






Foreword

The gravity load resisting system of mid- to high-rise buildings that are braced by reinforced concrete
(RC) walls consists often of slender RC columns and flat RC slabs. This system has a low horizontal
stiffness and does not contribute significantly to the horizontal stiffness of the building. However, to
avoid premature failure under seismic loading, it is necessary that the gravity load resisting system
is able to accommodate the lateral displacements that the horizontal loading evokes. A common pre-
mature failure mode of slab-column connection is the brittle punching shear failure. To avoid this
failure mode, the designer needs to estimate the deformation capacity of the slab-column connection
under seismically induced deformations and compare it to the demand. Current codes predict the
deformation capacity of slab-column connections by means of empirical models.

Ioannis Drakatos develops models for predicting the strength and the deformation capacity of slab-
column connections under seismic loading. The focus of his work is on the effect of cyclic loading
on the deformation capacity. To investigate this effect experimentally, he tested 13 full-scale isolated
slab-column connections without shear reinforcement. The test series allowed to compare the response
of monotonically and cyclically loaded slabs for different gravity shear ratios and reinforcement ratios.
Ioannis Drakatos then extends the model of the Critical Shear Crack Theory for slab-column connec-
tions subjected to seismic loading, considering the monotonic load case and the cyclic load case. The
model was validated against the own tests as well as tests published in the literature. The comparison
shows a very good performance. The thesis concludes with the proposal of an effective beam width
method that allows estimating the deformation demand on slab-column connections from elastic finite
element analysis.
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Abstract

Reinforced concrete (RC) flat slabs supported by slender columns are often used as gravity load re-
sisting system for buildings. In regions of moderate and high seismicity such buildings are typically
braced by RC walls, which carry the largest portion of the horizontal loads generated during earth-
quakes. Therefore, the slab-column system does not contribute significantly to the lateral stiffness
and strength of the structure, but each slab-column connection must be able to accommodate the
seismically induced drifts of the building while maintaining its capacity to transfer vertical loads from
the slab to the columns. Otherwise, brittle punching failure of the slab occurs and the deformation
capacity of the entire building is limited by the deformation capacity of the slab-column connection if
the building is not designed to resist progressive collapse.

The first part of this work presents an experimental investigation on 13 full-scale internal slab-column
connections without transverse reinforcement. The objective of the test campaign is to assess the
influence of the loading history (monotonic vs. reversed cyclic) for different gravity loads and rein-
forcement ratios. The study shows that cyclic loading leads, in particular for slabs subjected to low
gravity loads, to significant moment strength and deformation capacity reduction when compared to
results obtained from monotonic loading tests. The effect of cyclic loading is more pronounced for
slabs with low reinforcement content.

In the second part, a mechanical model is presented for predicting the moment-rotation relationship
of interior slab-column connections without transverse reinforcement when subjected to seismically
induced drifts. The model accounts explicitly for the three load transfer mechanisms between slab
and column contributing to the unbalanced moment resistance, i.e., eccentric shear, flexure and tor-
sion. The moment resistance and deformation capacity are deduced from the intersection of the
moment-rotation curve with a failure criterion that is based on the Critical Shear Crack Theory and
distinguishes between monotonic and cyclic loading conditions. The model predicts well the moment
strength and the deformation capacity of slabs tested within this research and reported in the litera-
ture.

The third part of this thesis proposes an extension of the mechanical model for the moment-rotation
relationship presented earlier to account for the hysteretic behaviour and cumulative damage effects
on slab-column connections subjected to cyclic loading. A hysteretic moment-curvature relationship
is proposed for the radial direction, based on local deformation measurements from the cyclic tests.
Cyclic damage is considered by adopting a damage index proposed by a previous study. The extended
model predicts more accurately the response of cyclic tests than the simplified approach based on the
monotonic model.

Finally, based on the theoretical investigation of the two previous parts, two methods are proposed
for the numerical analysis of flat slab buildings to simulate the column deformation and the slab de-
formation until midspan. First, an Effective Beam Width method is presented and compared to test
results of flat slab buildings with over-hangs. Then, a simplified method is proposed for the analysis of
slab-column connections not part of the lateral force-resisting system. This method allows estimating
the contribution of column and slab deformation to the interstorey drift.
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Crack Theory (CSCT), interstorey drift, unbalanced moment, load history, deformation capacity,
lateral force-resisting mechanisms, Effective Beam Width method
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Résumé

Les planchers-dalles en béton armé soutenus par des colonnes élancées sont fréquemment utilisés pour
la reprise des charges gravitaires de bâtiments. Dans des régions à sismicité modérée et élevée ces
bâtiments sont typiquement contreventés par des murs en béton armé qui reprennent une grande
portion des charges horizontales générées pendant les tremblements de terre. Le système structu-
ral dalle-colonne ne contribue donc que de manière limitée à la rigidité latérale et à la résistance
de la structure. Il est nécessaire que chaque connexion doit accommoder les déplacements sismiques
du bâtiment et maintenir sa capacité de transférer les charges verticales aux colonnes. Dans le cas
contraire, une rupture fragile par poinçonnement se produit et la capacité de déformation du bâtiment
dans son ensemble est limitée par celle de la connexion dalle-colonne dans le cas où le bâtiment n’est
pas dimensionné pour résister à un effondrement progressif.

La première partie de ce travail présente une étude expérimentale portant sur 13 connexions dalle-
colonne intérieures sans armature transversale, testées à pleine échelle. L’objectif de la campagne
d’essais est d’évaluer l’influence de l’historique de chargement (monotonique/cyclique) pour différents
charges gravitaires et taux d’armature. Les résultats montrent que le chargement cyclique entrâıne
une réduction significative de la résistance et de la capacité de déformation par rapport à ce qui a
été obtenu dans les essais monotoniques, notamment pour les dalles soumises à de faibles charges
gravitaires. L’effet cyclique est plus important pour les dalles avec un faible taux d’armature.

Dans la seconde partie, un modèle mécanique est présenté pour calculer la relation moment-rotation
des connexions dalle-colonne intérieures sans armature transversale soumises à des déplacements inter-
étage dus aux actions sismiques. Le modèle tient explicitement compte des trois mécanismes de trans-
fert de charge de la dalle à la colonne qui contribuent à la résistance, à savoir l’effort tranchant excentré,
la flexion et la torsion. La résistance et la capacité de déformation sont obtenus par l’intersection de
la courbe moment-rotation avec le critère de rupture qui est basé sur la théorie de fissure critique et
distingue les conditions de chargement monotoniques et cycliques. Le modèle prédit de manière satis-
faisante la résistance et la capacité de déformation des dalles testées dans le cadre de cette recherche
ainsi que celles trouvées dans la littérature.

La troisième partie de cette thèse propose une extension du modèle mécanique pour la relation moment-
rotation précédemment présenté avant pour tenir compte du comportement hystérétique et des effets
liés à l’endommagement cumulatif sur des connexions dalle-colonne soumises à des charges cycliques.
Une loi moment-courbure hystérétique est proposée pour la direction radiale sur la base des mesures
de déformation locales obtenues dans les essais cycliques. L’endommagement cyclique est introduit
par la considération d’un indice d’endommagement proposé dans une étude précédente. Le modèle
cyclique prédit avec plus de précision la réponse d’essais cycliques que le modèle simplifié basé sur le
modèle monotonique.

Finalement, sur la base de l’étude théorique des deux parties précédentes, deux méthodes pour l’analyse
numérique des bâtiments avec planchers-dalles sont proposées afin de simuler la déformation de la
colonne et la déformation de la dalle jusqu’à la mi-travée. Une méthode de poutre équivalente est
présentée et comparée aux résultats expérimentaux portant sur des bâtiments avec planchers-dalles.
Une méthode simplifiée est ensuite proposée pour l’analyse des connexions dalle-colonne ne partici-
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pant pas à la reprise de charges horizontales. Cette méthode permet d’estimer la contribution de la
déformation de la colonne et de la dalle au déplacement inter-étage.

Mots-clefs : planchers-dalles en béton armé, connexion dalle-colonne, chargement sismique, théorie
de la fissure critique, déplacement inter-étage, moment non balancé, historique de chargement, capacité
de déformation, mécanismes résistant aux charges latérales, méthode de poutre équivalente
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Zusammenfassung

Flachdeckenplatten aus Stahlbeton auf schlanken Stützen werden oft als statisches System von Gebäu-
den eingesetzt. In Regionen mit moderater oder hoher Seismizität werden solche Gebäudetypen ty-
pischerweise mit Stahlbetonwänden ausgesteift, die den größten Anteil der Horizontallasten während
eines Erdbebens abtragen. Auf Grund dessen, tragen die Verbindungen zwischen Stütze und Decken-
platte nicht signifikant zur horizontalen Steifigkeit und Festigkeit des Systems bei. Nichtsdestoweni-
ger müssen diese Verbindungen in der Lage sein, trotz der auftretenden horizontalen Verschiebun-
gen der Struktur während eines Erdbebens, die anstehenden Vertikallasten von den Deckenplatten
in die Stützen zu übertragen. Ist dies nicht der Fall, tritt sprödes Durchstanzversagen der Decken-
Stützenverbindung auf, was somit die horizontale Verformungskapazität des gesamten Gebäudes auf
die Kapazität der Verbindung limitiert, wenn dies nicht in der Planung des Gebäudes berücksichtigt
wurde.

Der erste Teil dieser Arbeit präsentiert eine Versuchsreihe von 13 maßstäblichen internen Decken-
Stützenverbindungen ohne Querbewährung. Das Ziel der Versuche ist, einen besseren Einblick in
den Einfluss der Lastgeschichte (monoton vs. beidseitig zyklisch) bei verschiedenen Vertikallasten und
Bewährungsgraden zu erhalten. Es zeigt sich, dass zyklische Belastungen, besonders bei gering belaste-
ten Deckenplatten, zu signifikanten Verringerungen der Momententraglast und Verformungskapazität
der Verbindung, im Vergleich mit monotonen Lastgeschichten, führen. Dieser Effekt ist für geringe
Bewährungsgrade stärker ausgeprägt. Im zweiten Teil wird ein mechanisches Modell zur Berechnung
der Momenten-Roationsbeziehung von internen Decken-Stützenverbindungen ohne Querbewährung,
die seismisch induzierten Verschiebungen ausgesetzt sind, vorgestellt. Das Modell berücksichtigt auf
explizite Art die drei Lastabtragungsmechanismen zwischen Platte und Stütze, die zum Kippmo-
mentenwiderstand beitragen: exzentrischer Schub, Biegung und Torsion. Die Momententraglast und
Verformungskapazität der Verbindung werden vom Schneiden der Momenten-Rotationskurve mit ei-
ner Versagensbedingung, die auf der ’Theorie des kritischen Schubrisses‘ basiert, hergeleitet. Es wird
zwischen monotonen und zyklischen Lastbedingungen unterschieden. Es zeigt sich, dass das Modell
den Momentenwiderstand und die Deformationskapazität von in dieser Arbeit untersuchten und in
der Literatur vorhandenen Verbindungen zufriedenstellend vorhersagt.

Der dritte Abschnitt dieser Arbeit behandelt einen Ausbau des zuvor vorgestellten Rechenmodells, um
das hysteretische Verhalten und kumulative Schadenseffekte in Decken-Stützenverbindungen, die zykli-
schen Belastungen ausgesetzt sind, zu berücksichtigen. Eine hysteretische Momenten-Krümmungsbezie-
hung, basierend auf lokalen Messungen in der Versuchsreihe, wird in radialer Richtung eingeführt.
Zyklischer Schadensaufbau wird durch die Zuhilfenahme eines Schadensindexes, basierend auf einer
vorhergehenden Arbeit, behandelt. Das erweiterte Modell sagt den Ablauf der zyklischen Versuche
präziser voraus als der vereinfachte, zuvor vorgestellte Ansatz.

Abschließend werden, basierend auf den theoretischen Untersuchungen der zwei vorhergehenden Ab-
schnitte, zwei Methoden zur numerischen Berechnung von Gebäuden mit Flachdecken vorgeschlagen,
die die Stützenverformungen und Plattendeformationen bis Feldmitte vorhersagen. Die erste, eine ’Me-
thode der effektiven Plattenbreite‘, wird vorgestellt und mit Versuchsergebnissen von Gebäuden mit
Flachdecken und Auskragungen verglichen. Eine zweite, vereinfachte Methode wird für die Berechnung
von Decken-Stützenverbindungen die nicht Teil der horizontallast abtragenden Struktur sind, vorge-
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schlagen. Dieser Ansatz erlaubt die Abschätzung des Beitrags von Stützen- und Deckenverformung an
der horizontalen Geschoßverschiebung.

Stichwörter: Flachdecken aus Stahlbeton, Decken-Stützenverbindung, Erdbebenbelastung, Theorie
des kritischen Schubrisses, Geschoßverschiebung, Kippmoment, Belastungsgeschichte, Verformungska-
pazität, vertikallastabtragende Mechanismen, Methode der effektiven Plattenbreite
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Riassunto

Piastre continue in calcestruzzo armato sostenute da pilastri snelli sono frequentemente usate come
sistema resistente ai carichi gravitazionali negli edifici. In regioni a media e alta sismicità questi edifici
sono tipicamente controventati da muri in calcestruzzo armato, che hanno la funzione di riprendere i
carichi orizzontali in caso di terremoto. Il sistema piastra-pilastro non contibuisce significativamente
alla rigidezza laterale e alla resistenza della struttura, ma ogni connessione piastra-pilastro deve essere
in grado di seguire gli spostamenti dell’ edificio dovuti all’azione sismica mantenendo la capacità di
trasferire i carichi verticali ai pilastri. In caso contrario, una rottura fragile per punzonamento può
manifestarsi e la capacità di deformazione dell’intero edificio é limitata dalla capacità di deformazio-
ne della connessione piastra-pilastro se l’edificio non é progettato per resistere attraverso un collasso
progressivo.

La prima parte di questo lavoro presenta uno studio sperimentale su 13 connessioni piastra-pilastro
interno senza armatura di punzonamento, in scala 1:1. L’obiettivo della campagna sperimentale é di
valutare l’influenza della storia di carico (monotonica o ciclica) al variare del carico verticale applicato
e delle percentuali di armatura. I risultati mostrano che une storia di carico ciclica comporta una
riduzione significativa della resistenza e della capacità di deformazione in confronto a una storia di
carico monotonica, soprattutto per carichi verticali bassi. Questo effetto ciclico risulta più pronunciato
per piastre con una ridotta percentuale di armatura.

Nella seconda parte viene presentato un modello meccanico per calcolare la relazione momento-
rotazione di connessioni piastra-pilastro interno senza armatura di punzonamento soggetti a azioni
sismiche. Il modello tiene conto dei tre meccanismi di trasferimento di carico tra piastra e pilastro che
contribuiscono alla resistenza (taglio eccentrico, flessione, e torsione) in modo esplicito. La resistenza
e la capacità di deformazione sono ottenuti dall’intersezione della curva momento-rotazione con un
criterio di rottura basato sulla teoria della fessura critica, e distingue tra condizioni di carico monoto-
niche e cicliche. Il modello prevede in maniera soddisfacente la resistenza e la capacità di deformazione
sia delle piastre testate nell’ambito di questa tesi che di altre presenti in letteratura.

La terza parte di questa tesi propone una estensione del modello meccanico per la relazione momento-
rotazione precedentemente mostrato tenendo conto del comportamento isteretico e degli effetti legati
al danneggiamento cumulativo di connessioni piastra-pilastro soggette a carico ciclico. Una legge
momento-curvatura isteretica viene proposta per la direzione radiale, sulla base di misure di deforma-
zione locali ottenute dalle prove cicliche. Il danneggiamento ciclico é considerato attraverso un indice
di danneggiamento proposto in uno studio precedente. Il modello esteso fornisce una previsione più
precisa della risposta delle prove cicliche rispetto all’approccio semplificato.

Infine, sulla base dello studio teorico delle due parti precedenti, due metodi per l’analisi numerica di
edifici con piastre continue per simulare la deformazione del pilastro e la deformazione della piastra fi-
no alla mezzeria sono proposti. Inizialmente, viene presentato un metodo di trave equivalente, il quale
é stato comparato ai dei risultati di prove su edifici con piastre continue. Successivamente, un metodo
semplificato per l’analisi di connessioni piastra-pilasto che non fanno parte del sistema resistente ai
carichi laterali viene proposto. Il metodo permette di stimare il contributo della deformazione del
pilastro e della piastra allo spostamento relativo di interpiano.
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Σύνοψη

Οι πλάκες χωρίς δοκούς από οπλισμένο σκυρόδεμα εδραζόμενες επί λυγηρών υποστυλωμάτων χρησιμο-

ποιούνται συχνά ως σύστημα ανάληψης κατακόρυφων δράσεων κτιρίων. Σε περιοχές μέσης και ισχυρής

σεισμικότητας τα κτίρια αυτά συνήθως ενισχύνονται από τοιχεία οπλισμένου σκυροδέματος, τα οποία α-

ναλαμβάνουν μεγάλο μέρος των οριζοντίων φορτίων που προκύπτουν από τους σεισμούς. Επομένως, το

σύστημα πλάκα-υποστύλωμα δε συνεισφέρει καθοριστικά στην πλευρική δυσκαμψία και στην αντοχή της

κατασκευής, αλλά κάθε σύνδεση πλάκας-υποστυλώματος πρέπει να ακολουθεί τις σεισμικές μετακινήσεις

του κτιρίου και να διατηρεί την ικανότητα μεταφοράς των κατακόρυφων φορτίων στα υποστυλώματα. Σε

αντίθετη περίπτωση, συμβαίνει ψαθυρή αστοχία λόγω διάτρησης και η ικανότητα παραμόρφωσης ολόκλη-

ρου του κτιρίου περιορίζεται από την ικανότητα παραμόρφωσης της σύνδεσης πλάκας-υποστυλώματος

στην περίπτωση που το κτιριο δεν έχει σχεδιασθεί έναντι προοδευτικής κατάρρευσης.

Το πρώτο μέρος της παρούσας εργασίας παρουσιάζει μια πειραματική μελέτη 13 εσωτερικών συνδέσεων

πλάκας-υποστυλώματος χωρίς οπλισμό διάτρησης, σε πλήρη κλίμακα. Ο σκοπός των πειραμάτων είναι

η αξιολόγηση της επιρροής της ιστορίας φόρτισης (μονοτονική/ανακυκλιζόμενη) για διαφορετικά κατα-

κόρυφα φορτία και γεωμετρικά ποσοστά οπλισμού. Τα αποτελέσματα δειχνουν ότι η ανακυκλιζόμενη

φόρτιση προκαλεί σημαντική απομείωση της αντοχής και της ικανότητας παραμόρφωσης σε σχέση με τα

αποτελέσματα μονοτονικών δοκιμών, ιδίως για συνδέσεις υπό μικρά κατακόρυφα φορτία. Η επιρροή της

ανακυκλιζόμενης φόρτισης είναι πιο εμφανής σε πλάκες με χαμηλό γεωμετρικό ποσοστό οπλισμού.

Στο δεύτερο μέρος, παρουσιάζεται ένα αναλυτικό προσομοίωμα για το υπολογισμό της σχέσης ροπής-

στροφής εσωτερικών συνδέσεων πλάκας-υποστυλώματος χωρίς οπλισμό διάτρησης υπό σεισμικές κατα-

πονήσεις. Το προσομοίωμα λαμβάνει ρητώς υπόψιν τους τρεις μηχανισμούς μεταφοράς φορτίου από την

πλάκα στο υποστύλωμα (έκκεντρη διάτμηση, κάμψη, και στρέψη). Η αντοχή και η ικανότητα παραμόρ-

φωσης προκύπτουν από την τμήση της καμπύλης ροπής-στροφής με το κριτήριο αστοχίας που βασίζεται

στην θεωρία κρίσιμης ρωγμής και διακρίνει μονοτονικές και ανακυκλιζόμενες συνθήκες φόρτισης. Το

προσομοίωμα προβλέπει με ικανοποιητική ακρίβεια την αντοχή και την ικανότητα παραμόρφωσης δοκιμίων

της παρούσας έρευνας καθώς και δοκιμίων από τη βιβλιογραφία.

Το τρίτο μέρος της παρούσας διατριβής προτείνει μία επέκταση του αναλυτικού προσομοιώματος για τη

σχέση ροπή-στροφή που παρουσιάστηκε προηγουμένως ώστε να ληφθεί υπόψιν η υστερητική συμπεριφορά

και φαινόμενα συσσώρευσης βλάβης σε συνδέσεις πλάκας-υποστυλώματος υπό ανακυκλιζόμενη φορτιση.

`Ενας υστερητικός νόμος ροπής-καμπυλότητας προτείνεται για την ακτινική διεύθυνση βάσει τοπικών

μετρήσεων παραμορφώσεων από τα πειράματα ανακυκλιζόμενης φόρτισης. Η βλάβη λόγω ανακύκλισης

εισάγεται μέσω ενός δείκτη βλάβης που έχει προταθεί σε μια προηγούμενη μελέτη. Το προσομοίωμα

ανακυκλιζόμενης φορτισης προβλέπει την απόκριση των αντίστοιχων πειραμάτων με μεγαλύτερη ακρίβεια

από το απλοποιητικό προσομοίωμα που βασίζεται στο προσομοίωμα μονοτονικής φορτισης.

Τελικώς, επί τη βάσει της ως άνω θεωρητικής μελέτης, προτείνονται δύο μέθοδοι για την αριθμητική

προσομοίωση κτιρίων χωρίς δοκούς ώστε να ληφθεί υπόψιν η παραμόρφωση του υποστυλώματος και

της πλάκας έως το μέσον του ανοίγματός της. Αρχικά, προτείνεται μία μέθοδος ισοδυναμης δοκού και

συγκρίνεται με περιραματικά αποτελέσματα συστημάτων χωρίς δοκούς. Υστερα, προτείνεται μια απλο-

ποιητική μέθοδος για την ανάλυση συνδέσεων πλάκας-υποστυλώματος που δε συμμετέχουν στο σύστημα

ανάληψης σεισμικών δράσεων. Αυτή η μέθοδος επιτρέπει τον υπολογισμό της συνεισφοράς τόσο της
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Notations

The following symbols are used in this thesis:

Ac area enclosed by the critical perimeter
B slab specimen size;

Chapter 2: subscript designating tension in the bottom reinforcement
[Bro09]

b Chapter 2: diameter of a circle with the same surface as the region
inside the basic control perimeter [Fib11]
Chapter 7: effective beam width;

b1 dimension of the critical section measured in the direction of the span
for which moments are determined

b2 dimension of the critical section measured orthogonal to the span for
which moments are determined

bo perimeter of the critical section at d/2 from the column
c size of a square column
c1 perimeter of the critical section at d/2 from the column
c2 perimeter of the critical section at d/2 from the column
D damage index
Dc damage index due to cyclic loading
Dδ damage index due to maximum deformation
d slab effective depth (distance from the tension reinforcement to the

extreme compressed fibre)
dE incremental absorbed hysteretic energy
dg maximum diameter of the aggregate
dg.0 reference aggregate size (16 mm, 0.63 in)
Ec modulus of elasticity of concrete
Es modulus of elasticity of reinforcing steel
EI rotational stiffness of the slab-column connection (Effective Beam

Width method)
EI0 initial stiffness of the moment-curvature relationship (before

cracking)
EI1 stiffness of the moment-curvature relationship after cracking
EIeff effective stiffness of the column
EIgr uncracked (gross) stiffness of the column
e ratio of unbalanced moment to applied vertical load on the slab-

column connection (eccentricity)
fc average compressive strength of concrete (cylinder)
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fj.cyc(φi) radial flexibility of the sector element at angle φi for cyclic loading
(jth peak)

fo yield flexibility in the radial direction (inverse of yield stiffness)
fu.mono(φi) radial flexibility of the sector element at angle φi at failure under

monotonic loading
fy yield stress of reinforcing steel (flexural reinforcement)

Hst.n storey height of the nth floor
Htot height of building to roof level
h slab thickness – beam height (Effective Beam Width method)
Icr moment of inertia of cracked concrete section (equivalent beam)
Ig moment of inertia of uncracked concrete section (equivalent beam)
i index designating a sector element of the slab
Jc property analogous to the polar moment of inertia of the critical

section [ACI14]
jd distance between the centroid and the the edge of the critical

perimeter
Kd coefficient to take into account the stiffness degradation due to in-

creasing imposed storey drift [Gro97]
k index designating the load step for the calculation of the moment-

rotation relationship
ke reduction factor for the length of the control perimeter [Fib11]
L distance between the axes of the columns in a continuous slab (slab

span)
l1 distance between supports orthogonal to the unbalanced moment vec-

tor (= L)
l2 distance between supports parallel to the unbalanced moment vector
M unbalanced moment introduced to the slab-column connection
Mcr cracking moment
Mel unbalanced moment according to the theory of elasticity
Mmax moment capacity/strength (maximum unbalanced moment intro-

duced to the slab-column connection before failure)
Mrad(φi, r) radial bending moment of the sector element at angle φi and distance

r from the column centre
Mtan(φi) tangential bending moment of the sector element at angle φi
Mtor(φi, r) torsional moment of the sector element at angle φi and distance r

from the column centre
m slab moment per unit width
mR moment capacity of the slab [Fib11]
mS average moment demand on the column strip [Fib11]
max subscript indicating a value corresponding to the peak moment

(Mmax)
N number of specimens
n number of sector elements;

Chapter 7: subscript designating the floor number
non Chapter 5: subscript designating non-reversed cyclic loading
nc number of performed cycles per rotation level (load step)
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pl Chapter 5: subscript designating the plastic portion of generalised
strain (displacement, rotation, curvature, strain)

r distance from the column centre
r0 radius of the critical shear crack
r1 radius of the zone where cracking is stabilised
rc radius of the column
rcr radius of the cracked zone
rq distance between the centre of the column and the point of application

of load
ry radius of the yielded zone
rad subscript designating the radial direction of the slab
rev Chapter 5: subscript designating reversed cyclic loading
T fundamental period of the structure;

Chapter 2: subscript designating tension in the top reinforcement
[Bro09]

tan subscript designating the tangential direction of the slab
u subscript designating punching failure;

Chapter 3: subscript designating loss of vertical load bearing capacity
V vertical load acting on the slab-column connection
VM fictitious column reaction [Bro09]
VRc punching shear capacity
VR.hog shear resistance of the hogging slab half
VR.π/2 shear resistance of the sector element subjected to the maximum ro-

tation ψmax

Vb base shear
Vy.1 column reaction at the onset of reinforcement yielding
Vy.2 column reaction at overall yielding of the specimen’s top

reinforcement
vE shear stress acting on the critical section
x height of the compression zone;

horizontal axis
y subscript designating the onset of yielding;

Chapter 5: subscript designating the first post-yield peak

Greek letters

α width reduction coefficient for the Effective Beam Width method
β stiffness reduction coefficient for the Effective Beam Width method;

Chapter 3: shear retention factor
βc empirical coefficient accounting for the effect of cyclic loading
γ shear strain
γf contribution of flexure mechanism on the total unbalanced moment
γm material partial factor
γv contribution of eccentric shear force mechanism on the total unbal-

anced moment
γt contribution of torsion mechanism on the total unbalanced moment
∆ slab deflection (vertical displacement);

Chapter 7: lateral displacement of flat slab building

∆Vi shear force acting on the ith sector element
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

In many countries around the world including Switzerland, reinforced concrete (RC) flat slabs sup-
ported on columns are one of the most widely used floor systems for office and industrial buildings.
This system has the advantage to result in large open floor spaces (Fig. 1.1) as well as short construc-
tion times and therefore low construction costs.

(a) (b)

Figure 1.1 – Typical office building in Switzerland with flat slabs supported on columns (courtesy of
Thomas Wenk).

For an inner column in a regular slab (same geometric properties and reinforcement content for all
sides) with equal spans in both horizontal directions, the shear stresses induced by gravity loads are
symmetric. Consequently, the distribution of the shear force and the bending moment is uniform
along the perimeter of the column and no moment is transferred from the slab to the column.

Permanent loads

ψ
v

Figure 1.2 – Flat slab subjected to permanent vertical loads.
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1. Introduction

When a building is subjected to a seismic excitation, each floor is subjected to a different inertial
force resulting in a different lateral displacement (Fig. 1.3a). The relative displacement between two
adjacent floors divided by the storey height is referred to as interstorey (or storey) drift ψst. For flat
slab systems both the column and the slab contribute, proportionally to their relative stiffness, to the
storey drift (Fig. 1.3b).

Slab-column connections may be adequate as the primary lateral force-resisting system of low-rise
buildings in regions of low and moderate seismicity. However, in regions of high seismic risk slab-
column frames are considered inadequate as the primary lateral force-resisting system because of
problems associated with excessive lateral drift and inadequate shear and unbalanced moment capacity
of the connection [ACI11]. To increase the horizontal stiffness and strength of the structural system,
RC walls such as core walls around lift shafts and staircases are typically added to the structural
system (Fig. 1.3a) and the largest portion of the horizontal loads generated during earthquakes will
be carried by the walls rather than the columns. However, each slab-column connection must have
the capacity to follow the lateral displacements imposed on the building by the earthquake loading
while maintaining the capacity to transfer the vertical loads from the slab to the columns.

rotation due to slab

deformation ψ
slab

Interstorey drift rotation 

 ψ
st 

= ψ
slab

+ ψ
col

rotation due to column

deformation ψ
col

Figure 1.3 – Deformation state due to seismically induced drift: (a) global level (prototype building),
and (b) local level (slab-column connection).

The storey drift imposed on the slab-column connection causes moment transfer from the slab to the
column, often termed as unbalanced moment (Fig. 1.4). Hence, the final slab moment distribution
for combined seismic and gravity loading results in an asymmetric distribution of the vertical shear
forces in the slab around the column perimeter and a larger opening of the critical cracks in the slab
on the side of the column where the shear forces are larger (hogging slab half).

Imposed storey drift

ψ
max ψ

min

increased 

rotation
reduced 

rotation

reduced 

shear 

stresses

increased 

shear 

stresses

Figure 1.4 – Flat slab subjected to imposed storey drift.

As the seismically induced deformations increase, the capacity of the slab to transfer the vertical loads
to the column decreases. If the connection can no longer transfer the vertical loads from the slab to
the columns, brittle punching failure of the slab occurs and the deformation capacity of the entire
building might be limited by the deformation capacity of the slab-column connection. If the building
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is not designed to resist progressive collapse, punching failure of a slab-column connection can lead to
pancake-type collapse of the building, as has been observed after several earthquakes (Fig. 1.5).

(a) (b)

Figure 1.5 – Punching shear failure of the Smiths City Car Parking Building after the 2011 Christchurch
earthquake (a, photo: http://www.stuff.co.nz/business/rebuilding-christchurch/5494408/Smiths-
City-to-reopen-for-Cup-Week - b, photo: courtesy of Sri Sritharan).

To design and assess buildings with flat slabs and columns, the estimation of the moment-rotation
relationship of slab-column connections and their rotation capacity are essential. Codes of practice
determine the moment capacity of slab-column connections either using the eccentric shear transfer
model [ACI14, Eur04] or by reducing the control perimeter [Fib11]. The deformation capacity is
estimated from empirical formulas [ACI14] derived from past experimental works [Pan89].

The following paragraphs discuss open issues with regard to the seismic behaviour of slab-column
connections and highlight research needs.

Lack of experimental data on thick slabs and slabs under monotonic or cyclic loading

Until today, research efforts on slab-column connections with unbalanced moment concentrated on
the derivation of empirical relationships between the normalised shear force acting on the slab and
the rotation capacity of the slab-column connection [Pan89, Hue99]. Empirical formulae have always
the drawback that they are limited to the element configurations against which they were calibrated.
The empirical relationships were derived from experimental data obtained from tests on relatively
thin slabs (effective depth d < 150 mm), which have been theoretically shown to be less prone to
brittle punching failure than thicker slabs (d ≥ 150 mm) [Bro09], the latter being more common in
Switzerland.

Past experimental studies investigated the seismic response of slab-column connections subjected to
monotonic loading (e.g. [Gha74,Gha76,Elg87] or to cyclic loading with increasing rotation amplitudes
(e.g. [Pan89,Rob02,Rob06,Bu09]). Until today, only three pairs of slabs were tested which investigated
the impact of the loading history (monotonic vs. reversed cyclic) [Han68,Isl76,Rha14]. The tests were
performed on relatively thin slabs (slab thickness h = 76–90 mm) and their results were not conclusive
regarding the impact of the load history on the force and deformation capacity. Understanding the
effect of the loading history is important when developing mechanical models for the moment-rotation
relationship of slab-column connections including their rotation capacity.

Past campaigns investigating the seismic behaviour of slab-column connections mainly focused on the
global moment-rotation response. For slabs subjected to cyclic unbalanced moments, no experimental
data are reported on local slab rotations. Moreover, no experimental campaign focused on the relation
between local slab rotations and the rotation due to slab deformation, which represents the portion
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of interstorey drift contributed by slab deformation. Local deformation is, however, necessary when
developing analytical models on a mechanical basis.

Need for a model for computing the moment-rotation relationship of slab-column
connections

When a slab-column connection is subjected to a combination of unbalanced moment and shear force
and is responding in the elastic range, three different mechanisms are contributing to the moment
resistance [Mas70]: (i) shear force eccentric to the column axis, (ii) flexure and (iii) torsion. As the be-
haviour of the slab-column connection subjected to an unbalanced moment becomes non-linear—even
if this non-linearity results only from cracking—an accurate and realistic estimation of the contri-
bution of the resisting mechanisms to the overall capacity of the slab-column connection is rather
difficult. This is accentuated by the fact that the aforementioned lateral force-resisting mechanisms
are associated with different failure modes.

Although experimental evidence on the different contributions of the lateral force-resisting mechanisms
(eccentric shear force, flexure, and torsion) to the total unbalanced moment is limited, the design equa-
tions in codes of practice [ACI14,Eur04] are based on estimating the contribution of the eccentric shear
and flexure mechanisms on the basis of empirical works while neglecting the contribution of the torsion
mechanism. Another important assumption of these equations is the fact that the distribution of shear
stresses on the critical perimeter is linear according to ACI-318 [ACI14] (Fıg. 1.6a) or uniform accord-
ing to Eurocode 2 [Eur04] (Fıg. 1.6b). As a result, due to the non-linear distribution of shear stresses
on the control perimeter and depending on the actual contribution of the resistance-providing mech-
anisms at failure the code equations underpredict/overpredict the moment capacity of slab-column
connections. Moreover, current codes (e.g. [ACI14]) adopt different approaches for calculating the
unbalanced moment capacity of a slab-column connection and its deformation capacity under seismic
actions. A generally accepted method for calculating the moment that is transferred to the connection
and a model for capturing the relationship between moment strength and deformation capacity are
lacking.

(b)(a)

M

EC2ACI-318

M

Figure 1.6 – Assumed distribution of shear stresses due to unbalanced moment in the control perimeter
according to (a) ACI-318 [ACI14] and (b) EC2 [Eur04].

The only mechanical model for calculating the critical connection rotation that leads to punching
failure and the corresponding unbalanced moment is proposed by Broms [Bro09]. Broms assumes
that punching occurs when the concrete compression strain in the tangential direction at the column
face reaches a critical value that depends on the height of the compression zone and the concrete
compressive strength. The model satisfies equilibrium and strain compatibility in both the slab and
the column. Broms’ method provides only estimates of rotation and unbalanced moment at failure
and not the entire moment-rotation relationship. Broms’ model is limited to slab-column connections
subjected to monotonic loading.
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Need for a model to predict the cyclic moment-rotation response of slab-column
connections

Past research on RC members has shown that cyclic loading may lead to a significant increase of crack
widths when compared to monotonic loading. Thus, for the same gravity load acting on the slab-
column connection, the unbalanced moment under earthquake conditions may be smaller compared
to monotonic conditions. In the codes of practice the influence of cyclic loading on the deformation
capacity is accounted for empirically [ACI14], while its influence on the moment capacity is overlooked.
Broms assumes, based on the developed monotonic model [Bro09] (see above), that under cyclic
shear stress reversals the tangential concrete strain capacity reduces by 25% compared to monotonic
loading [Bro09]. To date, no suitable model to assess the increase of crack widths on slab-column
connections when they are subjected to cyclic unbalanced moments has been proposed.

Need for analytical calculation of the width reduction coefficient of the Effective Beam
Width method

Previous research with regard to two-dimensional analysis methods for buildings with slab-column
connections focused on the Effective Beam Width method and the Equivalent Frame method. For
the Effective Beam Width method, the slab action is represented by an equivalent beam with the
same thickness as the slab and an effective width that is equal to the midspan-to-midspan distance
in the transverse direction times a width reduction coefficient α. Cracking is accounted for through
the use of a stiffness reduction factor β. The choice of both α and β influences significantly the
obtained results. Past studies proposed formulations for the factors either based on finite element
calculations or to fit experimental results. Accurate estimation of α requires the rotational stiffness
of the slab-column joint to be known. For this reason, the unbalanced moment and the corresponding
rotation due to slab deformation are necessary input parameters, while the contribution of both the
slab regions until 0.22L (defined as slab-column connection region, L corresponds to the distance from
midspan to midspan) and outside 0.22L on the moment-rotation response should be accounted for.
The influence of various parameters, such as material and geometric properties, vertical and lateral
load level, reinforcement ratio, etc. on the rotational stiffness should also be captured.
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1.2 Objectives

The overarching aim of this thesis is to increase the understanding of the seismic behaviour of internal
slab-column connections without transverse reinforcement. In addition, it is aimed to develop tools
for the calculation of the moment-rotation response of slab-column connections which can be used
for seismic design and assessment, as well as for the numerical analysis of flat slab buildings. The
tools should have a sound mechanical basis so as to provide reasonably accurate predictions without
impeding the user’s understanding. More specifically, the main objectives of this dissertation are:

• Development of a mechanical model for predicting the moment-rotation relationship of slab-
column connections subjected to monotonically increasing deformations, which permits to com-
pute the contribution of the different lateral force-resisting mechanisms in the elastic and post-
elastic range of response, considering the influence of both the slab regions until 0.22L and
outside 0.22L on the response

• Development of a relationship between the local rotation ψ and the rotation due to slab defor-
mation ψslab, which represents the slab deformation contribution to the interstorey drift ψst

• Development of a model for predicting the moment strength and the rotation capacity of slab-
column connections

• Extension of the existing experimental database for thick slabs and test unit pairs subjected to
monotonic and cyclic loading, respectively, and assessment of the effect of gravity load, flexural
reinforcement ratio and cyclic loading on the rotation capacity and on the punching strength
degradation

• Development of a mechanical model that accounts for the effect of cyclic loading on the moment-
rotation relationship

• Development of methods for the numerical analysis of buildings with slab-column connections
which can be used by structural engineers for design and assessment

1.3 Methodology

In order to achieve the aforementioned objectives, experimental, analytical, and numerical tools are
employed, with greater focus on the two first ones.

First, an experimental investigation is conducted to provide both global understanding of, and local in-
sight into, the seismic behaviour of slab-column connections, in particular with regard to the influence
of loading history (montonic vs cyclic) for different vertical loads and reinforcement ratios. Moreover,
the experimental investigation provides evidence related to the assumptions to be adopted during the
analytical model development. For the design of the experimental programme and the adopted setup
configuration numerical tools were used, including mainly non-linear finite element simulations.

Then, analytical studies are carried out to develop a physical model for calculating the moment-
rotation relationship as well as the moment strength and the deformation capacity of slab-column con-
nections. These studies are based on an analytical axisymmetric model proposed by Muttoni [Mut08]
for the derivation of the load-rotation relationship of slab-column connections subjected to vertical
load alone and on the failure criterion of the Critical Shear Crack Theory (CSCT) [Mut08]. After-
wards, both the results of experimental and numerical studies are used for validating the proposed
analytical model.

6



Scope

Afterwards, local deformation data from the performed cyclic tests are used to get a deeper insight
into the degradation exhibited by slab-column connections due to cyclic loading. This information is
then used to extend the analytical model to cyclic loading and cumulative damage effects. The model
is validated against results of cyclic tests.

The last part of the thesis shows how the proposed analytical model can be combined with linear finite
element models to analyse entire flat slab buildings under seismic excitation.

1.4 Scope

This thesis treats only interior slab-column connections, excluding all types of edge or corner config-
urations. Only isolated specimens are considered (compressive membrane action is neglected). It is
assumed that the column is monolithically connected to the slab (cases of prefabricated columns are
not treated in the following). Slab-wall connections are also not treated within this research.

Although previous studies have shown the use of shear capitals increases the strength, the stiffness
and the energy dissipation of the connection [Wey92], this research focuses on flat slabs, i.e. slabs
without increased thickness around the column.

Only non-axisymmetric loading conditions are treated in this thesis with the focus on earthquake-
induced loading conditions. RC slabs subjected to constant eccentricity are treated only for valida-
tion purposes. This thesis focuses on slabs subjected to uni-directional loading (uniaxial unbalanced
moment). Specimens subjected to bi-directional loading (biaxial unbalanced moment) are therefore
excluded, independently of the adopted loading protocol type (sequential, clover-leaf, etc.).

Several research projects have shown that the deformation capacity of slab-column connections can be
significantly improved if transverse reinforcement is introduced [Meg00a, Rob02, Bro07]. However, as
a first step, this research is limited to slabs without transverse reinforcement. Such slabs constitute a
large portion of slabs constructed in the past and today. Therefore, use of any type of internal non-
horizontal reinforcement (shear reinforcement, cables for post-tensioning) or external reinforcement
(e.g. FRP) is not considered in this thesis.

Regarding the involved materials, all slab specimens are made of normal weight, normal aggregate,
normal or high strength concrete. Specimens fabricated with fibre-reinforced concrete, ultra-high-
performance concrete, or self-compating concrete are therefore disregarded. The reinforcing steel of
the specimens has sufficient ductility, as prescribed in the codes of practice. Any failure modes as-
sociated with the interface between concrete and reinforcing steel (bond or anchorage failures) are
neglected. Moreover, repaired or strengthened slab specimens are not treated in this dissertation.

Concerning the predictions according to the developed analytical models and the code provisions, mean
strength values are used for the materials (concrete and reinforcing steel), while all safety factors are
set to unity.
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1.5 Organisation of the thesis

This dissertation is organised as follows:

• Chapter 2 gives an overview of the state of the art. The key elements of past experimental and
theoretical research are presented. The provisions of several codes of practice are also presented.

• Chapter 3 presents an experimental campaign conducted within the current research. The
objective of the test campaign is to assess the influence of the loading history (monotonic vs.
reversed cyclic) for different gravity loads and reinforcement ratios. The experimental results
are discussed and compared to the predictions of several codes of practice. This chapter is based
on an article published in Engineering Structures [Dra16].

• Chapter 4 proposes a mechanical model for the derivation of the moment-rotation relationship of
slab-column connections under monotonic loading conditions. The presented approach considers
only the slab region until 0.22L from the column axis. The influence of the region outside
0.22L on the moment-rotation response is considered by combining the proposed model with an
Effective Beam Width model. Drift-induced punching failure is determined by combination of the
proposed model with the failure criterion of the CSCT which distinguishes between monotonic
and cyclic loading. Then, the results of parametric studies on the impact of various parameters
on the contribution of the lateral force-resisting mechanisms and on the seismic rotation capacity
are discussed. Afterwards, the model predictions are compared to the results of the performed
tests (Chapter 3).

• Chapter 5 presents an extension of the monotonic analytical model (Chapter 4) to account for
cyclic loading when calculating the moment-rotation relationship. Based on local deformation
measurements from the cyclic tests presented in Chapter 3, the required assumptions in addition
to the ones of the monotonic model are presented (shear crack inclination, hysteretic moment-
curvature relationship) as well as the adopted seismic damage model. The model predictions
are then compared to the results of the performed cyclic tests. Finally, the results of parametric
studies on the influence of various parameters (including loading history) on the contribution
of the lateral force-resisting mechanisms and on the seismic rotation capacity are presented and
discussed.

• Chapter 6 presents a detailed validation of the mechanical model proposed in Chapter 4 and its
extension for cyclic loading conditions (Chapter 5). First, the main assumptions of the analytical
model are evaluated though comparisons with the tests performed within this thesis. Then, the
performance of the analytical model (combined with the failure criterion) in predicting the
moment strength and the deformation capacity of isolated specimens and continuous specimens
is assessed through comparison with experimental results found in the literature.

• Chapter 7 proposes two analysis methods for buildings with slab-column connections, on the
basis of the proposed model. The first method is based on the Effective Beam Width approach
and can be applied to connections that belong to the lateral force-resisting system or not. The
method is validated against experimental results on multi-storey flat slab systems. The second
method is suitable for slab-column connections that do not belong to the lateral force-resisting
system.

• Chapter 8 presents the conclusions of this dissertation as well as recommendations for further
research.
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1.6 Personal contributions

The main personal contributions of the author were:

• Carrying out a series of full-scale tests on isolated slab specimens without transverse reinforce-
ment under combined vertical load and monotonically or cyclically increasing unbalanced mo-
ment, analysing the obtained measurement data, and comparing the obtained results to the
predictions of several codes of practice;

• Developing an analytical model for the calculation of the moment-rotation relationship of slab-
column connections under monotonic loading conditions, which allows to calculate the contribu-
tion of the lateral force-resisting mechanisms in an explicit manner, and comparing its predictions
with test results from the test campaign and the literature;

• Developing a method to account for the contribution of the slab region outside 0.22L when cal-
culating the moment-rotation response of slab-column connections, based on the Effective Beam
Width approach, and validating it through comparisons with test results from the literature and
finite element calculations;

• Developing an analytical model for the calculation of the moment-rotation relationship of slab-
column connections under cyclic loading conditions, which adopts a hysteretic moment-curvature
relationship for the radial direction, assumes a fixed shear crack to govern the post-yield be-
haviour of each sector element, and incorporates cyclic damage using a model proposed previ-
ously [Rou87], and validating its performance through comparisons with results of cyclic tests;

• Performing parametric studies on the influence of various parameters such as the slab effective
depth, the reinforcement ratio, the slab slenderness, the loading history, on the seismic rotation
capacity of slab-column connections, based on the predictions of the developed analytical models;

• Proposing two methods for the numerical analysis of flat slab buildings based on the developed
analytical models: (a) an Effective Beam Width method with the width reduction coefficient
calculated analytically, and (b) the method for calculating the contribution of column and slab
deformation to the interstorey drift for slab-column connections belonging only to the gravity
force-resisting system.
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Chapter 2

State of the Art

Section 2.1 gives an overview of the previous experimental research carried out on slab-column connec-
tions with combined vertical load and unbalanced moment and is divided in three subsections. Firstly,
the test setups used for the various experimental campaigns are presented, whereas comparisons of
the observed behaviour for slabs tested under monotonically and cyclically increasing moment are
presented in the second subsection. The third subsection covers experimental investigation aiming
to uncouple the lateral force-resisting mechanisms that are contributing to the moment resistance of
slab-column connections.

In Section 2.2, an overview of the theoretical research is presented, divided in two subsections. Firstly,
an overview of proposed analytical models is given, followed by the presentation of proposed empirical
models. The first subsection is divided in three; firstly, proposed mechanical models for estimating the
moment strength of slab-column connections are presented, followed by models for estimating both
the moment strength and the deformation capacity of slab-column connections and models for the
numerical analysis of buildings with slab-column connections.

In Section 2.3, several current code provisions are presented.
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2.1 Experimental research on slab-column connections with
unbalanced moment

2.1.1 Test setup configurations

Space limitations in the laboratory are often a determinant constraint when designing test setups
for slab-column connections. For this reason, most experimental campaigns studied the behaviour of
isolated slab-column connections that comprise one column and the surrounding slab and only few
research groups opted for testing subassemblies [Rob92, Dur95] (Fig. 2.1a) of one interior and two
exterior slab-column connections or large-scale tests on single-storey [Pan92,Rha14] and multi-storey
buildings [Fic08,Moe85] (Fig. 2.1b) with slab-column connections.

Vertical loads Vertical loads 

Lateral loads (a) (b)

Figure 2.1 – Large-scale configurations chosen for experimental investigation on the seismic behaviour
of slab-column connections: (a) Subassembly of one interior and two exterior slab-column connections,
and (b) Multi-storey building (photo from [Fic08]).

The configurations shown in Figure 2.1 provide significant information with respect to the seismic be-
haviour of actual flat slabs and the interaction between external and internal slab-column connections.
Nevertheless, since the present research is focused on the seismic behaviour of internal slab-column
connections, this section treats only test programmes on isolated specimens. Internal slab-column con-
nections are considered more critical concerning punching shear failure during seismic loading, since
they tend to be much stiffer than edge or corner slab-column connections. As a result, for the same in-
terstorey drift, the moment to be transferred by an internal slab-column connection is much larger than
the seismically induced moment to be transferred by edge or corner columns [Rob92, Dur95, Rha14].
Moreover, large-scale experimental investigations aimed to evaluate the response of slab-column con-
nections as part of the lateral force-resisting system of the building and the potential of progressive
collapse after the first connection failure. However, the present research aims at investigating the
behaviour of internal slab-column connections subjected to seismically-induced drifts, often imposed
by stiff vertical spines that consist the lateral force-resisting system of the structure (see Chapter 1).

Most test programmes on the behaviour of slab-column connections subjected to an unbalanced mo-
ment considered test specimens representing a single interior column and the surrounding slab. The
dimensions of the specimens for the monotonic tests were typically chosen as 0.44L x 0.44L where L
is the distance between column axes [Gha76, Elg87, Haw89]. The distance 0.22L corresponds for an
elastic slab with constant stiffness and equal spans subjected to an evenly distributed vertical load to
the distance of the point of contraflexure to the column axis. Most experimental campaigns focusing
on the seismic response of slab-column connections used slab elements of the size 1.0L x 1.0L, i.e.,
from midspan to midspan of adjacent bays (e.g. [Pan89, Rob02, Rob06] with few exceptions where
larger elements were tested [Han68,Haw74]).

All past monotonic tests used one of the following test setups, which differed with regard to the
kinematic boundary conditions and the way the vertical load was applied:
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• Setup (a): the unbalanced moment is introduced by an eccentric vertical load and by restraining
the vertical dispalcement of the slab ends [Els56,Moe61,Kru99,Bin05] (Fig. 2.2).

• Setup (b): the unbalanced moment is introduced by applying additional vertical loads to the
edges of the slab and by fixing the column stub ends [Han68, Isl76,Haw89] (Fig. 2.2). The only
programme where the opposite loads were unequal so as to maintain the same eccentricity was
that of Hawkins et al. [Haw89].

• Setup (c): the unbalanced moment is introduced by applying a horizontal force to the top column
stub and by restraining the vertical displacement of the slab edges [Gha76,Elg87,Pan89,Rob02,
Rob06, Bu09, Tia08, Cho07, Cho09b] (Fig. 2.2) or specific locations on the slab surface [Tia08]
determined through finite element analysis to reproduce the internal actions of the prototype
building [Tia07]. The vertical load is applied either by jacks underneath the column stub [Bu09,
Tia08] or by weights on the slab surface [Rob02,Rob06], with several campaigns combining both
aforementioned ways of vertical load introduction [Pan89,Par07].

Setup (a) is predominantly adopted to simulate unbalanced moments due to unequal spans.The test
setup is simple and easy to implement but when applied to simulate seismic loading, it is somewhat
unrealistic as the ratio of inserted moment to applied vertical load on the slab-column connection
(subsequently referred to as eccentricity) remains constant. As a result, the applied vertical load
changes throughout the test.

Depending on the control of the actuators inducing the forces at the slab edges, setup (b) can be used
to simulate constant eccentricity [Haw89], constant vertical load [Han68] or equal but opposite slab
deflections at the two opposite edges [Isl76]. Since column deformation induces significant rigid body
rotations to the slab-column connection that are in turn increasing the displacement demand on the
actuators applying the force couple at the slab edges, the column is typically post-tensioned [Haw89].
No additional reinforcement is provided to the slab edges perpendicular to the unbalanced moment to
account for the slab part between 0.22L and 0.5L.

Setup (c) is predominantly used for cyclic tests on slab-column connections. It is based on the assump-
tion that for seismic actions the contraflexure points are located at midspan of the slab. The test unit
size and the reaction structure for the lateral load application impose significant space requirements
for laboratories and therefore the specimens are often tested at reduced scale, i.e. specimens with thin
slabs, with very few exceptions [Elg87,Bu08,Cho09b].

Setup (a) Setup (b) Setup (c) 

Vertical loads Vertical loads
Eccentric load

Lateral load

Vertical load

0.44L0.44L 0.44L

Δ
h

DownwardUpward
load load

Undeformed shape Deformed shape (Moment + Vertical loads) 

Figure 2.2 – Test setup configurations used in previous experimental campaigns for slab-column con-
nections subjected to combined vertical load and monotonic moment transfer.

The superimposed gravity load is simulated by placing extra weight on the slab [Isl76], by applying
constant forces on the slab by means of vertical actuators [Haw89], or by jacking the column to deliver
the gravity load to the slab [Gha76]. For test setups (b) and (c), the height of the column stubs was
typically chosen as the height of the point of contraflexure of the column, i.e., half the storey height
(e.g. [Pan89]), with few exceptions (e.g. [Far93]).
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For the test programmes addressing the effect of seismically induced storey drifts on the slab-column
connection by means of quasi-static cyclic tests either setup (b) or setup (c) was used. In these tests,
the imposed vertical loads on the slab edges (setup (b)) and the imposed horizontal displacement on
the top of the column (setup (c)) were subjected to a history of cycles with increasing amplitude (Fig.
2.3).

Setup (b) Setup (c)

Cyclic load

L0.44L

Cyclic

load

Undeformed shape Deformed shape (Moment + Vertical loads) 

Vertical loadsVertical loads

Δ
h

Vertical loads Vertical loads

Cyclic

load

Figure 2.3 – Test setup configurations used in previous experimental campaigns for slab-column con-
nections subjected to combined vertical load and cyclic moment transfer.

For cyclic tests using setup (b), the specimen size was either 1.00L [Han68, Isl76] or 0.60L [Haw74,
Sym76]. Concerning setup (c), the slab was typically modelled until midspan for cyclic tests [Pan89,
Rob02,Rob06], rather than 0.22L that was the predominant case for monotonic tests. It should though
be noted that several researchers adopted specimen sizes equal to 0.44L (Fig. 2.2) for experimental
investigation under cyclic loading conditions [Bu09]. For the vertical load application for setup (c),
since slab cracking often resulted in redistribution of the vertical load from the column to the roller
supports [Rob02,Rob06], in many experimental campaigns extra weight on the slab was often combined
with an upward jacking force at the column base to keep the shear force acting on the slab-column
connection constant throughout the test [Pan89].

2.1.2 Punching of slabs with monotonic or cyclic unbalanced moment

Although the first experimental campaigns of slabs under eccentric vertical loads were carried out dur-
ing the 1950’s, it was not until the mid-1970’s that the seismic behaviour of slab-column connections
became a subject of research.

Tables 2.1 and 2.2 summarise existing test series on slab-column connections subjected to monotonic
and cyclic moment transfer, respectively. The tables include information on the number of test speci-
mens per test series (only square specimens without transverse reinforcement were counted), the slab
thickness h, the normalised shear strength, the top slab reinforcement ratio ρ over the column, and
the test setup. The normalised shear strength is defined as the shear strength at failure divided by
bo d
√
fc where bo is the control perimeter located at d/2 from the face of the column, calculated

with rounded corners [Fib11], d is the effective depth of the slab, and fc is the concrete compressive
strength. More information on the selected tests is provided in Appendix A. In several research pro-
grammes using test setups (a) or (c) not only the slab edges perpendicular to the direction of loading
but also those parallel to the imposed deformation were restrained. In Tables 2.1 and 2.2 these test
setups are annotated as (a)r and (c)r, respectively.
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Table 2.1 – Experimental programmes imposing monotonically increasing drifts on slab-column spec-
imens

Author(s) h ρ
Vtest

bo d
√
fc

Test Loading

[mm] [%] [
√
MPa] setup parameter

Elstner and Hognestad [Els56] (2) 152 2.47 0.50-0.52 (a)r e
Moe [Moe61] (9) 152 1.34-1.50 0.21-0.40 (a)r e
Anis [Ani70] (5) 102 2.19 0.15-0.43 (c) e
Narasimhan [Nar71] (1) 178 1.11 0.29 (a)r e
Ghali et al. [Gha74] (2) 152 1.39 0.10-0.11 (c) V
Stamenkovic and Chapman [Sta74] (4) 76 1.17 0.11-0.37 (c)r V
Ghali et al. [Gha76] (3) 152 0.50-1.35 0.11-0.12 (c)r V
Islam and Park [Isl76] (2) 89 0.83 0.09 (b) V
Elgabry and Ghali [Elg87] (1) 152 1.10 0.16 (c) V
Hawkins et al. [Haw89] (22) 114-152 0.60-1.26 0.13-0.41 (b) e
Kamaraldin [Kam90] (4) 80 0.55-1.00 0.17-0.36 (b) e
Marzouk et al. [Mar96] (5) 150 0.50-1.00 0.17-0.38 (c)r e
Kruger [Kru99] (2) 150 1.00 0.26-0.28 (a)r e
Binici and Bayrak [Bin05] (1) 75 1.38 0.44 (a) e
Ben Sasi [Ben12] (2) 80 1.40 0.14-0.23 (c)r e
Average (65) 130 1.15 0.25
V = const (12) 116 1.09 0.16
e = const (53) 134 1.16 0.27

Table 2.1 shows that for most of the monotonic tests performed under constant eccentricity the nor-
malised shear force at failure was relatively high (νavg = 0.27 / GSR = 0.81) in comparison to
monotonic tests under constant vertical load (νavg = 0.16 / GSR = 0.48). This can be attributed to
the fact that researchers using setup (a) were primarily aiming to evaluate the punching strength of
slab-column connections under relatively small eccentricities when, for instance, slabs with unequal
spans are subjected to vertical load alone.

Table 2.2 – Experimental programmes imposing cyclically increasing drifts on slab-column specimens

Author(s) h ρ
Vtest

bo d
√
fc

Test

[mm] [%] [
√
MPa] setup

Kanoh and Yoshizaki [Kan75] (3) 100 0.70-1.10 0.11-0.24 (c)
Islam and Park [Isl76] (1) 89 0.83 0.09 (b)
Morrison et al. [Mor83] (1) 76 1.03 0.09 (c)
Zee and Moehle [Zee84] (1) 61 0.80 0.14 (c)
Pan and Moehle [Pan89] (2) 122 0.76 0.08-0.13 (c)
Cao [Cao93] (3) 150-155 1.29 0.18-0.29 (c)
Robertson et al. [Rob02] (1) 115 0.75 0.09 (c)
Stark et al. [Sta05] (1) 115 1.42 0.21 (c)
Robertson and Johnson [Rob06] (5) 114 0.45-1.03 0.08-0.18 (c)
Choi et al. [Cho07] (3) 120 1.05-1.59 0.09-0.17 (c)
Park et al. [Par07] (1) 132 0.78 0.12 (c)
Kang and Wallace [Kan08] (1) 152 0.49 0.11 (c)r
Tian et al. [Tia08] (1) 152 0.61 0.13 (c)r
Bu and Polak [Bu09] (2) 120 1.25 0.17-0.23 (c)r
Cho [Cho09] (1) 150 1.00 0.11 (c)
Choi et al. [Cho09b] (1) 152 1.27 0.08 (c)r
Park et al. [Par12] (2) 135 1.06 0.16-0.17 (c)
Average (30) 121 0.95 0.14
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Tables 2.1 and 2.2 show that the tests found in the literature are performed on relatively thin slabs
for both monotonic and cyclic loading conditions (havg = 130 mm and 121 mm, respectively). The
average normalised shear force ν for tests under constant vertical load was equal to 0.16 (GSR = 0.48)
for monotonic tests and 0.14 (GSR = 0.42) for cyclic tests. The average flexural reinforcement ratio
over the column was 1.09% for monotonic tests and 0.95% for cyclic tests.

Figure 2.4 shows the measured drift at peak moment ψst.p as a function of the normalised shear force
ν at peak moment for the tests found in the literature for which drift measurements are reported
(setups (b) and (c)). The figure distinguishes between monotonic and cyclic tests and between tests
on slabs with effective depths smaller and larger than 100 mm.
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Figure 2.4 – Normalised shear force vs measured drift at peak moment for slab-column connections
subjected to: (a) monotonically increasing moment, and (b) cyclically increasing moment.

As can be seen in Figure 2.4 increased gravity load-induced shear force results in lower deformation
capacity of the slab-column connection, in particular for cyclic tests. Due to size effect slabs with
effective depths smaller than 100 mm typically feature larger normalised shear strengths than thicker
slabs. In addition, slabs with small thicknesses might also be subjected to large uncertainties due to,
for example, variations in the slab effective depth. Figure 2.4 shows that a large number of monotonic
and cyclic tests have been conducted on slab specimens with effective depths smaller than 100 mm.
This can be attributed to the fact that slab specimens are often tested at reduced scales due to labo-
ratory constraints, which results in reduced slab thickness for most of the existing tests (see Tables 2.1
and 2.2). Since cyclic tests focus on the seismic behaviour of slab-column connections more data are
available for the imposed drift at peak moment in comparison with monotonic tests, but the scatter
is relatively large. The difference between cyclic and monotonic behaviour has already been examined
for very thin slabs [Isl76].
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Although experimental investigations on continuous flat slabs supported on columns are not treated in
the present chapter, useful information on the significance of cyclic degradation exhibited by interior
slab-column connections of actual flat slabs can be provided by testing identical continuous flat slab
specimens to monotonic and cyclic lateral loads. To date, the only campaign investigating the cyclic
loading effect on single-storey continuous flat slabs is performed by [Rha14]. Figure 2.5 shows the
response comparison between the monotonic and the cyclic test for the entire tested specimen and the
interior slab-column connection.
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Figure 2.5 – Comparison of the response of: (a) the tested continuous flat slab, and (b) the interior
slab-column connection (C5) under monotonic and cyclic loading conditions.

The obtained results showed that cyclic application of lateral loads resulted in strength reduction of
approximately 13% in comparison to monotonic lateral load application. The corresponding inter-
storey drift was found to be 6.1% and 5.9% for monotonic and cyclic loading conditions, respectively
(Fig. 2.5a). Nevertheless, for the cyclic test after reaching an interstorey drift of 1.5% monotonic
loading was applied in the positive direction. Hence, the influence of cyclic degradation on the global
moment strength and the deformation capacity of the structure could be underestimated. For the
internal slab-column connection C5, which was proved to be determinant for the response of the
cyclically tested specimen, cyclic application of lateral loads resulted in a dramatic decrease of the
interstorey drift at punching from 5.38% to only 1.50% and a decrease of moment strength from 37.5
kNm to 28.9 kNm (Fig. 2.5b).

To assess effectively through experimental investigation the influence of cyclically increasing deforma-
tions on the stiffness, moment and deformation capacity of slab-column connections pairs of identical
slab specimens should be tested under monotonic and cyclic loading conditions. Although existing
experimental research on slab-column connections under both monotonically and cyclically increas-
ing deformations is rather extensive, the database of identical specimens subjected to monotonic and
cyclic loading is extremely limited and covers only thin slabs [Isl76]. The main reason for such lacking
is related to differences in the slab specimen dimensions that are typically chosen for setup configura-
tions aiming to reproduce the effects of monotonically increasing and cyclically increasing moments.
While the size of slabs tested under monotonically increasing moments is most times 0.44L, the size
of slabs for cyclic tests is typically L. Therefore comparisons between monotonic and cyclic tests are
rather difficult and rely on accidental coincidence of a large number of parameters for tests conducted
in different experimental campaigns [Elg87,Cao93].
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2.1.3 Contribution of the lateral force-resisting mechanisms

When a slab-column connection is subjected to a combination of unbalanced moment and shear force,
three different slab actions are contributing to the moment resistance [Mas70] (Fig. 2.6): (a) eccentric
shear force, (b) flexure, and (c) torsion. In the present work these slab actions are denoted as lateral
force-resisting mechanisms (LFRM). As soon as the behaviour of the slab-column connection subjected
to an unbalanced moment becomes non-linear, an accurate and realistic estimation of the contribution
of the resisting mechanisms to the overall capacity of the slab-column connection is rather difficult.
This is accentuated by the fact that the LFRM are associated with different failure modes.

Flexure
Torsion

Eccentric

shear

force

Figure 2.6 – Mechanisms providing resistance in slab-column connection under gravity and lateral
loads.

Since experimental investigations on the moment capacity of slab-column connections subjected to
lateral loads cannot provide any information on the contribution of the aforementioned resisting mech-
anisms, various researchers attempted to isolate them by testing slab sub-specimens or specimens with
slots at the column vicinity. Although less numerous than the tests presented in the previous section,
their results are particularly interesting since their impact on the current code provisions is still visi-
ble.

The most typical configuration consists in cutting slots in the column proximity aiming to set the
contribution of torsion or flexure (Fig. 2.7) to zero [Han68, Sta74, Bu11]. Depending on the test
campaign, the researchers opted for curtailing the slab flexural reinforcement running through the
holes [Sta74, Bu11] or not [Han68]. Hanson and Hanson [Han68] conducted tests on relatively thin
rectangular slabs (h = 76 mm). One of the aims of the campaign was to determine the relative con-
tribution of flexure and torsion on the moment capacity of slab-column connections either by slots
parallel to the moment vector (similar to Fig. 2.7a) or perpendicular to the moment vector. It was
observed that setting the contribution of torsion to zero resulted in rather insiginificant drop of the
moment capacity, whereas setting the contribution of flexure to zero reduced the moment capacity by
30-35% compared to specimens without slots. Stamenkovic and Chapman [Sta74], conducted tests on
relatively thin slabs (h = 76 mm) under unbalanced moment alone. The adopted setup is shown in
Figure 2.2 (with vertical loads set to zero). The experimental results suggested that 70% of the total
moment is contributed by flexure and the remaining 30% is contributed by torsion. To date, the only
test campaign addressing the moment capacity and deformation capacity of medium thickness (h =
120 mm) square slabs with slots under reversed cyclic loading has been carried out by Bu [Bu11].
The plan view of the slab specimen is shown in Figure 2.7a. Figure 2.7b shows the comparison of the
hysteresis loops for the reference test unit (SW5 – no slots) and the test unit with slots parallel to the
inserted moment vector (SW6). The slab SW6 failed at 30% lower moment and 45% lower drift than
its counterpart SW5.
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Figure 2.7 – Test performed by Bu [Bu11] to evaluate the influence of slots parallel to the moment
vector on the moment resistance of slab-column connections: (a) Plan view of the slab specimen SW6,
and (b) comparison of the hysteretic response between SW6 and SW5 (drawn after Bu [Bu11]).

Kanoh and Yoshizaki [Kan79] evaluated experimentally the torsion contribution by performing pure
torsion tests (without gravity loading) on half slab specimens connected to the column stub only at
one face (Fig. 2.8). Based on the test results, the authors claimed that the contribution of torsion to
the total unbalanced moment is rather large. However, observation of the cracking patterns suggests
that also flexure and eccentric shear contributed to a significant extent to the resistance of the tested
half slab specimens.

(a) (b)

test unitstub

test unit

loading arm

stubroller

Figure 2.8 – Test campaign performed by Kanoh and Yoshizaki [Kan79] to evaluate the contribution of
torsion to the moment resistance of slab-column connections: (a) Plan view of the slab specimens, and
(b) Torsion introduction into the slab-column connection (drawn after Kanoh and Yoshizaki [Kan79]).

Although rather useful for assessing the effect of openings in the column proximity on the moment
capacity of slab-column connections, the above-mentioned experimental attempts did not provide con-
sistent information on the relative contribution of the LFRM to the applied moment. The assumption
behind such attempts is that the slab is responding as a beam under pure torsion and pure flexure
in the two orthogonal directions. Nevertheless, the slab behaviour is rather planar than linear (as as-
sumed for beams) and consequently these two components do not add up to the total moment resisted
by the slab-column connection (without slots). This is largely due to the fact that floor systems are
characterised by redundancy and alternative load paths can be activated when a local disturbance is
caused, as has been shown by finite element calculations [Far92a]. For this reason, the arrangement
of slots in the proximity of interior slab-column connections to determine the relative contribution of
torsion and flexure to the total resisted moment was criticised by some researchers [Far92a,Far92b].
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2.2 Theoretical research on slab-column connections with
unbalanced moment

2.2.1 Proposed analytical models

Various approaches based on equilibrium have been proposed for the calculation of the moment trans-
ferred from slabs to columns and the corresponding deformation. They can be distinguished into
two categories depending on the target of analysis, which can be either the capacity or the demand;
estimation of the capacity of slab-column connections requires more local study of the mechanisms
that are contributing to the resistance that is most times performed at the level of the slab-column
connection. For structural systems composed of slab-column connections the estimation of the seismic
demand is a procedure performed at the global level, i.e. the level of the structure. As the demand
in terms of unbalanced moment or interstorey drift depends on the characteristics of the structural
system (mass, stiffness, damping) and the ground motion characteristics, a numerical model is usually
set up by the structural engineer.

The present section is divided in three parts. The first two parts focus on the resistance side. Firstly, a
review of proposed mechanical models for calculating the moment capacity of slab-column connections
is presented. Afterwards, mechanical models for estimating both the moment and deformation capac-
ity of slab-column connections are reviewed. The third part adresses the demand side and presents
an overview of models for the numerical analysis of buildings with slab-column connections.

Mechanical Models for estimating the moment capacity of slab-column connections

In 1960, Di Stasio and Van Buren proposed a working stress method for the design of slab-column
connections under combined vertical load and unbalanced moment [DiS60]. The shear stresses due to
vertical load were superposed to the shear stresses due to unbalanced moment, which were assumed
to vary linearly about the centroid of the critical section:

vE = 8 h
7 d

(
VE
Ac
± (ME −mAB −mCD) jd

Jc

) 1
1 + (Es/Ec − 1) ρ (2.1)

where mAB + mCD is the moment resisted by flexure in the faces perpendicular to the direction of
excitation and the term ME−mAB−mCD respresents the part of the unbalanced moment ME resisted
by eccentric shear stresses (see Fig. 2.6). The last term of Eq. (2.1) was added to account for the
dowel action of the reinforcement. To consider punching shear, Di Stasio and Van Buren proposed
to limit the vertical shear stress calculated from Eq. (2.1) to 1/16

√
fc, assuming a critical section

directly adjacent to the column faces. The method proposed by Di Stasio and Van Buren [DiS60] for
calculating the shear stresses due to combined vertical load and unbalanced moment (Eq. (2.1)), also
known as the eccentric shear stress method, forms the basis of the current ACI Building Code [ACI14].

The first moment strength model for slab-column connections was proposed by Moe in 1961 [Moe61].
According to this model which is based on the eccentric shear stress model, the vertical shear stress
due to combined vertical load and unbalanced moment acting on the critical section (assumed to be
directly adjacent to the column faces) was calculated as

vE = VE
Ac
± γv ME jd

Jc
(2.2)

For the factor γv, which represents the part of the moment resisted by eccentric shear forces, Moe
proposed a value of 0.33. This value was determined experimentally by assuming that the vertical
shear stress at failure is equal to the vertical shear stress at failure for concentric punching. In 1968,
Hanson and Hanson proposed a value of γv equal to 0.40 on the basis of tests performed on relatively
thin rectangular slabs [Han68].
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In 1970, Mast [Mas70] proposed a strength model based on the elastic plate theory. Closed-form rela-
tionships were used to describe quantitatively the stresses that are developed in the column proximity.
The results suggested that for square columns one third of the unbalanced moment is carried by flex-
ure, 15% is carried by torsion and the remaining approximatively 50% is carried by the eccentric shear
force mechanism. Although neglecting the vertical load that is acting on the slab as well as the slab
cracking due to increasing unbalanced moment, the model of Mast has been approved for accurately
describing the contribution of the LFRM under elastic conditions and has significantly influenced later
theoretical works.

The results of the aforementioned theoretical studies influenced significantly the changes that were
introduced in the 1971 ACI Building Code [ACI71] for the design of slab-column connections in pres-
ence of seismic moments. Firstly, the design was based on ultimate strength rather than on working
stresses, which was the case for earlier versions of the same Standard. The factored shear stresses
at the critical section due to gravity and unbalanced moment were limited to 0.33

√
fc. Moreover, an

empirical expression for the fraction of unbalanced moment that induces shear stress on the control
perimeter (subsequently referred to as γv) was developed as a function of the critical section dimen-
sions. The expression to calculate γv has remained unchanged since then. The remainder portion of
the unbalanced moment was assumed to be resisted by flexure in the critical section faces perpendic-
ular to the direction of excitation.

In 2014, Choi et al. proposed a shear strength model for the case of slab-column connections subjected
to combined vertical load and unbalanced moment [Cho14], based on a strain-based shear strength
model for slender beams [Par06b]. The unbalanced moment capacity was derived as the sum of flexure,
torsion and eccentric shear force. For flexure, it was assumed that in both the front and the back
of the critical section (side under hogging moment and sagging moment, respectively) the flexural
reinforcement is yielding before punching failure. For the contribution of the eccentric shear force to
the unbalanced moment capacity, it was calculated based on the difference between the shear stress
at punching failure vRc (concentric punching) and the shear stresses due to gravity loads vE that are
acting on the slab-column connection. For the calculation of the shear stress at punching failure vRc
only the compression zone was considered while the contribution of aggregate interlocking and dowel
action were neglected.

Mechanical Models for estimating the moment and deformation capacity of slab-column
connections

To date, the only mechanical model estimating both the moment and deformation capacity of slab-
column connections with unbalanced moment was suggested by Broms [Bro05]. A simplified model
based on the same principles was proposed some years later [Bro09]. The approach is limited to slabs
without transverse reinforcement.

The initially proposed model for eccentric punching is a direct extension of the model for the punching
shear capacity of slabs subjected to concentric loads [Bro05]. For a given gravity shear force ratio, the
model allows estimating the ultimate unbalanced moment and rotation capacity of the slab. Two fail-
ure criteria are considered: The first criterion is strain-based and limits the concrete strain tangential
to the column. The second criterion is stress-based and limits the compressive stress in the fictitious
internal compression strut. The proposed failure criteria are, among other parameters, a function of
the stress state of the slab reinforcement. The stress state of the reinforcement being function of the
reinforcement ratio, two reinforcement ratios should be calculated to compute the punching resistance
for concentric punching corresponding to the critical concrete tangential strain; ρ1 corresponds to
punching without any reinforcement yielding and ρ2 corresponds to punching after all reinforcement
has reached the yield limit.
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First, the reinforcement ratio limit ρ1 is calculated solving the following non-linear system of equations:

εc.lim = 0.001
(

25
fc

′

)0.1 (0.15
xlim

)1/3
(2.3)

xlim = εc.lim

εc.lim + fy
Es

d (2.4)

ρ1 = εc.lim xlim 0.5 Ec
d fy

(2.5)

Then, the reinforcement ratio limit ρ2 is calculated solving the following non-linear system of equations:

εc.pu = 10−6

√√√√( 25
fc

′

)0.3
Ec
fy

0.075
d

103

ρ2
(2.6)

xpu = d
2 ρ2
εc.pu

fy
Ec

(2.7)

fy
Es (d− x)

(
1 − 0.5

(
1 + B

c

))
= B

c

(
εc.pu
xpu
− fy
Es (d− x)

)
(2.8)

with

x = d
Es
Ec

ρ2

(√
1 + 2 Ec

Esρ2
− 1

)
(2.9)

The yield moment is
my1 = ρ d2 fy

(
1− x

3 d

)
(2.10)

and the flexural capacity is

my2 = ρ d2 fy

(
1− 0.59ρ fy

fc
′

)
(2.11)

Then, the column reaction corresponding to the start of reinforcement yielding at the column is
calculated:

Vy1 = my1
8 π

2 ln
(
B

2 rc

)
+ 1−

(2 rc
B

)2 (2.12)

and the column reaction corresponding to overall yielding of the specimen’s top reinforcement is

Vy2 = my2
2 π

1−
(2 rc
B

) (2.13)

Then, the radius ry from the column centre within which yielding of the top reinforcement occurs is
calculated using the following relationship:

Vy1
8π

2 ln rs
ry

+ 2−
(
rc
ry

)2

−
(2 rc
B

)2
+ (φu − φy)

rc
ry
EI = my1 (2.14)

If ry < rs the shear strength is given by the following formula

Vu = 2 Vy1
my B

[
my ry +

∫ rs

ry

Vy1
8π

(
2 ln rs

r
+ 2−

(
rc
r

)2
−
(2 rc
B

)2
)

+ (φu − φy)
rc
r
EI]dr

]
(2.15)
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whereas if ry > rs then
Vu = Vy2 (2.16)

Then the deflections δy1, δy2 and δu corresponding to start of reinforcement yielding at the column,
overall yielding of the top reinforcement and punching failure, respectively, are calculated using the
following formulas:

δy1 = Vy1
4 π

(
1− rc

rs

)2 B

2 EI
B − 2 rc

2 (2.17)

δy2 = δy1 + φy
(B − 2 rc)2

4 (2.18)

δu = δy1 + (φu − φy)
2 rc
2

B − 2 rc
2 (2.19)

Afterwards, the deflection due to the vertical load V can be calculated. If V < Vy1, substitution of
Vy1 by V in (2.17) gives

δV = V

4 π

(
1− rc

rs

)2 B

2 EI
B − 2 rc

2 , V < Vy1 (2.20)

If V > Vy1, then substitution of ultimate values of deflection and curvature (δu and φu) in (2.19) with
the values corresponding at the applied vertical load V gives

δV = δy1 + (φV − φy)
2 rc
2

B − 2 rc
2 , V > Vy1 (2.21)

In this case, as apart from the deflection δV neither the corresponding curvature φV nor the radius ry
that defines the zone with reinforcement yielding occurs are known, the system of equations (2.21),
(2.15) and (2.14)(substituting Vu and φu by V and φV , respectively) should be solved.

Then, an initial guess of the additional overall deflection 2∆M due to the imposed ultimate column
rotation should be provided. According to [Bro05] half of this deflection (i.e. ∆M ) is assumed to occur
before column rotation and the other half after full column rotation is developed. Afterwards, the
maximum additional slab deflection ∆ is calculated as follows:

∆ = δu − δV − 2 ∆M (2.22)

The reaction of each sector element subjected to hogging moment due to seismic loading depends on
the state of deflections.

δt(i) = δV + ∆M + ∆ sinφ(i) (2.23)

For elastic deflection (δt(i) < δy1) the reaction of each sector element due to moment is

Vt(i) = δt(i)
δy1

Vy1 − V (2.24)

For the sector elements with δt(i) > δy1, to calculate the column reaction, the curvature φV due to
vertical load reaction of each sector element should be first computed for the following relationship:

δt(i) = δy1 + (φV − φy)
c

2
B − c

2 (2.25)
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Then, the radius ry defining the zone within which yielding occurs should be calculated by solving the
following equation:

my1 = V

8π

2 ln rs
ry

+ 2−
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2 rc
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)2
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)2
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)
c
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EI (2.26)

The reaction of each sector element is, for this case, calculated using the following formula:

Vt(i) = 2 Vy2
my1 B
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]
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(2.27)

If the slab is divided in n sector elements, the total reaction of the slab half subjected to hogging
moment due to seismic loading is

Vt =
n/2∑
i=1

Vt(i)
n/2 (2.28)

The part of the total unbalanced moment that is carried by the hogging slab half is calculated as
follows:

Mt =
n/2∑
i=1

Vt(i)
n/2 rs sinφ(i) (2.29)

Likewise, the reaction of each sector element subjected to sagging moment due to seismic loading
depends on the state of deflections.

δb(i) = δV + ∆M −∆ sinφ(i) (2.30)

For elastic deflection (δb(i) < δy1) the reaction of each sector element is

Vb(i) = V −
δb(i) + 1−

√
EI1/EI√

EI1/EI
δV

δy1
Vy1

ρ′

ρ

√
EI1/EI (2.31)

with
Vb(i) ≤ Vb.max = V + ρ′

ρ
Vy2 (2.32)

The total reaction of the slab half subjected to sagging moment due to seismic loading is

Vb =
n/2∑
i=1

Vb(i)
n/2 (2.33)

The part of the total unbalanced moment that is carried by the sagging slab half is calculated as
follows:

Mb =
n/2∑
i=1

Vb(i)
n/2 rs sinφ(i) (2.34)
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The final stage, before calculating the ultimate moment that is transferred to the slab-column con-
nection, is the check of the equilibrium, that is satisfied when the sum of the sector element reactions
due to moment at the sagging slab half is approaximately equal to the one of the hogging slab half
plus the column reaction due to the deflection ∆M that is assumed to occur before column rotation,
as shown in the following equation:

Vb − Vt −∆M
Vy1
δy1
≈ 0 (2.35)

The moment capacity of the slab-column connection can therefore be calculated by summing the
contribution of the hogging and sagging slab half, as follows:

Mu = Mt +Mb (2.36)

The rotation capacity of the slab is
θu = θ1 + θ2 (2.37)

where
θ1 = 1√

EI1/EI

δu − δV − 2∆M

rs − rc
(2.38)

and
θ2 = 12Mu

π Ec h3

(
ln B

2 rc
− 1 + 2 rc

B

)
10−3 (2.39)

To provide a non-iterative and less laborious model than the model presented above (Eqs. (2.3) -
(2.39) - [Bro05]) in terms of calculations, a simplified version was proposed some years later [Bro09].
No reinforcement limits ρ1 and ρ2 are calculated. If the reinforcement is still elastic, it is assumed
that only one-third of the unbalanced moment is transferred as bending moment on the column edges
parallel to the vector of the unbalanced moment [Mas70]. The remaining two-thirds are assumed to be
carried by eccentric shear forces and torsional moments on the column edges that are perpendicular
to the vector of the unbalanced moment; these are not examined further. Hence, the rotation capacity
of the slab is limited by the bending moments induced on the column edges parallel to the vector
of the unbalanced moment. If the slab reinforcement yields, it is assumed that the mechanisms of
eccentric shear force and torsional moments no longer contribute to the resistance of the connection.
Instead, a strut and tie model develops, which is shown in Figure 2.9. The proposed model takes into
consideration the size effect as well as the concrete brittleness with increasing strength.

tension

compression

Figure 2.9 – Mechanical model according to Broms [Bro09] for the transfer of the moment after the
onset of slab reinforcement yielding at the column face.

First, the critical bending moment at the column edge is calculated:

mu = ρ

(
εy
εs

)0.2
d2 Es εs

(
1− x

3 d

)
(2.40)
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The corresponding critical total reaction force is:

Vu = mu
8 π

2 ln
(
B

2 rc

)
+ 1−

(2 rc
B

)2 (2.41)

If Vu < Vy1 (Eq. (2.12)) then the slab behaves elastically. The moment capacity of the hogging slab
half is

Mel.T =
(

1− V

Vu

) 3 c mu

1− c

B

(2.42)

while the moment capacity of the sagging slab half is:

Mel.B =


Mel.T −my1

1− V

Vu

1− c

B

ρ− ρ′

ρ
c ln

(2 r0
c

)
, if V/Vu < 0.5

Mel.T , if V/Vu > 0.5

(2.43)

wher r0 = c

2
1− (V/Vu)

(V/Vu) .

Therefore, the moment capacity of the slab-column connection is

Mu = Mel = Mel.T +Mel.B (2.44)

The corresponding rotation for elastic behaviour is calculated as follows:

θu = θel = 2Mel.T

EI

(
2.8 + 26 c

B

) (1− V

Vu

)
φu (2 d+ c) (2.45)

When Vy1 < Vu < Vy2 partial or overall yielding of the rebars occurs and therefore inelastic deforma-
tions are expected. The ultimate rotation is calculated as follows:

θu =



θel + (φu − φy)
6 c

EI

(
2.8 + 26 c

B

) 1
1− c

B

, if V < Vy1

θel + (φu − φy)
6 c

EI

(
2.8 + 26 c

B

) 1
1− c

B


1−

(
V − Vy1
Vu − Vy1

)4
 , if V > Vy1

(2.46)

with the elastic portion of the rotation θel being calculated by substituting Vu and φu by Vy1 and φy,
respectively, in Eq. (2.45).

The elastic moment carried by the hogging slab half (Mel.T is calculated by substituting Vu and mu

by Vy1 and my1, respectively, in Eq. (2.42), while the elastic moment carried by the sagging slab half
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Mel.B, is given by the following formula:

Mel.B =


Mel.T −my1

1− V

Vu

1− c

B

ρ− ρ′

ρ
c ln

(2 r0
c

)
, if V/Vu < 0.5

Mel.T , if V/Vu > 0.5

(2.47)

The ultimate moment corresponding to the rotation θu is, similarly to the case of elastic conditions,
the following:

Mu = Mu.T +Mu.B (2.48)

The ultimate moment that can be carried by tension of the top reinforcement is

Mu.T = VM − V
2π

(
1− 2 rc

B

)
B

1− c

B

(2.49)

where VM is an equivalent concentric column reaction for which punching occurs, giving the same
total bending moment over the width rs as the acting vertical load V plus the unbalanced moment.
To satisfy this condition, the radius ry from the column centre within which yielding of the top
reinforcement occurs is calculated to give the moment corresponding to yielding my1 at this section:

V

8π

2 ln rs
ry

+ 2−
(

2 rc
2 ry

)2

−
(2 rc
B

)2
+

(
φu − φy

V

Vy1

)
c

2 ry
EI = my1 (2.50)

Equation (2.50) should be solved numerically to obtain ry. If ry is larger than rs then the equivalent
concentric column reaction VM is equal toVy2, otherwise it is calculated by moment integration along
the radius r:

VM = 4π

B

(
1− 2 rc

B

) [my1 ry +
∫ rs

ry

V

8π

[
2 ln rs

2 r + 2−
(2 rc

2 r

)2
−
(2 rc
B

)2
]

dr
]

+

+ 4π

B

(
1− 2 rc

B

) [∫ rs

ry

(
φu − φy

V

Vy1

)
c

2 rEIdr]
] (2.51)

The behaviour of the opposite slab half remains elastic as the bending moment along the radius
decreases. The ultimate positive moment that is transferred to the slab-column connection is

Mu.B = Mu.Ba +Mu.Bb (2.52)

where Mu.Ba is the unbalanced moment caused by reduction of the stress of the top reinforcement to
zero and Mu.Bb the additional moment caused by tension to the bottom reinforcement. Upper bound
estimation of Mu.Ba is provided by the following formula:

Mu.Ba = θu
θ0B

M0B ≤
V

2π
1− 2 rc

B

1− c

B

B (2.53)

where
M0B = V

Vy1

3 c my1

1− c

B

(2.54)
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and
θ0B = 2M0B

EI

(
2.8 + 26 c

B

) V

Vy1
φy 2 d (2.55)

Similarly, for the additional moment Mu.Bb due to tension of the bottom reinforcement

Mu.Bb = θu − θ0B
θyB

MyB ≤
Vy2

ρ′

ρ

2π
1− 2 rc

B

1− c

B

B (2.56)

where the moment causing onset of yielding in the bottom reinforcement at the column is

MyB = ρ′

ρ

3 c my1

− c

B

(2.57)

corresponding to an additional rotation of

θyB = 2MyB

ρ′

ρ
EI

(
2.8 + 26 c

B

) + φy (2 d+ c) (2.58)

Models for the numerical analysis of buildings with slab-column connections

In any building construction involving floor slabs connected with columns in a monolithic way, the
determination of the mechanical properties of the floor members is less direct than for the columns
when earthquake-type loading should be considered. Consequently, obtaining realistic values of the
unbalanced moment and the corresponding deformation of the slab is rather difficult. The develop-
ment of finite element codes for the analysis of structures enabled structural engineers to compute the
unbalanced moment and the corresponding slab deformation using numerical analysis software. How-
ever, the computation complexity of a connection of the slab (shell-type member) with the column
(beam-type member) together with the needed computation time became important shortcomings,
especially when the non-linear behaviour of the joint had to be considered.

Various approaches have been proposed to address these shortcomings, most commonly by substi-
tuting the slab with linear beam-type members combined in some cases with torsional members and
bond-slip members. The vast majority of these approaches are based either on the equivalent frame
method or the effective beam width method, which consist in analysing the slab-column connection
as part of a bi-dimensional frame. In the following, these two methods are discussed first. The last
category of models that is presented comprises models based on the beam analogy method. Yield line
methods and strip methods are not covered in the following, since the focus is drawn on the frame
analysis concept.

1. Equivalent Frame Models

The Equivalent Frame (EF) method consists in representing the three-dimensional slab-column system
by series of two-dimensional frames consisting of slab members and equivalent column members that
in turn consist of column and transverse torsional members (Fig. 2.10a). The slab and column mem-
bers have the same geometric properties with the prototype structure. For the transverse torsional
member, the proposed formulas for the torsional stiffness were typically calibrated using experimental
results on slabs under gravity load alone [Cor70,Van83], assuming that the distribution of the twist-
ing moment per unit length is triangular (Fig. 2.10b), which is valid only for slab-column systems
subjected to gravity loads.
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Figure 2.10 – (a) Illustration of the Equivalent Frame method for lateral loads [ACI14], and distribution
of unit twisting moment along the axis of the torsional member according to (b) ACI-318 [ACI14],
and (c) Park et al. [Par09].

The application of the method is relatively simple and is recommended since 1971 by ACI-318 [ACI71]
for the analysis under loads acting in the plane of frames, i.e. under gravity loads and/or lateral
loads. However, several studies showed that the predictions of the method in terms of slab moments
and deflections are rather inaccurate since the method was developed to capture the mechanical be-
haviour of frames with slab-column connections subjected to gravity loads only [Can88,Hwa00,Par09].
In addition, the presence of transverse torsional members renders the method unsuitable for three-
dimensional analysis of flat slab buildings [Rob97]. According to [Hwa00], this method was found to
underestimate the lateral stiffness of the slab-column system.

In 1983, Vanderbilt and Corley proposed to use an equivalent slab member which consists of a slab
member and two torsional members connected in series, rather than an equivalent column member.
This modification is based on the principle that, unlike the case of gravity loads, for which the load
is transferred from the slab to the torsional member and in turn to the column, when lateral loads
are applied to the system, the column is restrained by both the torsional stiffness of the transverse
torsional member and the flexural stiffness of the slab member. Moreover, a stiffness reduction factor
equal to one-third was recommended to take into account cracking.

In 1988, Cano and Klingner proposed to use explicitly transverse torsional members for the connec-
tion of the column members with the beam-equivalent slab members [Can88]. Although the resulting
structure is not planar, the modelling process is rather simple and requires very few hand calculations.

In 2009, Park et al. [Par09] used the equivalent slab member as proposed by [Van83] with the only
difference that for the case of lateral loads alone, the distribution of twisting moments along the
transverse torsional member was assumed to be uniform (Fig. 2.10c) instead of triangular [ACI14].
This modified EF method was compared against experiments and was found to offer similar accu-
racy with finite element analyses and the Effective Beam Width method proposed by Hwang and
Moehle [Hwa00], which will be presented in the following.
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2. Effective Beam Width Models

In the Effective Beam Width method (EBW) slab action is represented by a flexural slab-beam framing
directly between columns that are modelled with their actual properties. The slab-equivalent beam
(Fig. 2.11b) has the same thickness as the slab (Fig. 2.11a) and an effective width that is a portion
of the distance from midspan to midspan in the transverse direction (subsequently referred to as
l2 - see Fig. 2.11). The width reduction coefficient α is the parameter that is largely influencing
the prediction of slab moments and deflections and is defined as the required coefficient so that the
rotational stiffness of the slab-equivalent section equals the rotational stiffness of the full width section
of the flat slab panel. This equality is obtained if the areas under the moment (or rotation) diagrams
of the real system (non-uniform distibution) and the fictitious system (uniform distribution) (Fig.
2.11) are equal.
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Figure 2.11 – Illustration of the Effective Beam Width method: (a) Full-width slab (real case), and
(b) Effective Beam Width Model (simplified case)

Initially, Westergaard and Slater [Wes21] calculated the rotational stiffness of the slab using the infinite
plate solution. By equating the rotational stiffness of the slab with the rotational stiffness of a simply
supported equivalent beam subjected to an unbalanced moment M at midspan, the width reduction
coefficient α was derived:

α = l1
l2

π

3
[
ln

(
l1

c
√

2

)
+
(
c

l1

)2
− 1

2

] (1− c

l1

)3
(2.59)

where the last term represents the effect of joint flexibility.

The moment that is inserted to an internal support of a continuous beam due to a rotation θ of all
supports if the inflection lines appear at midspan is given by the theory of elasticity as follows:

M = 12 EI
l1

θ (2.60)

where l1 is the distance between supports, and EI is the section stiffness.

Substituting the moment of inertia I of the beam section by α l2 h
3/12 in the above formula, the

effective beam width coefficient α is obtained:

α = M

θ

l1
l2

1
Ec h3 (2.61)

The definition of Eq. (2.61) served only as background for the closed-form equations for the width
reduction coefficient proposed by various researchers. These equations, in view of the lack of an
analytical model that correlates the unbalanced moment with the rotation due to slab deformation
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were either based on finite element analyses or on experimental observations and are summarised in
Table 2.3 for interior slab-column connections and square columns.

Table 2.3 – Proposed width reduction coefficients α for interior slab-column connections using the
EBW method

Source α

Pecknold [Pec75] 1
1− ν2

c2
l1

l1
l2

1

fb + 6
∑∞
m=1

(
1
m π

)3
Qm Am

Banchik [Ban87]
(

5 c1
l2

+ l1
4 l2

)
1

1− ν2

Pan and Moehle [Pan92] 1/3

Luo and Durrani [Luo95]

(
−0.0221

(
c1
c2

)4
+ 0.0281

(
c1
c2

)3
+ 0.1535

(
c1
c2

)2
+ 0.773

(
c1
c2

)
+ 0.0845

)(
c1
l2

)
0.05 + 0.002

(
l1
l2

)4
− 2

(
c1
l1

)3
− 2.8

(
c1
l1

)2
+ 1.1

(
c1
l1

)

Grossman [Gro97] Kd

(
0.3 l1

l2
+ c1
l2

l1
l2

+ c2 − c1
2 l2

) (
d

0.9 h

)∗

Hwang and Moehle [Hwa00]
(

2 c1
l2

+ l1
3 l2

)
* Kd = 1.1, 1.0, 0.8, 0.5 if ψst = 0.125%, 0.25%, 0.50%, and 1.00%, respectively, with 0.2Kd ≤ α ≤ 0.5Kd.

In 1975, Pecknold proposed a formula for the width reduction coefficient using the theory of elasticity
and a standard Levy-type solution for a slab-column connection subjected to lateral loading alone
[Pec75]. In 1977, Allen and Darvall arrived to identical results with Pecknold using a Fourier series
technique [All77]. Nevertheless, due to the complexity of the numerical equations and the neglecting
of the gravity loads, they have not been used in engineering practice. In 1987, Banchik proposed
a simpler formula based on finite element analyses considering the same geometric parameters as
proposed by Pecknold (column size c1 parallel to the moment vector and distance l1 between inflection
points) [Ban87]. As shown above, a number of methods have been used to arrive at a value for α but
generally they rely on an elastic finite element analysis of the slab-column connection [Van83] while the
effect of stiffness reduction due to cracking was generally incorporated through a factor that is function
of the Poisson ratio ν. In 1992, Pan and Moehle proposed a value of one-third for the α coefficient only
for a lateral drift of 0.2%, based on experimental results on isolated slab-column specimens [Pan92].
In 1995, Luo and Durrani proposed a simpler formulation for the α coefficient calibrating the elastic
solution proposed by Pecknold [Dur95]. Moreover, a stiffness reduction factor β (ratio of the cracked
stiffness and the gross stiffness of the slab) was proposed for the beam-equivalent member, which is
dependent on the moment and vertical load applied to the slab. Later, Grossman [Gro97] proposed
a formula for the width reduction coefficient that depends on geometric properties and the imposed
drift value. Kd was introduced to take into account stiffness degradation for increasing drift levels (see
Table 2.3), based on test results of a flat slab system [Hwa93]. In 2000, Hwang and Moehle [Hwa00]
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proposed a formula similar to the formula of Banchik [Ban87] for the α coefficient. Analytical and
experimental data treatment led to different formulation for the β coefficient, which depends upon
geometric properties (c1/l1) and the service live load acting on the slab. In 2009, Han et al. proposed
an alternative formula for the stiffness reduction factor with only parameter the ratio of applied to
cracking moment based on non-linear regression analysis using test results [Han09]. Table 2.4 resumes
the β factors that have been proposed for interior slab-column connections.

Table 2.4 – Proposed stiffness reduction factors β for interior slab-column connections using the
Effective Beam Width Method

Source β

Luo and Durrani [Luo95]
(

1− 0.4
VE

4Ac
√
fc

) [(
Mcr
ME

)3
+
(

1−
(
Mcr
ME

)3) Icr
Ig

]

Hwang and Moehle [Hwa00] max
[
5 c1
l1
− 0.1

(
LL

40 − 1
)
,

1
3

]∗

Han et al. [Han09] 0.4 + 0.32
[(

ME
Mcr

)−0.5
−
(
ME
Mcr

)0.5]
* LL= Service live load [lb/ft2]

In 1997 Robertson proposed a modified EBW method [Rob97] based on results from a subassembly
composed of two exterior and one interior slab-column connections (Fig. 2.1a) tested previously
[Rob92]. The approach consisted in substituting the equivalent beam member by two beam members
representing the slab regions subjected to hogging and sagging moments, since the latter one was
observed to be significantly less damaged than the first one. The stiffness reduction factor β was
derived for the drift levels of 0.5% and 1.5% (representing the serviceability and ultimate limit state)
to match the experimentally measured slab moment distribution. For the beam under hogging moment
a value of 0.1 was proposed for both drift levels, while for the beam subjected to sagging moment
it was proposed β = 1.0 for 0.5% drift and β = 0.5 for 1.5% drift. A value of 0.4 for the width
reduction coefficient α was found to give the best estimate of both examined interstorey drifts. In
2005, Dovich and Wight [Dov05] proposed an EBW model with beam width b = l2/2 and b = l2/3 for
initial stiffness and strength, respectively, based on test results of two-storey, two-bay flat slab frame
tested earlier [Dov94].

3. Beam Analogy Methods

The beam analogy approach derives the strength of the connection by describing all the actions in
the critical perimeter of the connection and satisfying equilibrium both for the shear force and the
moment. For the shear force the following equation is used:

VE = Vback − Vfront + Vside.1 + Vside.2 (2.62)

where Vfront and Vback are the shear forces at the front and the back face of the examined critical
section (hogging and sagging slab half, respectively) and Vside.1 and Vside.2 are the shear forces at the
side faces 1 and 2 (Fig. 2.12a).

Equilibrium of shear forces about the bending axis gives

Mu = Mfront +Mback + T1 + T2 +Mv.front +Mv.back (2.63)
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where Mv.front and Mv.back are the moments due to shear force at the front and the back face of the
examined critical section (shear force times the distance from the column axis), respectively, Mfront

and Mback are the moments due to flexure at the front and the back face, respectively, and T1 and T2
are the torsional moments at the two side faces (Fig 2.12a).

Vback
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V side.1

V side.2

Mback
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Back face
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Side face (bending axis)
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(a) (b) Front face

(hogging slab half)

Side face (bending axis)

Figure 2.12 – (a) Illustration of the Beam Analogy Method, and (b) Interaction diagram according
to [Par76].

In 1976, Park and Islam [Par76] proposed an equation for the unbalanced moment-shear force interac-
tion diagram (Fig. 2.12b) aiming to reduce the conservativeness of the strength predictions by [ACI71]
on the basis of the beam analogy concept.

Although being the most rational, the beam analogy method is difficult to be applied for design pur-
poses as multiple failure modes are associated with the various actions that are considered (shear force,
flexure, torsion). Therefore, this concept served only as basis for the development of lumped plasticity
models for consideration of both slab non-linearity and punching failure. Since during the last decades
non-linear analysis has been widely used by structural engineers for both performance-based design
and seismic assessment of buildings, these approaches gained significant popularity. Moreover, as the
analysis results can be compared to the experimental ones not only in terms of moment and defor-
mation capacity but also in terms of the overall moment-rotation response, considerable research has
been carried out and various modelling approaches were proposed. The main aspects of such works
are discussed in the following.

In 1984, Akiyama and Hawkins proposed a model for non-linear analysis of flat slabs composed of
flexural, torsional and bond-slip elements and forcing deformation compatibility using rigid connecting
bars [Aki84]. The most important parameters were calibrated using tests from literature [Haw74].

Later, Tian et al. developed a 2D non-linear model based on the beam analogy concept for use in
non-linear static analysis of flat slab buildings [Tia09]. The resistance offered by flexure and shear was
modelled using an equivalent beam while the resistance offered by torsion was modelled by a spring
element. The stiffness parameters of the model were calibrated from results of cyclically tested speci-
mens [Tia08] to capture the effect of gravity load and reinforcement ratio on the connection stiffness.

In 2015, Choi and Kim [Cho15] proposed a method for non-linear static analysis of flat slabs on the
basis of test results, assuming that structural damage is concentrated at the slab-column connection.
Non-linearity was introduced by the use of zero-length flexural and shear hinges at the front and back
faces of the critical section and torsional hinges at the side faces. The backbone curves of the hinges
were introduced separately while the column and the rest of the slab were modelled elastically.
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2.2.2 Proposed empirical models

During an earthquake, buildings are subjected to horizontal deformations, which can be expressed on
a global level in terms of the interstorey drift ψst. In buildings with flat slabs supported on columns,
seismically induced drifts result in imposed rotations to the slab-column connections and therefore to
transferred moments between the slab and the column. While considerable theoretical work has been
conducted with respect to analytical methods for calculating the maximum moment that is resisted
by a slab-column connection (§2.2.1), developing theoretically admissible models for the deformation
capacity of slab-column connections when subjected to earthquake loading is rather difficult and there-
fore significantly less analytical investigation has been performed. On the other hand, the significant
amount of experimental data (Section 2.1) allowed several researchers to propose empirical models for
the deformation capacity of slab-column connections. Moreover, non-linear analysis has gained signif-
icant popularity during the last decades, both for assessment of the seismic vulnerability of existing
structures and for performance-based design of new structures. This requires the estimation of both
the strength and the deformation capacity of the involved structural members by the structural engi-
neer. For this reason, empirical approaches for the deformation capacity of slab-column connections
date only since the end of the 1980’s. In the following, the most important aspects of such works are
briefly presented.

Based on monotonic and cyclic tests on slab-column connections, Pan and Moehle [Pan89, Pan92]
showed that the rotation capacity of the slab is strongly dependent on the gravity shear ratio VE/VRc
with VE being the vertical load acting on the slab-column connection during the seismic event and
VRc = 0.33 bo d

√
fc (nominal punching strength according to ACI-318 [ACI14]). Pan and Moehle

proposed to limit the gravity shear ratio in new designs to 0.40 (Fig. 2.13a) since slabs with higher
gravity shear ratios did not display an inelastic displacement capacity. The influence of other param-
eters such as the reinforcement ratio and the geometry of the slab and the column was disregarded,
on the basis of previous experimental observations [Pan88].

Adequate seismic behaviour of a structural member is characterised, in addition to sufficient mo-
ment and deformation capacity, by large ductility, i.e. post-elastic deformation prior to failure. The
definition of the ductility of a structural member requires the yield point of the force-displacement
relationship to be identified. For slab-column connections, although gradual yielding of the flexural
reinforcement leads to softening of the moment-rotation curve, no clear yield point can be identified.
Nevertheless, in 1989, Pan and Moehle proposed an empirical method for calculating the ductility
factor µ of a slab-column connection when subjected to earthquake loading [Pan89]. According to
the proposed method, the secant stiffness at two-thirds of the maximum moment corresponds to the
elastic stiffness of the connection while the displacement (or equally the rotation) when the elastic
branch reaches the maximum moment is considered to correspond to yielding (Fig. 2.13b). Therefore,
the ductility can be calculated as the ratio of the displacement at peak to the displacement at yielding.
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Figure 2.13 – (a) Dependency of the drift at failure on the gravity shear ratio (drawn after [Pan89]),
and (b) Displacement ductility definition according to Pan and Moehle [Pan89].

In 1999, Hueste and Wight [Hue99] proposed a trilinear empirical model between interstorey drift and
gravity-induced shear (Fig. 2.14a), based on an extended test database compared to Pan and Moehle
[Pan89]. Moreover, a method was proposed to account for punching shear failures of internal slab-
column connections when performing non-linear analysis for the assessment of regular RC buildings
[Hue99], based on lumped plasticity. The slab is substituted by a beam element with two non-linear
rotational springs at a specified distance from the column face, while rigid end zones are assigned
to the slab-column connection region. Based on prior experimental investigations and on the model
proposed by Pan and Moehle [Pan89], Hueste and Wight proposed as failure criterion a trilinear model
to relate the gravity shear ratio VE/VRc with the member-end rotation θ (Fig. 2.14b), which consists
a relatively easy output to be extracted from most commercial software for non-linear analysis. The
only parameter that must be computed beforehand is the critical beam-end rotation θcr corresponding
to a shear ratio VE/VRc equal to 0.4 (elbow in Figure 2.14b). For this purpose, it was proposed to
carry an initial non-linear static (pushover) analysis of the building until 1.5% of roof drift and vertical
loads corresponding to a gravity shear ratio equal to 0.4 and assign to each slab-column connection
the negative rotation (corresponding to hogging moment) that results from this initial analysis as
θcr. Once the critical rotation θcr is determined for each slab-column connection, a second non-linear
analysis (static or dynamic) with the required gravity loads is conducted. Then, the demand in terms
of negative beam-end rotations can be readily compared to the allowable negative beam-end rotation
for each slab-column connection.
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Figure 2.14 – Model proposed by Hueste and Wight [Hue99]: (a) Dependency of the drift at failure
on the gravity shear ratio (drawn after [Hue99]), and (b) Beam-end rotation as function of the gravity
shear ratio (drawn after [Hue99]).
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In 2005, the model proposed by Pan and Moehle was introduced into the American concrete design
standard when designing for interstorey drift and remained unchanged since then. While the inter-
storey drift capacity proposed in [ACI14] are lower bound estimates, Hueste et al. [Hue07] showed
that the mean storey drift capacity of slab-column connections is approximately 50% higher than the
values prescribed in the code and can be described by a linear function with capacities of 5.0% and
0.8% for gravity shear ratios of zero and 0.6, respectively. Based on these findings, a procedure for
performance-based design was also provided:

ψst.IO = 1
3

(
0.05− 0.07 VE

VRc

)
(2.64)

ψst.LS = 2
3

(
0.05− 0.07 VE

VRc

)
(2.65)

ψst.CP = 0.05− 0.07 VE
VRc

(2.66)

where ψst.IO, ψst.LS and ψst.CP are the interstorey drifts corresponding at the Immediate Occupancy
(IO), Life Safety (LS) and Collapse Prevention (CP) performance criteria, respectively.

In 2009, Kang et al. proposed a model for the non-linear analysis of buildings with slab-column con-
nections [Kan09], combining the principles of distributed plasticity for column modelling and lumped
plasticity for the modelling of the slab and the slab-column connection. Column response both in the
elastic and inelastic range was incorporated by the use of fibre elements. For the slab, the elastic be-
haviour was modelled by the EBW method proposed by Pecknold [Pec75] (see §2.2.1). For the inelastic
behaviour of the slab, plastic hinges were arranged at the ends of the beam-equivalent member. The
flexural capacity of the beam plastic hinges corresponds to reinforcement yielding within a width equal
to the column strip. The slab-column connection was modelled by a connection spring that links the
beam to the column. The arrangement of the members is shown in Figure 2.15. The flexural moment
of the connection spring corresponds to the sum of the flexural capacities of the sagging and hogging
reinforcement over the critical section width, assumed to be equal to c+ 3 h by [Kan09] (see §2.3.1 in
the following section). All springs and plastic hinges were assumed to follow a rigid-plastic law with
hardening. Concerning the post-yield stiffness of the connection spring, a value equal to 10% of the
elastic (cracked) stiffness of the slab was proposed, on the basis of shake table test results performed
by the authors [Kan04]. For the plastic hinges instead, a very low value of post-yield stiffness was
proposed to avoid convergence problems. The following three cases were distinguished:

• (a): stress-induced punching failure without plastic rotation neither for the connection spring
nor for the plastic hinges of the beams. In this case the moment at punching is determined using
the eccentric shear stress model of [ACI14] (similar to Eq. (2.2)).

• (b): attainment of the moment capacity for the connection spring after the appearance of plastic
rotation in the connection spring but without plastic rotations in the plastic hinges of the beams.
The moment capacity of the connection spring corresponds to the plastic rotation capacity of
the connection, which was approximated as 1.5 χy.c+3h h (χc+3h is the yield curvature over the
width c+ 3 h and h is the slab thickness), based on shake table test results [Kan04].

• (c): drift-induced punching failure after the appearance of plastic rotations both in the con-
nection spring and the plastic hinges of the beams. To do so, a limit state incorporating the
empirical model proposed by Pan and Moehle [Pan89] was introduced.

Cases (a) and (b) correspond to failure at the connection level (connection spring), while the case
(c) corresponds to failure at the slab level (plastic hinge). It should also be noted that drift-induced
punching failure is possible prior to reaching the moment capacity of the connection spring. However,
for non-prestressed slab-column connections yielding of the connection spring (c+3h) typically occurs
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before yielding of the plastic hinge (column strip). Moreover, other empirical models that link the
gravity shear ratio to the drift at punching failure can be used as limit state (e.g. [Hue99]).

Elastic effective slab-beam 

Fibre column 

Connection spring 

Fibre column 

Rigid end zone
(column width)

Rigid end zone
(slab thickness)

Column strip plastic hinges 

Figure 2.15 – Model for non-linear analysis of buildings with slab-column connections proposed by
Kang et al. (drawn after [Kan09])

2.3 Design code provisions

2.3.1 ACI-318

For the case of moment transfer between column and slab it is assumed that a fraction of moment
(equal to the coefficient γv) is resisted by the eccentric shear force mechanism. The shear stresses due
to moment transfer ME are superposed to the shear stresses due to vertical loads VE as shown in the
following equation:

vE = VE
bo.ACI d

± γv ME jd
Jc

(2.67)

where bo.ACI is the length of the control perimeter (located at a distance of d/2 from the column face),
jd is the distance between the centroid and the edge of the critical perimeter, and Jc is a property
analogous to the the polar moment of inertia of the critical section:

Jc = d b1
3

6 + d3 b1
6 + d b2

1b2
2 (2.68)

The fraction of the moment resisted by the eccentric shear force mechanism is (Section 13.5.3.2
[ACI14]):

γv = 1− 1

1 + 2
3

√
b1
b2

(2.69)

where b1 and b2 are the dimensions of the critical section measured in the direction of the span for
which moments are determined and perpendicular to it, respectively.

For unbalanced moments at interior slab-column it is permitted to increase the value of the fraction
γf of the moment resisted by flexure (complementary of γv) by 25% (but γf ≤ 1.0), provided that VE
does not exceed 0.4 VRc.

The total maximum shear stress vR acting on the control perimeter is:

vR = min
(

0.17
(

1 + 2
βc

)
, 0.083

(
2 + αs d

bo.ACI

)
,
1
3

) √
fc (2.70)
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where βc is the ratio of long to short side of the column and αs is a parameter equal to 40 for interior
slab-column connections, 30 for exterior slab-column connections, and 20 for interior slab-column
connections.

According to the same standard the unbalanced moment cannot be more than the moment resisted by
flexure by the hogging and sagging reinforcement (mR.hog and mR.sag, respectively) over a width equal
to c+ 3 h. The maximum inserted moment can therefore be calculated using the following formula:

Mmax = min

vR −
VE

bo.ACI d
γv jd

Jc,
(mR.hog +mRsag) (c+ 3 h)

1− γv

 (2.71)

ACI-318 [ACI14] is the only standard that poses drift limitations for slab-column connections. Based
on the study of Pan and Moehle [Pan89] the maximum admissible drift (in radians) is function of the
applied shear force on the slab-column connection:

ψst.u = max
(

0.005, 0.035− 0.05 VE
VRc

)
(2.72)

where VRc is the punching strength of the slab-column connection according to Eq. (2.70). For design,
VRc should be multiplied by the strength reduction factor φ = 0.75.

2.3.2 Eurocode 2

As ACI-318, EC2 [Eur04] uses the eccentric shear transfer model for predicting the maximum unbal-
anced moment. While ACI-318 [ACI14] assumes a linear shear stress distribution along the control
perimeter, EC2 assumes that it is uniform. Therefore, for a given shear force V and moment M, the
shear stress vE acting on the control perimeter of the slab-column connection is:

vE = V

bo.EC2 d
+ k M

W1 d
(2.73)

where bo.EC2 is the length of the control perimeter (located at a distance of 2d from the column face),
k is the column aspect ratio factor that is equal to 0.60 for square columns, and W1 is a geometric
parameter calculated by taking moments about the centroid of the control perimeter which for internal
square columns under uniaxial bending is:

W1 = 2.5 c2 + 4 c d+ 16 d2 + 2 π c d (2.74)

The maximum permissible shear stress vR acting on the control perimeter is:

vR = 0.18 ζ (100 ρl fc)1/3 (2.75)

where ζ is a coefficient to take into account the size effect (equal to 1 +
√

200/d ≤ 2.0) and ρl is
the flexural reinforcement ratio of the slab. The moment capacity for a given V can therefore be
calculated by substituting vE by vR in Eq. (2.73) and solving for M .

2.3.3 Model Code 2010

The punching formulation of Model Code 2010 [Fib11] is based on the Critical Shear Crack Theory
[Mut08], which uses the following failure criterion:

vR = 1
1.5 + 0.9 ψ d kdg

√
fc (2.76)
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where kdg = 2/(1 + dg/dg0) ≥ 0.75, dg0=16 mm. For Level of Approximation II (recommended for
a typical design of new structures), the slab rotation can be estimated with a simplified parabolic
relationship, which is a function of the ratio of moment demand to capacity [Mut13]:

ψ = 1.5 rs
d

fy
Es

(
ms

mR

)3/2
(2.77)

where rs is the radius of an isolated slab or 0.22L in case of a continuous slab with regular span lengths,
fy and Es are the yield stress and modulus of elasticity of flexural reinforcement, respectively. mR is the
moment capacity of the slab and mS the average moment demand on the column strip. For interior
columns in slabs with sufficiently regular geometry, mS can be estimated as mS = V

(1
8 + e

2 bs

)
,

where e = Md

Vd
is the load eccentricity and bs is the width of the support strip.

Unbalanced moments are accounted for by reducing the length of the control perimeter (situated at a
distance of d/2 from the column face) by the factor:

ke = 1
1 + e/b

(2.78)

where b is the diameter of a circle with the same surface as the region inside the basic control perimeter.
The shear strength can therefore be computed using the following formula:

VR = vR b0 d (2.79)
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Chapter 3

Experimental Campaign

Although a significant amount of experimental research on the seismic behaviour of slab-column con-
nections without transverse reinforcement has been conducted over the last decades, the state of the
art (Chapter 2) reveals several gaps; (a) existing experimental research covers relatively thin slabs, (b)
the database of pairs of slabs tested under both monotonically and cyclically increasing unbalanced
moment is very limited, and (c) no experimental data are reported on the relation between local slab
rotations and the rotation due to slab deformation, which gives an estimate of the interstorey drift
part contributed by slab deformation.

To address the aforementioned needs, an experimental campaign was performed within this research,
comprising 13 full-scale slab specimens. Two slabs were tested under monotonically increasing vertical
loads, six slabs were tested under constant vertical load and monotonically increasing moment and
five slabs were tested under constant vertical load and cyclically increasing moment. All specimens
had the same plan dimensions (3.00 m x 3.00 m), slab thickness (250 mm) and column size (390 mm
x 390 mm). The investigated parameters were the gravity loads applied to specimens subjected to
combined vertical load and moment, the flexural reinforcement ratio and the loading type (monotonic
against cyclic). The present chapter is based on an article by Drakatos et al. [Dra16].

Section 3.1 presents the prototype building that served as reference for the design of the experimental
campaign.

In Section 3.2, the test setup that was adopted for the experimental investigation is presented, followed
by the presentation of the response comparison between the test setup and the prototype building
using NLFEA (Section 3.3). For comparison purposes the setup configurations used in past experi-
mental campaigns (Chapter 2) are compared to the adopted test setup and the prototype building in
terms of the moment-rotation response. Then, the specimen properties, the instrumentation and the
adopted loading procedure are presented (Sections 3.4, 3.5, and 3.6, respectively).

Section 3.7 comprises the main results of the experimental study with respect to the influence of gravity
loads, cyclic loading and reinforcement content on the moment strength and the deformation capacity
of the tested slab-column connections. In Section 3.8, the effect of each of the above-mentioned factors
on the initial siffness, the peak moment, the rotation capacity and the cracking pattern are discussed.

In Section 3.9, the tests results are compared with the requirements of the codes of practice presented
in Chapter 2 both for the moment strength and the rotation capacity.
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3.1 Prototype building

A five-storey office building typical for Central European construction served as reference for the design
of the test specimens of the performed experimental campaign. The slabs had a thickness of 250 mm
and internal spans of 6.8 m. The storey height was 3.0 m. The primary lateral load-resisting system
comprised two RC C-shaped cores providing lateral strength and stiffness in both directions (Figure
3.1), whereas slab-column connections were designed to carry only vertical loads. The design was
performed according to fib-Model Code [Fib11] for moderate seismic zone. The columns were square
and cast-in-place with a size of 390 mm. The top reinforcement ratio in each direction was equal to
0.75% in the zone of the slab near the column (grey zones) and 0.5% in the middle strip (white zones),
as shown in Figure 3.1. Bottom reinforcement was provided in both directions over the whole slab,
with a ratio equal to 0.38% around the column (dark grey zones) and 0.5% elsewhere. The provided
bottom flexural reinforcement was continuous over the slab-column connections, complying with the
integrity rules of ACI-318 [ACI14]. The quasi-permanent vertical loads consisted of 6.25 kN/m2 of self-
weight of the slab, 1.00 kN/m2 superimposed load and 0.60 kN/m2 quasi-permanent live load. Under
this load combination, the unfactored vertical load acting on an interior slab-column connection was
approximately 40% of the punching strength according to ACI-318 [ACI14] and Eurocode 2 [Eur04]
and 50% of the punching strength according to fib-Model Code [Fib11] using mean strength values
without applying any safety factors. The assumed concrete compressive strength was 32 MPa and the
yield and maximum tensile stress of the reinforcing steel were 550 MPa and 680 MPa, respectively.

z 
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6.8
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5.4

5.4

5.4

6.8
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Reinforcement ratio 0.75% in both directions

Reinforcement ratio 0.5% in both directions

Reinforcement ratio 0.5% in X direction and 0.75% in Y direction

Reinforcement ratio 0.75% in X direction and 0.5% in Y direction

Figure 3.1 – Typical storey of the building that served as reference for the experimental campaign and
top reinforcement ratios (dimensions in m).

3.2 Test setup

Figure 3.2 shows a drawing of the setup that was chosen for this test campaign, which is subsequently
denoted as setup (b)mod since it is an evolution of setup (b). When compared to setup (b), the
unbalanced moment is introduced by additional upward and downward loads located at approximately
0.50L from the column axis. The slab had only dimensions of 0.44L while the distance between the
slab edge and 0.50L was bridged by steel beams. A photo of the test setup is shown in Figure 3.3.
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Figure 3.2 – Drawing of the setup (dimensions in mm): (a) plan view and (b) section A-A.

The column consisted of a welded steel profile and was clamped to the strong floor. Before the zero
measurements, the slab was clamped down onto the column by means of four threaded bars Ø50 mm.
They were each post-tensioned to a force of 1.2 MN in order to limit separation of the slab-column
interface. Prestressing of the slab-column connection is necessary for setup (b) to provide stability to
the system [Haw89,Isl76]. Use of steel instead of RC does not affect the behaviour of the connection as
in both cases the column is designed to remain elastic during the test [Sta05]. As long as failure occurs
outside the threaded bar-reinforced region, it is not expected that this region affects the behaviour of
the specimen [Bin05].

The vertical load was applied using four hydraulic jacks, each one connected to a steel beam that
distributed the load to two points on the slab surface. Its magnitude was kept constant by controlling
the oil pressure in the vertical loading jacks. The vertical loads were applied at a radius of 1.504 m,
which corresponds to 0.22L, i.e. the radius where the radial moment of an elastic homogenous slab
subjected to a uniformly distributed vertical load is zero. These vertical loads modelled all superim-
posed loads and the gravity loads of the slab part that was not included in the test setup (0.22-0.50L).

The effects of seismically induced drifts were simulated by applying two equal and opposite vertical
forces by means of two servo-hydraulic actuators (Fig. 3.2). The lever arm of the force couple was
increased from 6.8 m, which corresponds to the bay length of the prototype building, to 7.2 m due to
laboratory constraints. The actuators were connected to steel beams that were in turn connected to
the slab. Since the forces applied by the two servo-hydraulic actuators were equal and opposite, the
shear force applied to the slab-column connection remained constant.
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In real structures subjected to drifts, horizontal forces are transferred from the slab to the column
combined with vertical shear. However, the column of the adopted setup is subjected to a constant
moment along the height, but since the horizontal forces are transmitted in the flexural compression
zone, their omission should not significantly affect the experimental results.

For the quasi-static monotonic tests, the forces applied by the servo-hydraulic actuators were monoton-
ically increased until failure. For the quasi-static cyclic tests, rotation cycles of increasing amplitude
were applied. The monitoring of the slab rotation was performed using inclinometers that were in-
stalled on the east and west slab edge (ψmax and ψmin). To obtain the slab-column connection rotation
due to slab deformation alone (ψscc), the rotation due to column deformation and possible separation
of the slab-column interface was measured using rotation readings at the middle of the top surface of
the slab (ψcol) and then subtracted from the measured slab rotation:

ψscc = ψmax − ψmin
2 − ψcol (3.1)

The slab edges were reinforced with additional bars to account for the part of the slab that is not
represented by the test setup and to connect the slab to the steel beams for the moment application.
It will be shown in the following section that this additional reinforcement was crucial in order to
obtain a good comparison between the moment-rotation relationship of the prototype building and
that of the test unit.

Figure 3.3 – Slab specimen in test setup.

The main differences between the chosen setup and setup (a) are related to the introduction of vertical
loads and unbalanced moment as well as the boundary conditions. For the proposed setup the vertical
loads are introduced in the slab perimeter whereas for setup (a) they are introduced in the column.
Likewise, the kinematic boundary conditions of the two configurations are different, the slab being
clamped to the column for the adopted setup and simply supported on the slab perimeter for setup
(a). Moreover, for setup (a) the unbalanced moment is introduced by an eccentric vertical whereas
for setup (b)mod the unbalanced moment is introduced by a force couple (Fig. 3.2).

Setup (b) is the configuration which is most similar to setup (b)mod. The only differences lie in
the simulation of the unbalanced moment and the reinforcement pattern. Setup (b) can simulate
increasing moment both under constant eccentricity or constant vertical load whereas setup (b)mod
can only simulate increasing moment under constant vertical load. For the reinforcement pattern of
the chosen setup, the strips with additional reinforcement that are arranged in the edges parallel to
the direction of excitation account for the slab portion that is not modelled (outside r = 0.22L). On
the other hand, since the reinforcement pattern of setup (b) is orthotropic the slab region outside r =
0.22L cannot be accounted for but the reinforcement placing is significantly easier, in particular for
relatively thin slabs.
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The differences of setup (b)mod comparing to setup (c) can be distinguished in the following four
categories: (a) regarding the boundary conditions, for setup (c) the slab is simply supported at its
perimeter and the column is pinned at its base whereas for the proposed configuration the slab is free at
its perimeter and clamped to the column at their interface, (b) the slab is modelled until midspan (r =
0.50L) for setup (c) whereas for setup (b)mod is modelled until r = 0.22L, (c) the seismically-induced
drift is introduced through horizontal load at column midheight for setup (c) whereas for the chosen
setup it is introduced through vertical loads at slab midspan, and (d) the monitoring parameter of
cyclic tests is for setup (c) the horizontal displacement at column midheight whereas for the proposed
setup is the connection rotation, using measurements on the slab surface.

3.3 Response comparison between proposed test setups and
prototype building

Since there are only very few tests on subassemblies and flat slab buildings (§2.1.1), mechanical models
have to be validated mainly against tests on isolated slab-column connections. For this reason, it is
important to understand the approximations related to the testing of such isolated connections. To do
so, the slab-column connection of the prototype building (Section 3.1) is analysed and its moment-slab
rotation relationship is used as benchmark for the curves obtained from different experimental setups.
These comprise setup configurations of previous experimental campaigns (§2.1.1) and the adapted
setup configuration that is used in the experimental study presented in this chapter (Section 3.2).

The setup configurations presented in Chapter 2 (§2.1.1) and Section 3.2 are simplifications of the
boundary conditions imposed on a flat slab in an actual building subjected to seismic excitation.
The influence of the boundary conditions on the deformation capacity of slab-column connections
has been demonstrated by previous numerical studies, under both vertical load [Ein15] and combined
vertical load and transferred moment [Par06]. It is therefore essential to evaluate the capacity of each
setup to reproduce the behaviour of slab-column connections of the prototype building (presented
in Section 3.1). To this end, the response of an internal slab-column connection of the prototype
building and the response of isolated slab-column connections tested in setups (b), (c) and the chosen
(b)mod were simulated using the program SAP2000 [CSI14]. As discussed in Chapter 2, setup (a) is
not suitable for reproducing the seismic response of slab-column connections. Setup (a) was therefore
only used for the validation of the numerical model but not included in the evaluation of test setups.
The slab was modelled using non-linear layered shell elements with a Mindlin-Reissner formulation to
include transverse shear deformations. Only elastic shear deformations were included; the model could
therefore only predict the non-linear flexural response. The layered shell formulation adopted for the
numerical investigation uses smeared reinforcement. Fourteen integration points were used over the
height of the slab. The unconfined concrete model by Mander et al. [Man88] and the model by Park
and Paulay [Par75] were used for modelling the non-linear behaviour of concrete and reinforcing steel,
respectively. The tensile strength of the concrete was assumed to be zero.

For evaluating the seismic performance of buildings in terms of displacements, structural engineers use
typically the interstorey drift ψst, i.e., the relative horizontal displacement between two adjacent floors
divided by the storey height. In structural systems of flat slabs and columns both the deformation of
the slab and the column contribute to the interstorey drift:

ψst = ψcol + ψslab (3.2)

where ψcol and ψslab are respectively the contributions of column deformation and slab deformation
to the interstorey drift. Since the present study focuses on the contribution of slab deformation to the
interstorey drift, the columns were modelled as rigid (ψcol = 0).

In laboratory tests, often only the hogging moment area under gravity loads is represented. It is
usually assumed that the limit of this area is located at a distance of r = 0.22L from the column axis,
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where L is the midpan-to-midspan distance. In reality, the slab region inside and outside r = 0.22L
are contributing to the rotation due to slab deformation:

ψslab = ψscc + ψos (3.3)

where ψscc and ψos are respectively the rotation due to deformation of the slab-column connection
(slab region inside 0.22L) and the rotation due to the deformation of the outer portion of the slab
(outside r = 0.22L up to r = 0.50L).

3.3.1 Verification of the numerical method

To verify the numerical model, slab specimens tested in previous experimental campaigns were anal-
ysed and numerical results compared against experimental results. More details on the properties of
the analysed specimens can be found in Chapter 2 (§2.1.2) and in Appendix A. Figure 3.4 shows the
comparisons of the experimental and calculated curves for tests using setups (a) and (b) [Kru99,Isl76]
while Figure 3.5 shows the same for tests using setup (c) [Pan89, Rob02, Tia08]. For each test cam-
paign, the contribution of the slab deformation to the interstorey drift was measured differently and
the comparison uses the deformation quantity reported. This is the central deflection for test units
P16A and P32A by Krüger [Kru99], who used setup (a) (Fig. 3.4a, b). These test units were chosen
because of their high slenderness. Islam and Park [Isl76], who used setup (b) (Fig. 3.4c) for the test
IP2, reported the slab-column connection rotation ψscc. It was computed from the deflections of the
two slab edges orthogonal to the lateral load. Pan and Moehle [Pan89], Robertson et al. [Rob02] and
Tian et al. [Tia08] used setup (c) (Fig. 3.5). For all these tests the deformations were described using
the slab-column connection rotation, computed as the horizontal displacement of the rigid column
divided by the storey height. Test units AP1 [Pan89] and 1C [Rob02] were chosen since they represent
cases with limited and increased deformation capacity, respectively, and similar reinforcement ratio
with the prototype building. Test unit L0.5 [Tia08] was chosen since its column size is very close to the
one adopted for the prototype building and the experimental campaign. The reinforcement layers of
all test units were modelled explicitly both over the thickness (four reinforcement layers) and in plan to
account for eventual reinforcement concentration within the column strip (e.g. [Pan89,Rob02,Tia08]).
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Figure 3.4 – Comparison of test results and numerical analyses for setup (a) and setup (b).
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Figure 3.5 – Comparison of test results and numerical analyses for setup (c).

It should be noted that the finite element model captures only the non-linear flexural response but
cannot account for premature punching failure of the slab-column connections that can occur at a
moment substantially lower than the yield moment. After punching failure, the shear deformations
become significant, which is not accounted for in the numerical simulation. Finite element modelling
that accounts for punching failure of the slab-column connection would necessitate the use of brick
elements for the modelling of the slab. On the other hand, shell elements do not explicitly incorporate
features to account for such type of failure. For this reason, the comparison of numerical and exper-
imental response focuses on the prediction up to the experimental peak strength. A constant shear
retention factor β = 0.1 was chosen for the shear stiffness reduction before and after cracking since
the focus was on the ultimate response rather than the initial response. Figures 3.4 and 3.5 show that,
although the loading and boundary conditions of the specimens differed substantially between the
different setups (2.1.1), the numerical analysis predicted the moment-deformation response between
cracking and peak load rather well (note that the aim of the simulation was not to predict the ultimate
strength but the moment-rotation response).

3.3.2 Moment-rotation response comparison between prototype building and
test setups

To simulate the behaviour of an internal slab-column connection in the prototype building (Fig. 3.1),
an element L x L with continuity boundary conditions (Fig. 3.6a) was analysed. The moment at the
slab-column connection was inserted through incrementally increasing lateral loads at the top of the
column stub while monitoring the rotation at the slab-column node. A uniform gravity pressure qV
was applied at the slab surface to simulate the vertical loads specified in Section 3.1. The column
member was modelled as rigid and was pinned at the base (δx,y,z = 0) and free at the top. The slab
edges parallel to the x axis were restrained against rotation about the same axis (θx = 0) whereas
the other edges were constrained to have the same vertical displacement (δz) and rotation about the
y axis (θy) as shown in Figure 3.6a. Since the column is rigid (ψcol = 0, Fig. 3.6a), the slab rotation
(ψscc + ψos) is equal to the interstorey drift ψst. The geometric and material properties as well as the
slab reinforcement of the element L x L with continuity boundary conditions are specified in Section
3.1. For consistency reasons, the models representing the test units for setups (b)mod, (b) and (c)
were assigned the same material properties and reinforcement ratios. The slab dimensions of setups
(b) and (b)mod were 0.44L and that of setup (c) 1.0L.

The numerical model for setup (b)mod is shown in Figure 3.6b. The moment at the slab-column con-
nection was introduced through a couple of incrementally increasing vertical forces with amplitude
FV applied to steel members that were in turn connected to the slab edges. The steel members were
modelled using elastic beam elements. The model of setup (b)mod included also the additional rein-
forcement at the slab edges parallel to the x-axis (see Section 3.2). The numerical model for setup
(b) is similar to the one of the chosen setup, the only differences being the absence of the additional
reinforcement along the slab edges and the smaller lever arm of the applied vertical force couple (0.44L
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vs 1.0L). Since for these two setups the column rotation was zero, the analysis result is shown in terms
of the slab-column connection rotation computed from the deflections at a distance of 0.22L from the
column centre (ψscc), which corresponds to the slab edge for these setup configurations. The same
definition will be used for the presentation of the test results of the experimental campaign.

The numerical model of setup (c) is similar to the numerical model established to simulate an internal
slab-column connection of the prototype building (Fig. 3.6a). The only differences lie in the bound-
ary conditions. For setup (c), the edges parallel to the y-axis were restrained only against vertical
displacement whereas the edges parallel to the x-axis were unrestrained. The connection rotation for
setup (c) and the continuous flat slab was computed as for setups (b) and (b)mod.
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Figure 3.6 – Deformed shape of the established numerical models: (a) element L x L with continuity
boundary conditions, and (b) setup (b)mod.

The influence of the adopted setup on the moment-rotation relationship of the slab-column connection
is shown in Figure 3.7. Since punching failure is not captured by the numerical analysis, the comparison
should be based on the moment-rotation relationship up to the moment capacity predictions according
to ACI-318 [ACI14] and Eurocode 2 [Eur04] (dashed lines in Figs. 3.7a and b). Modelling the slab
only until 0.22L (setup (b) and setup (b)mod) results in a softer flexural behaviour than the continuous
slab; this has already been demonstrated for the case of vertical loads alone [Ein15]. The difference
in stiffness beween setup (b) and setup (b)mod results from the additional edge reinforcement that is
provided in setup (b)mod. This effect is smaller for larger reinforcement ratios (Fig. 3.7b) since the edge
reinforcement was not scaled with reinforcement content. Comparison between the continuous flat slab
(Fig. 3.6a) and the setup (c) shows that for the same specimen size (1.0L), the boundary conditions
significantly affect the moment-rotation response: The continuous flat slab is significantly stiffer than
the simply supported slab (setup (c)). Figure 3.7 shows that for the two reinforcement ratios that
were investigated within the experimental campaign, setup (b)mod yields from all investigated setups
the best estimate of the stiffness of the slab-column connection of the prototype building.
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3.4 Specimen properties

Table 3.1 summarises the geometric and material properties as well as the value of the loading param-
eter. The dimensions of each isolated specimen were 3.00 m x 3.00 m (B x B) and the slab thickness
was 250 mm. The column size was equal to 390 mm x 390 mm (c x c) for all tested slabs. Three
different types of loading are distinguished: “V” stands for the application of symmetrical vertical
loads, whereas “M” and “C” represent the introduction of monotonically and cyclically increasing un-
balanced moments, respectively. The slab’s top reinforcement ρ consisted of 16 mm deformed bars per
direction with 125 mm spacing for slabs with 0.75% nominal reinforcement ratio, whereas for 1.50%
nominal reinforcement ratio 20 mm deformed bars were spaced at 100 mm in each direction. For the
bottom mat 10 mm and 14 mm deformed bars were spaced at 100 mm in each direction for slabs with
ρ′ = 0.38% and 0.75% nominal bottom reinforcement ratio, respectively. The reinforcement layer with
the biggest lever arm was positioned perpendicularly to the moment vector for both top and bottom
mat. The effective depth d for each slab, taken as the average value for both reinforcement directions
until the rebar centre, was measured a posteriori after saw cuts had been performed along the slab
thickness. The nominal concrete cover was 20 mm for both top and bottom mat and the maximum
aggregate size dg was 16 mm. The compressive strength of concrete fc (determined by compression
tests on concrete cylinders 160 x 320 mm at the day of testing) and the mean yield stress of reinforcing
steel fy (average values measured on 0.90 m bars) are also reported in Table 3.1. The fourth column
gives the normalised shear force:

ν = Vtest
bo d
√
fc

(3.4)

where bo is the length of the control perimeter situated at a distance of d/2 from the column face,
calculated with rounded corners [Fib11]. It should be noted that the gravity shear ratio (GSR) defined
according to ACI-318 [ACI14] is obtained when the normalised shear force ν according to Eq. (3.4)
(expressed in

√
MPa) is multiplied by three (expressed in SI units). For tests PD7 and PD9, which

were subjected to increasing vertical loads alone (“V”), Vtest corresponds to the maximum applied force
which caused punching of the slab. For the other tests (“V+M”, “V+C”), Vtest was kept constant
throughout the test and is the vertical load that was applied before applying the seismic moment.
The fifth column gives the ratio of the applied normalised shear force ν to the normalised shear force
νref of the reference slab (“V”).

Table 3.1 – Summary of properties of interior slab-column specimens tested within the present research
(ordered by loading type, ν, and reinforcement ratio)

Loading Slab Vtest ν ν/νref fc dg fy ρ ρ′ d B
type [MN] [

√
MPa] [-] [MPa] [mm] [MPa] [%] [%] [mm] [m]

V PD7 0.983 0.359 1.00 39.2 16 507 0.80 0.35 200 3.00
V PD9 1.040 0.419 1.00 34.3 16 593 1.61 0.74 195 3.00

V+M PD1 0.253 0.092 0.26 37.9 16 559 0.79 0.35 204 3.00
V+M PD4 0.376 0.137 0.38 39.0 16 507 0.80 0.35 201 3.00
V+M PD5 0.517 0.195 0.54 37.5 16 507 0.81 0.35 198 3.00
V+M PD3 0.734 0.288 0.80 34.9 16 558 0.81 0.34 198 3.00
V+M PD12 0.517 0.205 0.49 35.5 16 546 1.61 0.72 195 3.00
V+M PD10 0.734 0.301 0.72 32.3 16 593 1.60 0.72 197 3.00
V+C PD8 0.376 0.152 0.42 32.7 16 575 0.81 0.29 198 3.00
V+C PD6 0.517 0.192 0.53 38.3 16 507 0.81 0.30 199 3.00
V+C PD2 0.734 0.288 0.80 36.9 16 558 0.81 0.34 198 3.00
V+C PD13 0.517 0.201 0.48 36.5 16 546 1.61 0.72 196 3.00
V+C PD11 0.734 0.299 0.71 33.1 16 593 1.60 0.71 196 3.00
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The vertical loads that were applied to slabs subjected to combined vertical load and unbalanced
moment were chosen based on the predictions of several codes of practice. Figure 3.8 shows the
design vertical loads for Ultimate Limit State (ULS) according to ACI-318 [ACI14] and fib-Model
Code 2010 [Fib11], as well as the strength predictions of the Critical Shear Crack Theory (CSCT)
[Mut08] for different reinforcement ratios (continuous lines). Moreover, the design vertical loads for the
Serviceability Limit State (SLS) according to ACI-318 [ACI14] and fib-Model Code 2010 [Fib11] are
also represented in the same graph (dashed lines). The normalised experimental punching strengths
for the reference tests (see Table 3.1) for both ρ = 0.75% and ρ = 1.50% are shown in the same graph
(diamond markers). As can be seen, the CSCT predicts very accurately the experimental punching
strength of the reference tests for both reinforcement ratios. Based on the graph of Figure 3.8 the
vertical load levels of the tests under combined vertical load and unbalanced moment were chosen for
both monotonic loading conditions (circular markers) and cyclic loading conditions (x markers).
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Figure 3.8 – Design against vertical loads according to fib-Model Code 2010 [Fib11] and ACI-318
[ACI14] and punching strength preditions according to CSCT [Mut08].

For ρ = 0.75%, the slab pair loaded at relatively high vertical loads (ν = 0.29) was tested to assess
the moment strength and the deformation capacity of slab-column connections loaded at the ULS
gravity loads according to fib-Model Code 2010 [Fib11]. Although such a choice of vertical loads
during a seismic excitation is rather overestimating, an eventual change of building use may increase
the vertical loads acting on the slab-column connections compared to the initial design. On the other
hand, the test performed at very low vertical loads (ν = 0.09) is rather representative of building
usage change resulting in decrease of the gravity-induced shear force on the slab-column connection.
For the same reinforcement ratio the slab pairs loaded at intermediate vertical loads were tested to
assess the moment strength and deformation capacity of slab-column connections designed for gravity
loads at the SLS according to the same standard (ν = 0.14 and 0.19 as lower-bound and upper-bound
limits, respectively). These cases are valuable also from the engineering practice point of view.

For ρ = 1.50%, the slab pairs loaded at ν = 0.30 and 0.20 are representative of slab-column connections
loaded at the ULS and SLS, respectively, if the design is performed according to fib-Model Code 2010
[Fib11] with material partial factors γm. The lowest vertical load level (ν = 0.20) is also representative
of the shear force corresponding to the SLS according to ACI-318 [ACI14].

3.5 Instrumentation

The bottom face of all specimens was instrumented with 26 displacement transducers and 16 strain
gauges to measure slab deflections and concrete strains along the axis perpendicular to the moment
vector direction (EW direction – see Fig. 3.9b). On the top face, nine inclinometers recorded slab
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rotations in different directions (Fig. 3.9b). One of these inclinometers was positioned on the middle
of the specimen to measure the rotation of the slab due to column deformation and a possible slab-
column separation. The inclinometers that were monitoring the quasi-static cyclic tests are shown in
Figure 3.9c. In addition, strain gauges were attached on selected rebars of the top and bottom mat
in the EW direction to measure strains at various locations. Since the present chapter focuses on the
global response, only the results of the inclinometers are used in the following.
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Figure 3.9 – (a) Reinforcement plan for slabs with ρ = 0.75% (dimensions in mm), (b) position of
inclinometers for measuring slab rotations and middle steel plate rotation, and (c) elevation view of
the inclinometers monitoring the cyclic tests.

3.6 Loading procedure

After the zero measurements, the vertical load was applied with a velocity of 20 kN/min at eight
points arranged on a radius of 1.504 m (= 0.22L). The slab was charged by means of four hydraulic
jacks, which applied each the same load on two points on the slab (Fig. 3.2). The unbalanced
moment was introduced by the two servo-controlled hydraulic actuators, of which the master actuator
was displacement-controlled and the other force-controlled. For the specimens subjected to constant
vertical load and monotonically increasing moment (V+M – Table 3.1), the master actuator imposed
a monotonically increasing downward displacement with a velocity of 0.2 mm/s until failure. The
other actuator was imposing an upward displacement and was force-controlled applying the same
force amplitude as the master actuator but in opposite direction. In this way, a force couple was
introduced to the slab-column connection and the connection rotation was monotonically increasing.
For the specimens subjected to a constant vertical load and a cyclic moment (V+C – Table 3.1),
the displacement-controlled and force-controlled actuators were alternated at each half cycle with the
same displacement velocity of the master actuator as for monotonic tests. The actuator applying the
downward force was always the displacement-controlled master actuator. The control parameter was
the slab-column connection rotation, defined as the mean value of the inclinometers west and east
minus the value of the column rotation (measured using an inclinometer on the top plate, Fig. 3.9b).
Two cycles were applied per rotation level. Since a minimum number of eight cycles before failure
were desired, a different loading protocol was followed for tests with increased deformation capacity
(Fig. 3.10a) and limited deformation capacity (Fig. 3.10b). Throughout the moment application, the
vertical load was manually controlled to remain constant.
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Figure 3.10 – Displacement routine applied for cyclic testing of specimens with (a) increased defor-
mation capacity (PD6, PD8 and PD13), and (b) limited deformation capacity (PD2 and PD11)

3.7 Results

The normalised vertical load-slab rotation curves for the reference tests PD7 and PD9 (without un-
balanced moments) are shown in Fig. 3.11. Rotation ψv is the average of rotation measurements on
the east and west side of the slab. Fig. 3.11 shows also the vertical load levels applied to those slabs
that were also subjected to an unbalanced moment.
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Figure 3.11 – Vertical load levels of tested slab specimens with respect to reference tests (concentric
punching).

Table 3.2 summarises for the slabs that were subjected to a vertical load and an unbalanced moment the
obtained moment and slab-column connection rotation at peak load (Mmax and ψscc.max, respectively),
at loss of vertical load bearing capacity, referred to as ultimate (Mu and ψscc.u, respectively), as well
as at 20% drop of unbalanced moment strength (M80% and ψscc.80%, respectively) for slabs with M80%
higher than Mu.
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Table 3.2 – Summary of results of tests on slab-column specimens subjected to combined vertical load
and moment

Slab Loading Moment [kNm] Slab-column connection rotation [%]
type Mmax M80% Mu ψscc.max ψscc.80% ψscc.u

PD1 V+M 525 - 503 * - *
PD3 V+M 200 - 177 0.45 - 0.60
PD4 V+M 527 - 458 2.01 - 2.44
PD5 V+M 462 - 435 2.19 - 2.39
PD10 V+M 290 - 285 0.49 - 0.52
PD12 V+M 469 - 461 1.21 - 1.27
PD2 V+C 196 157 124 0.36 0.37 0.42
PD6 V+C 372 297 287 0.86 0.84 0.84
PD8 V+C 384 307 307 1.30 1.66 1.66
PD11 V+C 286 - 231 0.43 - 0.50
PD13 V+C 410 - 345 0.86 - 0.88

* inconsistent rotation measurement

Fig. 3.12 shows the interaction diagrams to facilitate the comparisons between the performed tests
in terms of normalised moment resistance (Mmax/bo d

2 √fc [
√

MPa]) and corresponding slab-column
connection rotation (ψscc.max – Table 3.2).
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Figure 3.12 – Interaction diagrams resulting from the performed tests: (a) Moment capacity, and (b)
corresponding connection rotation.

The measured relationships between the introduced moment, slab-column connection rotation and
maximum and minimum local slab rotations for the slabs tested to investigate the influence of gravity
load and reinforcement ratio are shown in Figure 3.13. A discussion of these effects follows in Section
3.8.
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The comparisons of the moment-connection rotation response for the slabs tested to investigate the
cyclic loading effect are shown in Figure 3.14 for all three vertical load levels that were considered and
for both flexural reinforcement ratios.
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The cracking pattern of the top slab surface is illustrated in Figures 3.15 and 3.16 for selected cases of
slabs with ρ = 0.75% and 1.50%, respectively. Cracks shown in black were drawn after the application
of vertical loads. Cracks shown in red were caused by the unbalanced moment and were drawn after the
end of each test. The slab half where the shear force due to the unbalanced moment acts downwards
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(i.e. in the direction of the vertical forces) is referred to as hogging slab half. The other slab half where
the shear force due to unbalanced moment acts opposite to the shear force due to the vertical loads,
is denoted as sagging slab half. The cracking pattern of all tested slabs can be found in Appendix B.
In Figures 3.15 – 3.19, the hogging slab half is represented by positive x values. Moreover, since the y
axis (x = 0) is parallel to the vector of the applied moment, the y axis will be subsequently referred to
as bending axis. All specimens failed due to punching of the slab. For the reference specimens, which
had been subjected to gravity loads only, the punching was concentric; for the specimens subjected to
combined gravity loads and unbalanced moment, the punching-shear-related damage concentrated in
the hogging slab half. This concentration was naturally stronger for monotonic tests than for cyclic
tests.
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(b) (c)

x 
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y 

Figure 3.15 – Top surface cracking pattern for tested slabs with 0.75% flexural reinforcement ratio: (a)
ν = 0.14

√
MPa (monotonic loading), (b) ν = 0.14

√
MPa (cyclic loading), and (c) ν = 0.09

√
MPa

(monotonic loading).

(a)

vertical  load moment

(b) (c)

x 
z 

y 

Figure 3.16 – Top surface cracking pattern for monotonically tested slabs with 1.50% flexural rein-
forcement ratio: (a) reference slab (ν = 0.42

√
MPa), (b) ν = 0.29

√
MPa, and (c) ν = 0.19

√
MPa.

To obtain information on the inclination of the shear crack at failure, saw cuts were performed after
each test. The saw cuts show the surface perpendicular to the unbalanced moment vector (parallel to
the x direction). They illustrate the effect of the gravity load (Fig. 3.17), the loading history (Fig.
3.18) and the reinforcement ratio (Fig. 3.19) on the crack angle. Note that PD11 (ρ = 1.50% – ν =
0.29

√
MPa) was reloaded after a first drop in moment, which resulted in complete punching of the

slab and provoked additional cracks over the slab thickness. These cracks are shown with grey colour
in Figures 3.17, 3.18, and 3.19.
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(a)

v = 0.19 v = 0.29

(b)

v = 0.19 v = 0.29v = 0.09 v = 0.14

Figure 3.17 – Saw cut comparison for slabs tested under monotonically increasing moments to inves-
tigate the gravity load effect, with: (a) 0.75%, and (b) 1.50% reinforcement ratio.
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(e)v = 0.19
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Figure 3.18 – Saw cut comparison for slabs tested under monotonically and cyclically increasing
moments: (a) ρ = 0.75% – ν = 0.29, (b) ρ = 0.75% – ν = 0.19, (c) ρ = 0.75% – ν = 0.14, (d) ρ =
1.50% – ν = 0.29, and (e) ρ = 1.50% – ν = 0.19.
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ρ = 0.75% ρ = 1.50%

v = 0.29
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Figure 3.19 – Saw cut comparison for slabs with 0.75% and 1.50% reinforcement ratio under ν [
√

MPa]
equal to (a) 0.29 (monotonic loading), (b) 0.19 (monotonic loading), (c) 0.29 (cyclic loading), and (d)
0.19 (cyclic loading).

Fig. 3.20 shows the slab rotations that were measured at peak moment at varying angles with regard
to the bending axis (φ = 0 and φ = π) for the slabs subjected to monotonically increasing moments.
As can be seen, the slab rotations follow approximately a sinusoidal law with ψmax for φ = π/2 and
ψmin for φ = 3π/2.
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Figure 3.20 – Measured slab rotations at peak moment at varying angles from the bending axis (φ =
0 and φ = π) for slabs with: (a) 0.75% reinforcement ratio, and (b) 1.50% reinforcement ratio.

56



Discussion of the results

3.8 Discussion of the results

The discussion focuses on the influence of three factors on the seismic behaviour of slab-column
connections, i.e., the influence of gravity loads, reinforcement ratio and loading history (monotonic
vs cyclic). The first two factors are discussed with regard to the monotonic test results (§3.8.1 and
3.8.2). In the third subsection (§3.8.3), cyclic and monotonic test results are compared. For each factor
the effect of the initial stiffness, the peak moment, the rotation capacity and the cracking pattern is
discussed. The initial stiffness is defined as the secant stiffness up to 75% of the peak moment and
the rotation capacity as the rotation at peak moment since punching failure occurs typically shortly
after reaching the peak moment.

3.8.1 Gravity load effect

The effect of the gravity load on the stiffness, strength and deformation capacity of slab-column
connections without shear reinforcement has been extensively investigated by [Pan89, Rob06, Bu09,
Cho07]. The results of the present campaign are shown in Figure 3.21 and largely confirm previously
observed trends. They provide, however, a more differentiated view with regard to the gravity load
effect on the rotation capacity (see discussion below).
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Figure 3.21 – Moment-connection rotation relationship for cyclic and monotonic tests at different
reinforcement ratios and vertical loads, performed within this research.

Stiffness

The test campaign comprised slabs subjected to normalised shear forces ν equal to 0.09, 0.14, 0.19
and 0.29

√
MPa. Figure 3.21a shows that an increase in vertical loads results in a decrease of the

connection stiffness. The sensitivity of the stiffness is largest when increasing ν from 0.14 to 0.19√
MPa, while it is rather small for ν < 0.14

√
MPa and ν > 0.19

√
MPa (Fig. 3.21a and b).

Moment capacity

The effect of vertical loads on the moment capacity of a slab-column connection depended on the
vertical load level (Fig. 3.12a and 3.21). In general, decreasing the vertical load, increased the peak
moment. Similar trends have been shown by previous studies [Pan89, Rob06, Bu09]. This study
showed that the trend was stronger for slabs with ν ≥ 0.19

√
MPa and less strong for ν < 0.19

√
MPa.

A gravity load of 0.19
√

MPa corresponds to half the punching shear strength without unbalanced
moment.
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Rotation at peak moment

It is generally assumed that the rotation at peak moment decreases with increasing vertical load (e.g.
ACI-318 [ACI14] and Pan and Moehle [Pan89]). This experimental campaign confirmed this trend for
ν > 0.19

√
MPa (Fig. 3.21). For lower vertical loads, however, the rotation at peak moment increased

slightly with increasing vertical loads (Fig. 3.21a). This is attributed to the fact that higher vertical
loads lead to more cracks and therefore to a reduced stiffness, which increases the deformation capacity
since the moment capacity remained almost unchanged. In fact, the same observation can be inferred
from results of previous tests [Rob06,Cho07,Bu09].

Cracking pattern

The cracking pattern of the top slab surface was strongly influenced by the vertical load level: the
larger the vertical load level, the more cracks due to vertical loads and the fewer cracks due to the
unbalanced moment. This applied for both reinforcement ratios (Figs. 3.15a, c and 3.16). Concrete
spalling of the top slab surface was observed only for slabs with ρ = 0.75% (Fig. 3.15a, c).

The saw cuts of slabs subjected to monotonic loading showed that if the maximum eccentricityMmax/V
was lower than c/2+d (ν = 0.29

√
MPa in Fig. 3.17), the shear crack inclination was approximately 45

degrees for both hogging and sagging slab half. For higher maximum eccentricities (ν < 0.29
√

MPa
in Fig. 3.17) the shear crack of the hogging slab half was flatter, whereas no significant cracking was
observed over the thickness of the sagging slab half.

3.8.2 Reinforcement ratio effect

The influence of the flexural reinforcement ratio on the moment-rotation response of slab-column
connections without transverse reinforcement has been thoroughly investigated in several experimental
campaigns [Gha76, Haw89, Rob06, Cho07]. This test campaign varied not only for one reinforcement
ratio the gravity load but for two (ρ = 0.75 and 1.50%). It therefore allows to investigate the sensitivity
of the gravity load effect with regard to the reinforcement ratio (Fig. 3.22).
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Figure 3.22 – Influence of reinforcement ratio on moment-rotation response for monotonically tested
connections with ν equal to (a) 0.29

√
MPa, and (b) 0.19

√
MPa.

Stiffness

Fig. 3.22 shows that doubling the flexural reinforcement ratio resulted in a significant stiffness increase
for both gravity load ratios.
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Moment capacity

The effect of the flexural reinforcement ratio on the moment capacity depended on the applied vertical
load: For ν = 0.29

√
MPa (Fig. 3.22a), doubling the reinforcement increased significantly the peak

moment; for lower vertical loads (ν = 0.19
√

MPa, Fig. 3.22b), doubling the reinforcement ratio had
little effect on the peak moment.

Rotation at peak moment

As for the moment capacity, the effect of the flexural reinforcement ratio on the deformation capacity
depended on the applied vertical load: For ν = 0.29

√
MPa, when increasing ρ from 0.75% to 1.50%

(Fig. 3.22a), the deformation capacity remained almost constant. For ν = 0.19
√

MPa, however,
doubling the reinforcement reduced the deformation capacity by more than a factor of two (Fig.
3.22b).

Cracking pattern

The saw cuts showed that for high vertical loads (ν = 0.29
√

MPa) the shear crack inclination was
not significantly affected by the reinforcement ratio (Fig. 3.19a). For lower vertical loads (ν = 0.19√

MPa), an increase in the reinforcement ratio from 0.75% to 1.50% resulted in a slightly steeper shear
crack in the hogging slab half (Fig. 3.19b).

3.8.3 Cyclic loading effect

Although existing experimental research on slab-column connections under both monotonically and
cyclically increasing deformations is rather extensive, before this campaign only three pairs of spec-
imens had been subjected to monotonic and cyclic moment to investigate the effect of the loading
history. Out of these three pairs two investigated isolated slab specimens [Han68, Isl76] and one a
continuous flat slab [Rha14]. These tests showed that cyclic loading had only a small effect on the
moment strength. Deformation measurements are only available for [Isl76] and [Rha14] and the effect
of cyclic loading on the deformation capacity was non-conclusive: For [Rha14], the cyclic loading re-
duced the rotation capacity by more than a factor of three but it had almost no effect for [Isl76]. All
three pairs investigated very thin slabs (h = 76-90 mm). For such thin slabs, small variations in the
thickness of the concrete cover can have a large influence on the effective depth and therefore on the
slab behaviour. The present test campaign provides results for five pairs of slabs with h = 250 mm
(Fig. 3.14), which allows to investigate the influence of the loading history in more depth.

Stiffness

The initial stiffness of slabs tested under monotonically and cyclically increasing moments were similar
(Fig. 3.14a, b, d, e), small discrepancies being attributed to differences in the material properties
between monotonic and cyclic counterparts (Fig. 3.14c – Table 3.1).

Moment capacity

The moment capacity of cyclically loaded slabs was smaller than the moment capacity of monotonically
loaded slabs. This difference decreased for increasing gravity loads:

• ρ = 0.75%: ν = 0.14
√

MPa : -27%, ν = 0.19
√

MPa : -19%, ν = 0.29
√

MPa : -2%

• ρ = 1.50%: ν = 0.19
√

MPa : -13%, ν = 0.29
√

MPa : -1%
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Rotation at peak moment

As for the moment capacity, the rotation capacity of cyclically loaded slabs is smaller than for mono-
tonically loaded slabs. The difference varies between 12 and 61%:

• ρ = 0.75%: ν = 0.14
√

MPa : -35%, ν = 0.19
√

MPa : -61%, ν = 0.29
√

MPa : -20%

• ρ = 1.50%: ν = 0.19
√

MPa : -29%, ν = 0.29
√

MPa : -12%

For ν = 0.19
√

MPa and ν = 0.29
√

MPa the following trends can be observed: The larger the gravity
loads, the smaller the difference in rotation capacity between monotonic and cyclic tests. This is
confirmed by measurements of the top reinforcement strain (Fig. 3.23). The difference is larger for
ρ = 0.75% than for ρ = 1.50%. For these tests, the envelope of the moment-rotation curve of the cyclic
test corresponded very well to the moment-rotation curve of the monotonic test, with the difference
that failure occurred earlier.
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Figure 3.23 – Measured strains of the top reinforcing bars at a distance r = 0.6 m from the column
axis for monotonically and cyclically tested slabs (ρ = 1.50%), for ν equal to (a) 0.19

√
MPa, and (b)

0.29
√

MPa.

When ν = 0.14
√

MPa and ν = 0.19
√

MPa are compared (ρ = 0.75%), the trend is different: The
monotonic rotation capacity is almost the same for both values of ν but the cyclic rotation capacity is
significantly larger for ν = 0.14

√
MPa than for ν = 0.19

√
MPa. This is because for ν = 0.14

√
MPa

the cyclically loaded specimen yields for M > 0.80Mmax,cyc a considerably softer response than the
monotonically loaded specimen.

Cracking pattern

The cyclic loading led naturally to a more symmetric cracking pattern than the monotonic loading.
This applies to the cracking pattern on the surface (Fig. 3.15) and saw cuts (Fig. 3.19). Moreover, it
was observed that for low vertical loads (ν ≤ 0.19

√
MPa), the shear crack at failure was significantly

steeper for cyclic tests than for their monotonic counterparts, both for ρ= 0.75% (Fig. 3.18b and c) and
1.50% (Fig. 3.18e). Steep shear cracks due to load reversals indicate severe concrete degradation that
limits the deformation capacity of the connection, as has been observed by other researchers [Mat15].
For higher vertical loads, the shear crack inclination at failure was not significantly influenced by the
loading type (Fig. 3.18a and d).
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3.9 Comparison to codes of practice

In the following, the results of the tests are compared with the requirements of some codes of practice.
The provisions for the design of slab-column connections in the presence of seismic moments according
to ACI-318 [ACI14], Eurocode 2 (EC2) [Eur04]] and fib-Model Code (MC2010) [Fib11] are presented
in Chapter 2 (Section 2.3). The performance of the aforementioned standards in predicting the peak
moment and the corresponding connection rotation is assessed for the slabs tested in the present
campaign. To this aim, mean strength values are used for both concrete and reinforcing steel and
the partial factors γm and φ are set to unity. The resulting code predictions are shown in Table
3.3 in the form of ratio of predicted to observed values both for the maximum moment Mmax and
the corresponding slab-column connection rotation ψscc.max. As can be seen from Table 3.3, ACI-
318 [ACI14] and fib-Model Code (MC2010) [Fib11] provide the most conservative predictions for the
moment capacity of the tested slabs (ratio of predicted to observed values: 0.485 ± 0.317 and 0.478
± 0.294, respectively), followed by EC2 [Eur04] (0.723 ± 0.200).

Table 3.3 – Ratios of predicted to experimental values of moment capacity Mmax according to ACI-
318, EC2 and fib-MC2010 and corresponding connection rotation ψscc.max according to the drift limit
of ACI-318 for the slabs tested under combined vertical load and moment (Mean and CoV values are
represented in bold)

Slab Loading Mmax.pred/Mmax.exp [-] ψscc.pred/ψscc.max.exp [%]
type ACI-318 EC2 MC2010 ACI-318

PD1 V+M 0.710 0.903 0.655 -
PD3 V+M 0.440 0.495 - -
PD4 V+M 0.581 0.721 0.464 -
PD5 V+M 0.463 0.530 0.283 -
PD10 V+M 0.231 0.721 0.362 -
PD12 V+M 0.407 0.778 0.562 -
PD2 V+C 0.515 0.561 - 1.389
PD6 V+C 0.597 0.728 0.372 0.721
PD8 V+C 0.659 0.857 0.565 0.938
PD11 V+C 0.241 0.731 0.367 1.163
PD13 V+C 0.488 0.924 0.668 0.581
Mean (all tests) 0.485 0.723 0.478 0.958
CoV 0.317 0.200 0.294 0.340
Mean (V + M) 0.472 0.691 0.465 -
CoV 0.344 0.223 0.321 -
Mean (V + C) 0.500 0.760 0.493 0.958
CoV 0.319 0.183 0.302 0.340

The normalised moment-shear force interaction diagrams according to ACI-318 [ACI14], EC2 [Eur04]
and fib-MC2010 [Fib11] are shown in Figure 3.24a and b for nominal flexural reinforcement ratios
equal to 0.75% and 1.50%, respectively. Since discrepancies among the material properties and the
effective depth d of the tested slabs do not influence to a significant degree the code predictions, the
curves are drawn for the average experimental values of fc, fy and d (see Table 3.1). The experimental
results of the presented campaign are also shown (represented with markers). Figure 3.24 shows that
an increase of reinforcement ratio from 0.75% to 1.50% increases the conservatism of the predictions
of ACI-318 [ACI14]. The predictions of EC2 [Eur04] and fib-MC2010 [Fib11] are also conservative but
appear to follow the experimental trend.
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Figure 3.24 – Code predictions for the moment capacity of the tested slab specimens: (a) ρ = 0.75 %,
and (b) ρ = 1.50 %.

Only ACI-318 [ACI14] provides a lower-bound limit for the deformation capacity of slab-column con-
nections subjected to reversed cyclic loading in terms of interstorey drift. The drift limit of ACI-
318 [ACI14] along with the connection rotation at peak moment for the cyclic tests of the present
campaign are shown in Fig. 3.25, as function of GSR (according to [ACI14]) in the bottom abscissa,
and ν (according to Eq. (3.4)) in the top abscissa. In average, the deformation capacity is predicted
rather well (0.958 ± 0.340). Assuming the contribution of column deformations to interstorey drifts is
small, ACI-318 [ACI14] provides deformation capacity estimates on the unsafe side for GSR > 0.80.
This has already been reported by other researchers [Bro09].
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Figure 3.25 – Connection rotation at peak moment for the cyclic tests of the present campaign and
allowable drift limit according to ACI-318.
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3.10 Conclusions

This chapter presents the results of an experimental campaign on the seismic behaviour of internal
reinforced concrete slab-column connections without transverse reinforcement with main objective to
investigate the effect of cyclic loading on the moment-rotation response. The campaign comprised 13
full-scale isolated slab-column specimens. The adopted setup configuration is presented and compared
to setup configurations used in past experimental studies. The results were discussed with regard
to the effect of gravity loads, reinforcement ratio and loading history (monotonic vs cyclic) on the
stiffness, strength, deformation capacity and cracking pattern of the slab-column connection. The
obtained experimental results were also compared to the predictions of ACI-318 [ACI14], Eurocode 2
(EC2) [Eur04] and fib-Model Code (MC2010) [Fib11] for moment strength and deformation capacity.
The main conclusions of this chapter are:

1. Non-linear finite element analyses showed that stiffness and deformation capacity of slab-column
connections depend on the chosen experimental setup. The setup configuration adopted for the
present study reproduces well the moment-connection rotation response of an internal slab-
column connection of a typical building configuration.

2. Reversed cyclic loading reduces the moment capacity and the deformation capacity of slab-
column connections. This effect is more pronounced for smaller gravity loads and smaller rein-
forcement ratios. In general, the envelope of the cyclic response corresponded to the curve of
the monotonic test, with the difference that failure occurred earlier for the cyclic test. However,
for very low gravity loads, cyclic loading resulted in a softer moment-rotation response than for
monotonic loading for moments higher than 80% of the peak cyclic moment.

3. For slabs subjected to cyclically increasing moments, the shear crack at failure is steeper than
for slabs subjected to monotonically increasing moments. This effect is more marked for smaller
gravity loads than for larger gravity loads.

4. Increasing gravity load reduces the stiffness and the moment capacity of slab-column connections
as observed by others. With regard to the deformation capacity a more differentiated trend was
identified: For gravity loads larger than a threshold value, the deformation capacity decreases
with increasing gravity load. For gravity loads smaller than this threshold value, however, the
trend did not continue but smaller gravity loads led to a reduced deformation capacity. This
was attributed to the smaller extent of cracking for small vertical loads. From the present
experimental campaign this threshold value was found to correspond to approximately half the
punching strength under concentric gravity loads (Vtest/bo d

√
fc = 0.19

√
MPa). Note that such

a change in trend was not observed for cyclic tests for which the deformation capacity always
increased with decreasing gravity loads.

5. Increasing reinforcement content resulted in general in higher stiffness and lower deformation ca-
pacity, as has been noted by previous studies. For low gravity loads, increasing the reinforcement
ratio had however little influence on the moment capacity. For high gravity loads, increasing the
reinforcement ratio had little influence on the deformation capacity.

6. ACI-318 [ACI14] and fib-MC2010 [Fib11] provide the most conservative estimates of the moment
capacity, followed by EC2 [Eur04] with respect to both accuracy and precision.

7. The allowable drift limit of ACI-318 [ACI14] estimates rather accurately the connection rotation
capacity of the cyclic tests. However, ACI-318 appears to overestimate the rotation capacity for
high vertical loads (GSR > 0.8).
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Chapter 4

Analytical model for monotonically
increasing drifts

In this chapter, a mechanical model is proposed for computing the entire moment-rotation relationship
of slab-column connections subjected to seismic loading. This model allows to compute the contri-
bution of each resisting mechanism, i.e., eccentric shear, flexure and torsion. To do so, the slab is
divided into n sector elements and equilibrium is first formulated for each sector element and then
for the entire slab. This permits to connect local deformations of each sector element to the global
rotation of the slab-column connection. The presented approach considers only the slab region until
0.22L from the column axis (defined as slab-column connection region, L corresponds to the distance
from midspan to midspan). The proposed method can be combined with an effective beam width
model for the slab region outside 0.22L in order to transform the connection rotation to the inter-
storey drift. Drift-induced punching failure is determined by combination of the proposed model for
computing the moment-rotation relationship with the failure criterion of the Critical Shear Crack
Theory (CSCT) [Mut08]. The failure criterion distinguishes between monotonic loading, for which
shear stress redistribution between sector elements is considered, and cyclic loading, for which shear
stress distribution is neglected.

Section 4.1 treats the slab deformation related to interstorey drift, using NLFEA. The goal of this
section is to assess the contribution of ψscc and ψos to the slab deformation ψslab (see definitions in
Chapter 3) and to provide a simple mechanical approach for estimating ψos.

Section 4.2 presents the development of the analytical model for the calculation of the moment-rotation
relationship of slab-column connections without transverse reinforcement subjected to monotonically
increasing drifts. The model is based on the axisymmetric model developed by Muttoni [Mut08] that
considers both the load and the deformation of the slab.

Section 4.3 addresses the failure criterion that is combined with the moment-rotation relationship
to determine the unbalanced moment and the corresponding slab rotation at punching failure. Two
approaches for the failure criterion are proposed in this chapter to distinguish between monotonic and
cyclic loading conditions, since the analytical model presented in this chapter does not account for the
effect of the loading history on the moment-rotation relationship.

Section 4.4 presents a parametric study on the influence of drift level, gravity load, reinforcement
ratio and slab slenderness on the contribution of the three resisting mechanisms (flexure, torsion and
eccentric shear) according to the presented model.

Section 4.5 examines the influence of cyclic loading, reinforcement ratio, slab effective depth and slab
slenderness on the calculated rotation capacity of slab-column connections.

Section 4.6 compares the model predictions with the results of the experimental campaign in terms of
the moment-rotation response, moment strength and deformation capacity.
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4. Analytical model for monotonically increasing drifts

4.1 Slab deformation related to interstorey drift

To assess the contribution of ψscc and ψos to the slab deformation ψslab (Eq. (3.3) in Section 3.3), a
slab element with continuity boundary conditions, subjected to horizontal loads, was analysed using
the finite element program SAP2000 [CSI14]. In this model, the column is modelled by a rigid beam
element and the slab by layered shell elements to which non-linear material laws are assigned. The
analysis yields the moment-rotation relationship due to flexural deformations of the slab but cannot
account for punching failure. Details with respect to the numerical modelling can be found in Chapter
3 (§3.3.2). Figure 4.1 illustrates both contributions to the slab rotation ψslab for flexural reinforcement
ratios in the hogging moment area equal to 0.75% and 1.50%. Since the model captures only flexural
failure, Figure 4.1 also shows horizontal lines that correspond to the unbalanced moment at punching
failure according to ACI-318 [ACI14]. For this horizontal load level, the slab-column connection
rotation ψscc contributes approximately 75% - 80% to the total slab rotation ψslab, the remaining part
being contributed by the slab region outside r = 0.22L.
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Figure 4.1 – Contribution of the slab deformation inside and outside r = 0.22L to the total slab
contribution to the interstorey drift for flexural reinforcement ratio equal to: (a) 0.75%, and (b)
1.50% (L = 6.8 m, h = 0.25 m, c = 0.39 m – Note 1 m = 3.28 ft).

4.1.1 Contribution of slab-column connection to the slab deformation

This section analyses characteristics of the slab deformations inside 0.22L using the numerical model
presented in Section 3.3. When a slab-column connection is subjected to an unbalanced moment, the
local slab rotations vary along the perimeter r = 0.22L. The location of the investigated points is
described by the angle φ, which is measured with regard to the bending axis y (Fig. 4.2a). Figure
4.2a shows the variation of the slab rotation with φ for vertical loads alone (black line) and for three
different horizontal load levels (colored lines). When only vertical loads are applied, the system is
approximately axisymmetric and the slab rotation is almost constant. When an unbalanced moment
about the y-axis is introduced, the slab rotation varies with φ and the relationship between maximum
local slab rotation (for φ = π/2) and minimum slab rotation (for φ = 3π/2) follows approximately a
sinusoidal law. This observation has been confirmed experimentally by measurements on slab-column
connections subjected to constant shear force and increasing moment (Chapter 3). This relationship
will be assumed in the mechanical model to connect the local slab rotations to the global rotation of
the slab-column connection.

Figure 4.2b shows the profile of slab deflections along the x-axis for the same load levels as in Figure
4.2a. It shows that the profile of slab deflections is approximately linear between r = d (slab effective
depth) and r = 0.22L. This means that the curvature in radial direction of the slab-column connection
in the region r > d can be neglected. The assumption of a rigid behaviour of this region taken
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by [Kin60, Mut08] is thus confirmed also for the case of slab-column connections with unbalanced
moment.
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Figure 4.2 – (a) Local slab rotations at varying angles and (b) slab deflections along the x-axis for
different lateral load levels.

4.1.2 Contribution of the slab region outside 0.22L to the slab deformation

The slab part outside r = 0.22L contributes about a quarter to the total slab rotation (dashed-dotted
lines, Fig. 4.1). To estimate this contribution using a simple mechanical approach, an effective
beam width model is employed. In this model, the column is modelled as rigid but with its actual
dimensions. The slab is modelled by a beam to which a width αl2 is assigned, where l2 is the transverse
span [Pan92]. The width reduction coefficient α can be derived assuming the same rotational stiffness
for the full-width slab (real system) and the equivalent beam (fictitious system) (same as Eq. (2.61)):

α = M

ψslab

l1
l2

1
Ec h3 (4.1)

where M is the moment transferred to the slab-column connection, l1 is the distance between columns
(equal to L), Ec is the modulus of elasticity of concrete and h is the slab thickness. The slab rotation
ψos is then obtained from a simple beam model where the column and the slab inside r = 0.22L
are modelled as rigid. Figure 4.3 shows the established effective beam width model to calculate the
contribution of the slab region outside 0.22L to the slab deformation rotation ψslab. The slab outside
r = 0.22L is modelled as an elastic beam with a width αl2 and height h. For the calculation of
the reduction coefficient α (Eq. (4.1)), the unbalanced moment M and the corresponding rotation
due to slab deformation ψslab are obtained from the moment-rotation relationship of the slab-column
connection, which is presented in the next section. The only differences between the models shown in
Figures 4.1 (close-up) and 4.3 lie on the use of beam members instead of shell elements, distribution
of the gravity loads per unit length instead of unit area and modelling of the beam part inside 0.22L
with high stiffness. Note that cracking is directly accounted for by the width reduction coefficient α.
For validation, M and ψslab were taken from the layered shell element model and the rotation ψos
obtained by the effective beam model was compared to that of the finite element model (Fig. 4.1).
The difference in rotations was smaller than 10%.
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Figure 4.3 – Deformed shape of the established effective beam width model with high stiffness for r <
0.22L.
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The slab outside r = 0.22L has also an effect on the moment capacity by providing a confining
effect [Par06]. This is, however, not considered in the analytical model presented in this chapter.

4.2 Moment-rotation relationship

This section presents the theoretical background of the proposed model for the moment-rotation
relationship of a slab-column connection subjected to a seismically-induced moment. The model is
derived from the axisymmetric model developed by Kinnunen and Nylander [Kin60] and Muttoni
[Mut08] for slabs subjected to gravity loads. In the original model, the slab is divided into an even
number n of sector elements and the region inside the shear crack. Since that model is axisymmetric,
the equilibrium formulation can be reduced to one sector element (Fig. 4.5a). For the case of a
seismically-induced moment, several modifications of the axisymmetric analytical model are introduced
which are presented first. Next, equilibrium is formulated for a sector element and then for the entire
slab specimen until r = 0.22L. It follows the approach for computing the slab-column connection
rotation. To compute the total slab rotation, also the deformation of the slab part outside r = 0.22L
needs to be considered, which is presented in the final part of this section.

4.2.1 Assumptions

As already shown in Figure 4.2a, the slab rotation of the sector elements follows approximately a
sinusoidal law with regard to the location described by angle φ. The slab rotation of the sector
element at angle φ with regard to the bending axis y is therefore:

ψ(φ) = ψmax + ψmin
2 + ψmax − ψmin

2 sin(φ) (4.2)

where ψmax and ψmin are the maximum slab rotation for φ = π/2 and the minimum slab rotation for
φ = 3π/2, respectively.

Moreover experimental evidence shows that radial curvatures concentrate in the slab area between
column axis and shear cracks [Mut08]. In case of slab-column connections with unbalanced moment
M , the tests presented in Chapter 3 showed that the inclination of critical shear cracks depends on the
ratio of unbalanced moment M to the shear force V (Fig. 4.4), subsequently referred to as eccentricity
e. Based on these observations it is assumed that the radius r0 of the critical shear crack is equal to
e = M / V , but not smaller than rc + d as assumed by Muttoni [Mut08]:

r0 = e ≥ rc + d (4.3)

(a) monotonic

0.69 1.840.70 2.29 3.60 5.32

(b) cyclic

2.62

Figure 4.4 – Critical shear crack inclination for drift-induced punching under (a) monotonic and (b)
cyclic loading conditions for different ratios of maximum eccentricity to column size [Dra16].

Past experimental evidence showed that reversed cyclic loading affects the ultimate rotation capacity
but does not affect to a significant degree the moment-rotation relationship of slab-column connections
before failure [Rha14,Dra16]. For this reason, the present chapter assumes that the response envelope
under cyclic loading is represented by the monotonic moment-rotation curve.
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4.2.2 Equilibrium of sector elements (local level)

The assumption of different rotations at different angles (Fig. 4.2a) from the bending axis implies that
the moment is introduced from the column to the slab not only by a flexural moment but also by a
torsional moment and an eccentric shear force. This can be demonstrated by formulating equilibrium
for a sector element as shown in Figure 4.5.
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Figure 4.5 – Internal forces acting on the slab region: (a) outside the shear crack (hogging slab half),
and (b) inside the shear crack.

During the model development it was identified that the torsional moments acting on each face of the
sector element are highly dependent on the assumed torsional stiffness. For this reason, this study
neglects the moments Mtor(φ − ∆φ/2) and Mtor(φ + ∆φ/2) (shown in grey in Fig. 4.5a) and the
associated shear forces. An axonometric view of the sector element shown in Figure 4.5a can be seen
in Figure 4.6.
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Figure 4.6 – Axonometric view of a sector element of the hogging slab half and internal forces acting
on it.

Mtan(φ−∆φ/2) and Mtan(φ+ ∆φ/2) are the integrals of the tangential moments at the faces of each
sector element (Fig. 4.5a). These moments can be determined directly as a function of the assumed
rotation and a quadri-linear moment-curvature relationship [Mut08]:(

Mtan(φ) = mR 〈ry − r0〉+ EI1 ψ(φ) 〈ln (r1)− ln (ry)〉+ EI1 χTS 〈r1 − ry〉+
+mcr 〈rcr − r1〉+ EI0 ψ(φ) 〈ln (rs)− ln (rcr)〉

)
(4.4)

where EI0 and EI1 are the slab stiffness before and after cracking, mcr and mR are the cracking
moment and moment capacity respectively per unit width, χTS is the curvature due to the tension
stiffening effect, and r0, ry, r1, rcr and rs are the radii of the critical shear crack, of the yielded zone,
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of the zone in which cracking is stabilised, of the cracked zone and of the circular isolated slab element
respectively. The operator 〈x〉 is x for x > 0 and 0 for x < 0. Equation (4.4) for the calculation of
the tangential moment Mtan(φ) is taken directly from the CSCT [Mut08]. For the case of seismically
induced deformations, the local slab rotation ψ depends on the angle φ of the sector element with
regard to the direction of seismic loading and the radius r0 of the critical shear crack is updated as
function of the eccentricity (see Eq. (4.2)) to take into account the fact that the shear force becomes
less determinant as eccentricity increases. Therefore, the integral of the radial moment for a sector
element at angle φ at r = r0 is:

Mr(φ) = mr(φ) r0 ∆φ (4.5)

where mr(φ) is the radial moment per unit width at r = r0 as function of the radial curvature [Mut08].

If φi is the angle formed by the axis of bending and the bisector of the ith sector element, the shear force
that can be carried by the compression strut of this sector element is derived by moment equilibrium
in the radial direction with respect to the centre of the column with radius rc:

∆Vi = 1
rq − rc

[
Mrad(φi, r0)−Mrad(φi, rs) +

[
Mtan(φi + ∆φ

2 ) +Mtan(φi −
∆φ
2 )

]
sin
(∆φ

2

)]
(4.6)

The moment equilibrium in the tangential direction gives the torsional moment that is carried by the
connection for the ith sector element:

Mtor(φi, r0) =
[
Mtan(φi + ∆φ

2 )−Mtan(φi −
∆φ
2 )

]
cos

(∆φ
2

)
+Mtor(φi, rs) (4.7)

The radial and torsional moments at the perimeter of each sector element Mrad(φi, rs) and Mtor(φi, rs)
(Eq. (4.5) and (4.7)) are obtained using an Effective Beam Width Method, as will be shown in the
following (§4.2.5).

Equilibrium of shear forces at the column edge gives the total shear force acting on the connection for
the load step k:

Vk =
n∑
i=1

∆Vi (4.8)

Moment equilibrium at the column edge gives the total moment acting on the connection (parallel to
the unbalanced moment) for the load step k:

Mk =
n∑
i=1

[Mrad(φi, r0) sin(φi) +Mtor(φi, r0) cos(φi) + ∆Vi rc sin(φi)] (4.9)

The three terms of Eq. (4.9) represent the contribution of flexure, torsion and eccentric shear force to
the total unbalanced moment.
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4.2.3 Equilibrium of slab specimen (global level)

For the case of uniformly distributed vertical loading alone, formulating the equilibrium for one sector
element is equivalent to formulating the equilibrium for the entire circular slab since ψmax = ψmin = ψv
(Fig. 4.7a). If a seismic moment is added, the slab rotations vary between sector elements and therefore
equilibrium has to be formulated locally for each sector element and globally for the entire circular
slab (Fig. 4.7b).

(a) (b)

0.44L

V
k

V
k

M
k

0.44L

Figure 4.7 – Assumed deformed shape of slab specimen under (a) vertical load [Mut08] and (b) vertical
load and imposed lateral deformation.

The unbalanced moment is applied about the y-axis. The adoption of the kinematic law of Eq. (4.2)
implies symmetry about the x-axis (φ = π/2 and φ = 3 π/2) and therefore the moment about the x-
axis is always zero. To ensure global equilibrium about the y-axis, the following procedure is adopted:
For each load step k, a new value of ψmax is chosen. To determine all local slab rotations by means of
the sinusoidal law one needs to choose a value ψmin, which is iterated such that the sum of all shear
forces ∆Vi is equal to the shear force V that is applied to the slab-column connection. The shear force
V is assumed as constant since it results from gravity loads. In order to obtain the moment-rotation
curve, the radius r0 of the shear crack is adapted at each load step k as it is assumed to be equal to
the attained eccentricity:

ek = Mk/Vk (4.10)

The aforementioned iterative procedure can also be used if Mk or ek rather than Vk is constant,
situations which can be found when constant horizontal loads act on columns or when slabs with
unequal spans are subjected to vertical load alone.

4.2.4 Slab-column connection rotation

The previous section yields a relationship between the unbalanced moment M and the local slab
rotations ψ(φ). To determine a relationship between unbalanced moment and slab-column connection
rotation ψscc, a relationship between the local rotations ψ(φ) and the connection rotation ψscc is
needed.

Figure 4.8a shows the deformed shape of the slab analysed previously until midspan (0.50L). Since
the proposed model assumes that only the cone inside the shear crack deforms and each element
outside the shear crack behaves as a rigid body, the deformed shape of the top slab surface is linear
only outside the shear crack (Fig. 4.7b). The connection rotation ψscc can be defined using either
local slab rotations (ψscc.rot) or local slab deflections (ψscc.defl). If the definition is based on rotations,
ψscc.rot can be calculated as the average of the maximum and minimum local rotations ψmax and ψmin
(Fig. 4.8a):

ψscc.rot = ψmax − ψmin
2 (4.11)
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If the connection rotation is computed from deflections, one obtains:

ψscc.defl = ∆max −∆min

2 ∆r + c
(4.12)

where ∆max and ∆min are respectively the maximum and minimum local slab deflections at a distance
∆r + c/2 = 0.22L from the column centre along the x-axis (points A and A’ in Figure 4.8a), where c
is the column size.
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Figure 4.8 – Deformed shape of (a) continuous flat slab until midspan, and (b) setup (b) according to
FEA and the proposed model for combined vertical and lateral loads.

In the following, the definition of the slab-column connection rotation for the setups that are most
suitable for simulating seismically-induced deformations (setups (b) and (c) - see §2.1.1) is briefly
discussed. The deformed shape of the slab for each setup is also shown. The adopted numerical
method is presented in Chapter 3 (Section 3.3).

Setup (b)

For setup (b), the deformed shape of the slab under vertical loads and combined vertical and lateral
loads is shown in Figure 4.8b. The deformed shape assumed by the proposed model is also shown in
the same figure. Finite element analyses have shown that, for this setup configuration, calculation of
the slab-column connection rotation on the basis of deflections provides more realistic estimation of
the interstorey drift of an internal connection of the reference slab-column frame (Chapter 3). This
definition was therefore used both for the experimental peak connection rotations (Appendix A) and
the predicted peak connection rotations (Appendix D) for the slabs tested using this setup.

Setup (c)

For setup (c), the deformed shape of the slab depends on the way the vertical loads are applied: For
vertical loads applied by jacks underneath the column stub (Fig. 4.9a) the deformed shape resembles
the deformed shape of setup (b) (Fig. 4.8b); for vertical loads applied on the slab surface (Fig.
4.9b) the deformed shape is significantly different since the slab region between r = 0.22L and 0.50L
contributes to the slab deformation.
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Figure 4.9 – Setup (c) - Deformed shape of slab according to FEA and the proposed model for: (a)
vertical load applied on the column, and (b) vertical load applied on the slab surface.

According to the proposed model the slab-column connection rotation based on rotations is:

ψscc.rot = ∆max −∆max.abs

2 ∆r − ∆min −∆min.abs

2 ∆r = ∆max −∆min

2 ∆r − ∆max.abs −∆min.abs

2 ∆r (4.13)

where ∆max.abs and ∆min.abs are respectively the deflection of the tip of the hogging slab half and the
sagging slab half relative to the column centre.

The connection rotation based on deflections is:

ψscc.defl = ∆max −∆max.abs

2 ∆r + c
− ∆min −∆min.abs

2 ∆r + c
= ∆max −∆min

2 ∆r + c
− ∆max.abs −∆min.abs

2 ∆r + c
(4.14)

In both Equations (4.13) and (4.14) the first term represents the total rotation due to slab deformation
ψslab and the second term represents the contribution of the outer slab part (ψos) to the rotarion ψslab.

For setup (c) with the vertical load applied on the column, since ∆max.abs = ∆min.abs, the connection
rotation that is calculated according to the proposed model is equal to ψslab (i.e. ψos = 0).

For setup (c) with the vertical load applied on the slab surface, since the slab part between 0.22L and
0.50L contributes to the rotation due to slab deformation ψslab (i.e. ψos > 0), the connection rotation
that is calculated according to the proposed model is smaller than the rotation ψslab. For this case, the
following subsection proposes an Effective Beam Width model in order to calculate the contribution
of the slab part outside 0.22L to the interstorey drift.

Based on finite element analyses of setup (c) with the vertical load applied on the column, the con-
nection rotation based on rotations was adopted, since it provides better estimate of the interstorey
drift than the definition based on deflections. It should be noted that both definitions yield similar
results for ∆r >> c, i.e. for slab specimens much larger than the column size.

4.2.5 Rotation due to slab deformation outside the slab-column connection

The presented model for the moment-rotation relationship considers only the slab region inside 0.22L
(ψscc). To obtain an accurate prediction of the total slab deformation ψslab, the rotation ψos should
also be accounted for. This can be performed by calculating the radial and tangential moments
Mrad(φi, rs) and Mtor(φi, rs) at the perimeter of each sector element. For this purpose, a beam that
connects the perimeter of the considered sector element with the perimeter of the sector element of
the opposite column (Fig. 4.10) is used. When the beam is subjected to a rotation ψ(φi) at Node 1
and ψ(2 π − φi) at Node 2, the moment at Node 1 can be found using the elastic solution:
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Figure 4.10 – Effective Beam Method for calculating the contribution of the outer slab part to the
total deformation.

My.EBW (φi) = 2 EIk−1(φi)
L(φi)

[
ψ(φi) sin(φi) + ψmax − ψmin

2

(
2 + cos2(φi) (1− 3 rc

rs
)
)]

(4.15)

where the bracketed term represents the projection of the slab rotation to the y-axis (perpendicular
to the axis of each beam), L(φi) is the length of the beam that connects the sector element at angle
φi with the sector element at angle 2π–φi and EIk−1(φi) is its stiffness calculated using the Effective
Beam Width Method:

EIk−1(φi) = Mk−1
ψslab.k−1

L(φi)
12

sin(∆φ) |sin(φi)|
4 (4.16)

where Mk−1 and ψslab.k−1 is the unbalanced moment and the total rotation due to slab deformation
at the load step k-1. The last fraction of Eq. (4.16) is inserted so that the sum of the width of all
effective beams yields the width of one single effective beam that represents the slab action (Eq. (4.1)
- §4.1.2).

The radial and torsional moments Mrad(φi, rs) and Mtor(φi, rs) at the perimeter of each sector element
can be found by projecting the moment calculated using Eq. (4.15) to the radial and tangential
direction, respectively:

Mtor(φi, rs) = My.EBW (φi) cos(φi) (4.17)

Mrad(φi, rs) = My.EBW (φi) sin(φi) (4.18)

If the beam is simply supported at midspan, as is typically chosen for tests using setup (c) (§2.1.1),
the moment at Node 1 can be calculated using the following formula instead of Equation 4.15:

My.EBW (φi) = 3 EIk−1(φi)
L(φi)

[
ψ(φi) sin(φi) + ψmax − ψmin

2 cos2(φi)
(

1− rc
rs

)]
(4.19)

4.3 Failure criterion

In the following, two failure criteria for drift-induced punching are proposed, which are both based
on the failure criterion of the CSCT [Mut08]. One failure criterion is applied to slabs subjected
to monotonic loading and the other to slabs subjected to cyclic loading. The criteria differ with
regard to the assumed shear force redistribution. Shear redistribution from sector elements with
higher rotations to sector elements with smaller rotations has been previously found to influence
significantly the punching strength and corresponding rotation of slabs loaded and/or reinforced in a
non-axisymmetric manner [Sag11].

For slabs subjected to monotonic loading, it is assumed that failure occurs when the shear force reaches
the shear resistance for the hogging slab half. This criterion is denoted by CSCT(mono). For slabs
subjected to cyclic loading, shear redistribution is neglected and failure is assumed to occur when the

74



Failure criterion

sector subjected to the largest slab rotation reaches the CSCT-failure criterion. This is denoted by
CSCT(cyc). In the following, the two failure criteria are described.

The failure criterion CSCT(cyc) applied to cyclically loaded slabs predicts smaller rotation capacities
than the failure criterion CSCT(mono) applied to monotonically loaded slabs. Cyclic loading leads
to an accumulation of plastic strains and therefore to an increase in crack opening with each cycle.
If symmetric cycles are applied, ψmin increases with increasing number of cycles. For the same slab
rotation ψscc, ψmax is therefore larger and so are the crack widths of the hogging slab half, which in
turn lead to a reduced shear force redistribution between adjacent sector elements. To account for
this phenomenon implicitly, different failure criteria are applied to monotonically and cyclically loaded
slabs. This implicit approach is chosen since the analytical model developed in this chapter does not
account for the effect of the loading history on the moment-rotation relationship. The next chapter
proposes an extension of the analytical developed herein to account for cyclic loading and cumulative
damage effects on the moment-rotation relationship.

4.3.1 Approach accounting for shear stress redistribution (CSCT(mono))

Based on the work of Sagaseta et al. on non-axisymmetric punching [Sag11], it is assumed that failure
of monotonically loaded slabs occurs when the sum of the shear forces acting on the sector elements of
the hogging slab half (0 ≤ φ ≤ π) is equal to the sum of the shear resistance of these sector elements:

VR.hog =
∫ π

0
vR(φ)

(
rc
′ + d(φ)

)
dφ (4.20)

where rc′ is the nominal radius for shear calculations, which for square columns is adjusted to give
the same perimeter, and vR(φ) is the shear resistance per unit length in MN/m:

vR(φ) = 0.75 d(φ)
√
fc

1 + 15 ψ(φ) d(φ)
dg + dg.0

(SI Units; N, mm) (4.21)

where fc is the concrete compressive strength, dg is the maximum aggregate size and dg.0 is the
reference aggregate size, which is assumed to be equal to 16 mm (0.63 in). For imperial units (psi, in.)
factor 0.75 has to be replaced by 9. Note that the effective depth d changes with φ to account for the
different effective depths for bending around the x-and y-axis. One can either apply a cosinusoidal
interpolation for intermediate angles or use an average value for all angles. The former is applied for
the calculations presented in this chapter and in Chapter 6, for validation purposes.

4.3.2 Approach based on the maximum rotation (CSCT(cyc))

In this chapter, the CSCT(cyc) approach is used for slabs subjected to cyclically increasing moment.
This approach neglects a possible redistribution of the shear force to adjacent sector elements, which
are subjected to smaller rotations than the maximum rotation ψmax. It is assumed that punching
failure occurs when the shear that is carried by the compression strut (that is developed along the
shear crack) of the sector element with the maximum rotation ψmax is equal to the shear resistance
of this sector element. According to the CSCT [Mut08], the shear resistance of the sector element
subjected to the maximum rotation ψmax can be computed as:

VR.π/2 = 0.75 bo(∆φ) d(π/2)
√
fc

1 + 15 ψmax d(π/2)
dg + dg.0

(SI Units; N, mm) (4.22)

where bo(∆φ) is the part of the critical section that belongs to the sector element with the maximum
rotation. The critical section is assumed to be at a distance of d/2 from the column face.

75



4. Analytical model for monotonically increasing drifts

4.4 Lateral force-resisting mechanisms

A realistic estimation of the contribution of the three resisting mechanisms (eccentric shear force,
flexure and torsion) to the overall capacity of the slab-column connection is rather difficult because
of the non-linear behaviour of the slab-column connection and the fact that each resisting mechanism
is associated to a different failure mode. As shown in §4.2.2 the proposed analytical model allows to
predict the contribution of all resistance-providing mechanisms at any drift level (Eq. (4.9)). Figure
4.11 shows the influence of the gravity load and the reinforcement ratio on the predicted γ factors
for the case of a flat slab panel with slenderness L/d = 35, as a function of the connection rotation
ψscc. The predicted failure points are also represented in the same graphs (CSCT(cyc)). The assumed
γf value according to ACI-318 (equal to 0.4 - [ACI14]) and the solution of an elastic homogeneous
isotropic slab (equal to 0.33 - [Mas70]) are also shown in the same figure.
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Figure 4.11 – Predicted contribution of flexure, torsion and eccentric shear force according to the
proposed model (ρ = 0.5ρ′; d = 240 mm; c = 2d; L = 35d; fc = 30 MPa; dg = 16 mm and fy = 460
MPa) for ρ = 1.50%: (a) ν = 0.1
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MPa; and for ρ = 0.75%:

(d) ν = 0.1
√

MPa; and (e) ν = 0.2
√

MPa.

As can be seen from Figure 4.11, large connection rotations ψscc lead to larger contribution of the
flexure mechanism (i.e. higher γf values) compared to small ψscc. For the same ψscc, large gravity
loads lead to smaller γf values and larger γv and γt values than low gravity loads. Moreover, γf
attains larger values for higher flexural reinforcement ratio (Fig. 4.11a, b) than for smaller flexural
reinforcement ratio (Fig. 4.11d, e). It can be observed that the predicted γf can reach values higher
than the value assumed by ACI-318 [ACI14]. For large vertical loads (Fig. 4.11b, c, and e) the
predicted γf value at failure is close to the elastic solution by Mast [Mas70].

In this chapter the effect of cyclic loading is accounted for only in the failure criterion (Section 4.3).
Since the CSCT(cyc) predicts smaller connection rotation at failure than the CSCT(mono), cyclic
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Lateral force-resisting mechanisms

loading leads to smaller γf values than monotonic loading. On the other hand, the γv and γt values
increase with cyclic loading.

In the following, the results of a parametric study on the influence of the flexural reinforcement ratio ρ
and the slab slenderness L/d on the contribution of eccentric shear force (γv), flexure (γf ) and torsion
(γt) to the maximum unbalanced moment are presented. The results correspond to the intersection
of the moment-rotation relationship (Section 4.2) and the failure criterion CSCT(cyc) (§4.3.2). The
calculations were performed for the case of a continuous flat slab (B = 0.44L and the same rotation
and deflection at r = 0.5L). Since the gravity load is the parameter with the largest influence on the
contribution of the different resisting mechanisms at failure (Fig. 4.11), the abscissas of all the following
graphs of this section represent the normalised shear force applied to the slab-column connection (as
defined in Section 3.4). The predictions are plotted until the gravity load that corresponds to zero
rotation capacity ψslab at punching (dashed lines). Other parameters such as the boundary conditions
and the slab thickness were found to affect the predicted γ values only to a minor extent.

4.4.1 Reinforcement ratio effect

Figure 4.12 shows the influence of the reinforcement ratio on the γ factors predictions at failure
(CSCT(cyc)). As can be seen, higher reinforcement ratio leads to increased flexure contribution while
the eccentric shear force contribution remains almost unaffected, as has been observed by others
[Meg00]. It is also shown that for high gravity loads (GSR > 0.60), high ρ leads to γf values that are
closer to the elastic solution by [Mas70] than small ρ.
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Figure 4.12 – Predicted contribution of flexure, torsion and eccentric shear force as a function of the
applied gravity load (d = 240 mm; c = 2d; fc = 30 MPa; L = 35d; dg = 16 mm and fy = 460 MPa)
for ρ equal to: (a) 0.75%, (b) 1.00%, and (c) 1.50%.

4.4.2 Slenderness

Figure 4.13 shows the influence of the slab slenderness L/d on the contribution of flexure, torsion and
eccentric shear force. It is shown that for the same normalised shear force ν, higher slenderness results
in significantly smaller γv and γf values which are counterbalanced by higher γt values.
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Figure 4.13 – Predicted contribution of flexure, torsion and eccentric shear force as a function of the
applied gravity load (d = 240 mm; c = 2d; fc = 30 MPa; ρ = 0.75%; dg = 16 mm and fy = 460 MPa)
for slenderness L/d equal to: (a) 35, (b) 70, and (c) 100.

4.5 Seismic rotation capacity

Figure 4.14 shows the predicted slab rotation ψslab at peak moment according to the analytical model.
The drift limit of ACI-318 [ACI14] and the drift limit proposed by Hueste and Wight [Hue99] are
also shown in the same graphs. All graphs of Figure 4.14 show that the larger the gravity induced
shear the smaller the rotation capacity of slab-column connections, as has been observed by others
[Pan89, Hue99, Bro09, Cho14]. The model proposed in this chapter accounts for the effect of cyclic
loading through the failure criterion (CSCT(cyc) against (CSCT(mono)). Figure 4.14a shows that
the predicted deformation capacity under cyclic loading is approximately 5-45% smaller than for
monotonic loading. The reduction in rotation capacity due to cyclic loading is more important for
smaller gravity loads, confirming prior experimental observations [Dra16].

The model confirms Broms’ observation that the rotation capacity decreases with increasing depth
of the slab (Fig. 4.14b). Although the top reinforcement ratio influences significantly the local slab
rotations, its effect on the rotation capacity of the slab-column connection is less pronounced (Fig.
4.14b). The slenderness ratio L/d of the slab has only a smaller effect on the rotation capacity. For
smaller gravity loads, higher slenderness confers higher rotation capacity but the trend inverses for
higher gravity loads.

The drift limit of ACI-318 [ACI14] for flat slabs represents a safe approach for a slab with d = 120
mm. However, a slab with d = 240 mm reaches the rotation capacities predicted by ACI-318 [ACI14]
only for a gravity load ratio GSR between 0.55 and 0.7 (Fig. 4.14b). This is expected since the drift
limit of ACI-318 [ACI14] is based on experimental research on slabs with thickness h ≤ 152 mm.

If a minimum rotation capacity, for instance 0.5%, is required for the slab-column connection, the
120 mm slab meets this requirement for every gravity load value (as long as GSR < 1). For the 240
mm slab, the gravity load ratio GSR has to be limited to 0.7 in order to reach a drift of 0.5%. If
the building is designed for a drift value of 2.0%—a value that is often quoted as drift limit for RC
wall buildings—the GSR must be smaller than 0.35 for slabs with d = 120 mm, which is close to the
value proposed by Hueste and Wight [Hue99] (GSR < 0.36). For slabs with d = 240 mm, the GSR
must be limited to 0.22. This discussion accounted only for the contribution of the slab deformations
to the interstorey drift. The effective interstorey drift capacity will be larger than the calculated slab
rotation since also the column deformation will contribute to the interstorey drift capacity (Eq. (3.2)).
The column deformation contribution to the interstorey drift is typically smaller than 10% when the
column is assumed uncracked but can increase over 20% when column cracking is accounted for.
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Figure 4.14 – Predicted slab rotation at peak moment and allowable drift limit according to ACI-
318 [ACI14] and Hueste and Wight [Hue99] (c = 2d; fc = 30 MPa; and fy = 460 MPa): (a) Influence
of loading conditions (cyclic vs monotonic) (L = 35d; dg = 16 mm); (b) Influence of slab effective depth
and reinforcement ratio on the seismic rotation capacity (L = 35d; dg = 16 mm); and (c) Influence of
slenderness ratio L/d on the seismic rotation capacity (dg = 16 mm).

Figure 4.15 shows the influence of column size on the predicted rotation capacity. For the same level
of gravity loads larger column results in higher rotation capacity. This effect is more pronounced for
small reinforcement ratios (Fig. 4.15a) than for high reinforcement ratios (Fig. 4.15b).
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Figure 4.15 – Predicted slab rotation at peak moment and allowable drift limit according to ACI-
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4.6 Comparison with the performed tests

This section compares the experimental moment-rotation response of the monotonically and cyclically
tested slabs (Chapter 3) with the predicted moment-rotation response according to the proposed
analytical model (Figs. 4.16 and 4.17, respectively). Figure 4.16 shows that the predicted moment-
rotation curves follow the experimental trend rather well. The moment strength is predicted accurately
enough by the combination of the proposed model with the CSCT(mono) failure criterion. For the
corresponding connection rotation, if PD1 is excluded (due to inconsistent rotation measurement) the
model predictions are rather on the safe side. More detailed comparisons of the model predictions
with the results of the monotonic tests performed within the current research as well as monotonic
tests found in the literature are presented in Chapter 6.
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Figure 4.16 – Comparison between experimental and calculated moment-connection rotation curves
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Conclusions

Figure 4.17 shows that the monotonic analytical model predicts the envelope of the experimental
response of most performed cyclic tests rather well. For low gravity loads acting on the slab-column
connection, the predicted response is slightly stiffer than the experimental response. Combination
of the analytical model with the CSCT(cyc) failure criterion gives the moment strength (Mmax) and
the corresponding connection rotation (ψscc.max) of the slab-column connection for cyclic loading
conditions. As can be seen from Figure 4.17, both Mmax and ψscc.max are predicted accurately enough
for most performed cyclic tests, in particular for large gravity loads. For low gravity loads acting
on the slab, the deformation capacity predictions become conservative (PD8 - Fig. 4.17c). Figure
4.16c shows that the moment-rotation response, the Mmax and the ψscc.max are predicted very well for
the monotonic counterpart of PD8. The influence of cyclic loading on the moment-rotation response
of slabs with low gravity loads was already pointed out in the previous chapter (§3.8.3). Therefore,
the discrepancy between calculated and measured deformation capacity for PD8 (Fig. 4.17c) could
be attributed to the influence of the loading history on the moment-rotation curve. The following
chapter presents an extension of the monotonic analytical model for the moment-rotation relationship
to account for the effect of cyclic loading.

4.7 Conclusions

The present chapter proposes a mechanical model to describe the moment-rotation relationship of slab-
column connections without transverse reinforcement subjected to seismically-induced deformations.
The model accounts explicitly for the three different load transfer actions between slab and column,
i.e., eccentric shear, flexure and torsion. The failure criterion of the Critical Shear Crack Theory
(CSCT) [Mut08] is adapted to predict the moment and rotation capacity. The effect of cyclic loading
is considered by neglecting shear force redistribution between sector elements of the hogging slab half.
In the present chapter the effect of cyclic loading on the moment-rotation relationship is neglected.
The main points of this chapter are:

1. When an unbalanced moment is introduced to a slab-column connection, the value of the rotation
of the sector elements outside the shear crack (or local rotation) changes at varying angles with
respect to the direction of excitation. Finite element analyses and experimental work (Chapter
3) show that the local rotations follow approximately a sinusoidal law.

2. To obtain the moment-rotation relationship the equilibrium is formulated both locally for each
sector element and globally for the entire slab until 0.22L. The influence of the slab part between
0.22L and 0.50L on the moment-rotation response is considered using the Effective Beam Width
method. The calculation is iterative with regard to the maximum and the minimum local slab
rotations.

3. According to the proposed model the contribution of flexure (γf ) to the total moment resisted
by the slab-column connection increases for increasing connection rotation and can attain values
higher than the value assumed by ACI-318 [ACI14]. The predicted γ values at failure were found
to depend primarily on the load history (cyclic vs monotonic), the reinforcement ratio ρ, and
the slab slenderness: (a) Cyclic loading results in smaller γf values at failure than monotonic
loading; (b) High ρ leads to larger γf values than small ρ; (c) Increasing slab slenderness L/d
results in smaller γf and γv values which are counterbalanced by larger γt values.

4. The model confirms what has been shown experimentally (Chapter 3) that cyclic loading leads
to smaller slab rotation capacities than monotonic loading. It is confirmed that the smaller the
gravity loads, the larger the reduction in rotation capacity due to cyclic loading.

5. It is shown that the seismic rotation capacity of flat slabs is primarily influenced by the gravity
induced shear and the slab effective depth but also by the column size, top reinforcement ratio
and to a smaller extent by the slab slenderness. Since increasing slab effective depth leads to
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4. Analytical model for monotonically increasing drifts

decreasing rotation capacity, empirical models should not be applied to slabs with larger depths
than those used for the calibration of the model.

6. The predictions of the proposed model combined with the CSCT(mono) failure criterion in terms
of moment capacity are in good agreement with the results of the monotonic tests performed
within this research (Chapter 3), while the deformation capacity predictions are on the safe side.
For the cyclic tests, combination of the analytical model with the CSCT(cyc) failure criterion
gives good overall predictions of the moment strength and the corresponding connection rotation
for high and intermediate gravity loads. The deformation capacity predictions for slabs subjected
to low gravity loads are slightly conservative.
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Chapter 5

Analytical model for cyclically
increasing drifts

The seismic design and assessment of structures with flat slabs and columns requires as input es-
timates of the moment-rotation relationship and the rotation capacity of slab-column connections.
Until today, research efforts on slab-column connections with unbalanced moment concentrated on
the derivation of empirical relationships between the normalised shear force acting on the slab and
the rotation capacity of the slab-column connection [Pan89,Hue99].

The cyclic tests carried out within the present research have shown that cyclic loading can lead to
significant degradation and consequently reduction of the moment strength and the corresponding
connection rotation determined through monotonic tests (Chapter 3). Moreover, the monotonic ana-
lytical model presented in Chapter 4 tended to be rather conservative with respect to the deformation
capacity of slabs subjected to low gravity loads. This chapter presents a more detailed model for
considering the degradation due to cyclic loading when calculating the moment-rotation relationship
of internal slab-column connections without transverse reinforcement. The developed model is an
extension of the mechanical model proposed in Chapter 4.

Section 5.1 presents correlations regarding the strength degradation, the shear crack inclination, the
shape of the hysteresis loops, and the shear crack opening/closing process through local deformation
measurements from the cyclic tests performed within this thesis. This information provides more
in-depth understanding of the cyclic behaviour of slab-column connections and can be very valuable
for developing hysteretic models and seismic damage models for slab-column connections.

In Section 5.2, the monotonic mechanical model for the moment-rotation relationship presented in
the previous chapter is extended to cyclic loading. This section focuses on the assumptions that are
required in addition to those of the monotonic model (shear crack inclination, moment-curvature re-
lationship, and seismic damage). Section 5.3 presents the adopted failure criterion, while the Section
5.4 compares the predictions of the cyclic model (combined with the failure criterion) with the results
of the experimental campaign.

Next the effect of the loading history on the response of slab-column connections is discussed (Section
5.5), while Section 5.6 discusses the effect of loading history on the contribution of the different lateral
force-resisting mechanisms to the total unbalanced moment.

Section 5.7 describes an extension of the Effective Beam Width method proposed in Chapter 4 (to
calculate the contribution of the outer slab part to the total slab deformation) for cyclic loading.

The last section presents the effect of gravity load, seismicity level, slab depth, reinforcement ratio and
slab slenderness on the seismic rotation capacity of slab-column connections according to the proposed
cyclic model.
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5. Analytical model for cyclically increasing drifts

5.1 Local deformation measurements from tests

This section presents several local deformation measurements from the experiments carried out within
this research. The main objective is to identify trends and correlations that are valuable for developing
hysteretic models and damage models for slab-column connections subjected to combined vertical load
and unbalanced moment. This information will be used later in this chapter to extend the analytical
model presented in Chapter 4 (monotonic loading conditions) to account for the effect of cyclic loading.
First, a correlation is attempted between the moment strength degradation and the maximum slab
rotation reduction due to cyclic loading, while §5.1.2 aims at correlating the shear crack inclination
with the onset of flexural reinforcement yielding. §5.1.3 aims at identifying specific features of the
hysteretic slab response related to the shape of the loading-unloading loops.

5.1.1 Correlation between moment strength degradation and maximum slab
rotation reduction due to cyclic loading

Figure 5.1 shows the correlation between the peak unbalanced moment reduction due to cyclic loading
and the maximum slab rotation reduction due to cyclic loading for the five slab pairs that were tested
under monotonic and cyclic loading within the current research (Chapter 3).
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Figure 5.1 – Comparison between moment strength degradation and reduction of maximum slab
rotation due to cyclic loading as function of the normalised shear force for slabs with (a) ρ = 0.75%,
and (b) ρ = 1.50%.

It can be seen that the ratio ψmax.p.cyc/ψmax.p.mono gives a rather good estimate of the strength
degradation exhibited by the tested slab-column connections. In addition, the strength degradation
decreases with increasing gravity load acting on the slab. This is in agreement with what has been
shown experimentally on the global level (Chapter 3). Local information regarding the influence
of cyclic loading on the behaviour of the tested specimens was provided by strain measurements at
selected locations on the reinforcing bars and on the concrete surface, and by crack opening measure-
ments. The latter ones provide direct measurement of the shear crack opening during unbalanced
moment reversals and are therefore very valuable for assessing the effect of loading history on the
crack opening-closing process. Figures 5.2 and 5.3 compare the measured crack opening - unbalanced
moment relationship for monotonically tested slabs (black curves) and cyclically tested slabs (red
curves) with ρ = 1.50%.
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Figure 5.2 – Measured thickness variation for monotonic and cyclic tests with ρ = 1.50% (ν = 0.29)
along the x-axis (see Fig. 5.4): (a) r = 0.25 m and (b) r = 0.55 m.
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Figure 5.3 – Measured thickness variation for monotonic and cyclic tests with ρ = 1.50% (ν = 0.19)
along the x-axis (see Fig. 5.4): (a) r = 0.25 m and (b) r = 0.55 m.

The crack opening measurements confirm that cyclic degradation is more important for low gravity
loads acting on the slab (Fig. 5.3) than for high gravity loads (Fig. 5.2).

Regarding the effect of loading history on the deformation capacity, cyclic loading leads to more pro-
nounced reduction of the connection rotation at peak ψscc.max than the moment strength Mmax, as
discussed in Chapter 3. This is attributed to significantly larger minimum slab rotations at peak for
the cyclic tests compared to their monotonic counterparts due to accumulation of plastic rotations
during moment reversals.

5.1.2 Correlation between shear crack inclination and top reinforcement yielding

Figure 5.4 shows the shear crack inclination for monotonic and cyclic tests performed within the ex-
perimental campaign. In the same figure, the locations where top reinforcement strains were measured
are also indicated (circular markers). Strains measured at specified locations of the top reinforcement
along the x-axis (strong axis) are shown in Figures 5.5 and 5.6 for slabs with ρ = 0.75% and 1.50%,
respectively, as function of the unbalanced moment.
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Figure 5.5 – Strain gauge measurements at specified locations of top reinforcing bars along the x-axis
for monotonic and cyclic tests with ρ = 0.75%, for ν equal to (a) 0.14, (b) 0.19, and (c) 0.29.
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Figure 5.4 shows that cyclic loading results in steeper cracking angles than monotonic loading. This
is more pronounced for low gravity loads (Fig. 5.4b, c, and e) than for high gravity loads (Fig. 5.4a,
and d).

Figure 5.5b and c shows that for relatively small distances from the column centre (r = 0.3 m) the top
reinforcement is yielding rather early. Figure 5.4a and b indicates that flexural cracks cross the top
rebar at approximately this location (r = 0.3 m - circular markers closest to the column). For steel
strains larger than the yield strain, cyclic loading resulted in significant concentration of permanent
inelastic strains in the slab half subjected to hogging moments. For this reason, cyclic loading (i.e.
alternation of hogging and sagging slab halves) did not lead to appearance of compressive strains in
the sagging slab half (red curves, Figure 5.5). On the other hand, monotonic loading (black curves,
Figure 5.5) for slabs with ν ≤ 0.19 led to compressive strains on the top reinforcing bars of the sagging
slab half at the column proximity (r = 0.3 m). This section focuses on the correlation between flexural
reinforcement yielding and shear crack inclination. For this purpose, only strain gauge data in the
proximity of shear cracks will be discussed in the following, while measurement of reinforcement strains
in the proximity of flexural cracks will not be discussed any further in this chapter.
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Figure 5.6 – Strain gauge measurements at specified locations of top reinforcing bars along the x-axis
for monotonic and cyclic tests with ρ = 1.50%, for ν equal to (a) 0.19, and (b) 0.29.

For slab PD2 that responded in the inelastic range already under vertical load, Figure 5.5c shows
that the shear crack was already open after the vertical load application and, therefore, no steeper
shear crack could appear during the unbalanced moment introduction. Figure 5.4a shows that for
both monotonic and cyclic tests the radius at which the shear crack crosses the top reinforcement is
r0 ≈ rc + d (see also Chapter 4), where rc is the column radius and d the slab effective depth. Shear
cracks steeper than 45 degrees were not observed from the saw cuts prepared after the tests have been
completed.
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5. Analytical model for cyclically increasing drifts

For slabs that responded in the elastic range under vertical load but in the post-elastic range (i.e. the
range where the top reinforcement in the vicinity of the shear crack reached the yield strain) during the
introduction of unbalanced moment, a correlation trend was identified between shear crack inclination
and eccentricity at first post-yield peak. For slab PD6 (ρ = 0.75% - ν = 0.19), Figure 5.5b shows that
vertical load induced only elastic strains while first unloading from post-elastic reinforcement strains
occurred at eccentricity e = M/V = 0.62 m, which is rather close to the experimentally observed shear
crack inclination at failure from Figure 5.4b (r0 = 0.56 m). For slab PD8 (ρ = 0.75% - ν = 0.14),
which also responded in the elastic range under vertical load, it was not possible to establish such a
correlation because the strain gauges did not record any plastic strains (Fig. 5.5a). This can be prob-
ably attributed to the fact that the shear crack crosses the rebar between two adjacent strain gauges
(Fig. 5.4c). For slab PD13 (ρ = 1.50% - ν = 0.19), first unloading from post-elastic reinforcement
strains occurred at eccentricity e = 0.75 m (Fig. 5.6a). This eccentricity is close to the experimentally
observed radius where the shear crack crosses the reinforcement, which can be taken from Figure 5.4e
(r0 = 0.68 m). For slab PD11 (ρ = 1.50% - ν = 0.29), careful observation of the saw cut (Fig. 5.4d)
indicates that the shear crack crosses the reinforcement at r0 ≈ 0.45 m, i.e. between two adjacent
strain gauges (Fig. 5.6b). Since emax = 0.39 < rc + d, even unloading from the maximum attained
eccentricity did not result in shear crack steeper than 45 degrees, like for slab PD2.

Based on these observations, one can conclude that the cyclic behaviour of slab-column connections
responding into the inelastic range is dominated by the opening-closing of a fixed shear crack rather
than a rotating crack, which was observed for monotonic tests and adopted by the analytical model
for monotonically increasing drifts (Chapter 4 and [Dra14]). The radius at which this single shear
crack crosses the top flexural reinforcement correlates rather well with the eccentricity of the slab-
column connection at first unloading from the post-elastic range. The lower-bound radius at which the
top reinforcement is crossed by the shear crack is rc+d (i.e. distance d from the column edge, Fig. 5.4).

5.1.3 Shape of the hysteresis loops

The cyclic flexural behaviour of beam-type RC members with asymmetrical reinforcement subjected
to moment loading is characterised by asymmetric hysteresis loops due to the different top and bot-
tom reinforcement contents (ρ > ρ′). The difference between ρ and ρ′ leads to different positive and
negative moment capacities. Moreover, compared to symmetrically reinforced RC members (ρ = ρ′),
a diversified regime in the accumulation process of plastic strains in the reinforcement of each side has
been observed experimentally [Ma76]: when ρ goes from tension to compression, ρ′ is not sufficient
to drive ρ to yielding in compression and therefore the plastic tensile strains developed at positive
loading are not compressed. On the other hand, when ρ′ has previously yielded in tension and goes
from tension to compression it yields soon in compression. Therefore the flexural crack closes soon and
the stiffness increases again. This effect, subsequently denoted as “pinching effect”, is identified by
inverted-S unloading-reloading loops with rather low dissipated energy. For asymmetrically reinforced
RC sections, the pinching effect is, therefore, more marked when the smaller reinforcement ratio ρ′ is
loaded from tension to compression [Far09].

For the shape of the hysteresis loops in symmetrically loaded RC members where shear effects are sig-
nificant, pinching of the response is associated with the deterioration of the aggregate interlock along
diagonal cracks and the appearance of plastic tensile strains in the flexural and shear reinforcement.
The response is characterised by steep initial unloading and rather steep final reloading in the opposite
direction. The intermediate phase is characterised by lower slope, indicator of less restrained slippage
between the two faces of the shear crack until hard contact is achieved again.

RC slabs subjected to combined vertical load and unbalanced moment (as the ones tested within
this thesis) present load asymmetry in addition to the reinforcement asymmetry. The application of
gravity load prior to the unbalanced moment introduction results in appearance of tensile strains in
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the top reinforcement at zero unbalanced moment. In the following, local measures of crack opening,
reinforcement strain, and concrete strain are discussed so as to provide better understanding of the
shape of the loading-unloading loops.

Crack opening

Crack opening measurements can provide valuable information on the shear crack opening-closing
process, the overall shape of the hysteresis loops as well as the gradual stiffness degradation exhibited
during the performed cyclic tests. The shear crack opening-closing process was monitored using slab
thickness variation measurements. Figures 5.7a and b show the influence of the loading history on
the measured crack openings in the connection proximity (r = 0.25 m) for different gravity loads and
reinforcement ratios. For comparison purposes the shear force-stirrup strain of a cantilever T-beam
tested by Ma et al. under cyclic shear [Ma76] is shown in Figure 5.7c.
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Figure 5.7 – Comparison of measured thickness variation between cyclically tested slabs for different
gravity loads along the strong axis (r = 0.25 m): (a) ρ = 0.75% and (b) ρ = 1.50%. (c) Shear force -
stirrup strain for a T-beam subjected to cyclic shear [Ma76].

Concerning the shear crack opening-closing process, Figure 5.7c shows that for T-beams subjected to
cyclic shear, the recorded stirrup strain attains values close to zero for small applied loads while the
V − εs curve has very small stiffness for near zero shear force V . Therefore, it can be deduced that
the stirrup strain is suppressed and the shear crack closes. Loading in the reverse direction leads to
tension in the reinforcement of the opposite side and opening of a shear crack perpendicularly to the
previously closed one. On the contrary, Figures 5.7a and b show that for the tested slabs (Chapter
3) the increase in thickness at zero unbalanced moment is larger than zero. This indicates that the
shear crack remains open when loading in the opposite direction.

The measurement of the crack opening can also provide better insight into the accumulation of plastic
crack openings and plastic rotations that are associated with them, which influence significantly the
cyclic behaviour of slab-column connections. As can be seen from Figures 5.7a and b, during unloading-
reloading in the elastic range, crack openings due to moment introduction are recovered, with minor
unrecoverable crack openings being attributed to the negative tension stiffening effect. Yield crack
opening corresponds to the beginning of reinforcement yielding (§5.1.2). Post-yield behaviour is char-
acterised by appearance of plastic crack openings, which correspond to plastic reinforcement strains.
For loading in the post-elastic range, increase of the plastic rotation is assumed to occur after reaching
the peak rotation of the previous cycle in the same direction. This assumption is consistent with
the definition of plastic crack opening for monotonic loading and has already been adopted by oth-
ers [Tak70]. Table 5.1 compares the elastic crack opening (or thickness variation) for the cycle before
the peak unbalanced moment (∆hel) and the crack opening difference between positive and negative
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peak at Mmax (∆h+
p − ∆h−p ) for the specimens for which crack opening measurements were avail-

able. Comparison of columns 2 and 5 of Table 5.1 shows that at Mmax no compression of plastic
crack openings occurred for the tested slab-column connections during unloading and loading in the
opposite direction.

Table 5.1 – Elastic crack opening and difference between peak crack openings at Mmax for the cyclic
tests for which crack opening measurements were available (sorted by increasing vertical load and
reinforcement ratio)

Slab ∆hel ∆h+
p ∆h−p ∆h+

p −∆h−p
name [mm] [mm] [mm] [mm]
PD8 0.57 0.82 0.24 0.58
PD6 0.39 0.57 0.17 0.40
PD13 0.75 1.54 0.74 0.80
PD11* 0.53 1.00 0.56 0.44

* My determined through Figure 5.7b

Regarding the shape of the M−∆h hysteresis loops, it can be seen that for slabs subjected to relatively
low gravity loads (red curves in Figures 5.7a and b), final reloading in both directions is characterised
by high stiffness while the intermediate phase exhibits smaller stiffness. Figures 5.5a and b show that
final reloading coincides with appearance of very small tensile strains (or even compressive strains)
in the top reinforcement of the sagging slab half. It can be therefore deduced that the reloading
stiffness of the sagging slab half increases close to εs.top ≈ 0. On the other hand, for slabs subjected
to relatively high gravity loads (black curves in Figures 5.7a and b), for which relatively high tensile
strains appeared in the top reinforcement of the sagging slab half, the M − ∆h hysteresis loops did
not exhibit such a late increase in stiffness. Similarly, the global moment-rotation response of slabs
subjected to high gravity loads did not show any significant stiffness dependency on the unbalanced
moment M .

Figures 5.7a and b show that for increasing number of rotation cycles as well as increasing amplitude of
rotation levels, the crack opening at the hogging slab half increases. The gradually decreasing reload-
ing stiffness is an indication of the stiffness degradation exhibited by the slab specimens (Chapter
3). Stiffness degradation is more pronounced for low gravity loads (red curves) than for large grav-
ity loads (black curves). As can be seen from the same figure, low gravity load (red curves) confers
lower unloading stiffness close to zero unbalanced moment than high gravity load (black curves). As
has been shown earlier, no compression of the plastic crack opening occurred during loading in the
reverse direction, and therefore the shear crack remained open. Consequently, this stiffness softening
close to zero unbalanced moment should not be attributed to less restrained slippage between the two
faces of the shear crack, i.e. to pinching effect. Moreover, Figures 5.7a and b indicate that stiffness
degradation is more pronounced when loading towards the direction where the top reinforcement goes
from compression to tension (from negative to positive unbalanced moment) rather than towards the
opposite direction.

Top reinforcement strain

The final stiffening of the M−εs.top curves in Figures 5.5 and 5.6 is related to the appearance of close to
zero strains in the top reinforcement of the sagging slab half, as explained earlier. Moreover, for slabs
where close to zero strains appeared in the top reinforcement of the sagging slab half, the unloading
stiffness close to zero unbalanced moment was rather small compared to the unloading stiffness close
to peak. This results in hysteresis loops with inverted-S shape, typically for slabs subjected to low
gravity loads (Figs. 5.5a, b, and 5.6a). On the other hand, for slabs for which relatively high tensile
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strains appeared in the top reinforcement of the sagging slab half, no apparent stiffness dependency
on the unbalanced moment was observed. This leads to spindle-shaped hysteresis loops, which are for
slabs subjected to high gravity loads (Figs. 5.5c and 5.6b).

The difference in shape between low and high gravity loads can be attributed to the stress state of
the slab when the unbalanced moment M approaches zero. Application of high gravity load results
in high radial moment mrad in the column proximity, whereas application of low gravity load leads to
rather low radial moment mrad in the column proximity. Therefore, for M ≈ 0, the radial moment
mrad is smaller for low gravity loads than for high gravity loads. During unloading, as the action
(e.g. bending moment, shear force) approaches zero, the stiffness decreases. This is a rather common
feature of RC members [Far09].

For strains at the location of flexural cracks, unloading from the post-elastic range (εs > εs.y) results
in significant permanent tensile strains locked in the reinforcing bars and practically no stiffness de-
pendency on the unbalanced moment M , as shown in Figures 5.5b and c (for r = 0.3 m).

Bottom reinforcement strain

The strains measured in the bottom mats were significantly lower in comparison with the strains
measured in the top mats for all tested slab pairs apart from the slab pair with ρ = 0.75% loaded up
to ν = 0.14, as shown in Figure 5.8.
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Figure 5.8 – Strain gauge measurements at specified locations of bottom reinforcing bars along the
x-axis for monotonic and cyclic test with ρ = 0.75% and ν = 0.14.

As can be seen in Figure 5.8, for low vertical loads applied on the slab, alternation of tension and com-
pression due to cyclic loading led to significant increase of the strains compared to monotonic loading
for the same unbalanced moment. Moreover, for low gravity load, tensile strains appear in the bottom
reinforcement. This confirms the appearance of sagging (or negative curvatures). In the same figure
it is also shown that since vertical loading results in rather insignificant compressive strains in the
bottom reinforcement, the loading-reloading loops due to unbalanced moment are rather symmetric.
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Concrete strain

Figure 5.9 shows radial concrete strain measurements at the bottom slab surface as function of M for
the slabs with ρ = 0.75% and 1.50%, in the proximity of the slab-column connection (r = 0.3 m).
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Figure 5.9 – Radial concrete strain measurements of the bottom slab surface along the strong axis
(r = 0.3 m) for monotonically and cyclically tested slabs with: (a) ρ = 0.75% - ν = 0.29, (b) ρ =
0.75% - ν = 0.19 and (c) ρ = 0.75% - ν = 0.14, (d) ρ = 1.50% - ν = 0.29, and (e) ρ = 1.50% - ν =
0.19.

The monotonic M −εc.r relationship (black curves in Fig. 5.9) is characterised by increasing compres-
sive strain εc.r for increasing unbalanced moment M both for the sagging slab half (M < 0) and the
early load stages of the hogging slab half (M > 0). For the final load stages, an increase of M results
in a reduction of εc.r of the hogging slab half. This has been theoretically explained by the formation
of an elbow-shaped strut which requires a horizontal tie in the slab soffit close to the column [Mut08].

For cyclic loading, the shape of the M − εc.r curves in the column vicinity was found to depend on
the gravity load level. For high gravity loads, the same behaviour as for monotonic loading was ob-
served, with the exception that cyclic loading results in faster reduction of the compressive strain than
monotonic loading (Figs. 5.9a, d). This is probably due to increasing crack opening with the number
of cycles. For low gravity loads (Figs. 5.9b, c, and e), although final loading in both directions is
characterised by increased compressive strain for increasing M (like for monotonic loading), the inter-
mediate phase (M ≈ 0) shows an inversed trend, i.e. larger M leads to smaller compressive strain εc.r.
This means that there is a zone close to zero unbalanced moment where decreasing hogging radial
curvature corresponds to unbalanced moment increase.

Regarding the stiffness of the M−εc.r curves of slabs subjected to high gravity loads (Figs. 5.9a, d), no
dependency on the unbalanced moment was observed. For low gravity loads, the intermediate phase
between peak moments is marked by smaller stiffness than close to peak moment, which decreases
with increasing number of cycles. This confirms the strain gauge measurements presented above.
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Local deformation measurements from tests

Figure 5.10 shows radial concrete strain measurements at various distances from the column centre for
slabs with ρ = 1.50%. It can be seen that cyclic degradation becomes more significant in the column
proximity (r = 0.3 m) than farther from it (r = 0.4 m and 0.5 m).
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Figure 5.10 – Radial concrete strain measurements of the bottom slab surface at various locations
along the strong axis for monotonically and cyclically tested slabs with ρ = 1.50%: (a) ν = 0.14, and
(b) ν = 0.29.

Figure 5.11 shows the influence of load history on the measured M − εc.t relationship (εc.t is the
tangential concrete strain) at a distance r = 0.30 m from the column centre for slabs with ρ = 0.75%.
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5. Analytical model for cyclically increasing drifts

The obtained measurements were non-conclusive: For ν = 0.29 and ν = 0.14 (Figs. 5.11a and c,
respectively), cyclic loading resulted in higher compressive tangential strains at peak unbalanced
moment than monotonic loading but for ν = 0.19 the trend was inversed (Fig. 5.11b). For this
reason, the influence of the load history on the tangential moments is neglected in the development of
the cyclic model, presented in the following.

5.1.4 Main findings

The main findings of the experimental campaign with respect to the influence of cyclic loading on the
local behaviour of slab-column connections are summarised in the following:

1. The reduction of the maximum slab rotation ψmax at peak unbalanced moment due to cyclic
loading shows good correlation with the observed moment strength degradation due to cyclic
loading (Mmax.cyc/Mmax.mono). The ratio ψmax.p.cyc/ψmax.p.mono decreases for decreasing gravity
loads on the slab. This agrees with global experimental observations (§3.8.3) and local deforma-
tion data (crack opening measurements).

2. Reversed cyclic loading results in steeper shear cracks than monotonic loading. The impact of
cyclic loading on the shear crack inclination is more pronounced for low gravity loads than for
high gravity loads.

3. For cyclic tests, the radius of the shear crack (r0) was found to correlate rather well with the
attained eccentricity at first unloading from the post-elastic range. A lower-bound limit for
the shear crack inclination was observed to be approximately 45 degrees, like for the performed
monotonic tests.

4. The shape of the hysteresis M −∆h and M − εs.top loops for the tested slab-column specimens
is characterised by the following features:

• Hogging slab half: (a) The loading/reloading branch softens with increasing number of
cycles. (b) The unloading stiffness is initially high and gradually decreases as the applied
unbalanced moment approaches zero, particularly for low gravity loads acting on the slab.

• Sagging slab half: (a) The loading/reloading stiffness is approximately equal to the stiffness
of the hogging slab half during the unloading branch that preceded, and is characterised
by final stiffness increase only for close to zero strains in the top reinforcement. (b) The
unloading branch is characterised by very steep initial stiffness. For low gravity loads, the
unloading branch close to zero unbalanced moment is marked by lower stiffness, approxi-
mately equal to the intermediate loading stiffness (M ≈ 0) that preceded.

5. For the tested slab-column connections plastic crack openings were not reduced when the loading
was reversed.

6. The stiffness of the hogging slab half decreaces as the amplitude of inelastic rotation cycles
increases or the number of rotation cycles increases. The stiffness degradation was more marked
for the hogging slab half than for the sagging slab half.

7. The shape of the hysteresis M − εc.r loops for the tested slab-column specimens is generally
characterised by higher compressive strain εc.r for increasing M . For low gravity loads, though,
for close to zero unbalanced moments, an increase of M resulted in a decrease of compressive
strains, indicating that at this stage decreasing positive (or hogging) curvature corresponds to
unbalanced moment increase.

8. The cyclic effect on the measured radial concrete strains is more pronounced in the column
proximity. No clear trend with respect to the influence of the loading history on the measured
tangential concrete strains was identified.
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Hysteretic moment-rotation relationship

Based on the above experimental findings, the following section proposes a hysteretic model for the
calculation of the cyclic moment-rotation relationship of slab-column connections. Seismic damage due
to cyclic loading is expected to affect both the failure criterion and the moment-rotation relationship.
As has been shown by the experimental observations within the current research, cyclic loading leads to
increased crack opening and consequently decrease of the unbalanced moment for the same connection
rotation. Therefore, the moment-rotation curve of slab-column connections softens as the number of
cycles increases. The shear force resisted by the compression strut is also expected to decrease with
cyclic loading triggering a lowering of the failure criterion compared to monotonic loading. This
lowering is though difficult to be estimated quantitatively since no test programme includes systems
for measuring the slab stresses in the column vicinity. Therefore, seismic damage due to cyclic loading
is only incorporated in the hysteretic moment-rotation relationship of the slab-column connection,
while its influence on the failure criterion is neglected in this chapter.

5.2 Hysteretic moment-rotation relationship

As observed by Vaz Rodriguez [Vaz07], specimens subjected to concentrated loads may significantly
increase their crack widths when they are subjected to cyclic loading. The amount of shear force that
can be carried by a slab (for the same level of gravity loads) may thus be reduced under earthquake
conditions. To date, there is no suitable model to assess the increase of crack widths on RC slab-
column connections when they are subjected to cyclic unbalanced moments.

Under load reversals in the inelastic range, the stiffness of RC members decreases due to concrete
cracking, concentration of plastic strains and bond deterioration at the steel-concrete interface. In or-
der to describe adequately the cyclic behaviour of RC members the exact stress and deformation state
of the materials should be known at each point of the hysteresis loops. This is typically modelled using
a hysteretic stress-strain relationship for the concrete and the reinforcing steel (e.g. [Ken69, Vec99]).
Alternatively, a hysteretic moment-curvature relationship is adopted (e.g. [Rou87]). When the shear
force equals zero, a sectional analysis gives the monotonic (or primary) moment-curvature (M − χ)
relationship of the section. When the shear force is non-zero, any acceptable procedure can be applied
to obtain the monotonic M − χ relationship and the monotonic shear force-shear strain (V − γ) rela-
tionship, such as the Modified Compression-Field Theory [Vec86]. However, for the derivation of the
hysteretic M −χ and V − γ relationships, strength degradation with higher drift levels and increasing
number of cycles, often termed as seismic (or cyclic) damage, should be incorporated. Moreover,
members subjected to cyclic flexure and/or shear may exhibit lower stiffness as the applied moment
approaches zero. For flexure-dominated members, high deformation demand results in the appearance
of large flexural cracks that remain open at zero applied moment. Loading in the opposite direction
results in opening of new flexural cracks at the opposite side of the member. If the flexural cracks of
the newly compressed side remain open, stiffness is provided only by the reinforcing steel. The stiffness
increases again once the flexural cracks of the newly compressed side close. In members where shear
effects become significant, sliding between the two faces of a shear crack is less restrained for close to
zero loads than for higher loads, leading to softening of the V − γ curve as V approaches zero. Upon
closing of the shear crack, the member exhibits stiffer response. This particular feature of RC members
subjected to inelastic loading cycles, often termed as pinching effect, should also be considered when
calculating the hysteretic M −χ and V −γ relationships. Due to the involved complexity, a hysteretic
moment-curvature relationship is typically adopted to descibe the flexural behaviour of the member
(e.g. [Tak70]), while the effects of strength degradation and pinching on the flexural hysteresis loops
are usually modelled in an empirical manner [Rou87,Ozc89].

The analytical model for the load-rotation relationship of slabs subjected to vertical loads alone
[Mut08] is based on a quadrilinear moment-curvature relationship for both the radial and the tangen-
tial moments accounting for the influence of the shear crack on the flexural behaviour in a compu-
tationally efficient way. This model forms the basis of the analytical model for the moment-rotation
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5. Analytical model for cyclically increasing drifts

relationship of slabs under monotonically increasing drifts (Chapter 4). Extending this model for
cyclic loading conditions is considerably facilitated if a hysteretic moment-curvature relationship is
adopted. This simplified extension to predict the increase of crack widths in the proximity of slab-
column connections when subjected to cyclic loading is presented in the following. The assumptions
regarding the shear crack inclination are presented first, followed by the assumptions related to the
hysteretic moment-curvature relationship. Finally, the adopted approach for the seismic damage con-
sideration is presented. It should be noted that the same formulas used for the calculation of the
monotonic moment-rotation curve (Eqs. (4.2), (4.4) - (4.9)) apply also for the calculation of the cyclic
moment-rotation curve and, therefore, are not repeated in the following.

5.2.1 Shear crack inclination

If during loading and reloading no yielding occurs, no plastic radial curvatures appear and the shear
crack opening due to unbalanced moment is assumed to be recovered completely during the unloading
that follows. Therefore, for this case, the radius of the shear crack (r0) is assumed to be equal to the
attained eccentricity at that load step, like for monotonic loading conditions (Chapter 4).

Concerning the shear crack inclination of cyclically loaded slab-column connections responding beyond
the yield limit, a fixed value for the radius r0 is assumed, which corresponds to the shear crack
inclination at the first post-yield peak. This assumption is based on experimental observations of the
slab saw cuts and recorded reinforcement strains (§5.1.2 - Point 2 in §5.1.4). For subsequent loading
and unloading in both directions, it is assumed that all additional plastic curvatures of the considered
sector element are concentrated at this fixed shear crack. Since this crack is assumed to govern the
behaviour of each sector element of the slab-column connection during all subsequent cycles, no flatter
or steeper shear crack can appear.

Figure 5.12a illustrates the assumed shear crack inclination at the elastic and plastic domain of slab
PD8 for the loading protocol shown in Figure 5.12b. The shear crack at the pre-yield range (continuous
lines in Fig. 5.12a) is rotating and r0 depends on the attained eccentricity e (but r0 ≥ rc+d). Once the
first unloading in the plastic domain (grey-shaded area in Fig. 5.12b) of the sector element subjected
to ψmax (φ = π/2) occurs, a fixed r0 value equal to the eccentricity e at the first inelastic peak (dashed
line in Fig. 5.12a) is assumed to govern the behaviour of all sector elements. Although this assumption
neglects the fact that sector elements with smaller rotations (as for instance parallel to the bending
axis) have not yet reached their yield limit, Chapter 4 has shown that adopting the same value of r0
for all sector elements simplifies significantly the calculation.
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Figure 5.12 – Assumption related to the shear crack inclination for cyclic loading conditions.
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Hysteretic moment-rotation relationship

5.2.2 Moment-curvature relationship

Radial concrete strain measurements have shown that cyclic degradation (decrease of concrete com-
pressive strain due to cyclic loading) is more significant in the column vicinity. Since no clear trend on
the influence of cyclic loading on the tangential concrete strains was identified (Point 7 in §5.1.4), the
hysteretic behaviour of slab-column connections is accounted for by adopting a hysteretic moment-
curvature relationship only for the radial moments acting on the shear crack (r = r0). Unlike for the
case of monotonic loading, for which the radial moment of each sector element depends only on the
corresponding radial curvature (Chapter 4), for cyclic loading it is assumed that the radial moment
depends also on the loading history as will be shown in the following. Both the axisymmetric model
for slabs subjected to vertical load alone [Mut08] and the analytical model for slabs subjected to com-
bined vertical load and monotonically increasing unbalanced moment (Chapter 4) adopt a piece-wise
linear (quadri-linear) moment-curvature relationship for the sector elements. Likewise, the hysteretic
M−χ relationship presented in the following adopts a piece-wise linear form (polygonal shape). Adop-
tion of a smooth hysteretic model would add significant and unjustified complexity to the calculation
and would be inconsistent with the above-mentioned analytical models (Chapter 4 and [Mut08]). An
additional assumption to describe the increase-decrease of the developed plastic radial curvature to
simulate the opening-closing process of the shear crack is necessary and will be presented in the fol-
lowing, based on experimental observations (§5.1.3).

Figure 5.13 shows the assumed hysteretic moment-curvature relationship (colored lines) and the pri-
mary moment-curvature relationship (black line). The shape of the unloading-reloading branches
is based on a hysteretic shear model for concrete members by Ozcebe and Saatcioglu [Ozc89] and
the findings on the previous section (Points 3, 5, and 6 in §5.1.4). Positive and negative directions
correspond to increasing tension in the top reinforcement and decreasing compression in the bottom
reinforcement, respectively (see Fig. 5.13). To facilitate understanding, the hysteresis loops are shown
for four post-elastic scenarios depending on the sign of the radial moment at negative peak and the
sign and value of the corresponding curvature. It should be noted that the moment-rotation curve
represents the global behaviour of the slab-column connection, whereas the shown radial mrad − χrad
relationship is formulated for each sector element. Therefore the loading and unloading branches of
the mrad − χrad curve do not necessarily correspond to the loading and unloading branches of the
moment-rotation curve.
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Figure 5.13 – Proposed hysteretic radial moment-curvature relationship for each sector element of the
slab (based on Ozcebe and Saatcioglu [Ozc89]).

In the following, rules are given for the loading/reloading branch and the unloading branch of the
mrad − χrad relationship under different conditions.
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5. Analytical model for cyclically increasing drifts

Unloading branches

The following rules are applied for the loop segments that correspond to unloading:

1. Unloading follows the primary curve (black line in Fig. 5.13) if χ < χy at the beginning of
unloading and mcr has not been previously exceeded in either direction.

2. If mcr has been exceeded at least once in the considered direction and the yield curvature has
not been previously exceeded in the opposite direction (χ < χy), unloading from mrad.peak > mcr

follows the elastic post-cracking stiffness (grey line in Fig. 5.13) up to the zero radial moment
axis. If mrad.peak < mcr unloading follows the initial stiffness up to zero radial moment. If the
yield curvature has already been exceeded in the opposite direction, unloading follows the initial
stiffness up to zero radial moment independently from the value of mrad.peak.

3. If the yield curvature has been exceeded at least once in the considered quadrant, unloading
from curvature higher than the maximum previously attained curvature follows the elastic post-
cracking stiffness until mcr. Unloading for mrad < mcr follows a line connecting mcr with the
plastic radial curvature χpl of the considered sector element (zero radial moment). If the peak
curvature is smaller than the maximum previously attained curvature, unloading follows the
initial stiffness up to mrad = 0 if χ < χpl, otherwise a line connecting χrad.peak with χpl is
followed (dash-dotted lines in Fig. 5.13).
The plastic radial curvature χpl.i(φi) of the sector element at angle φi is calculated according to
the following rules:

• For the first unloading from the post-yield curvature:

χpl.i(φi) = χpeak.i(φi)− χy(φi) (5.1)

where χy is the yield curvature of the sector element, calculated according to [Mut08].
• If the yield curvature has been previously exceeded in the considered direction, increase

of the plastic radial curvatures due to tensile strains in the top or bottom reinforcement
during loading in the positive direction (mrad > 0) or in the negative direction (mrad < 0),
respectively, can occur only for curvatures higher than the previously attained curvatures
in that direction:

χpl.i(φi) = (χpeak.i(φi)− χpeak.i−1(φi)) + χpl.i−1(φi) (5.2)

From Eq. (5.2) it comes out that cycles with smaller amplitude than previous cycles do not lead
to further increase of the plastic radial curvature χpl.i(φi).
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Hysteretic moment-rotation relationship

Loading and reloading branches

With regard to the loop segments that correspond to loading and reloading, the following rules are
applied:

1. Loading and reloading in both directions follow the primary curve until unloading from the
post-cracking branch occurs.

2. If unloading is terminated prior to reaching the zero moment axis, reloading in the same quadrant
follows a straight line aiming at the previously attained maximum moment in the same direction
both for moment at negative peak higher or smaller than mcr (green line in Fig. 5.13). Further
loading follows the primary curve.

3. If the considered sector element has not been previously loaded beyond the cracking moment
in the considered direction, loading-reloading targets the cracking moment mcr, even if plastic
curvatures have been previously developed during loading in the opposite direction (purple and
blue line in Fig. 5.13). Further loading follows the primary curve.

4. If the considered sector element has been previously loaded beyond the cracking moment in the
considered direction, reloading aims at the previously attained moment in the same direction
(red line in Fig. 5.13). Further loading follows the primary curve.

5. If the yield curvature has been previously exceeded in the direction with the lowest radial moment
(bottom reinforcement under tension), reloading towards the direction with the highest radial
moment (top reinforcement in tension) follows the same stiffness as for reloading in the opposite
direction (see Fig. 5.13) up to suppression of plastic curvatures of the reinforcement previously
in tension (bottom reinforcement). The plastic curvature locked in the sector element (at angle
φi) with respect to the bending axis) due to sagging radial moment is reduced according to the
following formula:

χpl.bot(φi) = (χ(φi)− χy.bot(φi))− χpl.bot.peak(φi) ≤ 0 (5.3)

where χy.bot(φi) is the yield curvature for bottom reinforcement in tension and χpl.bot.peak(φi)
is the plastic curvature at the previous peak that is locked in the sector element due to tensile
strains in the bottom reinforcement (χy.bot(φi), χpl.bot.peak(φi) > 0 in Eq. (5.3)).
Further loading aims at the previously attained maximum peak moment in the same direction
(red line in Fig. 5.13).

The fifth rule of the above-mentioned procedure is not based on deformation mesurements from tests
performed within this research. The established rule is based on the model proposed by [Ozc89] and is
included here to predict stiffness increase upon closing of the shear crack developed due to post-yield
tensile strains in the bottom reinforcement (pinching effect when loading in the positive direction).
Ozcebe and Saatcioglu proposed to consider stiffness increase due to pinching only for loads higher
than the cracking load [Ozc89]. According to proposed model, the point of stiffness increase initiation
due to pinching (P - see Fig. 5.13) corresponds to χpl.bot(φi) = 0 using Eq. (5.3), i.e. to the load step
for which the plastic radial strain of the bottom reinforcement is suppressed.

For reloading in the negative direction (tension in the top reinforcement reduces), no reduction of the
plastic curvature χpl.i(φi) is assumed to occur. This assumption is based on crack opening measure-
ments from the tests performed within this research (§5.1.3, Point 4 in §5.1.4).
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5. Analytical model for cyclically increasing drifts

Influence of gravity loads on the hysteretic response

In the following, the influence of gravity loads on the shape of the hysteresis loops is discussed. The
predicted response of slabs PD2 (ν = 0.29) and PD8 (ν = 0.14) is presented in Figures 5.14 and
5.15, respectively, for illustration purposes. Both slabs contained the same amount of reinforcement
(ρ = 0.75%). For comparison purposes, the two slabs are analysed for the same loading protocol
(Fig. 5.14a and 5.15a) and not for the protocols to which the corresponding tests had been subjected,
which differed slightly (Chapter 3). The predicted hysteretic radial moment-curvature relationship
for the sector element subjected to alternating maximum and minimum slab rotations (φ = π/2 or
3π/2) is shown in Figures 5.14b and 5.15b for slabs PD2 and PD8, respectively. To provide better
understanding, the calculated moment-rotation curve of each slab is also shown (Figs. 5.14c and 5.15c,
respectively). Circular markers correspond to residual radial curvatures (zero unbalanced moment).
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Figure 5.14 – Hysteretic behaviour of slab subjected to large vertical loads (ν = 0.29): (a) adopted
loading protocol, (b) mrad−χrad relationship of the sector element at angle φ = π/2 or 3π/2, and (c)
M − ψscc relationship of the slab-column connection.
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Figure 5.15 – Hysteretic behaviour of slab subjected to small vertical loads (ν = 0.14): (a) adopted
loading protocol, (b) mrad−χrad relationship of the sector element at angle φ = π/2 or 3π/2, and (c)
M − ψscc relationship of the slab-column connection.

As can be seen from Figures 5.14 and 5.15, the adopted approach accounts for higher stiffness degra-
dation with increasing magnitude of inelastic radial curvature at which unloading commences.

For high vertical loads (Fig. 5.14), loading-unloading results in prediction of negative radial curvatures
(i.e. upward slab rotations) for the sagging slab half at relatively high connection rotation (ψscc > 1%).
Smaller rotation amplitudes lead to prediction of negative radial moments when loading towards the
less reinforced side that may correspond to positive or negative radial curvature at peak (violet or
blue loops, respectively - Fig. 5.14b). For close to zero radial curvatures at the sagging slab half,
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Hysteretic moment-rotation relationship

sector elements subjected to smaller radial curvatures than the sector element at the tip of the sagging
slab half (Fig. 5.14b) are characterised by stiffer mrad − χrad relationship (Fig. 5.13 - violet/blue
loops vs red loop). This leads to a slight final stiffening of the global response (violet and blue loops
in Fig. 5.14c). For very small rotation amplitudes, positive radial moments are predicted for both
loading and unloading (green loops in Fig. 5.14b), which does not affect significantly the stiffness of
the moment-rotation curve (green curve in Fig. 5.14c).

For small vertical loads (Fig. 5.15), stiffening of the response due to close to zero curvatures at the
sagging slab half is predicted from very early load stages onwards (e.g. blue loop in Fig. 5.15b). For
large rotation magnitude at unloading, suppression of the negative plastic curvature is followed by
stiffness increase due to pinching (red loop in Fig. 5.15b).

Influence of reinforcement ratio on the hysteretic response

In the following, the influence of reinforcement ratio on the hysteretic response of slab-column con-
nections is discussed. The predicted response of slabs PD6 (ρ = 0.75%) and PD13 (ρ = 1.50%) is
illustrated in Figure 5.16. Both slabs were subjected to a normalised shear force ν = 0.19

√
MPa.

The adopted loading protocol of the two slabs is the same as the one adopted for slabs PD2 and PD8
above (Fig. 5.14a).

-0.10 0.05 0.1 0.150

ρ = 1.50%

(c)(b)

Connection rotation ψ
scc

 [%] 

M
o
m

en
t 

[M
N

m
]

PD13

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.05-0.10 0.05 0.1 0.15

ra
d
ia

l 
m

o
m

en
t 

[M
N

m
/m

]

0

ρ = 0.75%

(a)
PD6

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.05

ν = 0.19ν = 0.19

ρ = 1.50%

ρ = 0.75%

radial curvature χ
r
 [m-1]radial curvature χ

r
 [m-1]

M = 0M = 0

Figure 5.16 – Hysteretic behaviour of slabs with different reinforcement ratio: mrad−χrad relationship
of the sector element at angle φ = π/2 or 3π/2 for: (a) ρ = 0.75% and (b) ρ = 1.50% and (c) M−
ψscc relationship of the slab-column connections at selected rotation levels.

As can be seen from Figures 5.16a and b, for the same rotation level, low ρ results in larger positive
radial curvatures (downward rotations) and smaller negative radial curvatures (upward rotations) than
high ρ. Since high ρ confers higher stiffness to the slab-column connection than low ρ, the hysteretic
loops become stiffer for increasing ρ. Moreover, high ρ results in larger residual connection rotation
(horizontal distance between circular markers of the same color). Therefore, if no seismic damage is
incorporated, high ρ leads to hysteretic loops with higher amount of dissipated energy than small ρ
(red loops in Fig. 5.16c).

5.2.3 Seismic damage

Literature review

Once the hysteretic moment-curvature relationship is defined, seismic damage should be incorporated.
Various methods have been proposed to account for seismic damage in RC structures, which can
be either local (for members or joints) or global (for the entire structure). Detailed state-of-the-art
review can be found elsewhere [Wil95,Cao11]. Since this study aims at describing the seismic damage
of slab-column connections only local damage indices are treated herein, which can be categorised into
two groups:
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5. Analytical model for cyclically increasing drifts

• Non-cumulative damage indices such as ductility [Ban81, Par86, Pen93] and interstorey drift
[Tou83]. Their main advantage is their simplicity and ease of interpretation, while the fact
that effects of repeated cyclic loading (number of cycles) cannot be incorporated remains their
main shortcoming. Improved non-cumulative damage indices such as the flexural damage ratio
[Ban81] and the modified flexural damage ratio [Rou87] have been proposed to consider stffness
and strength degradation under repeated cyclic loading which cannot be accounted for by the
traditional non-cumulative damage indices.

• Cumulative damage indices, which can be either deformation-based or energy-based. Although
mechanisms that contribute to the seismic damage of RC members such as low-cycle fatigue or
energy dissipation are considered by these damage indices, their main shortcoming is the need
for parameter calibration based on regression analysis of test results. Moreover, they should not
be applied to members or connections against which they were not calibrated.

Several researchers have proposed damage indices that combine features of the previous two groups.
For example, according to Park and Ang [Par85a,Par85b] seismic structural damage can be expressed
as a linear combination of the maximum deformation and hysteretic energy due to cyclic loading
expressed in terms of the damage index

D = Dδ +Dc (5.4)

The damage index due to maximum deformation Dδ can be calculated as follows:

Dδ = δu.cyc
δu.mono

(5.5)

where δu.cyc and δu.mono is the deformation capacity of the considered member under cyclic and
monotonic loading conditions respectively.

The damage index due to cyclic loading Dc can be calculated as follows [Par85a]:

Dc = βc
Fy δu.mono

∫
dE (5.6)

where βc is the coefficient accounting for cyclic loading effect, dE is the incremental absorbed hysteretic
energy and Fy is the yield load of the considered member. For members that do not display an apparent
yield point (as is the case for slab-column connections) the yield load Fy can be replaced by the strength
of the member Fu.

Adopted seismic damage model

In the framework of this thesis a mechanical model has been developed for monotonically increasing
drifts, which combined with the CSCT(mono) failure criterion gives the moment strength and the
corresponding deformation capacity of slab-column connections under monotonic loading conditions
(Chapter 4). Moreover, the hysteretic moment-curvature relationship described in §5.2.2 allows for
calculating the dissipated energy. Therefore, in addition to non-cumulative seismic damage approaches,
the mechanical model can also accomodate cumulative approaches for the seismic damage of slab-
column connections.

The cyclic tests presented in Chapter 3 have shown that slab-column connections exhibit significant
stiffness and strength degradation, in particular for low gravity loads. However, since the database
of slab pairs subjected to monotonic and cyclic loading is relatively limited (N = 5), it is doubted
whether regression analysis on empirical parameters (e.g. βc in Eq. (5.6)) would produce an empirical
total damage index capable of describing accurately enough the seismic damage of slabs against which
it was not calibrated (i.e. with different thickness, reinforcement ratio, etc.). Moreover, for the
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Hysteretic moment-rotation relationship

calculation of the incremental hysteretic energy dE according to Eq. (5.6) the hysteretic moment-
rotation relationship should be calculated beforehand, which renders this approach less attractive for
engineering practice due to considerable computational effort needs.

As has been shown in §5.1.1, the reduction of the maximum slab rotation ψmax due to cyclic loading
gives a good estimate of the moment strength degradation (Point 1 in §5.1.4). Therefore, a non-
cumulative seismic damage model was adopted for each sector element of the slab (Fig. 5.17a).
The model is based on the Modified Flexural Damage Ratio (MFDR) proposed by Roufaiel and
Meyer [Rou87].
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Figure 5.17 – Adopted model for seismic damage for the each sector element of the slab (based on
Roufaiel and Meyer [Rou87]).

For the calculation of the seismic damage according to this model only the secant flexibility (inverse of
secant stiffness - Fig. 5.17a) at punching failure under monotonic loading conditions should be known
beforehand for the sector element that is subjected to the largest slab rotations (grey-shaded element
in Figure 5.17b), i.e. the tip of the hogging slab half (fu.mono(π/2) = χu.mono(π/2) / mrad.u.mono(π/2)).
fu.mono(π/2) can be calculated using the analytical model for monotonically increasing drifts (Chapter
4). Afterwards, the damage index D (φi) can be computed for each sector element as follows

D (φi) = fj.cyc (φi)− fo
fu.mono(π/2)− fo

(5.7)

where fo is the radial yield flexibility and fj.cyc (φi) is the secant flexibility at the monotonic (or pri-
mary) moment-curvature curve corresponding to the curvature at the peak of cycle j for the sector
element at angle φi from the bending axis. According to [Rou87] the damage index should be com-
puted for the positive and negative loading direction and the maximum of the two values should be
used for the considered sector element. Since for slab-column connections subjected to constant verti-
cal load and cyclically increasing moment radial moments are already present after the application of
vertical loads, high sagging radial moments could appear only for very low gravity loads and high drift
levels. In most realistic cases it is therefore the hogging slab half (positive loading) that determines
the seismic damage ratio D (φi).

It should be noted that the hysteretic moment-curvature relationship described in the previous sec-
tion allows to calculate the dissipated energy. Therefore, in addition to non-cumulative seismic dam-
age approaches (e.g. [Rou87]), the mechanical model can also accommodate cumulative approaches
(e.g. [Gos77]) for the seismic damage of slab-column connections and combined cumulative and non-
cumulative approaches (e.g. [Par85a]). However, it should be stated that since the calculation is driven
by the global (or connection) rotation and the rotations ψmax and ψmin are calculated to satisfy global
equilibrium, the radial curvature of each sector element at peak depends not only on its damage ratio
D but also on the damage ratio D of all the other sector elements. Therefore, for the same connection
rotation, the cyclic model predicts a decreasing unbalanced moment with increasing number of cycles,
even if a non-cumulative damage model is adopted.

Figure 5.18a shows the hysteretic response of slabs PD6 and PD8, which were analysed earlier (§5.2.2),
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5. Analytical model for cyclically increasing drifts

when cyclic damage is considered. The curves are plotted until ψmax reaches ψmax.u.mono, i.e. until
D = 1. The points corresponding to zero unbalanced moment for the first and the last hysteresis loop
before failure are also represented in Figures 5.18b and c (circular markers).
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Figure 5.18 – Predicted hysteretic behaviour of slabs PD6 and PD8 when cyclic damage is considered:
(a) M− ψscc curves; (b) and (c) mrad−χrad relationships of sector element at φ = π/4 and φ = π/2.

The adopted approach presents the additional advantage that seismic damage is considered at the
sector element level. In this way, sector elements subjected to larger slab rotations (black loops in
Figs. 5.18b and c) exhibit higher damage than sector elements with smaller slab rotations (grey loops
in Figs. 5.18b and c). This agrees with experimental observations both for the tests performed within
this thesis and tests found in the literature [Haw89,Tia07].

Figure 5.18 also shows that the gravity load affects significantly the predicted shape of the hysteresis
loops. For the same radial curvature, high gravity load results in earlier exceedance of the yield limit
than low gravity load and therefore to higher damage (Fig. 5.18b against c, respectively). Moreover,
low gravity load leads to larger residual connection rotation than high gravity load, which in turn leads
to prediction of larger amount of dissipated energy for low gravity load than for high gravity load.
These trends agree with the observed behaviour of the cyclically tested slabs as shown in Chapter 3.

5.3 Failure criterion

The present chapter assumes that cyclic degradation is accounted for only in the moment-rotation
relationship. Therefore, the approach that accounts for shear redistribution between adjacent sector
elements of the hogging slab half is used in the present chapter (CSCT(mono) - §4.3.1). Failure is
assumed to occur when the shear force acting on the sector elements of the hogging slab half (0 ≤
φ ≤ π) reaches the sum of their shear resistances. The upper limit for the moment strength and the
corresponding deformation capacity of slab-column connections subjected to cyclic moment is defined
when D = 1, i.e. when the secant stiffness at the moment-curvature relationship reaches the secant
stiffness at punching failure for monotonic loading conditions.

5.4 Comparison with the performed cyclic tests

This section compares the experimental moment-rotation response of the cyclically tested slabs (Chap-
ter 3) with the predicted moment-rotation response according to the proposed cyclic model (Fig. 5.19).
For comparison purposes, the predicted moment-rotation curves according to the monotonic analytical
model are also shown in the same figure (dashed black curves). The predicted moment-rotation curves
according to the monotonic model should be compared to the experimental curves (grey curves) only
up to the intersection with the CSCT(cyc) failure criterion (circular markers).
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Figure 5.19 – Comparison between experimental and calculated moment-connection rotation curves
for the cyclic tests performed within the present research according to the analytical model of Chapter
4 and the model of this chapter: (a) PD2, (b) PD6, (c) PD8, (d) PD11, and (e) PD13.

Figure 5.19 shows that the cyclic model predicts more accurately the final part of the experimental
response than the monotonic model. Moreover, the approach of this chapter allows for better prediction
of the deformation capacity of the cyclically tested slabs compared to the simplified approach of
Chapter 4 since the effect of loading history is explicitly accounted for. The model predicts higher
residual connection rotation and higher dissipated energy for low gravity loads than for high gravity
loads, which is in accordance with the experimental results. More detailed comparisons of the model
predictions with the results of the tests performed within this thesis and tests reported in the literature
can be found in the following chapter.

5.5 Loading history effect

This section focuses on the effect of the loading history on the response of slab-column connections
according to the analytical model presented in Section 5.2 combined with the CSCT(mono) failure
criterion (Section 5.3). First, the influence of seismicity is investigated, followed by the investigation
on the influence of reversed against non-reversed cyclic loading on the moment-rotation response.
Finally, the effect of the number of cycles is discussed. The investigations of this section are based on
the model predictions for the cyclic tests on slabs with ρ = 0.75% performed within this thesis (PD2,
PD6, and PD8).
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5. Analytical model for cyclically increasing drifts

5.5.1 Seismicity

The effect of seismicity on the hysteretic response of slab-column connections is discussed in the
following. For this purpose, the two normalised loading protocols shown in Figure 5.20a are used to
distinguish between the demand due to low-moderate seismicity (continuous lines) and due to high
seismicity (dashed lines). The value of ψslab.max is taken equal to the experimental connection rotation
at peak moment ψscc.max (Section 3.7). The loading protocols were determined based on Mergos and
Beyer [Mer14] as function of the seismicity, the hysteretic model, the fundamental period T of the
structure and the number of cycles per load step. For this study, it was assumed that T > 0.5 s
(multi-storey building) and nc = 2 (cycles per load step). For the hysteretic model, since RC walls
provide lateral strength and stiffness to the building (see Section 3.1), the “thin” Takeda model was
adopted [Mer14]. For slab PD2, the seismicity level did not influence significantly the calculated
moment-rotation curve. Figures 5.20b and c show the predicted moment-rotation curves of slabs PD6
and PD8, respectively, for both adopted seismicity levels.
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Figure 5.20 – Influence of seismicity on the predicted cyclic response of slabs subjected to low gravity
loads tested within this research (ρ = 0.75%): (a) normalised loading protocol for high seismicity and
low-moderate seismicity according to [Mer14], and predicted moment-rotation response of slabs (b)
PD6 (ν = 0.19), and (c) PD8 (ν = 0.14).

Figure 5.20 shows that for slabs PD6 and PD8, high seismicity leads to larger moment strength than
low seismicity. This is because the first inelastic rotation level for low seismicity appears at the last load
step (ψscc = ψscc.max) for both PD6 and PD8. On the other hand, for high seismicity, the first inelastic
peak according to the proposed model appears at the 5th load step (i.e. for ψscc = 0.57ψscc.max). This
means that the radius of the critical shear crack is larger for low seismicity (r0.y = 0.8 m and 1.17
m for PD6 and PD8, respectively) than for high seismicity (r0.y = 0.56 m and 1 m for PD6 and
PD8, respectively). Steeper shear crack results in stiffer behaviour of the slab-column connection.
Moreover, first inelastic peak at higher rotation level leads to higher value for the damage index D.
For this reason, D at peak moment obtains higher values for low seismicity (0.74 and 0.81 for PD6 and
PD8, respectively) than for high seismicity (0.63 and 0.69 for PD6 and PD8, respectively). It should
be noted that according to the proposed model, high seismicity leads to smaller moment strength
than low seismicity only when the rotation at first inelastic peak increases with increasing seismicity
level (for instance when 0.42ψscc.max < ψscc.y < 0.57ψscc.max - see Fig. 5.20a). The corresponding
connection rotation at peak moment does not appear to be influenced by the seismicity level for the
case of slabs PD6 and PD8. In Section 5.8 a more systematic study on the influence of the seismicity
level on the seismic rotation capacity of slab-column connections will be presented.
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5.5.2 Reversed vs Non-reversed cyclic loading

The effect of rotation reversal on the predicted response is examined in the following. Figure 5.21
shows the predicted moment-rotation curves for slabs PD2, PD6 and PD8 for both reversed and non-
reversed cyclic loading (red and black curves respectively). The calculation is performed for the same
rotation amplitudes as in the experimental campaign (Section 3.6). The curves are plotted in the first
quadrant and up to punching failure (predicted according to CSCT(mono)). Table 5.2 summarises
the model predictions in terms of moment strength, corresponding connection rotation and connection
rotation at punching failure.
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Figure 5.21 – Influence of rotation reversal on the predicted cyclic response of slabs with ρ = 0.75%
tested within this research: (a) PD2, (b) PD6, and (c) PD8.

Table 5.2 – Predictions of moment strength, corresponding connection rotation and connection rotation
at punching failure for the tested slabs with ρ = 0.75% (PD2, PD6, and PD8) for reversed and non-
reversed cyclic loading (nc = 2)

Mmax.pred [kNm] ψscc.max.pred [%] ψscc.u.pred [%]
Slab reversed non-reversed reversed non-reversed reversed non-reversed
PD2 196 196 0.36 0.36 0.30 0.40
PD6 378 410 0.88 0.88 0.93 1.03
PD8 400 407 1.32 1.32 1.45 1.53

values in bold represent the model predictions for the loading pattern
adopted in the experimental campaign (reversed loading)

As shown in Figure 5.21, the model predicts smaller moment strength for reversed cyclic loading (red
curves) than for non-reversed cyclic loading (black curves). Moreover, non-reversed cycles result in
concentration of plastic deformations and consequently in high cyclic damage in the hogging slab half
while no cyclic damage occurs in the opposite slab half. Table 5.2 and Figure 5.21 show that the
influence of rotation reversal is more pronounced for low gravity loads (Fig. 5.21b and c) than for high
gravity loads (Fig. 5.21a). This is expected, since according to the monotonic model, which forms
the basis of the model presented in this chapter, the moment-rotation response is less dependent on
the loading history for high gravity loads than for low gravity loads. This is in agreement with the
experimental findings of Chapter 3. Regarding the deformations, the analytical model predicts that
the connection rotation of slabs PD2, PD6 and PD8 at peak moment does not depend on whether
the loading pattern is reversed or not. However, the connection rotation at punching failure attains
5-35% higher values for non-reversed loading compared to reversed loading.
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5.5.3 Number of cycles

The effect of the number of performed cycles on the seismic behaviour of slab-column connections
is examined in the following. The effect of the number of cycles on the moment capacity and the
deformation capacity has not been investigated experimentally in the past. For this reason, previous
studies have compared the behaviour of similar specimens belonging to different experimental cam-
paigns and subjected to different load histories [Tia07], focusing on the decrease of the deformation
capacity due to larger number of cycles. The slabs that were compared contained similar reinforce-
ment ratios and were subjected to similar gravity loads [Gha76,Pan89,Tia08]. However, the slab size
and the slab thickness were not similar, therefore not allowing safe conclusions on the influence of the
number of cycles on the deformation capacity of slab-column connections to be drawn. The model
presented in this chapter allows for a more systematic study of the effect of the number of cycles on
the moment strength and the deformation capacity of slab-column connections. Figure 5.22 shows
the moment-rotation curves for slabs PD2, PD6 and PD8 that were tested within this research for
the same loading protocol as in the experimental campaign (Section 3.6) but with different number of
cycles per rotation level (nc = 1, 2, 3 and 4). The curves are plotted in the first quadrant and up to
punching failure (predicted according to CSCT(mono)).
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Figure 5.22 – Influence of the number of cycles on the cyclic response of slabs with ρ = 0.75% tested
within this research: (a) PD2, (b) PD6, and (c) PD8.

As can be seen from Figure 5.22, the model predicts that larger number of cycles results in smaller
moment strength. The corresponding connection rotation appears to be influenced only to a minor
degree by the number of applied cycles. Table 5.3 gives the peak moment and the corresponding
connection rotation for the three slabs of Figure 5.22. It is shown that increase of nc from 1 to 4
leads to decrease of the moment strength by 18%, 13%, and 7% for ν = 0.29, 0.19, and 0.14

√
MPa,

respectively.

Table 5.3 – Moment strength and deformation capacity predictions for the tested slabs with ρ = 0.75%
(PD2, PD6, and PD8) as function of the applied number of cycles nc

Mmax.pred [kNm] ψscc.max.pred [%]
Slab nc = 1 nc = 2 nc = 3 nc = 4 nc = 1 nc = 2 nc = 3 nc = 4
PD2 206 196 190 169 0.36 0.36 0.36 0.33
PD6 414 378 369 362 0.88 0.88 0.88 0.88
PD8 417 400 397 389 1.32 1.32 1.11 1.11

values in bold represent the model predictions for the loading protocol
adopted in the experimental campaign (Chapter 3)
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5.6 Lateral force-resisting mechanisms

This section presents the influence of cyclic loading on the contribution of the different lateral force-
resisting mechanisms to the total unbalanced moment. Figure 5.23 shows the influence of the gravity-
induced shear and the reinforcement ratio on the predicted γ factors as function of the connection
rotation for the same case study of Section 4.4 (L/d = 35). The predictions according to the cyclic
model (continuous curves) are presented until punching failure and only for positive connection rota-
tion values. Square markers represent the contribution of the different resisting mechanisms at peak
unbalanced moment. For comparison purposes, the predictions according to the simplified approach
of Chapter 4 are also shown (dashed curves).
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Figure 5.23 – Predicted contribution of flexure, torsion and eccentric shear force according to the
proposed model (c = 2d; fc = 30 MPa; L = 35d; dg = 16 mm and fy = 460 MPa) for ρ = 1.50%: (a)
ν = 0.1

√
MPa; (b) ν = 0.2

√
MPa; (c) ν = 0.3

√
MPa; and for ρ = 0.75%: (d) ν = 0.1

√
MPa; and

(e) ν = 0.2
√

MPa.

Figure 5.23 shows that the cyclic analytical model of this chapter predicts higher contribution of flexure
at peak unbalanced moment for low gravity loads (Figs. 5.23a, and d) than for high gravity loads (Figs.
5.23b, c, and e). On the other hand, the contribution of eccentric shear force is not significantly affected
by the gravity load level. As has been shown is Chapter 4, the flexure contribution to the unbalanced
moment equals the sum of the radial moments of all sector elements (Eq. (4.9)). Since cyclic damage
is assumed to affect only the radial moment-curvature relationship (§5.2.3), it is anticipated that
increasing number of cycles leads to smaller γf.pred values than the simplified approach presented in
Chapter 4. This is more marked for small gravity loads than for high gravity loads.
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5.7 Slab deformation outside the slab-column connection

In Chapter 4, a method based on the Effective Beam Width approach was proposed in order to calculate
the contribution of the slab deformation outside 0.22L (ψos) to the total slab deformation ψslab (§4.2.5).
This section proposes an extension of the same approach for cyclic loading conditions. The only
difference between the two cases is the way the rotational stiffness of the slab-column connection
(EIk) is calculated. For monotonic loading, EIk is taken as the ratio of unbalanced moment Mk

and rotation due to slab deformation ψslab.k (Fig. 5.24a), i.e. equal to the secant stiffness at the
considered point k of the moment-rotation curve (Eq. (4.16)). For cyclic conditions, however, EIk is
calculated with respect to the point where the moment-rotation curve intersects the x-axis, i.e. the
residual rotation ψslab.0 (Fig. 5.24b). The rest of the formulas for the calculation of the radial bending
moment and torsional moment at the perimeter of each sector element (Mrad(φi, rs) and Mtor(φi, rs),
respectively) can be found in §4.2.5.

The difference in the moment-rotation response between a continuous slab under monotonic and cyclic
loading conditions is illustrated in Figure 5.24c. Comparison of the presented approach with tested
continuous flat slabs and simply supported isolated specimens with the verical load applied on the
slab surface (ψos > 0) can be found in the following chapter. It should be noted that the presented
Effective Beam Width approach does not account for compressive membrane action.
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Figure 5.24 – Influence of cyclic loading in the behaviour of continuous flat slabs: (a) rotational
stiffness under monotonic loading, (b) rotational stiffness under cyclic loading, and (c) comparison of
the moment-rotation response of a continuous flat slab for monotonic and cyclic loading conditions.

5.8 Seismic rotation capacity

In Chapter 4 (Section 4.5) it was shown that the seismic rotation capacity decreases with increasing
gravity load acting on the slab-column connection. This section compares the simplified approach
presented in Chapter 4 with the approach presented in this chapter. Such comparison will shed
light on the influence of the loading history on the rotation capacity of slab-column connections and,
whether the simplified approach of Chapter 4 suffices for consideration of the cyclic loading effect. In
addition, §5.8.1 discusses the effect of the loading history on the predicted seismic rotation capacity,
while §5.8.2 presents the results of a parametric study on the influence of slab depth, slab slenderness
and reinforcement content on the predicted rotation capacity.

The adopted normalised loading protocols for the parametric study are the same as in §5.5.1 (Fig.
5.20a) except that for this calculation, the ψslab.max was estimated using the simplified approach of
Chapter 4 (Section 4.5), due to lack of experimental data. For comparison, the allowable drift limit
according to ACI-318 [ACI14], the model proposed by Hueste and Wight [Hue99], and the predictions
using the monotonic model (Chapter 4) are also shown (grey curves) are also included in the figure.
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5.8.1 Influence of loading history

Monotonic vs Reversed cyclic

Figure 5.25a shows the predicted slab rotation ψslab at peak moment according to the analytical
model presented in this chapter as function of the normalised gravity load acting on the slab-column
connection (black curves).

(a)

0 0.1 0.2 0.3 0.4

V / b
0
·  d ·   f

c
’ [    MPa]

ACI-318

Hueste and Wight

GSR [-]
0.25 0.50 0.75 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
ψ

sl
a
b
 [

%
]

CSCT(cyc)

CSCT(mono)

Monotonic model

low seismicity

high seismicity

Cyclic model

See Figure b

(b)

Slab rotation ψ
slab

 [%]

M
o
m

en
t 

[M
N

m
]

-0.16

-0.12

-0.08

-0.04

0

0.04

0.08

0.12

0.16

GSR = 0.65

GSR = 0.62

High seismicity

-1.5 -0.5 0.5 1.50-1 1

d = 120 mm

L = 35d

c = 2d

ρ = 1.50%

ρ’ = 0.75% d
g
 = 16 mm

f
c
 = 30 MPa

f
y
 = 460 MPa

n
c
 = 2

Figure 5.25 – Predicted slab rotation at peak moment considering the effect of loading history and
allowable drift limit according to ACI-318 [ACI14] and Hueste and Wight [Hue99]: (a) Influence of
loading conditions (monotonic vs cyclic) and seismicity level, and (b) moment-rotation curves for
slab-column connections in the zone of discontinuity (high seismicity).

Figure 5.25a shows that the deformation capacity according to the cyclic model presented in this
chapter can attain 30-50% higher values than the CSCT(cyc) approach. For high gravity loads the
influence of loading history on the deformation capacity becomes less important. The simplified
approach of Chapter 4 (dashed-dotted grey curve in Fig. 5.25a) provides a reasonable lower-bound
estimate of the seismic rotation capacity of slab-column connections if no consideration of the loading
history is taken.

Although the shape of the curves according to the monotonic model (drawn in grey) is smooth, the
curves according to the cyclic model (drawn in black) display a step at GSR ≈ 0.50-0.65. This
discontinuity is associated with the cyclic damage of the slab-column connection, as illustrated in
Figure 5.25b. When the cyclic damage is not large enough to trigger smaller unbalanced moment
at punching failure than at the previous peak, the ψslab at peak moment coincides with the ψslab at
punching failure (continuous curve in Fig. 5.25b). This case corresponds to the left-hand side of each
curve (Fig. 5.25a). On the contrary, when the cyclic damage is large enough to induce punching failure
at a smaller unbalanced moment than the maximum previously attained unbalanced moment (dashed-
dotted curve in Fig. 5.25b), the ψslab at peak moment is smaller than the ψslab at punching failure
(right-hand side of each curve in Fig. 5.25a). Figure 5.25a shows that for increasing seismicity the step
in the ψslab - GSR diagram moves to higher GSR values, creating a zone where high seismicity results
in larger ψslab values than low seismicity (0.50 < GSR < 0.65). In this zone, the first inelastic rotation
level corresponds to ψslab.max for low seismicity but only to 0.57ψslab.max for high seismicity. When
the first unloading from the post-yield range occurs at the load step that corresponds to ψslab.max (last
load step), the cyclic damage increases significantly and leads to the discontinuity of the ψslab - GSR
curve. High seismicity implies a larger number of applied load steps than low seismicity (in this case
6 instead of 3). Since for high seismicity there is a larger number of load steps before ψslab.max than
for low seismicity, it is expected that the last load step becomes determinant at higher gravity loads
for high seismicity that for low seismicity.
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5. Analytical model for cyclically increasing drifts

The overall influence of the number of cycles before reaching failure in the ψslab - GSR curves does not
appear to be significant (Fig. 5.25a) and therefore confirms the results of §5.5.1. The loading protocol
for moderate-low seismicity regions will be used for the parametric studies shown in the following.

Reversed cyclic vs Non-reversed cyclic

In the following, the results of a parametric study on the influence of rotation reversal on the predicted
rotation capacity according to the cyclic model are presented. Figures 5.26 and 5.27 show the predicted
slab rotation ψslab as function of the normalised shear force for both reversed and non-reversed cyclic
loading for ρ = 0.75% and 1.50%, respectively. The predicted slab rotation is shown both at peak
unbalanced moment (Figs. 5.26a and 5.27a) and at punching failure (Fig. 5.26b and 5.27b).
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Figure 5.26 – Allowable drift limit according to ACI-318 [ACI14] and Hueste and Wight [Hue99] and
predicted slab rotation for reversed and non-reversed loading (ρ = 0.75%, ρ’ = 0.38%, d = 120 mm,
L = 35d, c = 2d, fc = 30 MPa, dg = 16 mm, and fy = 460 MPa) at: (a) peak unbalanced moment,
and (b) punching failure.
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Figure 5.27 – Allowable drift limit according to ACI-318 [ACI14] and Hueste and Wight [Hue99] and
predicted slab rotation for reversed and non-reversed loading (ρ = 1.50%, ρ’ = 0.75%, d = 120 mm,
L = 35d, c = 2d, fc = 30 MPa, dg = 16 mm, and fy = 460 MPa) at: (a) peak unbalanced moment,
and (b) punching failure.

In general, rotation reversals lead to smaller slab rotation ψslab. Figures 5.26a and 5.27a show that
this effect is more pronounced for low gravity loads. It can be seen that the effect of rotation reversals
is more marked for the slab rotation at punching (ψslab.u - Figs. 5.26b and 5.27b) than for the slab
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rotation at peak unbalanced moment (ψslab - Figs. 5.26a and 5.27a). As shown in Figure 5.27c (ρ
= 1.50%), rotation reversal leads to maximum reduction of the rotation capacity by 30% compared
to monotonic loading (for GSR = 0.6). On the other hand, non-reversed cyclic loading results in
maximum reduction by only 15% compared to monotonic loading (for GSR = 0.4).

Influence of the number of cycles (reversed cyclic loading)

In the following, the results of a parametric study on the influence of the number of cycles on the
rotation capacity of slabs with ρ = 0.75% (Fig. 5.28) and ρ = 1.50% (Fig. 5.29) are presented and
discussed. Each figure distinguishes between slab rotation at peak unbalanced moment (Figs. 5.28a
and 5.29a) and slab rotation at punching failure (Figs. 5.28b and 5.29b).
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Figure 5.28 – Allowable drift limit according to ACI-318 [ACI14] and Hueste and Wight [Hue99] and
predicted slab rotation for nc = 1, 2, and 3 (ρ = 0.75%, ρ’ = 0.38%, d = 120 mm, L = 35d, c = 2d,
fc = 30 MPa, dg = 16 mm, and fy = 460 MPa) at: (a) peak unbalanced moment, and (b) punching
failure.
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Figure 5.29 – Allowable drift limit according to ACI-318 [ACI14] and Hueste and Wight [Hue99] and
predicted slab rotation for nc = 1, 2, and 3 (ρ = 1.50%, ρ’ = 0.75%, d = 120 mm, L = 35d, c = 2d,
fc = 30 MPa, dg = 16 mm, and fy = 460 MPa) at: (a) peak unbalanced moment, and (b) punching
failure.

Figures 5.28 and 5.29 show that small number of cycles nc per load step results, in general, in ψslab
predictions closer to the monotonic model. The overall influence of the number of cycles is more
marked on the slab rotation at punching failure (Figs. 5.28b and 5.29b) than on the slab rotation at
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peak moment (5.28b and 5.29b). As shown in Figure 5.29c (ρ = 1.50%), 1 cycle per drift level leads
to maximum reduction of the rotation capacity by 20% compared to monotonic loading (for GSR =
0.85), 2 cycles result in maximum reduction by 30% (for GSR = 0.65), and 3 cycles result in maximum
reduction by 35% (for GSR = 0.6).

It should be noted that the main difference between the cyclic model and the monotonic model
(grey curves) lies on the assumed shear crack inclination. The monotonic model adopts a rotating
shear crack, while the cyclic model adopts a fixed shear crack. The crack angle in the cyclic model
corresponds to the angle of load reversal after yielding has been exceeded for the first time. The
rotation amplitude at first post-yield unloading ψslab.y is the parameter that is influencing most the
shear crack inclination and consequently the predicted rotation capacity. When ψslab.y is closer to the
slab rotation ψslab.max, the cyclic model gives predictions closer to the simplified approach of Chapter
4.

5.8.2 Influence of geometric properties and reinforcement content

In the following, the influence of the effective depth (Fig. 5.30a), the reinforcement ratio (Fig. 5.30a),
and the slab slenderness (Fig. 5.30b) on the predicted seismic rotation capacity is assessed, considering
the effect of loading history.
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Figure 5.30 – Predicted slab rotation at peak moment considering the effect of loading history and
allowable drift limit according to ACI-318 [ACI14] and Hueste and Wight [Hue99]: (a) Influence of slab
effective depth and reinforcement ratio on the seismic rotation capacity (c = 2d), and (b) Influence of
column size on the seismic rotation capacity.

For the shape of the calculated curves of Figure 5.30, similar discontinuities as the one shown in Figure
5.25a can be observed, which correspond to a change in ψslab.y from 0.15ψslab.max to 0.42ψslab.max and
from 0.42ψslab.max to ψslab.max, resulting in a sudden increase of the seismic damage and consequently
in a drop of the slab rotation at peak moment. As can be seen from Figure 5.30a, higher slab effective
depth confers smaller seismic rotation capacity, as was the case for the simplified approach of Chapter
4 (Section 4.5). Regarding the effect of reinforcement ratio on the rotation capacity predictions, for
relatively high gravity loads (0.5 < GSR < 0.85 for d = 120 mm and 0.5 < GSR < 0.65 for d = 240
mm) high ρ results in smaller rotation capacity than small ρ. In these zones ψslab.y increases with ρ,
i.e. first unloading from the post-yield range comes at higher ψslab for high ρ than for small ρ. On
the other hand, for the zones where high ρ leads to higher rotation capacity than small ρ (for instance
when GSR < 0.5), ψslab.y decreases with ρ, i.e. first yielding comes at smaller ψslab for high ρ than for
small ρ. The extent of the different zones depends on the adopted loading protocol. Moreover, Figure
5.30a shows that the effect of reinforcement ratio on the seismic rotation capacity is more pronounced
for d = 120 mm than for d = 240 mm. Figure 5.30b shows that the column size c has also a marked
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effect on the seismic rotation capacity. Larger column results in higher rotation capacity, which is
in agreement with the results of Section 4.5. It was observed that the slab slenderness has a smaller
impact of the seismic rotation capacity.

5.9 Conclusions

This chapter presents an extension of the mechanical model presented in Chapter 4 to account for the
hysteretic behaviour and cumulative damage effects on slab-column connections without transverse
reinforcement when subjected to cyclic loading. The assumptions of the extended model are based on
local deformation measurements from the tests performed within this research (Chapter 3). The main
conclusions of this chapter are the following:

1. The extended analytical model allows considering both cyclic loading and maximum deforma-
tion when calculating the moment-rotation relationship of slab-column connections subjected to
earthquake loading. A fixed shear crack is assumed to govern the post-yield behaviour of the sec-
tor elements while a hysteretic moment-curvature relationship is adopted for the radial direction.
Seismic damage is incorporated using a model proposed by Roufaiel and Meyer [Rou87].

2. The moment resistance and the rotation capacity are determined by the combination of the
moment-rotation relationship with the failure criterion that allows for shear force redistribu-
tion between the sector elements of the hogging slab half, as for monotonic loading conditions
(CSCT(mono)). The upper-bound limit for punching failure under cyclic loading is determined
when the maximum slab rotation ψmax reaches the maximum slab rotation at punching under
monotonic loading (ψmax.u.mono), i.e. when D = 1.

3. The extended model allows for better estimation of the rotation capacity of the slabs tested
within this research (Chapter 3) compared to the simplified approach presented in Chapter 4.

4. According to the proposed model, at peak moment, the contribution of flexure (γf ) to the total
unbalanced moment resisted by the slab-column connection decreases with increasing gravity
load acting on the slab. For low gravity load, the cyclic model predicts smaller γf values at peak
moment than the simplified approach of Chapter 4. The influence of the loading history on the
predicted γv values (contribution of eccentric shear force) is less marked.

5. The model shows that the seismic rotation capacity of flat slabs is considerably influenced by
the gravity induced shear and the slab effective depth, but also by the column size. Other
parameters such as the seismicity level, the top reinforcement ratio, and the slab slenderness
influence the rotation capacity to a smaller extent. The effect of the number of cycles and
rotation reversals is more pronounced on the slab rotation at punching than on the slab rotation
at peak moment. The simplified approach for cyclic loading presented in Chapter 4 (adoption
of CSCT(cyc) instead of CSCT(mono)) represents a reasonable lower-bound solution to be used
in engineering practice if no consideration of the loading history is made.
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Chapter 6

Validation of the analytical model

The experiments performed within the framework of this thesis as well as experiments found in the
literature are used for evaluating the performance of the developed analytical model, presented in
Chapters 4 and 5 for monotonic and cyclic loading conditions, respectively.

In Section 6.1, the main assumptions of the analytical model for the moment-rotation relationship
are evaluated. The evaluation focuses on the assumptions regarding (a) the inclination of the critical
shear crack, and (b) the kinematic law between the slab rotations at varying angles with regard to
the direction of excitation.

Section 6.2 presents the evaluation of the performance of the combined model (analytical model for
the moment-rotation relationship and failure criterion) to predict the moment-rotation response of
isolated slab-column specimens. The comparisons presented in this section comprise tests on square
slabs without transverse reinforcement supported on square columns and subjected to monotonic or
quasi-static cyclic unbalanced moments. First, the predictions of local slab rotations according to
the proposed model are compared to experimentally obtained local slab rotations from the tests per-
formed within this thesis. Afterwards, the model performance in predicting the moment strength and
the deformation capacity of slab-column connections is assessed through comparison with results of
both the current experimental campaign and previous experimental campaigns. Comparisons with
the predictions of the some codes of practice and several other models are also presented. Finally, the
contribution of the different lateral force-resisting mechanisms is validated through comparison with
NLFEA results. Based on the model predictions for the specimens of the test database, new formulas
are proposed for the calculation of γv and γt within the ACI-318 eccentric shear force model.

Section 6.3 presents the evaluation of the performance of the proposed model in predicting the re-
sponse of continuous flat slabs. First, the predicted distribution of radial bending moments and
torsional moments at r = 0.22L is validated through comparison with NLFEA results. Then, the
model predictions for the moment strength and the deformation capacity (combination of the analyti-
cal model with the failure criterion) are compared with results of continuous flat slab specimens. Only
tests on one-storey flat slabs without transverse reinforcement are treated in this section. The tested
specimens were subjected to combined vertical loads and monotonic or quasi-static cyclic lateral loads.
The evaluation is focused on interior slab-column connections supported on square columns. Due to
the significant implications of tests on continuous flat slabs for the behaviour of actual flat slabs, the
evaluation is presented in more detail in comparison with the evaluation for tests on isolated specimens.
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6. Validation of the analytical model

6.1 Assumptions

The tests performed within the framework of this thesis were used for evaluating the main assumptions
of the proposed model (Chapters 4 and 5):

• The slab rotation follows a sinusoidal law with regard to the bending axis (see Eq. (4.2)).

• For monotonic loading conditions, the radius r0 of the critical shear crack is equal to the eccen-
tricity e, but no smaller than rc + d (see Eq. (4.3)).

• For cyclic loading conditions, the radius r0 of the critical shear crack is equal to the eccentric-
ity e (but no smaller than rc + d) during loading/unloading in the elastic range, while load-
ing/unloading in the post-elastic range is governed by the attained eccentricity at the first
post-yield peak.

6.1.1 Kinematic law between slab rotations at varying angles

To validate the adopted sinusoidal law that relates the rotation to the angle with regard to the bend-
ing axis, comparisons with experimentally measured slab rotations at different angles are needed.
Although the database of existing tests is rather extensive (Appendix A), no data on measured rota-
tions at different angles were collected.

For the tests performed using setup (a), the main aim was to evaluate the punching resistance of
slab-column connections in the presence of a constant eccentricity. Therefore, the results represent
the punching capacity at a defined level of induced drift rather than the moment capacity of the slab-
column connection under increasing earthquake-induced drifts. In addition, since only the central
deflection is typically measured, there is a lack of information on the local slab rotations, which influ-
ence to a remarkable degree the prediction at both global (specimen) and local (sector element) level
(Chapter 4). Therefore, safe conclusions cannot be drawn on the legitimacy of the adopted kinematic
law.

For tests carried out using setup (b), only maximum slab rotations are typically reported [Haw89].
Although these tests are useful for assessing the performance of the proposed model in predicting the
maximum local slab rotation during moment introduction, they cannot provide information on the
local slab rotations at different angles.

For the tests performed using setup (c), which is the most common configuration for experimental
investigations under cyclic loading conditions, only the horizontal displacement of the column top is
measured. The drift demand on the slab-column connection is expressed as the top displacement of
the column divided by the column height. Since the column is designed to remain elastic during the
moment introduction, the rotation due to column deformation is zero for this setup configuration and
the measured drift corresponds to the rotation due to slab deformation. Nevertheless, such measure-
ment does not provide any information on the distribution of local slab rotations at different angles.

As has been discussed in the introduction (Chapter 1), one of the main objectives of the present
research is the development of a relation between local slab rotations and the rotation of the slab-
column connection, since the latter one gives an estimation of the contribution of the slab deformation
to the interstorey drift. The experimental campaign aimed to provide more insight with respect to
this investigation and to verify the sinusoidal kinematic law adopted by the proposed model (Chapter
4) to describe the variation of slab rotation as function of the angle with respect to the axis of excita-
tion. Figures 6.1 and 6.2 show the comparison between experimental slab rotation (grey curves) and
calculated slab rotation (black curves) at varying angles and at peak moment for the tests performed
within this research (monotonic and cyclic, respectively). Figure 6.2 compares the experimental slab
rotation distribution at peak moment with the predicted slab rotation distribution according to both
the simplified approach of Chapter 4 (adoption of CSCT(cyc) - continuous black curves) and the cyclic
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Assumptions

model proposed in Chapter 5 (adoption of CSCT(mono) - dashed black curves). The measured slab
rotations at peak moment are represented by round markers (grey curves).
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Figure 6.1 – Comparison between peak experimental and calculated slab rotations at varying angles
with respect to the bending axis for the monotonic tests performed within this research.
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Figure 6.2 – Comparison between peak experimental and calculated slab rotations at varying angles
with respect to the bending axis for the cyclic tests performed within this research.
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6. Validation of the analytical model

Both Figures 6.1 and 6.2 show that the proposed model follows the experimental trend rather well. In
particular, the predictions are more precise for the hogging slab half (0 ≤ φ ≤ π) than for the sagging
slab half (π ≤ φ ≤ 2π). Since the largest slab rotations appear at the hogging slab half and influence
considerably the obtained moment-rotation relationship, it is of outmost importance to capture the
experimentally measured rotations for this slab half. For the cyclic tests (Fig. 6.2), the simplified
approach of Chapter 4 (CSCT(cyc)) predicts consistently stiffer response (black continuous curves)
compared to the experimental response as has been noted already (Section 5.4). The cyclic analytical
model (dashed black curves), on the contrary, predicts more accurately the measured slab rotations.

Since the torsional moment is proportional to the difference of tangential moments of the two faces
of the sector element (Eq. (4.7)) and the tangential moments increase with increased rotation ψ(φ)
(Eq. (4.4)), it comes out that the torsional moment is proportional to the rotation derivative ψ′(φ).
Therefore, the adoption of a sinusoidal law for the slab rotations at varying angles (Eq. (4.2)) max-
imises ψ′(φ) (which is proportional to cos(φ)) at the bending axis (φ = 0 and φ = π). Consequently,
the torsional moment attains its maximum value at the bending axis. This is in accordance with
the elastic plate solution [Mas70] as well as experimental evidence from the presented test campaign
(Chapter 3) and previous test campaigns [Haw89,Rha14].

6.1.2 Inclination of the critical shear crack

In the following, the predicted critical shear crack inclination according to the proposed analytical
model is compared to the experimentally observed shear crack inclination at failure, on the basis of
saw cuts performed after each test (Chapter 3). Since this thesis proposes a different analytical model
for monotonically increasing drifts (Chapter 4) and for cyclically increasing drifts (Chapter 5), the
comparison distinguishes between monotonic and cyclic tests.

Monotonic tests

Figure 6.3 shows the comparison between saw cuts performed after each monotonic test (drawn in
grey) and the assumed radius of the critical shear crack at peak moment, according to the proposed
model of Chapter 4 (black lines). As can be seen, assuming that r0 = e appears rather rational for
most performed monotonic tests. It is also verified that r0 is not smaller than rc + d (Fig. 6.3a and
e).
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Figure 6.3 – Comparison between experimental shear crack inclination (based on saw cuts) and as-
sumed shear crack inclination at peak moment for the monotonic tests performed within this research.
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Isolated slab-column specimens

Cyclic tests

Figure 6.4 shows the comparison between the saw cut of each cyclically tested slab (drawn in grey)
and the assumed shear crack inclination at first unloading from the post-elastic range (dashed black
lines). To facilitate discussion, the assumed shear crack inclination at peak moment according to the
simplified approach of Chapter 4 (monotonic model - CSCT(cyc)) is also shown in the same figure
(continuous black lines).
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Figure 6.4 – Comparison between experimental shear crack inclination (based on saw cuts) and as-
sumed shear crack inclination for the cyclic tests performed within this research.

For low gravity loads (Fig. 6.4b, c and e), it is shown that by assuming r0 = e the predicted inclination
of the shear crack (continuous black lines) is significantly lower than the experimentally observed one.
On the other hand, the assumption that the eccentricity at the first post-elastic peak determines
the inclination of the shear crack during subsequent loading/unloading (dashed black lines) leads to
prediction of steeper shear cracks, which agrees better with the experimental results. Moreover, the
assumption that r0 cannot be smaller than rc + d shows good agreement also with the results of the
cyclic tests (Fig. 6.4a and d). Moreover, it should be stated that monotonic loading (CSCT(mono))
results in higher peak unbalanced moment, and consequently in flatter shear crack than cyclic loading
(CSCT(cyc) - continuous black lines). Therefore, Figure 6.4b, c, and e shows that, for relatively
low gravity loads, cyclic loading (dashed black lines) results in prediction of steeper shear crack than
monotonic loading (CSCT(mono)). This trend is in accordance with the experimental results, shown
in Chapter 3.

6.2 Isolated slab-column specimens

This section aims at assessing the performance of the monotonic and cyclic analytical model presented
in Chapters 4 and 5, respectively, with respect to isolated slab-column specimens. First, a rather local
prediction assessment is performed, which consists in comparing the predicted and experimentally
measured maximum and minimum slab rotations for the slabs tested within this thesis (Chapter
3). Then a global prediction assessment of the analytical model for the moment-rotation relationship
combined with the failure criterion of the CSCT is carried out. The predicted moment strength and the
deformation capacity are compared with test results of isolated slabs tested by previous researchers
and by the author. For discussion purposes, the experimental results are also compared with the
predictions of several codes of practice [ACI14,Eur04,Fib11] and other proposed models [Bro09,Hue99].
Finally, the contribution of the lateral force-resisting mechanisms according to the proposed model is
compared to numerical calculations using NLFEA. Based on the predictions of the analytical model
for the contribution of the different LFRM for tests found in the literature, new formulas are proposed
for the calculation of γv and γt within the framework of ACI-318 [ACI14].
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6. Validation of the analytical model

6.2.1 Local slab rotations

As both the failure criterion and the moment-rotation relationship depend on the local slab rotations
ψ(φ), it is important for the analytical model to capture the relationship between local slab rotations
and unbalanced moment as well as the local slab rotation at peak unbalanced moment. Although
the database of slabs subjected to constant vertical load and unbalanced moment is relatively large,
local slab rotations at varying angles were measured only in the test campaign presented in Chapter
3. In the following, the comparison between measured and calculated slab rotations is presented for
the maximum slab rotation (ψmax, at φ = π/2) and the minimum slab rotation (ψmin, at φ = 3π/2)
parallel to the x-axis (see Figs. 6.3 and 6.4). Comparison of experimental and calculated slab rotations
at different angles φ from the bending axis are not included in the following, for illustrative purposes.
Table 6.1 compares the experimental and calculated values of ψmax and ψmin at peak unbalanced
moment.

Table 6.1 – Experimental and calculated values of ψmax and ψmin at peak unbalanced moment ac-
cording to CSCT(mono) and CSCT(cyc) [%]

Slab Loading Experimental CSCT(mono) CSCT(cyc)
type ψmax ψmin ψmax ψmin ψmax ψmin

PD3 V+M 1.49 0.37 1.43 0.66 - -
PD5 V+M 3.68 -1.71 2.50 -0.30 - -
PD4 V+M 3.12 -1.90 3.11 -0.82 - -
PD1 V+M 2.50* -1.62* 3.17 -0.88 - -
PD10 V+M 1.21 -0.03 1.07 0.40 - -
PD12 V+M 2.02 -1.09 1.63 -0.16 - -
PD2 V+C 1.34 0.55 1.60 0.79 1.34 0.76
PD6 V+C 1.92 -0.21 1.98 -0.06 1.62 -0.05
PD8 V+C 2.31 -0.85 2.51 -0.57 1.73 -0.22
PD11 V+C 1.22 0.07 1.21 0.32 1.00 0.32
PD13 V+C 1.62 -0.62 1.79 -0.27 1.31 -0.07

* inconsistent rotation measurement

For monotonic loading, as can be seen from Table 6.1, if slab PD1 is disregarded (due to inconsistent
rotation measurement), the predictions of the maximum and minimum slab rotations are slightly
conservative but follow the experimental trend rather well for most of the tests. The predictions of
the monotonic model are more accurate for the maximum slab rotations rather than the minimum
slab rotations. For cyclic loading, the predictions according to the simplified approach of Chapter 4
(columns 7 and 8) are rather conservative estimates of the experimental values (columns 3 and 4). On
the other hand, the cyclic model combined with the CSCT(mono) failure criterion gives more accurate
predictions of both the ψmax and the ψmin at peak moment (columns 5 and 6).

The experimental and calculated M− ψmax and M− ψmin relationships are compared in Figures
6.5 and 6.6 for monotonic and cyclic tests, respectively. The calculated curves correspond to the
monotonic analytical model presented in Chapter 4. The intersection of the analytical model with the
CSCT failure criterion (CSCT(mono) in Figure 6.5 - (CSCT(cyc) in Figure 6.6) is also shown.
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for the monotonic tests performed within this research according to the monotonic analytical model
presented in Chapter 4.
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tions for the cyclic tests performed within this research according to the monotonic analytical model
presented in Chapter 4.
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6. Validation of the analytical model

As shown in Figures 6.5 and 6.6, the experimentally measured local slab rotations are predicted rather
well by the monotonic model. The trend of the relationship between local slab rotations and unbal-
anced moment is captured both for monotonic tests (Fig. 6.5) and for the envelope of cyclic tests (Fig.
6.6). The good accuracy of the predictions of the local slab rotations with respect to the experimental
results proves that the assumption of a sinusoidal law linking the local slab rotations is reasonable
also for moments lower than the moment strength (Figs. 6.1 and 6.2).

Figure 6.7 compares the measured and predicted M − ψx relationships according to the cyclic an-
alytical model presented in Chapter 5. It should be noted that maximum values of ψx correspond
to the maximum slab rotation ψmax whereas minimum ψx values correspond to the minimum slab
rotation ψmin. In the same figure, x markers represent the intersection of the cyclic model with the
CSCT(mono) failure criterion or the load step that corresponds to D = 1, whichever comes first.
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Figure 6.7 – Comparison between experimental and calculated maximum and minimum slab rotations
for the cyclic tests performed within this research according to the cyclic analytical model presented
in Chapter 5.

Figure 6.7 shows that the cyclic analytical model gives more accurate predictions of the local slab
rotation of the cyclically tested slabs than the monotonic analytical model, both at peak and pre-
peak loading stage. This is expected since both the hysteretic behaviour of the connections and the
cumulative damage due to cyclic loading are taken into account by the cyclic analytical model. In
particular, the predictions are more precise for the maximum slab rotations than for the minimum
slab rotations. When the minimum slab rotations are close to zero or negative (i.e. sagging), the
predicted M−ψ curve is stiffer than the experimental one (Fig. 6.7b, c, and e). This can be explained
by the fact that according to the cyclic model loading towards the negative direction is characterised
by stiffer mrad − χrad relationship for sector elements that have previously developed smaller plastic
rotations than the sector element at the tip of the sagging slab half (ψmin) (see Chapter 5). On the
other hand, when the minimum slab rotations are positive (i.e. hogging), no response stiffening is
predicted (Fig. 6.7a, and d).
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Isolated slab-column specimens

6.2.2 Moment strength and deformation capacity

In the following, the proposed model is compared to tests on isolated slabs performed within this re-
search project as well as tests found in the literature. More information on the selected tests is provided
in Appendix A. The database comprises 106 isolated slab specimens, among which 53 were tested un-
der constant eccentricity and 53 under constant shear force. While in the first category only monotonic
tests are included, the second one comprises slabs subjected to monotonically and cyclically increasing
unbalanced moment (18 and 35 tests, respectively). Each test campaign measures the slab-column
rotation differently. §4.2.4 outlines for each campaign how the measured quantities are estimated with
the analytical model. In Appendix C, the proposed model for the moment-rotation relationship is com-
pared to experimental moment-rotation curves found in literature conducted under either monotonic
or cyclic loading conditions. The proposed model for the moment-rotation relationship was found to
be in good agreement with the experimental moment-rotation curves. In Appendix D, the predictions
of the proposed model (moment-rotation relationship and failure criterion) are compared to the tests
of the database (Appendix A) in terms of moment strength and deformation capacity. For monotonic
tests, the predictions correspond to the combination of the monotonic moment-rotation relationship
(Chapter 4) with the failure criterion CSCT(mono). For cyclic tests, the predictions according to both
the approach presented in Chapter 4 (monotonic M −ψscc relationship combined with the CSCT(cyc)
failure criterion) and the model presented in Chapter 5 (cyclic M − ψscc relationship combined with
the CSCT(mono) failure criterion) are provided. In the following, the overall performance of the com-
bined model (analytical model for the moment-rotation relationship and failure criterion) is presented
and discussed in terms of moment strength and deformation capacity. In addition, the predictions of
several codes of practice [ACI14, Eur04, Fib11] and several proposed models [Bro09, Hue99] are pre-
sented and discussed. Their predictions for moment strength and deformation capacity are shown in
tabulated form in Appendix D as well.

The evaluation is presented for square isolated slab specimens without transverse reinforcement sup-
ported on square columns subjected to either monotonic or quasi-static cyclic unbalanced moment.
For all isolated specimens the moment-rotation relationship was calculated using rs = 0.22L. For tests
using setup (c) where the vertical load was applied on the slab surface, the radius of the specimen is
equal to 0.50L. For these cases (represented by square markers) the radial and tangential moments
acting on the perimeter of the sector elements were not set to zero to account for the influence of the
outer region of the slab on the moment-rotation response. For all other cases (represented by round
markers) 0.22L corresponds to the specimen radius and, therefore, the radial and tangential moments
acting on the slab perimeter were set to zero.

The abscissas of all graphs of this subsection represent the normalised shear strength, i.e., the shear
force at failure divided by bo d

√
fc, where d is the average effective slab depth, fc is the concrete

compressive strength and bo is the control perimeter located at d/2 from the face of the column, cal-
culated with rounded corners [Fib11]. Note that the normalised shear force Vexp/bo d

√
fc should be

multiplied by three when using SI units and divided by four when using imperial units to obtain the
Gravity Shear Ratio (GSR) defined according to ACI-318 [ACI14].

Monotonic loading conditions

The tests that are conducted under monotonically increasing unbalanced moment can be classified in
two categories depending on the loading parameter that is maintained constant: shear force or eccen-
tricity. In the following, the moment strength predictions and the deformation capacity predictions
are presented and discussed separately for each category. All monotonic tests had been performed on
slab specimens of the size 0.44L x 0.44L.
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6. Validation of the analytical model

Moment strength

Figure 6.8 shows the moment strength predictions according to several codes of practice (Fig. 6.8a,
b and c), the model proposed by Broms [Bro09] (Fig. 6.8d) and the model proposed in Chapter 4
(CSCT(mono) - Fig. 6.8e) for slabs subjected to constant vertical load and monotonically increasing
unbalanced moment.
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Figure 6.8 – Moment strength predictions for specimens subjected to constant shear force and monoton-
ically increasing unbalanced moment according to: (a) ACI-318 [ACI14], (b) Eurocode 2 [Eur04], (c)
Model Code 2010 [Fib11], (d) Broms [Bro09], and (e) the proposed monotonic model (CSCT(mono)).

Figure 6.8a shows that in average the eccentric shear stress model of ACI-318 [ACI14] yields rather
conservative estimates of the moment capacity (ratio of predicted to observed values: 0.488 ± 0.332).
The conservatism of the moment strength predictions increases with increasing gravity induced shear,
as has been reported by others [Bro09,Cho14]. Eurocode 2 [Eur04] and Model Code 2010 [Fib11] (Fig.
6.8b and c, respectively) provide better average predictions of the moment capacity than ACI-318 but
with similar scatter (0.674 ± 0.362 and 0.593 ± 0.384, respectively). Broms’ model [Bro09] (Fig.
6.8d) shows better performance with respect to the mean value of the ratio Mpred/Mexp (1.092) but
the results are largely scattered (COV = 30.8%). The proposed model combined with the CSCT(mono)
(Fig. 6.8e) yields higher prediction accuracy than Broms’ model [Bro09] with respect to the average
ratio of Mpred/Mexp (1.018) and significantly reduced scatter (COV = 10.7%).

The moment capacities predicted by ACI-318, Eurocode 2, Model Code 2010, Broms’ model, and the
proposed model (Chapter 4) are compared to the experimentally obtained moment capacities in Figure
6.9 for slabs subjected to constant eccentricity and monotonically increasing unbalanced moment.
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Figure 6.9 – Moment strength predictions for specimens subjected to constant eccentricity and mono-
tonically increasing unbalanced moment (or equally shear force) according to: (a) ACI-318 [ACI14], (b)
Eurocode 2 [Eur04], (c) Model Code 2010 [Fib11], (d) Broms [Bro09], and (e) the proposed monotonic
model (CSCT(mono)).

As can be seen from Figure 6.9a, in average the predictions of ACI-318 [ACI14] for the moment capacity
(or equally the shear strength) of slabs subjected to constant eccentricity are rather conservative (ratio
of predicted to observed values: 0.761 ± 0.239). For eccentricities e both higher and lower than the
column size c, ACI-318 slightly overestimates the shear strength for tests with low values of gravity load
at failure and tends to underestimate the shear strength for tests with intermediate and high values of
gravity induced shear at failure. Eurocode 2 [Eur04] shows similar trend with ACI-318 (0.747 ± 0.229
- Fig. 6.9b). Model Code 2010 [Fib11] gives similar average predictions with ACI-318 and Eurocode 2,
but with reduced dispersion (0.778 ± 0.157 - Fig. 6.9c). Broms’ model [Bro09] shows the same trend
with the code predictions (Fig. 6.9a, b, and c) but with significant strength overestimation (1.075 ±
0.191), in particular for low vertical loads at failure (Fig. 6.9d). For the predictions of the proposed
model combined with CSCT(mono) (Fig. 6.9e), this trend can still be visible but the mean value of
the ratio Mpred/Mexp falls to 1.012 and the scatter is significantly reduced (COV = 10.3%).

Deformation capacity

For seismic loading, the deformation capacity is as important as the moment capacity. Figure 6.10
presents the predictions of Broms’ model [Bro09] and the proposed model (CSCT(mono)) as ratio of
calculated to measured rotation of the slab-column connection at peak moment for the tests conducted
under constant shear force. The allowable drift limit according to ACI-318 [ACI14] is not compared
to monotonic tests.
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Figure 6.10 – Predictions of connection rotation at peak moment for specimens subjected to constant
vertical load and monotonically increasing unbalanced moment according to: (a) Broms [Bro09]; and
(b) CSCT(mono).

For monotonic tests, Broms’ model [Bro09] (Fig. 6.10a) overestimates in average the rotation ca-
pacity and the prediction is also associated to a large scatter (1.639 ± 0.603). The proposed model
(CSCT(mono)) (Fig. 6.10b) provides conservative predictions (0.913 ± 0.198) and the scatter is re-
duced when compared to Broms’ model.

Figure 6.11 presents the predictions of the proposed model as ratio of calculated to measured maximum
local slab rotation at peak moment for tests conducted under constant eccentricity for which the ex-
perimental values are reported. For comparison purposes, the predictions using both the CSCT(mono)
and CSCT(cyc) are shown (Fig. 6.11a and b, respectively). Since the reported rotations are local and
both ACI-318 [ACI14] and the model developed by Broms [Bro09] provide global ultimate rotations,
direct comparison of their performance with regard to the proposed model is not possible. Moreover,
ACI-318 [ACI14] provides estimates of the deformation capacity of slab-column connections subjected
to cyclic loading. Therefore, no comparison with monotonic test results was performed.
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Figure 6.11 – Predictions of maximum local slab rotation at peak moment for specimens subjected
to constant eccentricity and monotonically increasing unbalanced moment (or equally shear force)
according to the proposed monotonic model combined with: (a) CSCT(mono), and (b) CSCT(cyc).

As can be seen from Figure 6.11, calculating using the failure criterion that accounts for shear redis-
tribution (CSCT(mono) - Fig. 6.11(a)) provides more accurate average predictions of the maximum
local slab rotation at peak moment compared to the calculating using the CSCT(cyc) failure criterion
(ratio of predicted to observed values: 0.985 ± 0.131 and 0.788 ± 0.135, respectively).
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Isolated slab-column specimens

Cyclic loading conditions

Since the experimental campaigns comprising cyclic tests focused on the seismic behaviour of slab-
column connections, the shear force, rather than the eccentricity, was maintained constant throughout
the test. Most of the cyclic tests had been performed on slab specimens of the size 0.44L x 0.44L.
Cyclic tests had, however, partly been conducted on slabs specimens of the size 1.0L x 1.0L. In this
case the total slab rotation ψslab was computed using the Effective Beam Width method described in
§4.2.5 and extended in Section 5.7 to account for cyclic loading and cumulative damage effects. Note
that Broms’ model is not applicable to cyclically loaded slabs [Bro09].

Moment capacity

Figure 6.12 shows the moment strength predictions according to several codes of practice (Fig. 6.12a,
b, and c) and the proposed model of Chapters 4 and 5 (Fig. 6.12d and e, respectively).
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Figure 6.12 – Moment capacity predictions for specimens subjected to constant vertical load and
cyclically increasing moment according to: (a) ACI-318 [ACI14], (b) Eurocode 2 [Eur04], (c) Model
Code 2010 [Fib11], (d) CSCT(cyc) (Chapter 4), and (e) CSCT(mono) (Chapter 5).

The predictions of ACI-318 [ACI14] and Model Code 2010 [Fib11] for the moment strength of slabs
subjected to cyclically increasing moment (Fig. 6.12a and c, respectively) display a similar depen-
dency on the value of gravity induced shear force, as for slabs subjected to monotonically increasing
moment (Fig. 6.9a and c, respectively), but with decreased conservatism (0.622 ± 0.302 and 0.653 ±
0.388). The predictions of Eurocode 2 [Eur04] follow the same trend with ACI-318 and Model Code
2010 but the mean value of the ratio Mpred/Mexp increases to 0.852 while the scatter reduces (COV =
21.1%), as shown in Figure 6.9b. The proposed monotonic model combined with CSCT(cyc) (Fig.
6.12d) offers higher prediction accuracy with respect to both average ratio and scatter of predicted
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6. Validation of the analytical model

to observed moment capacities Mpred/Mexp (0.956 ± 0.072). The proposed cyclic model combined
with CSCT(mono) (Fig. 6.12e) offers higher prediction accuracy with respect to the average ratio of
predicted to observed moment capacities Mpred/Mexp but slightly increased scatter (1.001 ± 0.096).

Deformation capacity

Regarding the deformation capacity of cyclically loaded isolated slab specimens, Figure 6.13 presents
the predictions of ACI-318 [ACI14], the model proposed by Hueste and Wight [Hue99], the simpli-
fied model of Chapter 4 (denoted as CSCT(cyc)) and the cyclic model of Chapter 5 (denoted as
CSCT(mono)) as ratio of calculated to measured rotation of the slab-column connection at peak
moment.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ψ
sl

a
b
.p

re
d
 /

 ψ
sl

a
b
.e

x
p
 [

-]

d > 100 mm

d < 100 mm

ACI 318-14

Mean = 0.733

COV = 0.351

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10 2 3 4 5 6 7

[    psi]

CSCT(cyc) 

Mean = 0.954

COV = 0.124

(b)(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Hueste and Wight

Mean = 1.053

COV = 0.364

(c)

concentric
punching

ψ
os 

> 0

ψ
os

 = 0

d > 100 mm

d < 100 mm

d > 100 mm

d < 100 mm

ψ
os 

> 0

ψ
os

 = 0

ψ
os 

> 0

ψ
os

 = 0

ψ
sl

a
b
.p

re
d
 /

 ψ
sl

a
b
.e

x
p
 [

-]

ψ
sl

a
b
.p

re
d
 /

 ψ
sl

a
b
.e

x
p
 [

-]

10 2 3 4 5 6 7

[    psi]
10 2 3 4 5 6 7

[    psi]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10 2 3 4 5 6 7

[    psi]

CSCT(mono) 

Mean = 0.955

COV = 0.101

(d)

ψ
os 

> 0

ψ
os

 = 0

d > 100 mm

d < 100 mm

ψ
sl

a
b
.p

re
d
 /

 ψ
sl

a
b
.e

x
p
 [

-]

V
exp

 / (b
o
·  d ·   f

c
’) [    MPa] V

exp
 / (b

o
·  d ·   f

c
’) [    MPa]

V
exp

 / (b
o
·  d ·   f

c
’) [    MPa] V

exp
 / (b

o
·  d ·   f

c
’) [    MPa]

Figure 6.13 – Predictions of slab deformation at peak moment for specimens subjected to constant
vertical load and cyclically increasing moment according to: (a) ACI-318 [ACI14]; (b) Hueste and
Wight [Hue99]; (c) CSCT(cyc) (Chapter 4) and (d) CSCT(mono) (Chapter 5).

For the slab rotation of slabs subjected to constant shear force and cyclically increasing moment,
ACI-318 [ACI14] (Fig. 6.13a) provides in average conservative predictions with rather high scatter
(0.733 ± 0.351). The model proposed by Hueste and Wight (Fig. 6.13b) gives more precise average
predictions but with similar scatter (1.053 ± 0.364). The CSCT(cyc) provides slightly conservative
average predictions (0.954), while the scatter is reduced (COV = 12.4%) when compared to ACI-
318 and the model of Hueste and Wight. The cyclic model combined with the CSCT(mono) failure
criterion provides similar average predictions with the simplified approach of Chapter 4 (Fig. 6.13c)
but further reduced dispersion (0.955 ± 0.101), as shown in Figure 6.13d.

It is recognised that the representation of the predictions of this subsection is penalised by the fact
that the ratios of predicted to experimental values is considered for the ordinates and not for the
abscissas. However, representing the predictions in the form of interaction diagrams M - V would
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seem approximate, since the geometric parameters and material properties of the tests found in the
literature present a larger variability compared to the tests of the performed campaign (see Fig. 3.24).

6.2.3 Lateral force-resisting mechanisms

The previous subsection has shown that for slabs subjected to constant eccentricity, the performance of
ACI-318, Eurocode 2 and Model Code 2010 with respect to the mean value of the ratio Mpred/Mexp is
similar (Fig. 6.9). On the other hand, for slabs subjected to constant shear force, it was demonstrated
that ACI-318 gives the most conservative average moment strength predictions (Figs. 6.8 and 6.12).
The conservatism of the strength predictions of ACI-318 (Figs. 6.8a and 6.12a) can be related to the
assumed force-resisting mechanism contribution. The American Standard adopts the eccentric shear
stress model assuming that the contribution of flexure and eccentric shear force to the total moment,
denoted as γf and γv, depend only on geometric properties; the contribution of torsional moments is
neglected (Chapter 2). For interior slab-column connections with square columns, ACI-318 [ACI14]
assumes that γf and γv are equal to 0.6 and 0.4, respectively, for any drift level. Previous studies inves-
tigated the pertinence of this assumption, mainly using finite elements [Meg00,Gay08]. As the model
presented in Chapter 4 is hitherto the only analytical approach for estimating the contribution of the
three lateral force-resisting mechanisms (flexure, torsion, and eccentric shear) to the total resisted
moment for flat slabs responding in the post-elastic range, this assumption was further investigated.

Figure 6.14a shows the contribution of the different mechanisms for increasing connection rotation (or
increasing moment), which results in decreasing γv factors, as has been observed by others [Meg00].
The obtained results were in reasonable agreement with finite element analyses using values for the
shear retention factor β equal to 0.83 for small connection rotations [Gru01] and 0.1 for high con-
nection rotations [Ede10] (dashed and dashed-dotted curves, respectively - Fig. 6.14a). The adopted
numerical approach is presented in Section 3.3 [CSI14]. The predictions of the proposed model for
the contribution of the different actions to the total resisted moment at failure at the critical section
(distance equal to d/2 from the column face) are shown in Figure 6.14b for slabs subjected to con-
stant shear force and monotonically or cyclically increasing unbalanced moment (Tables A.1 and A.3,
Appendix A). For slab-column connections subjected to large gravity loads, the predicted γf is close
to the value γf = 0.33 obtained from the solution of an elastic homogenous isotropic slab [Mas70].
Moreover, decreased gravity load appeared to confer larger values of γf . Figure 6.14b shows also that
cyclic loading results in smaller γf values than monotonic loading.
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Figure 6.14 – (a) Contribution of moment-resisting mechanisms as function of the connection rotation
ψscc according to numerical analysis and the analytical model (V = 0.38 MN; ρ = 0.81%; ρ′ = 0.38%;
c = 0.39 m; d = 0.198 m; B = 3 m); (b) Prediction of γ factors according to the proposed model
for specimens subjected to constant V and increasing M and; (c) ACI-318 [ACI14] moment strength
predictions using the γv and γf values calculated according to equations based on the proposed model.
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Based on the predictions of the proposed model γt is assumed to follow a parabola (Fig. 6.14b) whereas
γv is assumed equal to 0.2:

GSR = 1.944 (γv + γt − 0.2)2 + 0.3 (6.1)

γv = 0.2 (6.2)

Application of Eqs. (6.1) and (6.2) to the eccentric shear transfer model of ACI-318 (Fig. 6.14c) leads
to more accurate average strength predictions than illustrated in Figures 6.8a and 6.12a, which remain
safe and are not overly conservative. Moreover, the predictions become less dependent on the applied
gravity load.

6.3 Continuous flat slabs

This study concentrates on isolated slab specimens (B = 0.44L). In reality, however, slabs are usually
continuous. When the part outside 0.44L is neglected, an important component of the total slab
deformation is not accounted for. This may result in smaller moment strength and deformation
capacity compared to isolated slab specimens. Tests on continuous flat slabs can provide significant
information regarding the seismic behaviour of actual flat slabs as well as the influence of the boundary
conditions and the membrane action on the response if their results are compared to results of similar
isolated slabs. The model presented in Chapter 4 considers both the slab part until 0.44L and the part
outside 0.44L when computing the moment-rotation response. The calculation of the radial bending
moment and torsional moment acting to the sector element from the part of the slab outside r =
0.22L is performed using an Effective Beam Width method. The main advantage of this method is
the fact that continuity boundary conditions can be modelled. The model has, for example, shown
rather good performance in predicting the moment-rotation relationship of isolated specimens with
free edges or simply supported edges, as shown in Appendix C. Moreover, the moment strength and
the deformation capacity of isolated specimens are also predicted rather well, as shown in Appendix
D and discussed in Section 6.2. Nevertheless, the seismic behaviour of isolated slab-column specimens
can differ from the behaviour of continuous flat slabs, as has been shown in Chapter 3 and in previous
numerical studies on flat slabs subjected either to vertical loads alone [Ein15] or to a combination
of vertical and lateral loads [Par06]. In the following, the performance of the proposed model in
predicting the seismic response of continuous flat slabs is assessed: first, the predicted distribution of
radial and torsional moments at r = 0.22L is compared with NLFEA results; second, the predicted
moment-rotation response is compared against results of two tests on continuous flat slabs reported
in the literature.

6.3.1 Distribution of radial and torsional moments at r = 0.22L

In Chapter 4, a method was proposed to account for the contribution of the slab part outside 0.22L to
the slab deformations (§4.2.5). Τhis was performed by calculating the radial and torsional moments
at r = 0.22L (Mrad.022L and Mtor.022L, respectively) using an Effective Beam Width approach. To
validate this approach, the predicted distributions of Mrad.022L and Mtor.022L according to the model
were compared with NLFEA results, since no experimental measurement of Mrad.022L and Mtor.022L
is available. For this validation, the analyses of the continuous flat slab system that were presented
in Section 3.3 (§3.3.2) are used to validate the Effective Beam Width model. Figures 6.15 and 6.16
show the torsional moment distribution and the radial bending moment distribution until r = 0.50L,
respectively, for ρ = 0.75% and 1.50%. The results are plotted for the moment strength predicted
according to ACI-318 [ACI14].
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Figure 6.15 – Distribution of torsional moments at the predicted moment strength according to ACI-
318 [ACI14] (297 kNm) until r = 0.50L for (a) ρ = 0.75% and (b) ρ = 1.50% using [CSI14].
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Figure 6.16 – Distribution of radial bending moments at the predicted moment strength according to
ACI-318 [ACI14] (297 kNm) until r = 0.50L for (a) ρ = 0.75% and (b) ρ = 1.50% using [CSI14].

The highest values of torsional moment and radial bending moment were calculated for r < 0.22L and
parallel to the y-axis and x-axis, respectively. For ρ = 0.75%, the average torsional moment per unit
width at r = 0.22L was only 5% of the respective value at the column face. For the distribution of
radial bending moments (Fig. 6.16b) due to lateral loading, the inflection radius is displaced farther
from 0.22L at the hogging slab half and closer to the column face at the sagging slab half. For ρ =
0.75%, the average radial bending moment per unit width at r = 0.22L was 17% of the respective
value at the column face. For ρ = 1.50%, the obtained values are rather similar.

Figure 6.17 compares the radial and torsional moments at r = 0.22L obtained with the Effective Beam
Width model to those obtained from the NLFEA. Grey lines represent the numerical calculation,
while the predictions of the proposed model are represented by black lines with circular markers. The
predictions of the proposed Effective Beam Width model for the distribution of the radial and torsional
moments at r = 0.22L follow the trend of the numerical predictions rather well. The maximum radial
bending moment appears at φ = π/2 and φ = −π/2 (Fig. 6.17a), whereas the maximum torsional
moment appears at φ = −π/4 (hogging slab half) according to both the analytical and the numerical
model (Fig. 6.17b). Moreover, higher reinforcement ratio ρ leads to smaller average torsional moments
at 0.22L, as predicted by both the analytical and the numerical model. The influence of ρ on the
average radial moments at 0.22L is less significant. The discrepancies between analytical and numerical
results could be attributed to the fact that the Effective Beam Width method considers only the slab
part between 0.22L and 0.50L in the direction of excitation, whereas the slab part between 0.22L and
0.50L in the transverse direction is neglected. For this reason, the analytical model predicts a zero

133
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radial moment at φ = 0 and a small torsional moment at φ = 0 when compared to the finite element
calculation.
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Figure 6.17 – Distribution of (a) radial bending moments and (b) torsional moments at the predicted
moment strength according to ACI-318 [ACI14] (297 kNm) at r = 0.22L for ρ = 0.75% and 1.50%
according to NLFEA [CSI14] and the proposed model.

6.3.2 Moment-rotation response

This PhD project focuses on the seismic behaviour of interior slab-column connections. In the follow-
ing, the moment-rotation response of interior slab-column connections belonging to continuous flat
slab systems is analysed. For tests on subassemblies of one interior and two exterior slab-column con-
nections [Dur95] and single-storey continuous flat slabs [Hwa93, Rha14], the unbalanced moment M
and the shear force V of each interior slab-column connection were measured during loading using load
cells at the top and the base of each column. For multi-storey systems with flat slabs [Moe85,Fic08]
however, due to the static indeterminacy only the shear force of each storey and the axial force at the
base of each column can be monitored. The internal forces at the internal slab-column connections
cannot be measured. For this reason, tests on multi-storey flat slab systems are not treated herein and
the proposed model (Chapters 4 and 5) is compared to findings on interior slab-column connections
of continuous single-storey flat slabs tested in previous campaigns. In this last category fall only two
test campaigns, performed by Hwang and Moehle [Hwa93] and Rha et al. [Rha14], which are analysed
in the following. Tests on subassemblies of one interior and two exterior connections are disregarded
since the effect of exterior slab-column connections on the behaviour of interior connections is expected
to be more pronounced than for tests on continuous flat slab systems.
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Hwang and Moehle [Hwa93]

In 1993, Hwang and Moehle tested a flat slab system with 3 bays in each direction under combined
vertical and lateral loads [Hwa93]. The plan view and a section cut of the specimen are shown in Figure
6.18a and b. Here the attention is focused on the response of the interior connections supported on
square columns (i.e. the connections annotated as b2 and b3 - see Fig. 6.18a). The predictions of
the proposed model for the connections b2 and b3 are compared to the experimental results in Figure
6.18c and d, respectively. The experimental moment-rotation curves shown in Figure 6.18c and d
(drawn in grey) represent the envelope curves resulting from the tests.
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Figure 6.18 – Test campaign on a continuous flat slab by Hwang and Moehle [Hwa93]: (a) Plan view
of the specimen, (b) Section A-A (drawn after [Hwa93] - dimensions in mm), and comparison between
experimental and calculated moment-rotation relationship for the interior connections (c) b2 and (d)
b3.

The experimental slab rotation of the interior connections b2 and b3 at punching is predicted accurately
enough by the proposed cyclic model (Chapter 5), as can be seen in Figure 6.18c and d, respectively
(continuous black loops). It should be though noted that the calculated initial stiffness (prior to
reaching the yielding plateau) is lower than the experimental one. This could be attributed to the
compressive membrane action, as has already been demonstrated in Chapter 3 and to the fact that
the proposed Effective Beam Width method accounts for the slab part outside 0.22L only in the
direction of excitation. Use of the simplified approach of Chapter 4 (adoption of the CSCT(cyc) failure
criterion) provides more precise predictions for the moment strength but overestimates significantly
the deformation capacity (dashed curves).
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Rha et al. [Rha14]

In 2014, Rha et al. tested two flat slab systems with 2 x 2 spans under combined vertical and
lateral loads [Rha14]. To investigate the influence of cyclic loading on the moment strength and the
deformation capacity, the lateral loads were increased either monotonically or cyclically until failure.
The plan view of the specimens is shown in Figure 6.19a, while Figure 6.19b shows the adopted loading
protocol for the cyclic test. The evaluation is focused on the response of the interior connection C5.
The predictions of the proposed model are compared with the experimental results in Figure 6.19c
and d (monotonic and cyclic conditions, respectively).
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Figure 6.19 – Test campaign on continuous flat slabs by Rha et al. [Rha14]: (a) Plan view of the
specimens (drawn after [Rha14] - dimensions in mm), and (b) adopted loading protocol for the cyclic
test, and comparison between experimental and calculated lateral load-interstorey drift relationship
and punching failure point for the interior connection C5 of (c) the monotonic test, and (d) the cyclic
test.

As can be seen in Figure 6.19c and d, the proposed model captures the experimentally measured
lateral load-interstorey drift relationship of the interior connection C5 rather well. For the monotonic
test LM-S2 (Fig. 6.19c), the lateral load and the corresponding interstorey drift at punching failure
are predicted rather well by the monotonic model (Chapter 4). For the cyclic test LC-S2 (Fig. 6.19d),
use of the cyclic analytical model (Chapter 5 - continuous curve) leads to more accurate deformation
capacity prediction than the simplified approach of Chapter 4 (CSCT(cyc) failure criterion - dashed
curve) but to slight underestimation of the experimental moment strength.

Comparison between the experimental and the calculated curves shown in Figures 6.18c, d and 6.19c,
d (grey and black curves, respectively) suggest that calculating the moment-rotation relationship of
interior slab-column connections of continuous flat slabs assuming a specimen size equal to 0.44L
combined with the Effective Beam Width method (Sections 4.2 and 5.7 for monotonic and cyclic
loading conditions, respectively) gives rather good predictions of the overall global response. It should
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be nonetheless noted that the flat slabs tested by [Hwa93] and [Rha14] were relatively thin (h = 81
mm and 90 mm, respectively). Tests on flat slab systems with higher slab thickness are needed to
check the validity of the presented approach.

The following chapter proposes an Effective Beam Width method for the analysis of buildings with
slab-column connections. It proposes to calculate the width reduction coefficient α (see Chapter 2)
on the basis of the proposed analytical model. The method aims at calculating the global response of
multi-storey flat slab systems using a relatively simple numerical model where slabs are substituted
by beams. The model captures the influence of geometric and material properties, vertical and lateral
load level, reinforcement ratio, drift, etc. on the global behaviour through the α coefficient.

6.4 Conclusions

This chapter presents the validation of the analytical models for slab-column connections under mono-
tonic loading (Chapter 4) and cyclic loading (Chapter 5). The models are validated against experi-
mental results and results from non-linear finite element simulations. The main findings are:

1. The assumptions of Chapters 4 and 5 regarding the kinematic law between the slab rotations at
different angles with respect to the excitation as well as the shear crack inclination were verified
by comparison with the results of the slabs tested within this research.

2. The developed monotonic model (Chapter 4) predicts rather well the M − ψmax and M − ψmin
relationship of the slabs tested monotonically within the performed test campaign (Chapter 3).
For the cyclic tests, the model developed in Chapter 5 allows for more accurate prediction of the
local slab rotations than the simplified approach of Chapter 4 (adoption of CSCT(cyc) instead of
CSCT(mono)), since both the hysteretic behaviour and the cyclic damage are considered. The
improvement of the predictions is more significant for the maximum slab rotations.

3. The proposed monotonic model (Chapter 4) shows good performance in predicting the moment
strength of slabs subjected to monotonically increasing unbalanced moment (ratio of predicted
to observed values: 1.018 ± 0.107 and 1.012 ± 0.103 for V = cst and e = cst, respectively).
The predictions for the corresponding rotation show a larger dispersion and are slightly con-
servative for constant vertical loads (0.899 ± 0.205 and 0.985 ± 0.131 for V = cst and e =
cst, respectively). For cyclic loading, combination of the monotonic model with the CSCT(cyc)
failure criterion gives slightly conservative predictions for both the moment strength and the
deformation capacity (0.956 ± 0.072 and 0.954 ± 0.124, respectively).

4. The predictions of the proposed cyclic model (Chapter 5) are in very good agreement with ex-
perimentally measured peak unabalanced moments for slabs subjected to constant vertical load
and cyclically increasing moment. The cyclic model is more accurate than the simplified ap-
proach of Chapter 4 (adoption of CSCT(cyc) instead of CSCT(mono)) but the moment strength
predictions are associated with slightly larger scatter (1.001 ± 0.096). Regarding the deforma-
tion capacity, the cyclic model provides somewhat conservative predictions, as the simplified
approach of Chapter 4, but with a slightly reduced scatter (0.955 ± 0.101).

5. Both proposed models provide more accurate moment strength predictions compared to codes of
practice [ACI14,Eur04,Fib11] and the model proposed by [Bro09]. Moreover, the proposed mod-
els offer more accurate and precise deformation capacity predictions than previously proposed
models [Hue99,Bro09] and design limits [ACI14].

6. The performance of the analytical model in predicting the contribution of the different resisting
mechanisms is validated through comparison with NLFEA results. Based on the model predic-
tions for the slabs of the database (Appendix A), simplified equations for γv and γt are proposed.
Application of these equations to the eccentric shear model of ACI-318 [ACI14] leads to more
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accurate moment strength predictions (ratio of predicted to observed values: 0.747 ± 302) which
are less dependent on the applied gravity load.

7. The proposed model combined with the Effective Beam Width approach presented in Chapter
4 predicts rather well the distribution of the radial bending moment and the torsional moment
at r = 0.22L for continuous specimens when compared with NLFEA results, both with respect
to the location and value of the maxima and minima and the overall trend.

8. The overall moment-rotation response of interior slab-column connections of continuous flat slabs
is predicted rather well by the proposed analytical model combined with the Effective Beam
Width method. Discrepancies between calculated and experimental results are attributed to the
compressive membrane action and the confinement offered by the outer slab in the direction
perpendicular to the direction of excitation, which are not accounted for by the proposed model.
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Chapter 7

Analysis methods for flat slab buildings

For adequate earthquake-resistant design and seismic assessment of a structure, its dynamic properties
(stiffness, mass and damping) should be known in order to accurately estimate the lateral loads that are
introduced to each member of the structure. To calculate the seismic moment acting on a slab-column
connection and the corresponding interstorey drift, the stiffness of both the slab and the column should
be known beforehand, taking into consideration the non-linear behaviour of both members. For the
column, the effective stiffness as defined by Priestley et al. [Pri07] has shown good agreement with
test results and is usually adopted for seismic analysis. The mechanical model presented in Chapters
4 and 5 can be used to estimate the stiffness of the slab in the proximity of the slab-column connection
as well as the rotation due to slab deformation for a given unbalanced moment.

In this chapter, two analysis methods for buildings with slab-column connections are presented based
on the proposed analytical model, which was previously found to predict the moment-rotation response
of isolated slab specimens (Section 6.2) and continuous slabs (Section 6.3) rather well. Both methods
simplify the numerical calculation if a more detailed numerical model for slabs, using for instance
shell elements or brick elements, is not opted for. The methods are presented in descending order of
computational complexity.

The first method, presented in Section 7.1, belongs to the category of Effective Beam Width methods
and proposes the width reduction coefficient to be calculated on the basis of the proposed model, so as
to take into account the impact of various parameters (geometric and material properties, gravity and
lateral load level, reinforcement ratio, etc.) on the rotational stiffness of the slab-column connection.
This method is applicable to slab-column connections either being part of the lateral force-resisting
system or not.

The second method, presented in Section 7.2, consists in calculating the contribution of column and
slab deformation to the total interstorey drift demand, which is calculated from the numerical analysis
of the lateral force-resisting system only. The contribution of slab deformation is computed using the
proposed mechanical model, while the contribution of column deformation is estimated through a
fixed-fixed beam model. The method can be applied if the slab-column connections are only part of
the gravity force-resisting system.
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7.1 Effective Beam Width Method

A review of existing Effective Beam Width (EBW) methods can be found in Chapter 2 (§2.2.1). From
this review it becomes obvious that a more accurate method for calculating the moment-rotation re-
lationship of a slab-column connection, and consequently the rotational stiffness of the connection is
needed. The influence of the connection and panel geometry, vertical and lateral load level, material
properties should be captured, as well as the potential appearance of a shear crack in the connection
proximity. As shown in Appendix C, the proposed models of Chapter 4 (monotonic loading conditions)
and Chapter 5 (cyclic loading conditions) capture rather well not only the moment strength and the
deformation capacity, but also the entire moment-rotation relationship prior to failure.

The main difference between the EBW method and the Equivalent Frame (EF) method lies in the
simulation of the flexural and torsional stiffness of the slab. In the EBW method, only a portion of
transverse midspan-to-midspan distance l2 is assumed to contribute to flexure while the torsional stiff-
ness contribution is neglected. In the EF method, however, the entire length l2 contributes to flexure
while a transverse torsional member models the torsional stiffness of the slab. The EBW method has
proved to be a simpler and more accurate approach for the analysis of flat slab buildings under lateral
loads compared to the Equivalent Frame (EF) method and is suitable for three-dimensional analysis
using commercial software [Luo95,Rob97,Par09]. Moreover, since the proposed model (Chapters 4 and
5) directly accounts for the contribution of the torsion mechanism to the total unbalanced moment,
there is no need for an additional torsional member, as prescribed in the EF method. Therefore, the
EBW method is used for the integration of the proposed mechanical model to provide to the structural
engineer a relatively simple tool for the analysis of flat slab buildings, as will be shown in the following.

The theoretical principles of the EBW method have already been presented in Chapter 2 but some
key assumptions are recalled in the following. This section focuses on the integration of the analyt-
ical model presented in Chapters 4 and 5 into the EBW formulation, so as to provide a tool for the
numerical analysis of buildings with slab-column connections. At first, the calculation procedure of
the proposed EBW method is presented, followed by the validation of the method through compar-
ison with experimental results of flat slab buildings reported in the literature. Finally, based on the
model predictions for the slab specimens used for the validation, a short discussion is provided on
the influence of the boundary conditions and the slab region outside 0.22L on the moment-rotation
response.

7.1.1 Calculation procedure

The EBW method assumes that the slab action is represented by an slab-equivalent beam with height
equal to the slab thickness and width equal to the transverse midspan-to-midspan distance times
a width reduction coefficient α. Regarding the calculation procedure, at first, the formula for the
calculation of the width reduction coefficient α according to the theory of elasticity is recalled [Cho01]:

α = M

ψslab

l1
l2

1
Ec h3 (7.1)

where M is the unbalanced moment of the slab-column connection, ψslab is the rotation due to slab
deformation, l1 and l2 is the distance between supports perpendicular and parallel to the unbalanced
moment vector, respectively, h is the slab thickness, and Ec is the modulus of elasticity of concrete.
Cracking is typically accounted for through the use of a stiffness reduction coefficient β. Since the
proposed analytical formulation already includes the non-linear behaviour in the width reduction
coefficient α, there is no need to introduce a cracking factor in an explicit manner.

For continuous flat slabs, both the slab parts inside 0.22L (ψscc) and outside 0.22L (ψos) contribute
to the rotation ψslab. Sections 4.2 (monotonic loading) and 5.7 (cyclic loading) propose an EBW
approach to be combined with the analytical model for computing the unbalanced moment M and
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the slab rotation ψslab. Then, Eq. (7.1) is directly used for calculating the width reduction coefficient
α.

For the analysis of buildings with slab-column connections using the EBW method which incorporates
the proposed analytical model, an iterative procedure should be adopted:

1. Choice of the width reduction coefficient α (for the first iteration, α = 1.0 is chosen).

2. Calculation of unbalanced moment M from the numerical analysis of the building (with slab-
equivalent beams instead of slabs).

3. Calculation of the corresponding rotation ψslab according to the analytical model.

4. Calculation of the new width reduction coefficient α using formula (7.1).

5. Repetition of the calculations of steps 2 to 4 using the new α coefficient until convergence between
new α and old α values is reached.

It should be mentioned that, alternatively, for the second step of the above-mentioned procedure, the
rotation ψslab can be read from the numerical model instead of the unbalanced moment M . In this
case, the corresponding unbalanced moment M should be calculated using the analytical model (step
3). This alternative is adopted for the validation of the method presented in the following. It should
be stated that the analytical model calculations are performed externally to the numerical analysis
of the (slab-equivalent) beam-column frame, since the option of continuously adapting beam width is
not currently available in commercial software packages.

Typically less than ten iterations are required to reach convergence between the values of the coefficient
α of two subsequent iterations. The main advantage of this method is that it can be applied not only to
slab-column connections that belong only to the gravity force-resisting system (GFRS) but also to slab-
column connections that are part of the lateral force-resisting system (LFRS). Its main shortcoming
is the fact that one numerical analysis should be performed per iteration. However, the performed
analysis is linear elastic and does not require high computational effort.

For monotonic loading conditions, the calculation of the M −ψslab relationship (Chapter 4) is carried
out only once. For cyclic loading conditions, the exact displacement routine should be constructed by
the user. To this end, the number of calculations using the proposed model of Chapter 5 should be
equal to the number of acceleration (or equally base shear) peaks and each analysis should take into
account all previous loading cycles.

7.1.2 Validation

The proposed analysis method is validated against experimental results of flat slab buildings with
over-hangs conducted by Fick [Fic08] and Moehle and Diebold [Moe84, Moe85]. For comparison, the
method proposed by Hwang and Moehle [Hwa00] and the method by Grossman [Gro97] are also
applied (see Chapter 2). Comparison with subassembies of one interior and two exterior slab-column
connections [Dur95] was not performed since the behaviour of such specimens is expected to be affected
significantly by the response of the exterior slab-column connections. This is outside the scope of the
present study (see Chapter 1).

Regarding the validation process that follows, force-controlled analyses were conducted, i.e. the lateral
loads corresponding to the experimental base shear were applied to the established numerical models.
Since no information on the deformation capacity of individual slab-column connections is reported,
comparison between experimental and predicted behaviour is only performed in terms of the global
displacement of the top floor (roof) and the storey displacement of each floor of the building.
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Column deformation

Tests on isolated slab-column specimens showed rather insignificant column deformation during the
unbalanced moment introduction since the column was typically designed to be much stronger than
the slab (Chapter 2). In flat slab buildings subjected to earthquake motions significant cracking of
the column members is expected to occur, particularly at high drift levels, which results in reduction
of the column stiffness. In the case that the columns are proportioned so that flexural plastic hinges
form at the column ends prior to shear failure, shear deformations are limited and therefore non-linear
force-based beam elements with fibre sections can be used to model the flexural behaviour of the
column members [Kab84]. This is the case for both tests analysed in the following. To account for the
contribution of column deformation to the interstorey drift values within the proposed EBW method
(or equally to calculate the effective column stiffness EIeff ), the following procedure is adopted:

1. Modelling of the columns using fibre elements (to account for the non-linear behaviour) and
modelling of the slab- equivalent beams as rigid (Ig → ∞). Non-linear analysis of the flat slab
building.

2. Calculation of the interstorey drifts corresponding to the desired lateral loads from the non-linear
model (due to column deformation alone).

3. Modelling of the columns of the flat slab building using linear elastic beam members with reduced
flexural stiffness (to account for the non-linear behaviour) and modelling of the slab-equivalent
beams as rigid (Ig → ∞). Linear elastic analysis of the flat slab building applying the desired
lateral loads (same as in step 1).

4. Calculation of the interstorey drifts corresponding to the desired lateral loads from the linear
elastic model (due to column deformation alone).

5. Comparison between the interstorey drifts calculated in steps 2 and 4. If convergence is not
achieved revise the column stiffness reduction factor of the linear elastic model (step 3) until the
interstorey drifts calculated in step 4 match the interstorey drifts calculated in step 2.

Table 7.1 gives the main parameters of the inelastic analysis carried out to calculate the effective
stiffness of the columns (step 2). Since a fibre-based formulation is chosen for the inelastic analysis of
the columns (with the equivalent slab-beams assumed to be rigid), the program SeismoStruct [Sei12]
was used. Other methods for calculating the column effective stiffness can also be employed (e.g.
[Pri07]). It should be noted that the aforementioned procedure allows to apply different stiffness
reduction factors to the columns of each storey. If the same stiffness reduction factor is applied to
all columns of the building, its value can be calculated directly from the non-linear analysis and no
iterations are required.

Table 7.1 – Inelastic analysis parameters for the calculation of the contribution of the column defor-
mation to the total interstorey drift

Analysis type Static non-linear
Loading pattern (in height) Triangular
Vertical load application Force control
Lateral load application Displacement control
Column modelling Fibre-based elements
Slab modelling Elastic beam elements (Ig →∞)
Connection modelling Rigid end zones

The main parameters of the performed elastic analyses for determining the column effective stiffness
(step 4) are given in Table 7.2.
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Table 7.2 – Elastic analysis parameters for the calculation of the column effective stiffness

Analysis type Linear elastic
Loading pattern (in height) Triangular
Vertical load application Force control
Lateral load application Force control
Column modelling Elastic beam elements (EIeff )
Slab modelling Elastic beam elements (Ig →∞)
Connection modelling Rigid end zones

Slab deformation

For determining the contribution of slab deformation to the interstorey drift, the procedure presented
in §7.1.1 will be used in the following. The main parameters of the elastic analysis required for each
iteration are the same as in Table 7.2 with the only exception that the elastic beam elements that
model the slabs are assigned a width b = αl2 instead of a very high stiffness. The width b is updated
at each iteration until convergence is achieved.

Fick [Fic08,Puj10]

The geometric properties of the flat slab building tested at full-scale by Fick [Fic08] are shown in
Figure 7.1. The building was subjected to combined vertical loading and quasi-static cyclic lateral
loading. The rotation levels at which unloading and loading in the opposite direction was performed
corresponded to a roof drift (i.e. ∆roof/Htot) of 0.4%, 1.5% and 3.0%. One reversed cycle was
performed per rotation level.
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Figure 7.1 – Test of flat slab building by Fick [Fic08]: (a) view of the building parallel to the base
motion, and (b) plan view of the building (drawn after [Fic08] - dimensions in mm)

Punching failure was observed at slab-column connection 2-B (1st floor) when loading towards a roof
drift of 3.0% in the South direction [Fic08]. After the completion of the full cycle at 3.0% roof drift
the test was stopped and all frames were infilled with solid clay bricks and tested again to investigate
the influence of masonry infill walls on the global behaviour of the structure. Additional information
can be found elsewhere [Fic08, Puj10]. Herein, the focus is drawn on the test of the bare flat slab
frame, i.e. until the first punching failure.

Figure 7.2a shows the comparison between the experimental and the calculated base shear-roof dis-
placement (Vb − ∆roof ) curve for the flat slab building tested by Fick [Fic08]. The Vb − ∆roof was
computed using three different methods, i.e. the here proposed method, the method by Hwang and
Moehle [Hwa00] and the method by Grossman [Gro97]. Figure 7.2b shows the moment-rotation re-
lationship of the slab-column connection 2-B according to the cyclic model (continuous curve). The
moment-rotation curve according to the monotonic analytical model is also shown in the same figure
(dashed curve), for comparison purposes.
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Figure 7.2 – (a) Comparison between experimental and predicted global behaviour (Vb−∆roof ) accord-
ing to the EBW method proposed in this chapter and the EBW models proposed by Grossman [Gro97]
and Hwang and Moehle [Hwa00], and (b) moment-rotation relationship of the slab-column connection
2-B according to the monotonic and cyclic analytical model.

Figure 7.2a shows that both the EBW models by Grossman [Gro97] (dashed line) and by Hwang and
Moehle [Hwa00] (dashed dotted line) underestimate the experimental values of roof displacements, in
particular for high roof displacements. The model proposed by Grossman [Gro97] provides predictions
closer to the experimental roof displacement values than the model by Hwang and Moehle [Hwa00].
This can be attributed to the fact that Grossman’s model takes into account the stiffness degradation
due to increasing drift values (§2.2.1), which is not the case for the model by Hwang and Moehle.
In Grossman’s model, the values of factor Kd, which takes into account stiffness degradation due
to increasing drift values, were calibrated to match the measured drifts of a flat slab system tested
earlier [Hwa93]. This system was, however, subjected to smaller gravity loads than the system tested
by Fick [Fic08]. Moreover, for the system tested by [Hwa93] (see §6.3.2) ρ = 0.76% but for the one
tested by Fick [Fic08] ρ = 0.51%. It is therefore anticipated that the model by Grossman predicts
stiffer Vb −∆ curves than the experimental ones.

The proposed EBW method accounts explicitly for the influence of many parameters on the stiffness
degradation due to increasing drifts, such as material properties, reinforcement ratio, and gravity loads,
which is not the case for the models by [Gro97,Hwa00]. Therefore, the proposed method predicts better
the Vb −∆roof relationship (Fig. 7.2a) than the other models. The base shear at punching failure is
also predicted very accurately (ratio of predicted to measured base shear at punching: 1.020). The
corresponding roof displacement is also predicted rather well (ratio of predicted to measured roof
displacement at punching: 0.946).

Figure 7.2b compares the predictions of the cyclic model (continuous curve), which was adopted for
the validation, with the monotonic model (dashed curve). It can be seen that the cyclic model predicts
slightly smaller unbalanced moment at punching (x marker) for the critical slab-column connection
(2-B) than the monotonic model (circular marker). Moreover, the cyclic model predicts 9% smaller
slab rotation at punching than the monotonic model.

Figure 7.3a and b show two photos of the critical slab-column connection (2-B) [Fic08, Puj10], while
Figure 7.3c compares the predicted shear crack inclination according to the cyclic model (dashed
line) with a sketch of the failure section for the same connection [Fic08]. The first punching failure
(intersection of the cyclic model with the CSCT(mono) failure criterion) is predicted for the slab-
column 2-B of the first floor which agrees with the experimental observations (Figs. 7.3a and b). The
predicted shear crack inclination (dashed line) is also in good agreement with the experimental shear
crack inclination (loading towards the South), as shown in Figure 7.3c.
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Figure 7.3 – Damage caused by punching shear of the slab-column connection 2-B: (a) photo of
the connection at failure (North side) [Puj10], (b) close-up photo of the connection at failure (West
side) [Fic08], and (c) comparison between experimental and calculated shear crack inclination at failure
according to the cyclic model.

Figure 7.4 shows the comparison between the experimental and the calculated base shear-storey dis-
placement relationship (Vb − ∆st) for each storey of the tested flat slab building according to the
proposed method, the model proposed by Grossman [Gro97] and the model proposed by Hwang and
Moehle [Hwa00].
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Figure 7.4 – Comparison between experimental and predicted Vb −∆st relationships according to the
EBW method proposed in this chapter and the EBW models proposed by Grossman [Gro97] and
Hwang and Moehle [Hwa00]: (a) ground floor, (b) first floor, and (c) second floor.
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As can be seen from Figure 7.4, the proposed EBW method gives rather accurate prediction of the
Vb −∆st relationships, while the EBW models by Grossman [Gro97] and Hwang and Moehle [Hwa00]
provide conservative results, in particular for large storey displacements. The difference between the
various models increases with increasing storey displacement.

Table 7.3 gives the calculated stiffness reduction due to non-linear behaviour of both columns and
slab-equivalent beams according to the proposed EBW method. The values correspond to the ratio
of effective stiffness EIeff to gross (uncracked) stiffness EIg. For the columns, the ratio EIeff/EIg is
calculated using the method presented earlier [Sei12]. For the slab-equivalent beams, EIeff and EIg
correspond to the uncracked stiffness of a beam with height equal to the slab thickness h and width
equal to αl2 and l2, respectively. Therefore, for the slabs, the ratio EIeff/EIg corresponds to the
width reduction coefficient α (Eq. (7.1)).

Table 7.3 – Predicted stiffness ratio due to the non-linear behaviour of columns (EIeff/EIg) and
slab-equivalent beams (α) for the flat slab building tested by [Fic08] (proposed EBW method)

Roof drift Ground floor First floor Second floor
column slab column slab column slab

0.4% 0.650 0.162 0.500 0.137 0.450 0.141
1.5% 0.420 0.111 0.400 0.093 0.300 0.110
3.0% 0.350 0.079 0.300 0.059 0.280 0.067
Failure 0.350 0.077 0.300 0.057 0.280 0.063

Table 7.3 shows that both the ratio EIeff/EIg of the columns and the α coefficient of the slabs decrease
with increasing drift demands. The α coefficient can attain values smaller than 0.1 at high drift levels.
For buildings with low reinforcement content in the slabs and relatively high reinforcement content in
the columns (like is the case for the building tested by Fick) it is anticipated that slab yielding occurs
before column yielding. In this case, the higher the interstorey drift is, the larger is the contribution
of the slab deformation to the interstorey drift. For the analysed building, the calculated ratio of roof
displacement due to column deformation ∆roof.col to the total roof displacement ∆roof was 8.6% at
Vb = 609 kN, but fell to 7.5% at Vb = 716 kN and to 7.3% at the predicted punching failure (Vb =
730 kN). The same trends were observed for the storey displacement of each floor.
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Moehle and Diebold [Moe84,Moe85]

The geometric properties of the flat slab building tested by Moehle and Diebold [Moe84, Moe85] are
shown in Figure 7.5. The building was subjected to combined vertical loading and acceleration records
that modelled the NS component obtained in El Centro during the 1940 Imperial Valley Earthquake.
The structure was tested at reduced scale (3/10) on a shaking table to examine the overall resistance
to low, moderate and high intensity ground motions. Although no punching failure occured, this
test provided significant information with regard to the response of slab-column connections under
dynamic loading. More information can be found elsewhere [Moe84,Moe85].

(a) (b)1830 1830 1830

152

241

1830

137 x 137 137 x 137 
EDGE BEAM

61

1830 915915

152

915

915

Figure 7.5 – Test of flat slab building by Moehle and Diebold [Moe85]: (a) view of the building parallel
to the base motion, and (b) view of the building transverse to the base motion (drawn after [Moe85]
- dimensions in mm).

Figure 7.6 compares the experimental and the calculated Vb −∆roof curve (Fig. 7.6a) as well as the
Vb − ∆st relationship for both storeys of the tested structure (Figs. 7.6b and c) according to the
proposed method, Grossman [Gro97], and Hwang and Moehle [Hwa00]. The experimental curves of
Figure 7.6 are drawn based on the maximum measured base shear and the corresponding displacement
of each earthquake run. Earthquake runs with applied acceleration histories only in the horizontal
direction are considered herein (EQ8 and EQ10). It should be noted that both considered runs
correspond to high intensity earthquakes [Moe84]. EQ10 may even be an unrealisticaly intense motion
[Moe85] (PGA = 0.606g).

Since various earthquake runs both in the horizontal and in the vertical direction were applied to the
flat slab structure prior to the application of EQ8, the loading protocol of each slab-column connection
was rather complicated. Hence, for the proposed EBW method, the simplified approach of Chapter
4 is adopted for the calculation of the moment-rotation relationship of the slab-column connections
(combination of the monotonic analytical model with the CSCT(cyc) failure criterion).
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Figure 7.6 – Comparison between experimental and predicted Vb − ∆ relationships according to the
EBW method proposed in this chapter and the EBW models proposed by Grossman [Gro97] and
Hwang and Moehle [Hwa00]: (a) roof displacement, (b) storey displacement of the ground floor, and
(c) storey displacement of the first floor.
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As can be seen in Figure 7.6, the proposed method predicts accurately enough the experimental
Vb−∆roof relationship (Fig. 7.6a) as well as the experimental Vb−∆st relationship of both the ground
floor (Fig. 7.6b) and the first floor (Fig. 7.6c). The models proposed by Grossman [Gro97] and Hwang
and Moehle [Hwa00] provide rather conservative predictions of both the roof displacement and the
storey displacement of the two floors. It should be mentioned that, for the considered earthquake
runs, the proposed method did not predict punching failure of any slab-column connection. This
is in agreement with the experimental data [Moe85]. For the base shear introduced by EQ10, the
safety margin according to the proposed method is rather low for the moment resistance (9%) but is
relatively large for the deformation capacity (60%). This indicates that for EQ10 a mechanism did
not form, which is in agreement with the observed crack pattern (Fig. 7.7).

bottom facetop face bottom face top face

(a) Ground floor (b) First floor

Figure 7.7 – Observed crack patterns (top and bottom slab surface) following EQ10 [Moe85]: (a)
ground floor, and (b) first floor.

Table 7.4 gives the calculated stiffness reduction due to non-linear behaviour of both columns and slab-
equivalent beams according to the proposed EBW method. It can be seen that the width reduction
coefficient α attains very small values, indication of significant non-linear behaviour of the slab-column
connections.

Table 7.4 – Predicted stiffness ratio due to non-linear behaviour of columns (EIeff/EIg) and slab-
equivalent beams (α) for the flat slab building tested by [Moe85] (proposed EBW method)

Earthquake run Ground floor First floor
column slab column slab

EQ8 0.270 0.080 0.280 0.111
EQ10 0.083 0.034 0.118 0.052

Table 7.4 confirms what has been shown earlier that both the ratio EIeff/EIg of the columns and
the α coefficient of the slabs decrease with increasing drift demands. It can be observed that EQ10
results in a very significant decrease in the stiffness of both the columns (≈65%) and the slabs (≈50%)
compared to EQ8. Since the stiffness reduction is more pronounced for the columns than for the slabs,
it is expected that the contribution of column deformation to the interstorey drift increases for EQ10
compared to EQ8. Indeed, the calculated ratio ∆roof.col/∆roof was 16% for EQ8 (Vb = 137 kN), but
increased to 24% for EQ10 (Vb = 165 kN).
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Figure 7.8 shows the response of the fibre-based numerical models established to compute the con-
tribution of column deformation to the interstorey drift [Sei12] for the flat slab buildings tested by
Fick and Moehle and Diebold (Fig. 7.8a and b, respectively). The base shear levels at which the
contribution of slab deformation ψslab was calculated according to the proposed EBW method are also
shown in the same figure.
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Figure 7.8 – Vb−∆ relationships according to fibre-based numerical models to calculate the contribution
of column deformation to the interstorey drift [Sei12] (ψslab = 0): (a) Fick [Fic08], and (b) Moehle
and Diebold [Moe85].

The numerical Vb−∆ curves of Figure 7.8 show the impact of column deformation in the global response
of the modelled flat slab buildings. For the structure tested by Fick, it can be seen that the column
stiffness reduction is significant only at very high base shear levels (Fig. 7.8a). On the other hand,
for the structure tested by Moehle and Diebold, it can be seen that the response softens significantly
when the base shear increases from 137 kN (EQ8) to 165 kN (EQ10), indicating significant yielding
of the column rebars (Fig. 7.8b). This is in accordance with strain gauge measurements, indicating
first yield of column rebars in the proximity of the slab-column connection of the ground floor and
the first floor at Vb ≈ 134 kN [Moe85].
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7.1.3 Influence of slab region outside 0.22L on the predicted response

This subsection examines the influence of the slab part outside 0.22L and the boundary conditions
on the moment-rotation response of the slab-column connections of the flat slab structures that were
analysed in §7.1.2. Figure 7.9 shows the calculated moment-rotation curves of the slab-column connec-
tions of the buildings tested by Fick [Fic08] and Moehle and Diebold [Moe85] for different boundary
conditions (isolated, simply supported at r = 0.50L, and continuous at r = 0.50L). As can be seen,
the predicted response of the isolated specimen (green curves) is stiffer than the predicted response
of the continuous flat slab (black curves) because the acting torsional and radial bending moments at
r = 0.22L are set to zero. For the specimen that is simply supported at r = 0.50L, the model gives
intermediate results between the isolated specimen and the continuous slab. Moreover, when the slab
rotation outside 0.22L (ψos) is accounted for, the predicted slab rotation ψslab at punching increases
and the moment strength decreases. It is noted that the analytical model neglects the compressive
membrane action, which can lead to higher moment strength and smaller deformation capacity. For
the considered buildings, however, this effect did not appear to be significant.
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Figure 7.9 – Influence of the slab part outside 0.22L and the boundary conditions on the moment-
rotation response of the slab-column connections of the buildings tested by: (a) Fick [Fic08], and (b)
Moehle and Diebold [Moe85].

It should be mentioned that the geometric properties and the vertical load of the interior slab-column
connections of the structure tested by Moehle and Diebold [Moe85] are nominally identical to the ones
of an isolated slab specimen tested previously [Zee84]. However, direct comparisons cannot be done
since the material properties were significantly different for the isolated component (fc = 26.2 MPa
and fy = 470 MPa) and the entire building (fc = 36.5 MPa and fy = 434 MPa). Since both tests were
conducted on very thin slabs (d = 52 mm), these discrepancies influence significantly the predicted
response according to the proposed model. Testing an isolated slab specimen with the same properties
of an interior connection of the building tested by Fick [Fic08] (d = 146 mm) would be important for
understanding the influence of the slab part outside 0.22L and the effect of the compressive membrane
action on the response. This building offers also the advantage that column deformation is limited
(Fig. 7.8a), compared to the one tested by Moehle and Diebold (Fig. 7.8b).
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7.2 Direct Drift Demand Method

A further simplified analysis method for buildings with slab-column connections was developed based
on the proposed analytical model. The method is suitable only if the slab-column connections are not
part of the LFRS of the building and requires iterations for calculating the contributions of column
and slab deformation to the interstorey drift from analysis, as described in the following:

1. Numerical analysis of the members that are part of the LFRS (Fig. 7.10b) instead of the
full structure (Fig. 7.10a), and calculation of the storey drift demand ψst at the slab-column
connection of interest.

2. Choice of the percentage of the column deformation contributing to the interstorey drift ψst
calculated in step 1.

3. Calculation of the moment ME at the column ends due to column deformation. This is the
unbalanced moment that is introduced to the slab-column connection.

4. Calculation of the rotation due to slab deformation ψslab that corresponds to the unbalanced
moment ME according to the analytical model.

5. Revision of the rotation due to column deformation ψcol using the following formula:

ψcol = ψst − ψslab (7.2)

6. Repetition of the calculation of steps 2 through 5 until convergence between new ψcol and old
ψcol is reached.

(b)(a)

LFRS

GFRS

Figure 7.10 – Typical numerical models for seismic analysis of buildings with slab-column connections
for (a) full structure, and (b) proposed method (lateral force-resisting system) [Dra15].

The calculation procedure according to the Direct Drift Demand method is illustrated in Figure 7.11.
The drift demand of each storey (ψst.n, ψst.n+1, etc.) is computed through numerical analysis of
the LFRS and is not iterated. Assuming that gravity columns respond in the elastic range during
earthquake motions, the moment MEc.n that is acting at the column end (fixed-fixed conditions) of the
nth floor due to an imposed lateral displacement equal to ψcol.nHst.n is (step 3 of the above-mentioned
procedure):

MEc.n = 6 EIeff
H2
st.n

ψcol.n Hst.n (7.3)

where Hst.n is the storey height of the nth floor and EIeff is the effective stiffness of the column. It
can be assumed that EIeff = 0.5EIg if a more elaborated method like the one presented in §7.1.2 or
by [Pri07] is not used.
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The unbalanced moment introduced to the slab-column connection is equal to the sum of bending
moments at the end of the columns framing into the considered slab-column joint (Fig. 7.11a):

ME = MEc.n +MEc.n+1 (7.4)

Once ME is known, the contribution of slab deformation (ψslab) to the interstorey drift can be calcu-
lated according to the proposed model (Fig. 7.11b). The rotations due to column deformation ψcol.n
and ψcol.n+1 are then revised and the procedure continues until convergence between two subsequent
iterations is achieved.
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Figure 7.11 – Illustration of the iterative method for the calculation of the contribution of (a) column
deformation, and (b) slab deformation to the interstorey drift.

To reach convergence, a limited number of iterations (typically less than ten) is required. Moreover,
since only one numerical analysis is performed, this method is more time-efficient than the EBW
method proposed previously (Section 7.1). However, its main shortcoming is that it can be applied
only when the columns are not part of the LFRS, i.e. to gravity columns.

For seismic assessment, the maximum value of the rotation due to slab deformation ψslab from analysis
(step 4) should be compared with the rotation due to slab deformation ψslab at punching failure
according to the proposed model (Chapter 4 or 5). Due to lack of experimental data on the response
of flat slab buildings with slab-column connections not being part of the LFRS, this method could
not be validated experimentally. Nevertheless, several case studies where this method is applied for
seismic assessment can be found elsewhere [Sed14, Dra15]. These studies investigated the impact of
the seismicity zone (low against moderate) and the structural layout (eccentricity of the LFRS with
regard to the centre of mass of the building) on the seismic behaviour of slab-column connections.

It should be stated that the Direct Drift Demand method should be used by the structural engineer if
it can be verified that the contribution of the slab-column connections to the structure stiffness can be
neglected. This can be done by performing a numerical analysis of the members that are considered to
be part of the LFRS and a numerical analysis of all involved structural members (LFRS and GFRS)
and comparing the obtained results. Numerical studies by Ghali et al. [Gha12] have demonstrated
that neglecting the GFRS gives small discrepancies in the calculated drifts only for cases of low to
mid-rise buildings (similar to the prototype building of this study). For high-rise buildings, however, if
the GFRS is excluded from the numerical model, the drift and the unbalanced moment introduced to
the slab-column connections can be significantly overestimated [Gha12]. Neglecting the slab-column
connections in the seismic analysis can lead to overestimation of the natural period T of the structure,
which for high periods can result in underestimation of the lateral forces due to seismic excitation and,
therefore, in unsafe design. Therefore, for the seismic analysis of high-rise buildings, both the GFRS
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and the LFRS should be included in the numerical model [Shi10]. In this case, the method presented
in the previous section can be used.

7.3 Conclusions

This chapter proposes two methods for the numerical analysis of buildings with slab-column connec-
tions. Both methods are based on the mechanical model proposed in Chapter 4 for monotonic loading
conditions and extended in Chapter 5 for cyclic loading conditions. The model has shown good per-
formance in predicting the moment-rotation response of both isolated and continuous slab specimens
(Chapter 6, Appendices C and D). The main conclusions of this chapter are as follows:

1. An Effective Beam Width method which incorporates the mechanical model developed in Chap-
ters 4 and 5 is proposed. The novelty of this method is that parameters such as geometric and
material properties, gravity loads, and reinforcement ratio are explicitly accounted for when
calculating the width reduction coefficient α of the effective beam. An iterative procedure is
proposed for the calculation of α, while for each iteration, a linear elastic analysis of the building
should be performed.

2. The proposed Effective Beam Width method has shown good performance in predicting the
global experimental response of flat slab buildings reported in the literature, both in terms of
Vb −∆roof and Vb −∆st relationship.

3. The predictions of the proposed Effective Beam Width method for the base shear at punching
failure and the corresponding displacement are in close agreement with the experimental results.
The location of the slab-column connection that fails first is predicted correctly both in plan
and in height.

4. Previously proposed Effective Beam Width models predict rather stiff global response when
compared with the experimental results and the proposed Effective Beam Width method pre-
dictions.

5. A simplified method for the numerical analysis of flat slab buildings with slab-column connections
that do not belong to the lateral force-resisting system is proposed. At first, the method consists
in analysing only the members of lateral force-resisting system and calculating the drift demand
of the slab-column connections of interest. Then, an iterative procedure is employed to calculate
the relative contribution of slab deformation and column deformation to the interstorey drift.
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Chapter 8

Conclusions and further research

This dissertation consists of four parts: (a) an experimental campaign on isolated slabs subjected to
combined gravity loads and unbalanced moment focusing on the influence of loading history (cyclic vs
monotonic) for different gravity loads and reinforcement ratios, (b) development of a mechanical model
for describing the moment-rotation relationship of slab-column connections subjecting to monotonic
loading, (c) extension of the monotonic mechanical model to capture the influence of cyclic loading
and cumulative damage effects on the moment-rotation relationship, and (d) development of methods
for the numerical analysis of flat slab buildings on the basis of the proposed mechanical models.

Section 8.1 presents a summary of the work and highlights the key contributions of this thesis, while
Section 8.2 outlines several related research questions that were outside the scope of this thesis and
should be addressed in future studies.

8.1 Contributions and conclusions

8.1.1 Experimental investigation

The experimental campaign investigated the seismic behaviour of interior RC slab-column connections
without transverse reinforcement. The main objective of this experimental campaign was to study
how cyclic loading affects the force and deformation capacity when compared to monotonic loading-
cyclic loading on the moment-rotation response for different gravity loads and reinforcement ratios.
For this purpose a test setup that had been used in previous studies documented in the literature
was modified. The test setup allowed to apply asymmetric slab rotations as they are induced during
earthquakes. These rotations were applied by means of two servo-hydraulic actuators. At the same
time, the vertical load on the slab was kept constant through a system of four hydraulic jacks.

The experimental study shows that reversed cyclic loading reduces the moment strength and the de-
formation capacity of slab-column connections. This effect is more pronounced for smaller gravity
loads and smaller reinforcement ratios. In general, the cyclic response envelope followed the mono-
tonic one, with the difference that failure occurred earlier for the cyclic test. For very low gravity
loads, however, cyclic loading led to a softer moment-rotation response than for monotonic loading for
moments higher than 80% of the peak cyclic moment. Moreover, it is shown that the shear crack at
failure is steeper for cyclic tests than for monotonic tests. This is more marked for low gravity loads
than for high gravity loads.

This experimental study confirms previous studies showing that increasing gravity load reduces the
stiffness and the moment capacity of slab-column connections. For cyclic tests, it is confirmed that
the deformation capacity increases with decreasing gravity loads. For monotonic tests, however, a
more differentiated trend was identified with regard to the deformation capacity: For GSR > 0.57
(approximately half the punching strength under concentric gravity loads), the deformation capacity
increases with decreasing gravity load, as for cyclic tests. For GSR < 0.57, however, the trend did not
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continue but smaller gravity loads resulted in a reduced deformation capacity. This was ascribed to
the smaller extent of cracking for small gravity loads. It is confirmed that high reinforcement content
leads in general to higher moment strength and stiffness and lower deformation capacity than small
reinforcement content. This study showed that for low gravity loads, the reinforcement ratio effect
on the moment strength was small, while for high gravity loads the reinforcement ratio effect on the
deformation capacity was rather insignificant.

The moment strength predictions according to ACI-318 [ACI14], fib-MC2010 [Fib11] are rather con-
servative estimates of the moment strength of the tested slabs, while EC2 [Eur04] provides higher
accuracy and precision. The connection rotation capacity of the cyclic tests is estimated rather accu-
rately by the allowable drift limit of ACI-318 [ACI14]. However, ACI-318 appears to overestimate the
rotation capacity for high vertical loads (GSR > 0.6).

8.1.2 Proposed monotonic model

The mechanical model proposed in this thesis to describe the moment-rotation relationship of slab-
column connections under monotonically increasing drifts is based on the axisymmetric model proposed
by Muttoni for slabs subjected to vertical loads only [Mut08]. The slab is divided into an even number
of sector elements and the region inside the shear crack. The experimental campaign and finite element
analyses have shown that the local rotations follow approximately a sinusoidal law with respect to the
direction of excitation. To calculate the moment-rotation curve the equilibrium is formulated both
locally for each sector element and globally for the entire slab until 0.22L (L corresponds to the distance
from midspan to midspan). The influence of the slab part between 0.22L and 0.50L on the moment-
rotation response is considered using an Effective Beam Width approach. The calculation is iterative
with regard to the maximum and the minimum local slab rotations ψmax and ψmin, respectively. The
developed model predicts rather well the M −ψmax and M −ψmin relationship of the monotonic tests
conducted within this research.

The failure criterion of the Critical Shear Crack Theory (CSCT) [Mut08] is adapted to predict the
moment strength and rotation capacity. For monotonic loading, shear force redistribution between
sector elements of the hogging slab half is assumed to occur (CSCT(mono)). For cyclic loading, a
simplified approach that neglects both shear redistribution and the effect of cyclic loading on the
moment-rotation relationship is adopted (CSCT(cyc)). The monotonic model combined with the
CSCT(mono) failure criterion predicts accurately enough the moment strength of slabs subjected to
monotonically increasing unbalanced moment. The predictions for the corresponding rotation are
slightly conservative and are associated with larger scatter. For cyclic loading, combination of the
monotonic model with the CSCT(cyc) failure criterion gives slightly conservative predictions for both
the moment strength and the deformation capacity.

The model is the first to account explicitly for the contribution of all three different lateral force-
resisting mechanisms (eccentric shear, flexure and torsion) to the total unbalanced moment. The model
predicts that the contribution of flexure (γf ) to the total unbalanced moment increases for increasing
connection rotation and can attain values higher than the value assumed by ACI-318 [ACI14]. Cyclic
loading results in smaller γf values at failure than monotonic loading. Increasing reinforcement ratio
leads to larger γf values, while increasing slab slenderness L/d leads to smaller γf and γv (contribution
of eccentric shear force) values and larger γt (contribution of torsion) values.

8.1.3 Proposed cyclic model

This cyclic model proposed in the framework of this thesis is an extension of the monotonic mechanical
model in order to consider the hysteretic behaviour and cumulative damage effects when calculating
the moment-rotation relationship of internal slab-column connections. The assumptions of the ex-
tended model are based on local deformation measurements from the performed cyclic tests. A fixed
shear crack is assumed to govern the post-yield behaviour of the sector elements while a hysteretic
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moment-curvature relationship is adopted for the radial direction. Seismic damage is incorporated
to each sector element separately using a non-cumulative damage model proposed previously. The
developed model leads to more accurate prediction of the local slab rotations of the cyclically tested
slabs than the simplified approach based on the monotonic model (CSCT(cyc)).

The moment strength and the rotation capacity are deduced from the combination of the moment-
rotation relationship with the failure criterion that allows for shear force redistribution between the
sector elements of the hogging slab half, as for monotonic loading conditions. Punching failure can
occur only for maximum slab rotations ψmax smaller or equal to the maximum slab rotation at punch-
ing under monotonic loading (ψmax.u.mono). Combination of the failure criterion with the cyclic model
leads to improved moment strength predictions for cyclically tested isolated slabs than the simplified
approach based on the monotonic model (CSCT(cyc)) but with slightly larger scatter. Concerning
the deformation capacity, the cyclic model provides similar average predictions with the simplified
approach based on the CSCT(cyc), but with a slightly reduced scatter.

Regarding the contribution of the lateral force-resisting mechanisms to the unbalanced moment, the
cyclic model predicts that, at peak moment, γf decreases with increasing gravity load acting on the
slab. For low gravity load, the cyclic model predicts smaller γf values at peak moment than the
simplified approach of Chapter 4. The influence of the loading history on the predicted γv values is
less marked.

The model confirms that cyclic loading leads to smaller slab rotation capacities than monotonic load-
ing. This reduction is larger for smaller gravity loads acting on the slab, which is in agreement with
the test results. It is also confirmed that the seismic rotation capacity of flat slabs is mainly influenced
by the gravity induced shear and the slab effective depth, but also by the column size. The model
captures the effect that increasing gravity load and increasing slab effective depth result in decreasing
rotation capacity. Therefore, empirical formulae should not be applied to thicker slabs than those
used for the model calibration. The simplified approach for cyclic loading proposed on the basis
of the monotonic model (adoption of CSCT(cyc) instead of CSCT(mono)) represents a reasonable
lower-bound solution to be used in engineering practice if no consideration of the loading history is
made. The model predictions show that other parameters such as the seismicity level, the number
of cycles, the top reinforcement ratio, and the slab slenderness influence the rotation capacity to a
smaller extent.

8.1.4 Proposed analysis methods

The proposed analytical model combined with the Effective Beam Width approach for considering the
contribution of the slab region between 0.22L and 0.50L to the moment-rotation response predicts
rather well the distribution of the radial bending moment and the torsional moment at r = 0.22L for
continuous specimens when compared with non-linear finite element analysis results. Moreover, the
analytical model predictions show good agreement with the experimental response of interior slab-
column connections of continuous flat slab systems.

Based on these results, an Effective Beam Width method is proposed for the numerical analysis of
buildings with slab-column connections. The method incorporates both the monotonic and cyclic
model and requires an iterative procedure for the calculation of the width reduction coefficient α. For
each iteration a linear elastic analysis of the building should be conducted. The proposed method was
found to predict rather accurately the global response of multi-storey flat slab buildings tested in past
campaigns as well as the base shear and the corresponding lateral displacement at punching failure.

A simplified method is proposed for the numerical analysis of buildings with slab-column connections
belonging only to the gravity force-resisting system. The method consists in analysing the lateral
force-resisting system of the structure and calculating the drift demand on the connection of interest.
An iterative procedure based on the analytical model is then followed to calculate the contribution of
column deformation and slab deformation to the numerically calculated interstorey drift.
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8.2 Future research

This section discusses the issues that should be addressed by future works as continuation of the
present thesis. The proposed further steps are categorised by the adopted method of investigation:
experimental investigation and analytical modelling.

8.2.1 Experimental investigation

Regarding the experimental investigation, the following directions may be pursued in future research:

• Use of transverse reinforcement: The presented test campaign offers a large number of
reference test units for future experimental campaigns. Shear-reinforced slabs are gaining pop-
ularity during the last decades in many countries including Switzerland. Previous studies have
shown that use of shear reinforcement in the column vicinity can increase the ductility of the
slab-column connection considerably [Meg00a,Rob02,Bro07]. However, there are no experimen-
tal data on thick shear-reinforced slabs under combined vertical load and unbalanced moment.
Therefore, experimental investigation on thick slabs with transverse reinforcement is expected
to have high impact on both the engineering practice and further analytical developments.

• Monotonic vs cyclic tests: The literature review (Chapter 2) has revealed the lack of ex-
perimental data of slab pairs tested under monotonic and cyclic loading conditions. After the
completion of the thesis further extension of the test database is needed to provide deeper insight
into the cyclic behaviour of slab-column connections of the following cases:

(a) — Slabs subjected to very low gravity loads or under-reinforced slabs typically fail in flexure
when subjected to monotonically increasing unbalanced moment. Cyclic loading may, however,
result in premature punching shear failure before reaching the yield plateau. Therefore, cyclic
tests for lower gravity loads and reinforcement ratios than the ones adopted in the presented
campaign should be conducted to examine whether the loading history has an impact on the
failure mode. Moreover, the new tests should allow to verify experimentally the appearance
of plastic strains in the bottom reinforcement and to further investigate the shear crack open-
ing/closing process.

(b) — Slabs without continuous bottom reinforcement over the slab-column connections or
with bottom reinforcement with insufficient anchorage length were rather common in flat slab
structures designed in North America according to provisions prior to [ACI71]. Several ex-
perimental studies have been conducted on slab specimens with curtailed bottom reinforce-
ment [Dur95, Sta05, Rob06, Tia08]. However, testing of slab pairs under monotonic and cyclic
loading will provide more insight into the impact of bottom reinforcement continuity on the
cyclic behaviour of slab-column connections and on their post-peak response.

(c) — Slabs with partial debonding of the top reinforcement in the proximity of the slab-column
connection have been shown to be an effective solution for increasing the drift capacity of slab-
column connections when compared to conventional, fully bonded, slabs [Cho09b]. Testing of
slab pairs with debonded top reinforcement in the column proximity under monotonic and cyclic
conditions will increase the understanding of the cyclic behaviour of such connection typologies.

Extension of the test database would allow future developments with respect to analytical mod-
elling of the cyclic behaviour of slab-column connections would benefit of a larger database of
slab pairs for validation purposes or to calibrate seismic damage models.

• Edge and corner slab-column connections: The test campaign performed in the framework
of this thesis focused on the the seismic behaviour of interior slab-column connections. Exterior
slab-column connections may influence significantly the stiffness and the strength of flat slab
buildings. Past experimental studies investigated the seismic behaviour of exterior connections
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with relatively thin slabs. Therefore, further experimental investigation could focus on the
seismic behaviour of corner connections and edge connections with bending parallel to the slab
edge, particularly for relatively thick slabs.

• Isolated slabs vs continuous slabs: This thesis proposed a method to account for the slab
region between 0.22L and 0.50L on the moment-rotation response. Although the method was
validated against test results on flat slab systems, no data on slab pairs tested to investigate the
influence of the slab region outside 0.22L were collected. Future experimental works can provide
more in-depth knowledge by testing isolated slab components identical with previously tested
flat slab systems (e.g. [Fic08]).

• Biaxial seismic behaviour of interior slab-column connections: Although most experi-
mental studies on slab-column connections, including the work presented in this thesis, consider
seismic shaking in one principal direction (uniaxial unbalanced moment), in reality shaking
occurs simultaneously in both principal directions (biaxial unbalanced moment). Only few ex-
perimental campaigns investigated the influence of biaxial unbalanced moments on the seismic
behaviour of slab-column connections [Pan89]. Further experimental studies focusing on the
biaxial behaviour of interior slab-column connections is needed, in particular for relatively thick
slabs.

8.2.2 Analytical modelling

Because of its physical basis and as it satisfies equilibrium, the analytical model is rather versatile
and can be adapted to capture a large range of static and kinematic boundary conditions. Several
enhancements and extensions can be performed in the future in the following directions:

• Other non-axisymmetric cases: The analytical model proposed in this thesis can be applied
to inner slab-column connections or edge slab-column connections with bending perpendicular to
the slab edge. This study has demonstrated that adopting a kinematic law for the slab rotation
at different angles, on the basis of experiments and finite element calculations, can give rather
good predictions of both the local behaviour (sector element level) and the global behaviour
(specimen level). By developing new relationships to link local slab rotations at different an-
gles as well as relationships between local and global slab rotations, the model can be extended
to non-axisymmetric slab and/or column geometries, non-axisymmetric loading conditions, and
non-axisymmetric reinforcement layouts:

(a) — Non-axisymmetric slab/column geometry: The analytical model can be extended to edge
slab-column connections with bending parallel to the slab edge as well as corner slab-column
connections. Once this last step is achieved, the seismic assessment of entire buildings with
exterior and interior slab-column connections would be possible. Moreover, it can be applied
to connection typologies of RC bridges that are similar to the one treated in this thesis, e.g.
monolithic pier-deck connections. This will allow estimating the effective deck width of RC slab
bridges. In addition, it is feasible to extend the analytical so as to capture the behaviour of RC
slabs with rectangular columns.

(b) — Non-axisymmetric loading: The developed model can be extended rather easily to cap-
ture the behaviour of slab bridges under non-symmetric gravity loads (e.g. traffic loads in the
longitudinal direction alone).

(c) — Non-axisymmetric reinforcement layout: The model proposed in this thesis accounts for
different effective depth of the reinforcing bars per direction. Therefore, it can be easily applied
to cases with significantly larger reinforcement content along the strong axis compared to the
weak axis, as well as to post-tensioned slabs with tendons running along one principal direction.

159



8. Conclusions and further research

• Influence of compressive membrane action: The presented analytical model is combined
with an Effective Beam Width method in order to account for the contribution of the slab
part outside r = 0.22L to the moment-rotation response. This approach, however, neglects the
compressive membrane action of actual flat slabs. Future works should aim to incorporate this
effect in the moment-rotation relationship.

• Biaxial seismic behaviour of interior slab-column connections: Limited number of the-
oretical studies on slab-column connections investigated the influence of biaxial unbalanced
moments. Extension of the presented model to sequential loading protocols [Pan89] is rather
straightforward. Additional considerations should be taken to accommodate other loading pro-
tocol types (e.g. clover-leaf).

• Cyclic damage of interior slab-column connections: The developed cyclic model for the
moment-rotation relationship adopted the flexural damage index, which has been proposed by
others, to describe the cyclic damage of each sector element. Although this approach predicted
rather well the hysteretic response of most tests reported in the literature and conducted within
this thesis, other damage models (cumulative or non-cumulative) can be implemented rather
easily. This will allow to identify the damage model that best describes the seismic response
of slab-column connections and whether there is need for a new damage model for slab-column
connections.
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Appendix A

Test database

This Appendix presents the test database used for validation purposes of the proposed analytical
model (Chapters 4 and 5). The slabs tested in the framework of this thesis are also included in the
foloowing tables.

Table A.1 – Summary of properties and results of interior slab-column specimens tested under constant
vertical load and monotonically increasing unbalanced moment

Source Mark c h d B fc dg fy ρ ρ’ v Mexp ψscc
[mm] [mm] [mm] [m] [MPa] [mm] [MPa] [%] [%] [

√
MPa] [kNm] [%]

[Gha74] B3NP 305 152 114 1.81 23.7 16.0 345 1.39 1.39 0.114 162.0 -
B5NP 305 152 114 1.81 28.3 16.0 345 1.39 1.39 0.104 196.0 -

[Sta74] C/I/1 127 76 56 0.87 36.0 9.5 434 1.17 1.17 0.111 7.3 -
C/I/2 127 76 56 0.87 29.7 9.5 434 1.17 1.17 0.376 10.5 -
C/I/3 127 76 56 0.87 25.9 9.5 434 1.17 1.17 0.308 13.6 -
C/I/4 127 76 56 0.87 25.4 9.5 434 1.17 1.17 0.174 16.7 -

[Gha76] SM0.5 305 152 120 1.83 36.8 16.0 476 0.53 0.18 0.111 100.0 3.60
SM1.0 305 152 120 1.83 33.4 16.0 476 1.00 0.33 0.116 126.0 2.63
SM1.5 305 152 120 1.83 39.9 16.0 476 1.35 0.39 0.117 132.0 2.10

[Isl76] IP1 229 89 70 2.24 27.3 6.0 356 0.83 0.43 0.092 30.5 3.62
IP2 229 89 70 2.24 31.9 6.0 374 0.83 0.43 0.085 37.7 3.97

[Elg87] 1 250 152 123 1.80 35.0 16.0 452 1.30 0.43 0.149 130.0 1.66†
Test PD1 390 250 204 3.00 37.9 16.0 559 0.79 0.35 0.091 526.0 1.66*
campaign PD3 390 250 198 3.00 34.9 16.0 558 0.81 0.34 0.281 200.0 0.45

PD4 390 250 201 3.00 39.0 16.0 507 0.80 0.35 0.136 527.0 2.01
PD5 390 250 198 3.00 37.5 16.0 507 0.81 0.35 0.181 461.0 2.19
PD10 390 250 197 3.00 32.3 16.0 593 1.60 0.72 0.307 290.0 0.49
PD12 390 250 194 3.00 35.5 16.0 546 1.61 0.72 0.176 469.0 1.21

† ψmax at 0.83Mexp
* inconsistent rotation measurement
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A. Test database

Table A.2 – Summary of properties and results of interior slab-column specimens tested under constant
eccentricity and monotonically increasing unbalanced moment

Source Mark c h d B fc dg fy ρ ρ’ e Vpeak ψmax.p
[mm] [mm] [mm] [m] [MPa] [mm] [MPa] [%] [%] [mm] [kN] [%]

[Els56] A11 356 152 114 1.83 25.9 25.4 326 2.47 1.15 178 529.0 1.39
A12 356 152 114 1.83 28.4 25.4 326 2.47 2.47 178 529.0 1.39

[Moe61] M2 305 152 114 1.83 25.7 9.5 481 1.50 - 196 292.2 -
M2A 305 152 114 1.83 15.5 9.5 481 1.50 - 185 212.6 -
M3 305 152 114 1.83 22.8 9.5 481 1.50 - 338 207.3 -
M4A 305 152 114 1.83 17.7 9.5 481 1.50 - 434 143.7 -
M6 305 152 114 1.83 26.5 9.5 327 1.34 - 168 239.3 -
M7 305 152 114 1.83 25.0 9.5 327 1.34 - 61 311.0 -
M8 305 152 114 1.83 24.6 9.5 327 1.34 0.57 437 149.5 -
M9 305 152 114 1.83 23.2 9.5 327 1.34 - 127 266.9 -
M10 305 152 114 1.83 21.1 9.5 327 1.34 0.57 308 177.9 -

[Ani70] B3 203 102 76 1.47 30.4 9.5 431 2.19 - 94 191.3 -
B4 203 102 76 1.47 29.8 9.5 431 2.19 - 188 139.7 -
B5 203 102 76 1.47 29.0 9.5 431 2.19 - 313 125.4 -
B6 203 102 76 1.47 31.3 9.5 431 2.19 - 464 115.7 -
B7 203 102 76 1.47 33.8 9.5 431 2.19 - 737 69.8 -

[Nar71] L1 305 178 143 2.28 33.8 9.5 398 1.11 - 305 399.0 -
[Haw89] 6AH 305 152 121 1.83 31.3 19.0 472 0.60 0.28 535 169.0 5.55

9.6AH 305 152 118 1.83 30.7 19.0 415 0.79 0.50 522 187.0 4.02
1.4AH 305 152 114 1.83 30.3 19.0 420 1.26 0.63 489 205.0 3.19
6AL 305 152 121 1.83 22.7 19.0 472 0.60 0.28 135 244.0 3.19
9.6AL 305 152 118 1.83 28.9 19.0 415 0.79 0.50 135 257.0 2.64
1.4AL 305 152 114 1.83 27.0 19.0 420 1.26 0.63 136 319.0 2.22
7.3BH 305 114 82 1.83 22.2 19.0 472 0.64 0.40 488 80.0 4.16
9.5BH 305 114 83 1.83 19.8 19.0 472 0.79 0.51 483 94.0 4.72
14.2BH 305 114 79 1.83 29.5 19.0 415 1.22 0.76 500 102.0 3.19
7.3BL 305 114 83 1.83 18.1 19.0 472 0.64 0.40 98 130.0 3.89
9.5BL 305 114 83 1.83 20.0 19.0 472 0.79 0.48 117 142.0 4.16
14.2BL 305 114 76 1.83 20.5 19.0 415 1.22 0.75 129 162.0 3.47
6CH 305 152 121 1.83 52.4 19.0 472 0.60 0.28 511 186.0 6.24
9.6CH 305 152 117 1.83 57.2 19.0 415 0.87 0.50 519 218.0 3.14
1.4CH 305 152 114 1.83 54.7 19.0 420 1.16 0.63 529 252.0 3.05
6CL 305 152 121 1.83 49.5 19.0 472 0.60 0.28 135 273.0 4.72
1.4CL 305 152 114 1.83 47.7 19.0 420 1.16 0.63 136 362.0 2.36
1.4FH 305 152 114 1.83 31.2 19.0 446 0.90 0.22 498 206.0 2.58
6FLI 305 152 120 1.83 25.9 19.0 472 0.59 0.27 119 227.0 3.15
10.2FLI 305 152 114 1.83 18.1 19.0 446 1.13 0.49 112 240.0 1.94
10.2FLO 305 152 114 1.83 26.5 19.0 446 0.77 0.49 121 290.0 2.78
10.2FHO 305 152 121 1.83 33.8 19.0 446 0.77 0.49 491 183.0 3.05

[Kam90] SA1 150 80 64 2.00 33.0 10.0 640 0.55 0.55 52 109.0 -
SA3 150 80 64 2.00 36.0 10.0 640 0.55 0.55 100 85.0 -
SA4 150 80 64 2.00 32.0 10.0 640 0.55 0.55 336 49.0 -
SB2 150 80 64 2.00 28.0 10.0 640 1.00 1.00 360 61.0 -

[Mar96] NHLS0.5 250 150 119 1.87 43.2 19.0 450 0.50 0.28 167 266.2 -
NHLS1.0 250 150 119 1.87 42.7 19.0 450 1.00 0.38 130 408.2 -
NNHS1.0 250 150 119 1.87 36.2 19.0 450 1.00 0.38 720 163.6 -
NHHS0.5 250 150 119 1.87 34.0 19.0 450 0.50 0.28 595 164.3 -
NHHS1.0 250 150 119 1.87 35.3 19.0 450 1.00 0.38 464 250.3 -

[Kru99] P16A 300 150 121 3.00 38.6 16.0 460 1.00 - 160 332.0 1.26*
P32 300 150 121 3.00 30.4 16.0 460 1.00 - 320 270.0 0.93*

[Bin05] CE 150 75 57 1.02 24.1 9.5 455 1.38 0.70 150 95.6 2.62
[Ben12] SI-1 180 80 60 1.00 28.1 12.0 335 1.40 1.40 280 65.0 -

SI-2 180 80 60 1.00 25.0 12.0 335 1.40 1.40 580 37.5 -
* minimum slab rotation
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Table A.3 – Summary of properties and results of interior slab-column specimens tested under constant
vertical load and cyclically increasing unbalanced moment

Source Mark c h d B fc dg fy ρ ρ’ v nc Mexp ψscc
[mm] [mm] [mm] [m] [MPa] [mm] [MPa] [%] [%] [

√
MPa] [-] [kNm] [%]

[Kan75] H9 200 100 80 1.80 22.8 9.5 361 0.70 0.70 0.111 5 33.0 2.00
H10 200 100 80 1.80 22.8 9.5 361 1.12 1.12 0.115 5 36.1 2.00
H11 200 100 80 1.80 23.2 9.5 361 1.12 1.12 0.227 5 25.2 1.00

[Isl76] IP3C 229 89 70 2.24 29.7 6.0 316 0.83 0.43 0.087 35.8 3.62
[Mor83] S5 305 76 61 1.83 34.9 9.5 340 1.03 1.03 0.085 5 36.0 4.70
[Zee84] INT 137 61 52 1.83 26.2 9.5 470 0.80 0.34 0.138 2 10.3 3.79†
[Pan89] AP1 274 122 100 3.66 33.3 10.0 472 0.76 0.26 0.125 2 61.8 1.60

AP3 274 122 100 3.66 31.7 10.0 472 0.76 0.26 0.078 2 95.0 3.14
[Cao93] CD1 250 150 115 1.90 40.4 20.0 395 1.29 0.49 0.287 1 49.9 0.90

CD5 250 152 115 1.90 31.2 20.0 395 1.29 0.49 0.228 1 70.5 1.20
CD8 250 155 115 1.90 27.0 20.0 395 1.29 0.49 0.179 1 85.0 1.30

[Rob02] 1C 254 115 95 3.00 35.4 9.5 420 0.75 0.40 0.088 2 58.5 3.52†
[Sta05] C-02 305 115 82 2.44 30.9 19.0 454 1.42 0.51 0.205 3 43.1 2.30
[Rob06] ND1C 254 114 89 3.00 29.6 9.5 525 0.52 0.36 0.083 3 39.3 4.99†

ND4LL 254 114 89 3.00 32.3 9.5 525 0.52 0.36 0.113 3 43.9 3.00†
ND5XL 254 114 89 3.00 24.1 9.5 525 0.52 0.36 0.178 3 31.9 2.00†
ND6HR 254 114 89 3.00 26.3 9.5 525 1.03 0.67 0.111 3 55.1 2.97†
ND7LR 254 114 89 3.00 18.8 9.5 525 0.45 0.36 0.137 3 30.0 2.99†

[Cho07] S1 300 120 90 2.40 33.5 16.0 458 1.05 0.60 0.090 2 83.1 3.00
S2 300 120 90 2.40 41.3 16.0 458 1.05 0.60 0.169 2 67.7 2.91
S3 300 120 90 2.40 37.8 16.0 458 1.59 0.80 0.093 2 118.5 2.89

[Par07] RI-50 300 132 116 3.40 32.3 19.0 392 0.78 0.27 0.116 3 127.2 3.47†
[Kan08] C0 254 152 130 2.90 38.6 9.5 452 0.49 0.11 0.109 1 107.6 2.80
[Tia08] L0.5 406 152 127 3.86 25.6 9.5 469 0.61 0.25 0.126 3 121.0 1.52
[Bu09] SW1 200 120 90 1.80 35.0 16.0 520 1.25 0.60 0.172 3 64.7 2.71*

SW5 200 120 90 1.80 46.0 16.0 520 1.25 0.60 0.233 3 65.1 2.75*
[Cho09] Control 300 150 125 2.80 34.3 25.0 392 0.90 0.25 0.106 3 105.3 4.44†
[Cho09b] SPB 355 152 121 4.20 34.1 16.0 440 1.27 0.35 0.084 5 137.4 3.68†
[Par12] RCA 300 135 106 2.70 22.5 9.5 430 1.06 0.79 0.171 3 70.8 1.24

RCB 300 135 106 2.70 38.7 9.5 430 1.06 0.79 0.157 3 74.0 1.37
Test PD2 390 250 198 3.00 36.9 16.0 558 0.81 0.34 0.287 2 196.0 0.36
campaign PD6 390 250 199 3.00 38.3 16.0 507 0.81 0.30 0.192 2 372.0 0.86

PD8 390 250 198 3.00 32.7 16.0 575 0.81 0.29 0.152 2 384.0 1.30
PD11 390 250 194 3.00 33.1 16.0 593 1.60 0.71 0.311 2 286.0 0.43
PD13 390 250 195 3.00 36.5 16.0 546 1.61 0.72 0.190 2 410.0 0.86

† vertical load partly applied on the slab specimen for which the drift ratio represents the rotation due to slab
deformation ψslab

* inconsistently high drift measurement (communication with the authors)
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Appendix B

Cracking pattern of the top slab
surface

This Appendix presents the cracking pattern of the top slab surface for the tests carried within this
thesis (Chapter 3). Cracks shown in black were drawn after the application of vertical loads. Cracks
shown in red were caused by the introduction of unbalanced moment and were drawn after the com-
pletion of each test.
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B. Cracking pattern of the top slab surface
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Figure B.1 – Top surface cracking pattern for the tested slabs (Chapter 3) under reducing level of
vertical load (vertical axis) and increasing level of flexural reinforcement ratio (horizontal axis).
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Appendix C

Moment-rotation relationship
evaluation

This Appendix presents the comparison of the analytical model for the moment-rotation relationship
(Chapter 4) with experimental moment-rotation curves found in the literature. First, the comparison
is presented for quasi-static cyclic tests. Afterwards, the comparison is presented for quasi-static
monotonic tests conducted either under constant vertical load or eccentricity.

Circular markers represent the intersection of the monotonic analytical model with the CSCT(mono)
failure criterion or the CSCT(cyc) failure criterion, while x markers represent the intersection of the
cyclic analytical model with the CSCT(mono) failure criterion or the load step for which ψmax =
ψmax.u.mono (i.e. D(π/2) = 1), whichever comes first.

C.1 Cyclic tests

Kanoh and Yoshizaki [Kan75]
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Figure C.1 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimens tested by Kanoh and Yoshizaki [Kan75]: (a) H10, and (b) H11.
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C. Moment-rotation relationship evaluation

Morrison et al. [Mor83]
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Figure C.2 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen S5 tested by Morrison et al. [Mor83].

Zee and Moehle [Zee84]
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Figure C.3 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen INT tested by Zee and Moehle [Zee84].

Pan and Moehle [Pan89]
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Figure C.4 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimens tested by Pan and Moehle [Pan89]: (a) AP1, and (b) AP3.
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Cyclic tests

Cao [Cao93]
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Figure C.5 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimens tested by Cao [Cao93]: (a) CD1, (b) CD5, and (b) CD8.

Robertson et al. [Rob02]
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Figure C.6 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen 1C tested by Robertson et al. [Rob02].

Stark et al. [Sta05]
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Figure C.7 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen C-02 tested by Stark et al. [Sta05].
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C. Moment-rotation relationship evaluation

Robertson and Johnson [Rob06]
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Figure C.8 – Comparison between experimental and calculated moment-connection rotation curves for
the isolated specimens tested by Robertson and Johnson [Rob06]: (a) ND1C, (b) ND4LL, (c) ND5XL,
(d) ND6HR, and (e) ND7LR.

Choi et al. [Cho07]
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Figure C.9 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimens tested by Choi et al. [Cho07]: (a) S1, (b) S2, and (c) S3.
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Cyclic tests

Park et al. [Par07]
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Figure C.10 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen RI-50 tested by Park et al. [Par07].

Kang and Wallace [Kan08]
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Figure C.11 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen C0 tested by Kang and Wallace [Kan08].

Tian et al. [Tia08]
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Figure C.12 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen L0.5 tested by Tian et al. [Tia08].
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C. Moment-rotation relationship evaluation

Bu and Polak [Bu09]
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Figure C.13 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimens tested by Bu and Polak [Bu09]: (a) SW1, and (b) SW5.

Cho [Cho09]
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Figure C.14 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen “Control” tested by Cho [Cho09].

Choi et al. [Cho09b]
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Figure C.15 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen SPB tested by Choi et al. [Cho09b].
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Cyclic tests

Park et al. [Par12]
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Figure C.16 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimens tested by Park et al. [Par12]: (a) RCA, and (b) RCB.
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Figure C.17 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimens tested within the present research under cyclic conditions: (a) PD2, (b)
PD6, (c) PD8, (d) PD11, and (e) PD13.
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C. Moment-rotation relationship evaluation

C.2 Monotonic tests

C.2.1 Constant vertical load

Islam and Park [Isl76]
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Figure C.18 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen IP2 tested by Islam and Park [Isl76].

Ghali et al. [Gha76]
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Figure C.19 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimens tested by Ghali et al. [Gha76]: (a) SM0.5, (b) SM1.0, and (c) SM1.5.
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Monotonic tests
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Figure C.20 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimens tested within the present research under monotonic conditions: (a) PD3,
(b) PD5, (c) PD4, (d) PD1, (e) PD10, and (f) PD12.
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C. Moment-rotation relationship evaluation
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Figure C.22 – Comparison between experimental and calculated shear force-maximum slab rotation
curves for the isolated specimens tested by Hawkins et al. [Haw89]
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Figure C.23 – Comparison between experimental and calculated shear force-maximum slab rotation
curves for the isolated specimens tested by Hawkins et al. [Haw89]
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Krüger [Kru99]

0.5 1.5 2

S
h
ea

r 
F

o
rc

e 
[M

N
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
P16A [Kru99]

Slab rotation ψ
min

 [%]
10 0.5 1.5 2

P32 [Kru99]

10

e
exp

 = 0.320 m

ρ = 1.00%

ρ’ = 0.00%

c = 0.3 m

e
exp

 = 0.160 m

ρ = 1.00%

ρ’ = 0.00%

c = 0.3 m

Calculated

Experimental

Calculated

Experimental

Slab rotation ψ
min

 [%]

(b)(a)

CSCT(mono)
CSCT(mono)

Figure C.24 – Comparison between experimental and calculated shear force-minimum slab rotation
curves for the isolated specimens tested by Krüger [Kru99]: (a) P16A, and (b) P30A.
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Figure C.25 – Comparison between experimental and calculated moment-connection rotation curves
for the isolated specimen CE tested by Binici and Bayrak [Bin05].
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Appendix D

Moment and deformation capacity
evaluation

Table D.1 – Moment and deformation capacity predictions for interior slab-column specimens tested
under constant vertical load and monotonically increasing unbalanced moment

Source Mark Mpred/Mexp [-] ψscc.pred/ψscc.exp [-]
CSCT CSCT [ACI14] [Bro09] [Eur04] [Fib11] CSCT CSCT [Bro09]
(cyc) (mono) (cyc) (mono)

[Gha74] B3NP 0.696 0.948 0.462 0.896 0.684 0.592 - - -
B5NP 0.674 0.817 0.435 0.851 0.615 0.547 - - -

[Sta74] C/I/1 0.632 0.832 - 1.674 0.014 0.134 - - -
C/I/2 0.779 0.984 0.151 1.656 0.299 0.324 - - -
C/I/3 0.819 1.059 0.409 1.462 0.559 0.707 - - -
C/I/4 0.914 0.962 0.448 1.280 0.607 0.580 - - -

[Gha76] SM0.5 0.955 1.009 0.558 1.000 0.865 0.842 0.637 0.928 2.221
SM1.0 0.880 0.979 0.744 1.020 0.892 0.873 0.623 0.762 1.049
SM1.5 0.999 1.268 0.786 1.051 1.047 0.971 0.760 1.063 1.102

[Isl76] IP1 1.084 1.084 0.536 1.621 0.904 0.822 1.137 1.137 3.194
IP2 0.926 0.926 0.455 1.412 0.785 0.740 1.094 1.094 3.111

[Elg87] 1 0.822 1.061 0.485 0.945 0.711 0.615 0.825† 1.054† -
Test PD1 0.730 1.070 0.710 0.808 0.903 0.655 -* -* -*
campaign PD3 0.945 1.066 0.440 0.933 0.495 - 0.848 0.981 2.369

PD4 0.771 0.975 0.581 0.840 0.721 0.464 0.522 0.876 1.099
PD5 0.868 1.021 0.463 0.881 0.530 0.283 0.390 0.545 0.874
PD10 0.881 1.170 0.231 0.683 0.721 0.362 0.618 0.886 0.661
PD12 0.864 1.094 0.407 0.651 0.778 0.562 0.503 0.721 0.705

Mean (all tests) 0.847 1.018 0.488 1.092 0.674 0.593 0.723 0.913 1.639
Mean (d > 0.1m) 0.840 1.040 0.525 0.880 0.747 0.615 0.636 0.869 1.260
COV (all tests) 0.140 0.107 0.332 0.308 0.361 0.384 0.328 0.198 0.603
COV (d > 0.1m) 0.124 0.109 0.304 0.141 0.215 0.345 0.241 0.194 0.525

† ψmax at 0.83Mexp
* inconsistent rotation measurement
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D. Moment and deformation capacity evaluation

Table D.2 – Moment and deformation capacity predictions for interior slab-column specimens tested
under constant vertical load and cyclically increasing unbalanced moment

Source Mark Mpred/Mexp [-] ψscc.pred/ψscc.exp [-]
CSCT CSCT [ACI14] [Eur04] [Fib11] CSCT CSCT [ACI14] [Hue99]
(cyc) (mono) (cyc) (mono)

[Kan75] H9 1.094 1.103 0.700 0.928 0.666 1.040 1.000 0.970 1.300
H10 1.027 0.986 0.626 0.883 0.771 0.970 1.000 0.958 1.270
H11 1.007 1.008 0.417 0.680 0.522 1.012 1.000 0.500 1.056

[Isl76] IP3C 1.012 -♦ 0.405 0.800 0.724 0.843 -♦ 0.641 0.982
[Mor83] S5 0.924 1.123 0.583 1.042 1.348 0.963 1.077 0.559 -
[Zee84]† INT 0.954 1.039 0.629 0.689 0.661 0.964 0.987 0.410 0.431
[Pan89] AP1 0.986 1.032 0.821 0.954 0.520 0.917 1.000 1.079 1.292

AP3 1.032 1.191 0.534 0.774 0.621 0.882 1.000 0.765 1.195
[Cao93] CD1 0.931 1.108 0.433 0.756 0.499 0.897 0.823 0.556 0.917

CD5 0.992 1.101 0.456 0.723 0.721 0.899 1.042 0.417 0.918
CD8 0.937 1.061 0.486 0.764 0.742 0.875 1.077 0.761 1.023

[Rob02]† 1C 1.011 0.935 0.999 1.009 0.823 1.208 0.855 0.640 0.961
[Sta05] C-02 0.883 0.921 0.901 1.029 0.902 0.988 0.870 0.444 0.583
[Rob06]† ND1C 0.992 0.898 0.504 1.076 0.890 0.975 0.930 0.466 0.715

ND4LL 0.941 0.916 0.462 0.847 0.507 0.988 1.000 0.635 0.837
ND5XL 0.937 0.955 0.636 0.665 0.119 1.090 0.755 0.485 0.662
ND6HR 0.957 0.893 0.558 0.899 0.729 0.986 1.010 0.650 0.868
ND7LR 0.925 0.987 0.571 0.844 0.419 0.987 1.000 0.522 0.552

[Cho07] S1 0.998 1.057 0.729 0.856 0.907 1.033 1.000 0.772 1.181
S2 0.810 0.948 0.815 0.758 0.375 0.809 1.003 0.442 0.491
S3 0.881 0.912 0.604 0.740 0.737 0.902 1.038 0.790 1.196

[Par07]† RI-50 0.955 0.916 0.719 1.091 0.521 1.025 0.634 0.535 0.690
[Kan08] C0 0.817 1.068 0.948 1.086 0.646 0.814 0.857 1.074 1.469
[Tia08] L0.5 1.001 0.859 0.714 0.932 0.478 1.121 0.990 1.180 1.469
[Bu09] SW1 0.881 1.026 0.409 0.592 0.503 -* -* -* -*

SW5 0.775 1.132 0.298 0.415 0.362 -* -* -* -*
[Cho09]† Control 0.897 0.877 0.885 1.354 1.164 0.916 0.968 0.452 0.622
[Cho09b]† SPB 0.988 0.886 0.841 0.951 1.189 0.930 0.815 0.654 1.023
[Par12] RCA 0.956 0.873 0.680 0.872 0.553 0.987 0.936 0.865 1.094

RCB 1.052 0.865 0.919 0.995 0.628 1.190 0.978 0.927 1.039
Test PD2 1.009 1.010 0.515 0.561 - 1.132 1.000 1.389 2.260
campaign PD6 0.971 1.016 0.597 0.728 0.372 0.918 1.000 0.829 1.439

PD8 0.980 1.047 0.659 0.857 0.565 0.766 1.000 0.993 1.100
PD11 0.928 1.126 0.241 0.731 0.367 0.721 0.907 1.163 1.670
PD13 1.007 1.159 0.488 0.924 0.668 0.718 1.000 0.680 1.389

Mean (all tests) 0.956 1.001 0.622 0.852 0.653 0.954 0.955 0.733 1.053
Mean (d > 0.1m) 0.967 1.011 0.643 0.885 0.641 0.924 0.943 0.842 1.212
COV (all tests) 0.072 0.096 0.302 0.211 0.388 0.124 0.101 0.351 0.364
COV (d > 0.1m) 0.057 0.110 0.309 0.210 0.367 0.147 0.114 0.332 0.320

† vertical load partly applied on the slab specimen for which the drift ratio represents the rotation due to
slab deformation ψslab

♦ the loading protocol did not follow a specific pattern
* inconsistently high drift measurement (communication with the authors)
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Table D.3 – Moment and deformation capacity predictions for interior slab-column specimens tested
under constant eccentricity and monotonically increasing unbalanced moment

Source Mark Mpred/Mexp [-] ψmax.pred/ψmax.exp [-]
CSCT CSCT [ACI14] [Bro09] [Eur04] [Fib11] CSCT(mono) CSCT(cyc)
(mono) (cyc)

[Els56] A11 0.796 0.744 0.472 0.664 0.455 0.597 0.906 0.791
A12 0.825 0.768 0.494 0.690 0.476 0.620 0.950 0.820

[Moe61] M2 0.927 0.819 0.638 0.945 0.678 0.760 - -
M2A 1.088 0.961 0.695 1.054 0.670 0.864 - -
M3 1.049 0.832 0.672 0.973 0.653 0.838 - -
M4A 1.260 0.966 0.748 1.041 0.729 0.967 - -
M6 0.991 0.892 0.703 1.218 0.673 0.921 - -
M7 0.965 0.930 0.748 1.055 0.706 0.840 - -
M8 1.147 0.937 0.690 1.378 0.671 1.016 - -
M9 1.003 0.945 0.714 1.057 0.679 0.843 - -
M10 1.048 0.893 0.651 1.185 0.630 0.865 - -

[Ani70] B3 0.932 0.880 0.577 0.874 0.553 0.695 - -
B4 1.095 1.008 0.609 1.002 0.589 0.746 - -
B5 1.017 0.861 0.518 0.905 0.504 0.643 - -
B6 0.925 0.759 0.457 0.733 0.510 0.572 - -
B7 1.115 0.876 0.567 0.812 0.637 0.698 - -

[Nar71] L1 0.940 0.841 0.686 1.000 0.659 0.768 - -
[Haw89] 6AH 0.918 0.888 0.909 1.252 0.876 0.856 0.915 0.663

9.6AH 1.032 0.958 0.796 1.236 0.776 0.803 0.841 0.652
1.4AH 1.101 0.942 0.713 1.082 0.695 0.807 0.762 0.596
6AL 1.058 0.995 0.968 1.155 0.924 0.837 0.915 0.724
9.6AL 1.098 1.060 1.002 1.218 0.958 0.904 1.133 0.951
1.4AL 1.002 0.966 0.743 0.943 0.711 0.792 0.932 0.851
7.3BH 1.172 1.061 0.988 1.396 0.970 0.920 1.115 0.877
9.5BH 1.089 0.929 0.812 1.220 0.836 0.822 0.778 0.604
14.2BH 1.096 0.870 0.809 1.276 0.782 0.897 1.078 0.755
7.3BL 1.021 0.957 1.070 1.053 1.032 0.874 1.028 0.820
9.5BL 1.015 0.934 0.971 1.138 0.938 0.869 0.842 0.673
14.2BL 0.868 0.822 0.762 0.945 0.738 0.756 0.824 0.729
6CH 1.044 1.024 1.098 1.355 1.070 0.942 0.894 0.697
9.6CH 1.157 1.090 0.924 1.368 0.900 0.874 1.178 0.916
1.4CH 1.089 0.949 0.744 1.166 0.726 0.774 0.941 0.725
6CL 1.028 1.011 1.278 1.127 1.220 0.947 1.044 0.799
1.4CL 1.036 0.988 0.870 1.169 0.833 0.825 1.127 0.966
1.4FH 1.063 0.919 0.712 1.098 0.694 0.742 1.039 0.806
6FLI 1.125 1.091 1.148 1.234 1.095 0.942 1.095 0.924
10.2FLI 1.129 1.062 0.850 1.006 0.812 0.921 1.082 0.830
10.2FLO 0.863 0.825 0.835 1.040 0.798 0.753 1.191 0.928
10.2FHO 1.130 0.987 0.918 1.450 0.893 0.909 1.203 0.731

[Kam90] SA1 0.852 0.808 0.770 0.819 0.731 0.535 - -
SA3 0.987 0.944 0.910 1.003 0.871 0.614 - -
SA4 1.096 0.964 0.734 1.484 0.717 0.660 - -
SB2 1.051 0.883 0.503 0.820 0.492 0.574 - -

[Mar96] NHLS0.5 0.808 0.791 0.936 0.854 1.012 0.704 - -
NHLS1.0 0.886 0.813 0.657 0.906 0.683 0.640 - -
NNHS1.0 1.093 0.893 0.649 1.023 0.703 0.734 - -
NHHS0.5 0.877 0.831 0.713 1.033 0.769 0.662 - -
NHHS1.0 0.957 0.788 0.557 0.949 0.596 0.609 - -

[Kru99] P16A 0.942 0.898 0.870 1.014 0.832 0.718 0.996 0.917
P32 0.976 0.911 0.725 0.860 0.701 0.665 0.862 0.820
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D. Moment and deformation capacity evaluation

Source Mark Mpred/Mexp [-] ψmax.pred/ψmax.exp [-]
CSCT CSCT [ACI14] [Bro09] [Eur04] [Fib11] CSCT(mono) CSCT(cyc)
(mono) (cyc)

[Bin05] CE 0.847 0.746 0.435 0.791 0.414 0.522 0.924 0.716
[Ben12] SI-1 1.077 0.996 0.651 1.458 0.636 0.785 - -

SI-2 0.922 0.835 0.657 1.442 0.660 0.821 - -
Mean (all tests) 1.012 0.912 0.761 1.075 0.747 0.778 0.985 0.788
Mean (d > 0.1m) 1.013 0.920 0.786 1.080 0.770 0.807 1.000 0.805
COV (all tests) 0.103 0.098 0.239 0.191 0.229 0.157 0.131 0.135
COV (d > 0.1m) 0.107 0.100 0.222 0.165 0.213 0.136 0.127 0.134
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