describing the load-
rotation relationship is thus

Table 1—Test series considered in present study
and comparison with proposed failure criterion

Failure criterion
Vtesr/ Vth

d, mm (in.) | No. | Average | COV

Tests with same bending reinforcement ratio along orthogonal directions
Elstner and Hognestad'® (1956) | 115(4.52) | 22 | 098 | 0.14
Kinnunen and Nylander® (1960) | 122 (4.80) | 12 | 1.05 | 0.11

Reference (year)

0e!? (1961) 114 (448) | 9 1.13 | 0.16
Schifers?® (1984) s bey| 4| 103 [ 020
98 to 200

21
Tolf*" (1988) (3.86 t0 7.87) 8 1.06 0.15

200 (7.87) 3 0.99 | 0.17
199 (7.83) 7 0.98 0.25

Hassanzadeh?? (1996)
Hallgren'? (1996)

Ramdane?3 (1996) 98 (3.86) 12 1.10 | 0.16
Guandalini and Muttoni'3 (2004) (3.9768‘;’04]%‘%2) 10 | 111 | 022
3 87 1.05 | 0.16

Tests with different bending reinforcement ratio along orthogonal directions

Nylander and Sundquist®* (1972) (3?754tf0279§5) 11| 1.04 | 0.09

Kinnunen et al.2> (1980) 673265 | 1 | 085 | —
) 12 ] 103 | o010

Note: COV = coefficient of variation.

“The Appendixes are available at www.concrete.org in PDF format as an addendum
to the published paper. It is also available in hard copy from ACI headquarters for a
fee equal to the cost of reproduction plus handling at the time of the request.
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Figure 8 shows a comparison of the proposed solutions

V= 2n El \V(l +Inls ) for r, < r, (elastic regime)(72) with the previously described tests by Kinnunen and
ra—T, ! Ty y=o Nylander8 (Fig. 1). The solid curves represent the solution
—m -
R
V= 2n El 1\41(1 +lnﬁ) for ry <r, <r, (elasto-plastic regime) (7b)

rg—Te r
The flexural strength of the slab specimen is reached when
the radius of the yielded zone (r,) equals the radius of the slab

ry. In this case (r, = ry=r =7, and —m, = mg), Eq. (6) yields

s

(70)

Viex = 2mmy (plastic regime)

rq— ¢

T
~Xer —-X1

Fig. 7—Moment-curvature relationships:

quadrilinear laws.
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Fig. 6—Assumed behavior for axisymmetric slab: (a)
geometrical parameters and rotation of slab; (b) forces in
concrete and in reinforcement acting on slab sector; (c)
internal forces acting on slab sector; (d) distribution of
radial curvature; (e) distribution of radial moment; (f)

, = 451 MPa (64900 psi)
d =123 mm (4.84 in)
p=105%

dg = 32 mm (1.26 in)

1A30a-25

fe = 25.6 MPa (3700 psi)
fy = 451 MPa (65300 psi)
d = 124 mm (4.88 in)
p=10%

dg = 32 mm (1.26 in)

fy = 461 MPa (66800 psi)
d = 120 mm (4.72 in)
Pmin = 0.5 %

Pmax = 1.0 %

dg = 32 mm (1.26 in)

IA30c-30

fe = 30.6 MPa (4400 psi)
fy = 435 MPa (63000 psi)
d = 120 mm (4.72 in)
Puin = 1.0 %

Pmax = 2.1 %

dg = 32 mm (1.26 in)

bilinear and

Fig. 8—Tests by Kinnunen and Nylander‘g: (a) comparison
of load-rotation curves for tests and for proposed analytical
expressions (Eq. (6) and (7)); (b) dimensions of specimens;
and (c) mechanical parameters.

distribution of tangential curvature; and (g) distribution of
tangential moments for quadrilinear moment-curvature
relationship (shaded area) and for bilinear moment-curvature
relationship (dashed line).
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with a quadrilinear moment-curvature relationship of Eq. (6),
whereas the dotted curves show the simplified solution with
a bilinear moment-curvature relationship of Eq. (7). For the
thin slabs of Fig. 8, both solutions predict the punching load for
all reinforcement ratios very well. It may be noted, however,
that the distance between the two solutions is larger for
smaller reinforcement ratios at lower load levels. In these
cases, Eq. (6) (which uses a quadrilinear moment-curvature
relationship) predicts the full load-rotation relationship with
good accuracy. Equation (7), with a simplified bilinear
moment-curvature relationship, gives adequate but less
accurate results, especially for low load levels, in which the
tensile strength of concrete and tension stiffening effects are
more pronounced. Both approaches correctly describe the
actual rotation capacity of the slab at failure. The punching
shear strength can be obtained directly by substituting Eq. (6)
or (7) into Eq. (5) and solving the resulting equation.

(a) 08 . .

06"

Test PG3, p = 0.33% 16
d = 456 mm (18 in)

[Vpsi |

0.4 Test PG10, p = 0.33%

d = 210 mm (8.3 in)

[VMPa |

§ ACI 318-05
P V.4

-

bo-dv/Fe

]
\__Eq(6)
0.2 el ,E“q‘(?} failure criterion
- ‘--d_: 210 mm (8.3 in)n {9
failure criterion, d = 456 mm (lSm)J ’
0.0 L L 4 0
0.00 0.020 0.040 0.060
P
{ b) . 0 i
. -
Ta
. . - |
. . i) ut
. b .
a3 c:zz.‘-:i::::m
.
(c)

PG -3 PG - 10

by [mm (in)] | 6000 (236) | 3000 (118)

be [mm (in)] 520 (20.4) 260 (10.2)

7y [mm (in)] | 2845 (112) | 1423 (56)

d [mm (in)] 456 (17.9) 210 (8.26)

p (%] 0.33 0.33
f= [MPa (psi)] | 32.4 (4700) | 34.7 (5000)
fu [MPa (ksi)] | 520 (75.3) | 577 (83.6)

Fig. 9—Load-rotation curves and failure criterion, comparison
for Tests PG-3 and PG-10 by Guandalini and Muttoni'>: (a)
analytical and experimental load-rotation curves and failure
criterion according to Eq. (5); (b) geometry of specimens, and
(c) geometric and mechanical parameters for each specimen.
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Influence of thickness of slab

Figure 9 shows the load-rotation curves for two tests by
Guandalini and Muttoni.' These two tests are very similar,
with the same reinforcement ratio (p = 0.33%) and the same
maximum aggregate size (d, = 16 mm [0.63 in.]). What
distinguishes them is the dimensions of the slabs: Slab PG10
1s3.0x3.0x0.25m (118 x 118 x 9.8 in.), whereas Slab PG3
is twice as large 6.0 x 6.0 x 0.5 m (236 x 236 x 19.7 in.). To
facilitate the comparison of these two tests, the abscissa,
contrary to the previous figures, shows the actual slab rotation,
not the value corrected for aggregate size and size effect. In
this representation, the load-rotation relationship of both
slabs is nearly identical, as they are geometrically identical,
but scaled 2:1. The failure criteria, however, are different
due to their different thicknesses. This is why two dotted
lines are shown, giving the failure criterion of Eq. (5) for
each slab thickness, the upper applying to the thinner and the
lower to the thicker slab. In the latter case, with a low
reinforcement ratio, the difference between the two load-
rotation relationships, with and without tension stiffening,
becomes apparent, whereas the more accurate expression of
Eq. (6) quite closely predicts the entirety of the loading
curve, the simpler solution of Eq. (7) clearly underestimates the
stiffness of the slab in its initial loading stages, thus leading
to an underestimation of the punching shear strength.
Whereas both equations give conservative estimates of the actual
failure load, only Eq. (6) correctly describes all stages of the
actual behavior of the thick slab with a small reinforcement
ratio. Because both slabs are geometrically similar and
because of size effect, the thicker slab has a lower rotation
capacity and fails in a rather brittle manner, in spite of its low
reinforcement ratio, whereas the thinner slab exhibits a more
ductile behavior.

Figure 10 further illustrates this phenomenon by showing
the load-rotation curves according to Eq. (6) for various
reinforcement ratios, along with the failure criteria for
various slab thicknesses. The constant value predicted by the
ACI 318-05° design equation is also shown for comparison.

0.8

o = 2.00%
p=150%
p=125%

0.6 [« p = 1.00%

- 6 ’:’
p = 0.75% @

0.4 A

§ ACI 318-05 @
S R N SN Vo {a>$
& p = 0.50% z

d=0.1m (3.94 in)

— p=025% 2
d=0.2m (7.88 in)

T d = 0.4 m (15.7 in)

T d=08m (315 in)
“““ ----d =16 m (640 in)

0.0 0
0.000 0.020 0.040 0.060 0.080

Fig. 10—Load-rotation curves and failure criteria for various
reinforcement ratios and slab thicknesses (h =r, =1.2d, ry =
1y = 7d, f. = 30 MPa [4200 psi], f, = 500 MPa [71 ksi], and
dg =25mm /[l in.]).
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For thinner slabs and larger reinforcement ratios, the mode
of failure is brittle, generally at values larger than predicted
by the ACI equation. For lower reinforcement ratios, but in
particular for thicker slabs, the equations proposed herein
predict much lower values. This is especially important for
thick slabs and foundation mats that may commonly exceed
a thickness of 0.4 m (16 in.). In such cases, even for relatively
low reinforcement ratios, the failure mode is brittle and
occurs at load levels clearly below those predicted by ACI,
not reachlng the theoretical flexural failure load.

Moe’s! de51gn equation, which remains the basis for the
current ACI design equation (Eq. (1)), does not include a
term to account for the effect of the longitudinal reinforcement.
It was, however, derived from an analytical e (})ression that
does, as explained by Alexander and Hawkins.” It expresses
the punching shear strength as a function of the ratio V/Vp,,
(punching shear strength Vj to the load corresponding to the
bending capa01t¥ Viex of the slab). Using Eq. (7c) the test
series by Moe!® and Elstner and Hognestad can be
represented as in Fig. 11. From the data available at that
time, Moe’s!® conclusion of a linear relationship between
the punching shear strength and the ratio V/Vy,, of the slab
is confirmed. Shown alongside in the figure as continuous
lines are the ultimate loads obtained using the proposed
model. It can be observed that the level of shear at which
failure occurs diminishes with increasing thickness of the
slab, but the slope remalns approxnnately the same as that
observed by Moe!? on thin slabs. The size effect is very
marked, especially for thlck slabs. For slabs thicker than 0.4 m
(16 in.), the ACI 318-05° design equation overestimates the
punching shear strength and does not ensure a ductile behavior.

Also shown in Fig. 11 is the effect of the bending reinforce-
ment: increasing this reinforcement increases the punching
shear capacity but simultaneously decreases the ratio of the
punching load to the flexural load, which translates into smaller

0.8 T T T T T
Elstner and Hognestadlx ]
Moe!” m
18
16
2]
=
ACI 318-05 =
Vi 4 §§
S
12
0.0 1 1 1 1 0
0.0 0.2 0.4 0.6 0.8 1.0 1.2

VR/Vfle:o

Fig. 11—Punching shear strength as function of V/Viex
ratio for various slab thicknesses and reinforcement ratios
(tc=1.4d, 1y = 9.2d, 1y = 7.8d, . = 24 MPa [3400 psi], and
fy = 350 MPa [50 ksi]); comparzson with tests by Elstner
and Hognestad and Moe'? (d =114 mm [4.5 in.], b, =
254 mm [10in.], by = 1830 mm [72 in.], Iy = 890 mm [35 zn]
f.=131051 MPa [1820 1o 7180 psi], f, = 303 to 482 MPa
[43 110 68.6 ksi], and p = 0.5 to 7%).
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rotations at failure. In such cases, the only way to ensure a
ductile behavior of the slab is to include shear reinforcement.

SIMPLIFIED DESIGN METHOD

For practical purposes, the load-rotation relationship can
be further simplified by assuming a parabola with a 3/2
exponent for the rotation y as a function of the ratio V/Vy,,
and by assuming that the flexural strength Vg, (refer to
Eq. (7¢)) is reached for a radius of the yielded zone r, equal
to 0.75 times the radius of the isolated slab element r,. These
assumptions, together with Eq. (16), (18), and (22) from
Appendix 1, lead to the following relationship

3/2
y = ISF_SJL(L) (8)
dEs Vflex

Figure 12 shows, again for the four tests by Kinnunen and
Nylander the experimental load-rotation relationship along
with those given by Eq. (6) and by the simplified design
method of Eq. (8). Both expressions correctly predict the
punching load, the simplified design equation giving slightly
more conservative values.

In Table 2, the various expressions proposed in this paper,
the complete solution of Eq. (6), and the simplified solution
of Eq. (8) are compared on the basis of nine test series by
various researchers, for a total of 87 tests. The number of
tests in Table 2 is smaller than that of Table 1 because tests
with different reinforcement ratios in orthogonal dlrectlons
are not con51dered (tests by Nylander and Sundqulst and
Kinnunen et al.?>). For tests with square columns, the radius
of the column was assumed to be r,. = 2b./n, where b,. is the
side of the square column, leading to the same control perimeter.
It should be noted that a control perimeter with rounded
edges is adopted when checklng the punching shear strength
according to ACI 318- 059 (this is the default control perimeter
according to this code, where it is also permitted a four
straight- 51ded control perimeter, refer to Section 11.12.1.3 of
ACI 318-05%). Similarly, square slabs are transformed into
circular elements with the same flexural strength. Also

0.8 T T
-------------- 0=2.1%/1.0%
18
s =1.0%
0.6 | ‘ =
= —_
6 Im
c &
=1.0 . —
;.0 0.4 F p=1.0%/0.5% %
>§ 455
: —een [
0.2 failure criterion )
. Eq. (5) 12
Eq. (8) -
Test ——
0.0 . ! 0
0.000 0.020 0.040 0.060
(4

Fig. 12—Plots of load-rotation curves for tests by Kinnunen
and Nylander8 (refer to Fig. 8 for geometrical and mechanical
parameters) and comparison to analytical laws of Eq. (6)
and (8).
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shown in Table 2 and plotted i 1n Fig. 13 are the results from
ACI 318-05° and Eurocode 2.7 The results predicted by the
proposed formulations are excellent, with an average ratio of
effective to predicted load close to unity, and a very small
coefficient of variation (COV) of 0.08, respectively, 0.09.
Also remarkable is the minimum value of the ratio V,,/V,;,
given in Table 2. A ratio smaller than 1.0 means that the
actual strength can be lower than predicted. It is 0.86 for both
proposed formulations.

Tests in which failure occurred after reaching the flexural
strength of the slab are also included in the results; in this
case, setting the bending strength to its theoretical value
(Eq. (7¢)). This is why, in Fig. 13, a series of results are
agglutinated along the inclined dotted line that delimits the
bending failure mode.

The results given by the simplified Eq. (7) with a bilinear
load-rotation relationship, not shown in the table, are very
similar to those given by the complete solution of Eq. (6).
This is not surprising because the considered test series
include, above all, specimens with small or moderate slab
thicknesses. By comparisons, the results of ACI 318- 05° are
generally much more conservative, which is to be expected
from a design code, but with a much larger COV (0.22 with
rounded critical section or 0.20 with a square-sized critical
section), with the potential to actually lead to unsafe designs
(the minimum value of the ratio V,,,/Vy, for the considered
tests is 0.82). Furthermore the ratio V,est/V , strongly
decreases for ACI 318-05% with increasing value of the
effective depth of the slab (refer to tests by Hassanzadeh??

and Hallgren in Table 2 with d 200 mm [7.87 in.] or Test
PG-3 by Guandalini and Muttoni'3 with d =456 mm [17.9 in.]
in Fig. 9).

The results of Eurocode 27 are better, with a smaller
average of the ratio, and also a smaller COV (average ratio
of V,,/Vy, equal to 1.14 and a COV of 0.12 with a minimum
value of 0.86). It can be noted that Eurocode 27 limits the
value of the factor affecting size effect for slabs with effective
depths smaller than 200 mm (7.87 in.) to 2.0 (refer to Eq. (3)),
which allows accounting for thickness tolerance for thin
slabs. If this limit is not considered, the code equation shows
better agreement to test results, with an average of 1.02 and

a COV of 0.09, however, the minimum value of the ratio
Viesi! Vi, decreases to 0.79.

Size effect

Size effect on punching shear strength was introduced
initially in this paper by multiplying the slab rotation y by its
thickness d in the formulation of Eq. (5). It is interesting to
note that a slenderness effect (dependency on the ratio r/d)
is present in the load-rotation relationship given by Eq. (8).
Because the rotation according to this equation is inversely
proportional to the slab thickness, if Eq. (8) is introduced
into Eq. (5), the slab thickness d cancels on the right-hand
side of the equation. Consequently, it follows that the factor
for the reduction of the strength for size effect is not a function
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Fig. 1 3—C0mparzs0n of various formulations of ACI 318-05, 6
Eurocode 2,” and combination of Eq. (5) and (6) and of Eq. (5)
and (8) with test results shown in Fig. 5 and Table 2.

Table 2—Comparison of results of test series with predicted strength of proposed approaches and of
current design codes*; average, COV, and minimum value of ratio Vi.5/V;p

Eq. (5) + Eq. (6) Eq. (5) + Eq. (8) ACI 318-05° EC 2’
Reference (year) d, mm (in.) |No.|Average|COV [Minimum|Average|COV [Minimum|Average |COV|Minimum|Average|COV [Minimum
Elstner and Hognestad18 (1956) | 115(4.52) |22| 1.01 |0.07 0.88 1.01 |0.07 0.86 1.50 10.20 1.05 1.16 |0.09 0.95
Kinnunen and Nylander8 (1960) 122 (4.80) 12 1.02 0.09 0.86 1.08 [0.08 0.96 1.45 0.18 1.03 1.14 0.13 0.90
(o (1961) 114 (448) | 9 1.06 [0.09| 0.94 1.07 |0.09| 0.98 1.51 |0.10| 1.25 1.22 ]0.07 1.13
Schifers2 (1984) ( Lo gg)) 4| 102 |008| 093 | 106 [0.10] 094 | 141 |014| 116 | 125 [005] 1.19
Tolf?! (1988) (39886t?0270(8)7) 8| 098 |0.10| 0.87 1.06 |0.10| 0.92 1.33 {0.21| 0.98 1.11 |0.14| 0.94
Hassanzadeh?? (1996) 200(7.87) | 3| 097 |0.09| 0.87 1.04 |0.08| 0.95 1.10 |0.06| 1.03 1.03 |0.14| 0.86
Hallgrenlo (1996) 199(7.83) | 7| 0.94 [0.04| 0.90 1.06 |0.07| 0.96 1.05 [0.09] 0.90 096 |0.05| 0.90
Ramdane?* (1996) 98(3.86) |12| 1.07 |[0.08| 0.94 1.16 |0.08| 1.03 143 1023 091 1.22 |0.12 1.00
Guandalini and Muttoni'3 (2004) (39768t:)0416842) 10| 1.07 |[0.08| 0.95 1.14 |0.08 1.02 1.16 [0.24| 0.82 1.04 10.09| 0.90
z 87| 1.02 |0.08| 0.86 1.07 [0.09| 0.86 1.37 10.22| 0.82 1.14 |0.12| 0.86
“Tests with different bending reinforcement ratios along orthogonal directions not included.
Note: COV = coefficient of variation.
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of the slab thickness, but rather of the span, represented in
Eq. (8) by the radius r, of the isolated slab element.

CODE-LIKE FORMULATION

In 2003, Muttoni'” proposed a similar relationship for the
failure criterion for punching shear of flat slab systems
assuming that r; = 0.22L, where L is the span of the slab, and
that the flexural capacity of the slab is Vy,, = 8mp, (Where
mp, 1s the flexural capacity of the slab in the column region
reduced by the strength reduction factor). The resulting load-
rotation relationship is thus

Lf 3/2
- 03325(8%) ©)

where V; is the factored shear force. Here again, the rotation is
slenderness-dependent and thus it is inversely proportional
to the thickness of the slab, with the consequence that the
size effect factor of Eq. (5) is again a function of the span L
of the slab and not of its thickness. Equation (9) is formulated
for intermediate columns; for edge columns, the constant 8
is to be replaced by 4 and for corner columns by 2.

Equation (5), in a slightly rearranged form and to reach a
target fractile of 5%, including a model factor to cover some
irregularities in the spans and in disposition of the loading,
has been introduced in the Swiss Code for structural concrete
SIA 26277 as

Vea  _ 2 1

bod Jf. Ve 4 20"’—f
g0 g

(ST units: N, mm)  (10)

where v, is the partial safety factor of concrete (y,. = 1.5) or

VRa  _ 8 s
=0 7 (U.S. customary units: psi, in.)
bod Jf,' 1+ 20—‘*’—+
g0 " Tg

where ¢ is the strength reduction factor for punching (¢ = 0.75).

Design approach

It is possible to combine Eq. (9) describing the load-
deflection behavior of the slab element with the failure
criterion of Eq. (10) into a single design formula. The exact

VA

\\ Failure criterion
\(— (Ea. (5)) Load-rotation curve
AN [ of the slab (Eq. (9))

<

Yd
Fig. 14—Design procedure to check punching strength of slab.
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punching strength (Point A in Fig. 14) is then obtained by
setting Vg, equal to V,; and iteratively solving the resulting
equation. Requiring an iterative calculation even for the
simplest cases, this formulation would not be very useful in
practice. Instead, a simple design check can be performed
calculating the slab rotation y, corresponding to the factored
shear force V;using Eq. (9). From that value, the corresponding
punching shear strength of the slab (Point B of Fig. 14) is
found by applying Eq. (10). If the strength obtained from
Eq. (10) is larger than the design load V;, the design is safe
and conservative. If, on the contrary, it is insufficient, the
flexural reinforcement, the column size, or the slab thickness
has to be increased.

Parametric study and comparison to test results

Figure 15 demonstrates the ability of the proposed
formulation to investigate various aspects of the phenomenon
of punching shear. As already known, an increase in the
bending reinforcement leads to an increase in the punching
shear capacity (Flg 15(a)). This effect is not considered i 1n
the ACI 318-05° formulation, but is included in Eurocode 27
and the proposed formulation (where an increase in the
bending reinforcement reduces the slab rotation y).

The effect of the size of the column relative to the thickness
of the slab is illustrated in Fig. 15(b). This effect is considered
by ACL but only for large values of the ratio by/d. The
proposed formulation, again, correctly describes this effect
for the available test results, as does the formulation of
Eurocode 2,7 which handles it by working with a control
perimeter located at 2d from the column face instead of d/2
for ACI and the present paper.

Figure 15(c) shows the effect of the effective slab thickness
on the punching strength. The few available tests point
toward a strong decrease for very thick slabs, which is
correctly described by the proposed model and Eurocode 27
but ignored by ACI.

Concerning the effect of concrete strength on punching
shear, Eurocode 27 and the proposed formulation give
consistently good results, as shown in Fig. 15(d).

The effect of the type of steel used and of its yield stress f,
has been the object of only limited investigations, mostly by
Moe.'? This effect is not very pronounced but a slight
increase with increasing yield stress is predicted by the
proposed formulation.

The span-depth ratio of the slab, represented by the ratio
rgdd for isolated slab elements also has an effect on the
punchlng shear strength, according to the proposed formulatlon
This effect i 1s considered neither by ACI 318- 05° nor by
Eurocode 2. Further research should be devoted to investigate
this aspect, as the punching strength of very slender slabs
appears to be lower than expected, and no tests with significant
thickness are currently available.

SUMMARY AND CONCLUSIONS

Design rules for punching shear present in design codes
are generally based on experimental results performed on
isolated slab elements representing the part of the slab close
to the column. Most tests have been performed on relatively
thin slabs, typically 0.1 to 0.2 m (4 to 8 in.). The test results
are nonetheless commonly extrapolated to design flat slabs
with a thickness typically 2 to 3 times larger, and even for
foundation mats with thicknesses 10 to 20 times larger.

The present paper proposes a mechanical model based on
the critical shear crack theory, explaining punching behavior

ACI Structural Journal/July-August 2008
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Fig. 15—Comparison of punching shear strength according to ACI 318-05,% Eurocode 2,7 and the refined (Eq. (5) and (6)) and
simplified (Eq. (5) and (8)) methods proposed in this paper with various test results showing influence ojf: (a) reinforcement ratio
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s (c) effective depth of

slab (tests by Guandalini and Muttoni 3 ); (d) concrete strength (tests by Ramdane®> ); (e) yield strength of steel (tests by

Moe™ ); and (f) slenderness of slab.

of flat slabs without shear reinforcement and correctly
accounting for size effect. A failure criterion is derived on its
basis, which suitably describes the role of the many
geometric and mechanical parameters involved in punching
shear. The main conclusions of this paper are:

1. According to the proposed failure criterion, the punching
strength is a function of the opening of a critical shear crack
in the slab. Its influence is assumed to be proportional to the
product of the slab rotation times the slab thickness and
corrected by a factor to account for the maximum diameter
of the aggregate;

2. This failure criterion simultaneously determines the
punching load and the rotation capacity of the slab, and thus
of its ductility;

3. The punching load can be determined by applying the
failure criterion and a load-rotation relationship obtained
from a nonlinear analysis of the slab in bending. For axisym-
metric cases, an analytical formulation derived on the basis
of a nonlinear moment-curvature diagram is given;

4. A simplified bilinear (elasto-plastic) moment-curvature
relationship can also be applied to accurately estimate the
punching load. The use of a more sophisticated moment-
curvature relationship is only required for thick slabs with
low reinforcement ratios, in which it is necessary to precisely

ACI Structural Journal/July-August 2008

account for the effects of the tensile strength of concrete and
of tension stiffening;

5. A simplified analytical formulation of the load-rotation
relationship, as it is used in the current Swiss design code
for concrete structures, also gives a good estimate of the
punching load;

6. The article proposes a method to calculate the punching
strength as a function of the effective depth of the slab, the size
of the column, the flexural reinforcement ratio, the yield
strength of the reinforcing steel, the concrete strength, the
maximum aggregate size, and the span-depth ratio of the slab.
This method gives very good results when compared with a
series of 87 test results, with a COV of the ratio V,,./V;, of 8%;

7. Size effect on the punching shear strength is accounted
in the failure criterion of the critical shear crack theory. This
effect, in combination with the slenderness effect on the
load-rotation relationship proposed in this paper, can be
formulated as a function of the span of the slab;

8. ACI 318-05° does not only exhibit a very large COV when
compared with test results (22%), but it does not include
important effects, which leads to unsafe designs in particular
for thick and/or slender slabs with low reinforcement ratios;
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9. Eurocode 27 has a better COV when compared with test
results (12%), but it also can predict unconservative values
for slender slabs;

10. Even if tests on thin slabs have exhibited some level of
ductility for low reinforcement ratios, the behavior is quite
brittle for thicker slabs; and

11. For thick slabs, the only solution to reach a satisfactory
level of ductility is to place punching shear reinforcement.
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APPENDIX 1

In this appendix, a load-rotation relationship for an isolated slab element is derived based on the
assumption that the deflected shape of the isolated slab element is conical outside the critical shear

crack. The curvature in tangential direction (Fig. 6f) is thus:

;(t=—% for r > ry (11)

Inside the critical shear crack, it may be assumed that the curvatures in both directions are constant

and equal (Figs 6d,f), so that the deflected shape is spherical :

X =X ¥ forr<rg (12)

"o
With these curvatures, the internal forces described in Figs 6b,c can be calculated according to the
quadrilinear moment-curvature relationship shown in Fig. 7. This relationship is characterized by
the stiffnesses E1j before and E1; after cracking, the cracking moment m,, , the moment capacity mpg
and the tension stiffening effect y75. Neglecting the effect of reinforcement before cracking, these

terms can be obtained as:

fu
or 5 (13)
E I
El, =—F 14
0T (14)
m, 2- fvz
_ — cr c 15
Xer Bl hE (15)
Assuming a linear-elastic behaviour of steel and concrete after cracking, it follows:
El =p-B-E .d3.1_£.1_i 16
pp (151 "
where c is the depth of the compression zone:
E 2-F
c=p-f-—-d-| [I+——-1 (17)
E, p-pE,
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and f is an efficiency factor that accounts for the orthogonal layout of the reinforcement and the
reduction in the ratio between the torsion and bending stiffness of the slab after cracking. It should
be noted that this factor affects the stiffness of the member but not the flexural strength of the
member. While the developments above were made for a layout with a polar symmetry
(reinforcement placed in radial and tangential directions), reinforcement is usually placed
orthogonally in the slab. For these cases, a good agreement to test data is obtained assuming
p =0.6.

Assuming a perfectly plastic behaviour of the reinforcement after yielding, a rectangular stress
block for concrete in the compression zone and neglecting compression reinforcement, the moment

capacity my of the section is then:

pf,
2-f.

mR:pj;d?p— (18)

The decrease in curvature caused by tension stiffening can be approximated by the constant

contribution yrs:

Je 1
Hpg = —2

p-B-E, 6-h (19)

which corresponds approximately to 0.5 - m,, / El,.

The curvatures y; at the beginning of the stabilized cracked regime and y, at yielding are thus:

m
My 20
Xi El, Xr1s (20)
and

m
_Zy:E_IRI_ZTS (21)

The four segments of the assumed moment-curvature relationship correspond to the four regions of
the slab shown in Figs 6f,g. The radii delimiting these zones may be determined by substituting
Egs (15), (20) and (21) into Eq. (11), as follows:

Zone within which the reinforcement is yielding, plastic radius r,, :
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o oM, 22)
El

Zone in which cracking is stabilized, radius 7;:

p=-Y oY < (23)

X My ’
El, Xr1s

and zone up to which the concrete is cracked, cracking radius 7, :

-El
r., :_l:ugrs (24)

ZC}” mcr

The equilibrium equation of the slab portion shown in Fig. 6c is:

V.%.(rq_rc)z—mr.Ago-rO—Ago-fmw~dV (25)

where m, is the radial moment at » = r( calculated according to Fig. 7 with the curvature given by
Eq. (12). It follows that:

o —m,-r0+mR-<ry—r0>+E11-y/-<ln(iq)—ln(lfv)>+

V= .
ry=r. | EL -y .<,»1 _ry>+mcr (1, —=n)+ElL -y -(In(r,) ~ In(r,,))

(6)

where the operator <x> is x for x>0 and 0 for x<0

APPENDIX 2

The following symbols are used in the paper:

E. = modulus of elasticity of concrete (assumed £, =10'000- fC% [MPa],
E. = 276'000-]‘6% [psi])

E; = modulus of elasticity of reinforcement

El, = flexural stiffness before cracking

EL, = tangential flexural stiffness after cracking

L = main span of a slab system
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26

Va
Viex
Vr
Vra
Viest

Vin

!

et
S

mCV

my

mg

MRq

shear force

factored shear force

shear force associated with flexural capacity of the slab
nominal punching shear strength

design punching shear strength

experimental punching shear strength

theoretical punching shear strength

perimeter of the critical section for punching shear

side length of a square column

side length of a square isolated slab element

distance from extreme compression fibre to neutral axis
distance from extreme compression fibre to the centroid of the longitudinal
tensile reinforcement

diameter of a reinforcement bar

maximum diameter of the aggregate

reference aggregate size (16 mm (0.63 in))

average compressive strength of concrete (cylinder)

specified compressive strength of concrete (cylinder)

tensile strength of concrete (assumed f,, =0.3- fc% [MPa], £, =1.6- fc% [psi])

yield strength of reinforcement

slab thickness

cracking moment per unit width

radial moment per unit width

tangential moment per unit width
nominal moment capacity per unit width

design moment capacity per unit width
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1o

r

Ve

rCI‘

y4!

Ner

Xr

Xy

ATS

Wa

radius

radius of the critical shear crack

radius of the zone in which cracking is stabilized

radius of a circular column

radius of cracked zone

radius of the load introduction at the perimeter

radius of circular isolated slab element

radius of yielded zone

angle of a slab sector

efficiency factor of the bending reinforcement for stiffness calculation
partial safety factor for concrete (according to European practice, y. = 1.5)
reinforcement ratio

strength reduction factor (according to North-American practice, ¢ = 0.75 for shear)
curvature in stabilized cracking

curvature at cracking

curvature in radial direction

curvature in tangential direction

yielding curvature

decrease in curvature due to tension stiffening

rotation of slab outside the column region

rotation of slab outside the column region due to factored shear force V',

size effect coefficient in Eurocode 2’
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