
Préface

Le thème traité dans cette thèse est la résistance à l’effort tranchant des dalles en béton
armé sans armature d’effort tranchant appuyées linéairement et chargées par de forces
concentrées. Les applications les plus importantes sont les dalles de roulement de pont
(ponts en béton armé et ponts mixtes) avec appuis de la dalle représentés par les âmes
et charges intenses reparties sur des petites surfaces dues à l’action des poids-lourds. Du
fait que les actions prépondérantes sont celles du trafic, la résistance à la fatigue de ces
dalles peut être déterminante.

Ce thème est devenu important depuis une douzaine d’années car précédemment, avec
les anciennes règles de dimensionnement à l’effort tranchant, c’était la flexion qui était
déterminante. De ce fait, un grand nombre de dalles de roulement de ponts existants n’a
pas été vérifié à l’effort tranchant lors du dimensionnement. C’est avec l’introduction
des normes de nouvelle génération que l’effort tranchant est devenu déterminant de
sorte qu’un bon nombre de ponts existants ne satisfont plus les exigences normatives.
Malgré l’importance pratique, les recherches dans ce domaine sont encore rares et cer-
tains problèmes, comme par exemple la redistribution des efforts due à la fissuration,
la transmission par appuis direct des charges en proximité des âmes, l’influence de la
présence des câbles de précontrainte dans la dalle de roulement des ponts construits en
encorbellement ainsi que la résistance à la fatigue sont encore peu étudiés et mal compris.

Le travail de thèse de Francisco Natário représente une contribution importante dans ces
domaines et a permis de développer des méthodes de vérification simples et utilisables
par les ingénieurs. Nos remerciements vont à l’Office Fédéral des Routes qui a soutenu de
façon déterminante cette recherche (projet AGB 2009/008) ainsi qu’aux membres de la
commission accompagnante (Jean-Christophe Putallaz, Dr. Manuel Alvarez , Stéphane
Cuennet et Dr. Hans Rudolf Ganz) pour le suivi et les remarques constructives.

Lausanne, juillet 2015

Prof. Dr. Aurelio Muttoni
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Abstract

Reinforced concrete slabs without shear reinforcement under concentrated loads near linear sup-
ports are typical cases of bridge deck slabs, transfer slabs or pile caps. Such members are often
designed or assessed in shear/punching shear with code provisions calibrated on the basis of
tests on beams or one-way slabs loaded over the full width, as well as tests on isolated flat slab
elements supported on columns in axis-symmetric conditions. However, these tests are not rep-
resentative of the actual behavior of slabs under concentrated loads near linear supports, due
to the non-parallel direction of shear forces and potential shear redistributions (associated with
shear failures), and the non-axis-symmetric punching conditions (associated with punching shear
failures).

In addition, the presence of prestressing ducts in the deck slab of balanced cantilever concrete
bridges, or slab inserts in flat slabs of buildings approximately perpendicular to the shear flow,
may influence the shear strength.

Moreover, concentrated loads of heavy vehicles have a repetitive nature, causing loss of stiffness
and potential strength reductions due to fatigue phenomena. With respect to shear-fatigue be-
havior of reinforced concrete members without shear reinforcement, it has been observed to be
potentially governing for structural members subjected to large live loads of repetitive nature (as
traffic, wind or wave actions). Although extensive experimental programmes on beams have been
performed in the past, and a rational approach to the problem can be performed on the basis
of Fracture Mechanics (FM), most design codes still ground shear-fatigue design/assessment on
empirical equations fitted on the basis of existing data.

In this thesis, two experimental campaigns are presented. The first one consists of twelve static
tests on six full-scale cantilever slabs subjected to a concentrated load with a central line sup-
port, that allows tracing the linear reaction evolution. Parameters such as the location of the
concentrated load, and the presence, material and injection of ducts were varied. All slabs failed
in shear and significant redistributions of the linear reactions were observed prior to failure.

The second campaign has a similar test setup and consists of four static tests on two full-scale
cantilever slabs (reference tests) and other eleven fatigue tests on eight identical slabs. The
results show that cantilever slabs are significantly less sensitive to shear-fatigue failures than
beams without shear reinforcement. The static reference tests presented shear failures. Some of
the fatigue tested slabs failed due to rebar fractures. They presented significant remaining life
after the first rebar failure occurred and eventually failed due to shear.

The shear failures exhibited by the static tests on cantilever slabs from this thesis and others from
the literature can be reasonably predicted with the Critical Shear Crack Theory (CSCT), pro-
vided that the influence of direct load strutting and redistribution of internal forces is accounted
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Abstract

for, and that no contribution due to the inclination of tapered members to shear transferring is
considered. The calculation of internal forces is proposed to be performed with Linear Elastic
Finite Elements, using shell elements with shear deformation. The adoption of a zero Poisson’s
ratio and one eight of the concrete shear modulus is in good agreement with the measured line
reactions at failure.

Simply supported slabs under concentrated loads near linear supports may exhibit shear or
punching shear failures. Factors like the ratio between the dimension of the load parallel to
the support and the slab width, or the type of loading (monolithic or not) seem to be crucial
to determinate the failure mode. However, for very large slab widths with concentrated loads
not acting close to the free edge, test results from the literature suggest that punching shear is
the governing failure mode. In this thesis it is proposed to use the CSCT for both shear and
non-axis-symmetric punching shear, combined with certain proposals on how to determine the
internal forces and the shear and punching shear perimeter lengths, to assess tests from the
literature. The proposed approaches are not fully capable of predicting the correct failure mode,
but allow a safe design. A reasonable accuracy is obtained, either knowing or not a priori the
correct failure mode.

A consistent design approach for shear-fatigue failures of reinforced concrete members without
shear reinforcement is also presented, based on FM applied to quasi-brittle materials in combina-
tion with the CSCT. This leads to simple, yet sound and rational design equation incorporating
the different influences of fatigue actions (minimum and maximum load levels) and shear strength
(size and strain effects, material and geometrical properties). The accuracy of the design expres-
sion is checked against available test data in terms of Wöhler (S −N) and Goodman diagrams,
showing consistent agreement to experimental evidence. In addition, the estimate of the number
of cycles until failure is shown to be significantly more accurate and with lower scatter than
current empirical shear-fatigue formulations of codes of practice.

Keywords: reinforced concrete; deck slab; flat slab; concentrated load; linear support; shear
strength; punching shear strength; prestressing ducts; fatigue behavior; shear-fatigue; Critical
Shear Crack Theory (CSCT).
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Résumé

Les dalles en béton armé sans armature d’effort tranchant soumises à des charges concentrées au
voisinage d’un appui linéaire sont des configurations typiques de dalles de roulement de ponts,
dalles de transition ou semelles sur pieux. Ces éléments sont souvent dimensionnés ou vérifiés à
l’effort tranchant et au poinçonnement avec des règles normatives. Celles-ci sont calibrées avec
des essais sur poutres ou bandes de dalles chargées sur toute leur largeur ou bien des essais sur
des éléments de dalles isolés appuyés sur une colonne en conditions axisymétriques. Ces essais
ne sont pas représentatifs du comportement de dalles soumises à des charges concentrées à prox-
imité d’un appui linéaire. Ce type de configuration soumet les dalles à des flux de cisaillement
ni parfaitement parallèles ni parfaitement radiaux et permet une potentielle redistribution de
l’effort tranchant avant la rupture. Elle donne aussi lieu à des configurations de poinçonnement
non-axisymétrique.

En outre, la présence de gaines de précontrainte à l’intérieur des dalles de roulement de ponts
construits par encorbellement ou de conduites à l’intérieur des plancher-dalles de bâtiments, ap-
proximativement perpendiculaires au flux de cisaillement, peut influencer la résistance à l’effort
tranchant.

Enfin, les charges concentrées de poids lourds ont une nature répétitive qui peut engendrer des
pertes de rigidité et de résistance liées à des phénomènes de fatigue. En ce qui concerne la
fatigue à l’effort tranchant d’éléments en béton armé sans armature d’effort tranchant, elle est
potentiellement déterminante pour des éléments structuraux soumis à des grandes charges utiles
de nature répétitive (comme le trafic, le vent ou les ondes maritimes). Même si de nombreux
programmes expérimentaux ont été réalisés dans le passé et qu’une approche rationnelle du prob-
lème peut être réalisée sur la base de la Mécanique de la Rupture (MR), la plupart des normes
basent leurs règles de fatigue à l’effort tranchant sur des équations empiriques calibrées sur les
essais existants dans la littérature.

Dans cette thèse, deux campagnes expérimentales sont présentées. La première contient douze
essais statiques sur six dalles à pleine échelle soumises à une charge concentrée avec un appui
linéaire au centre qui permet le suivi de la réaction linéaire. Des paramètres comme la position de
la charge, la présence de gaines, leur matériau et l’injection de celles-ci ont été variés. Toutes les
dalles ont subi des ruptures à l’effort tranchant et des redistributions importantes des réactions
linéaires ont été observées avant la rupture.

Pour la deuxième campagne expérimentale avec un bâti de charge similaire, quatre essais sta-
tiques sur deux dalles à pleine échelle (essais de référence) sont réalisés ainsi qu’onze essais de
fatigue sur huit dalles identiques. Les résultats montrent que les dalles en porte-à-faux soumises
à des charges concentrées sont significativement moins sensibles aux phénomènes de fatigue à
l’effort tranchant que les poutres sans étriers. Les essais statiques de référence ont présenté des
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Résumé

ruptures à l’effort tranchant. Certaines dalles testées en fatigue ont présenté des ruptures de
barres d’armature, avec une importante vie résiduelle après la première rupture de barre. La
rupture finale a été à l’effort tranchant.

Les ruptures à l’effort tranchant lors d’essais statiques sur dalles en porte-à-faux présentées dans
cette thèse ainsi que d’autres de la littérature peuvent être raisonnablement prévues avec la
Théorie de la Fissure Critique (CSCT, l’acronyme en anglais), si l’influence de l’appui direct et
de la redistribution d’efforts sont prises en compte et qu’aucune contribution de l’effet Résal n’est
considérée. Il est proposé de déterminer les efforts dans la dalle à l’aide d’éléments finis élas-
tiques linéaires, en utilisant des éléments coques avec déformation de cisaillement. L’adoption
d’un coefficient de Poisson nul et d’un huitième du module de cisaillement du béton est en bon
accord avec les réactions linéaires mesurées lors des ruptures.

Les dalles simplement appuyées soumises à des charges concentrées au voisinage d’un appui
linéaire peuvent avoir des ruptures d’effort tranchant ou de poinçonnement. Des facteurs comme
le rapport entre la dimension de la charge parallèle au support et la largeur de la dalle, ou le type
de chargement (monolithique ou pas) sont apparemment cruciaux afin de déterminer le bon mode
de rupture. Cependant, pour des dalles très larges avec des charges concentrées agissant loin
d’un bord libre, les essais de la littérature semblent indiquer que le poinçonnement est le mode de
rupture déterminant. Dans cette thèse, afin de reproduire les résultats d’essais de la littérature,
il est proposé d’utiliser la CSCT pour l’effort tranchant et le poinçonnement non-symétrique,
combinée avec certaines propositions pour déterminer les efforts internes et les longueurs des
périmètres de contrôle d’effort tranchant et de poinçonnement. Les approches proposées ne sont
pas capables de prédire avec une certitude absolue le bon mode de rupture, mais permettent un
dimensionnement sûr. Une fiabilité satisfaisante est obtenue, même si l’on connait ou pas le bon
mode de rupture.

Une approche consistante pour la vérification des ruptures de fatigue à l’effort tranchant d’éléments
en béton armé sans étriers est aussi présentée, basée sur la MR appliquée aux matériaux quasi-
fragiles en combinaison avec la CSCT. Ceci mène à une équation de dimensionnement simple
et rationnelle, qui incorpore les différentes paramètres influents des efforts de fatigue (niveaux
maximaux et minimaux du chargement) et de la résistance à l’effort tranchant (effet taille, effet
de la déformation, propriétés géométriques et du matériau). L’équation de dimensionnement
est en bon accord avec les résultats d’essais existants dans la littérature. En outre, l’estimation
du nombre de cycles jusqu’à la rupture est significativement plus précise et présente moins de
dispersion que les formulations actuelles des normes.

Mots-clefs: béton armé; dalle de roulement; plancher-dalle; charge concentrée; appui linéaire;
résistance à l’effort tranchant; résistance au poinçonnement; gaines de précontrainte; comporte-
ment à la fatigue; fatigue à l’effort tranchant; Théorie de la Fissure Critique (CSCT).
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Zusammenfassung

Stahlbetonplatten ohne Schubbewährung unter konzentrierten Punktlasten in der Nähe von
Linienauflagern kommen typischerweise in Brückendeckplatten, punktgelagerten Platten be-
lastet mit tragenden Wänden oder Pfahlköpfen vor. Die Bemessung des Querkraft-/ Durch-
stanzwiderstands solcher Bauteile erfolgt mit Normvorgaben welche auf der Basis von Testergeb-
nissen einachsiger Platten, belastet über die gesamte Breite, sowie isolierter Platten, gelagert
auf Stützen, unter axialsymmetrischen Randbedingungen kalibriert wurden. Solche Versuche
spiegeln allerdings nicht das tatsächliche Verhalten von Platten unter konzentrierten Punktlas-
ten nahe linienförmiger Auflager wider. Unter dieser Art der Belastung sind die Richtungen
des Schubflusses weder parallel noch radial (strahlenförmig) und eine mögliche Umverteilung der
Schubkräfte kann dem Schubbruch vorausgehen. Ferner kann ein nichtsymmetrisches Durch-
stanzversagen auftreten. Desweitern können die in Deckenplatten von Kragarmbrücken vorhan-
denen Vorspannrohre, sowie Einlegeteile in Geschossplatten von Gebäuden welche ungefähr or-
thogonal zum Schubfluss verlaufen, die Schubfestigkeit beeinflussen.

Hinzu kommt, dass konzentrierte Lasten von schweren Fahrzeugen zyklischer Natur sind, was
in einem Verlust von Steifigkeit und Querkraftwiderstand aufgrund von Ermüdungserscheinun-
gen resultieren kann. Das Schubermüdungsverhalten von Stahlbetonteilen ohne Schubbewährung
kann massgebend sein für Bauteile die grossen repetitiven Lebendlasten (Verkehr, Wind, Wellen)
ausgesetzt sind. Obwohl in der Vergangenheit umfangreiche Versuchsreihen durchgeführt wurden
und das Problem mit einer rationalen Herangehensweise, basierend auf der Bruchmechanik, be-
handelt werden kann, gründen die meisten Bemessungsnormen die Schubermüdungsbemessung
und -Bewertung noch immer auf empirischen Gleichungen welche auf existierende Versuchsdaten
angepasst sind.

In der vorliegenden Arbeit werden zwei Versuchsreihen vorgestellt. Die erste umfasst zwölf statis-
che Tests an sechs Kragarmplatten üblicher Grösse auf einem zentralen Linienauflager, belastet
mit einer Punktlast. Diese Konfiguration erlaubt es die Entwicklung der linearen Auflagerreak-
tion nachzuvollziehen. Parameter, wie die Position der Punktlast, sowie das Vorhandensein, das
Material und die Position von (Vorspannungs-) Schächten wurden variiert. Alle Platten zeigten
Schubversagen und signifikante Umlagerungen der Linienauflagerreaktionen vor Versagen.

Die zweite Reihe von Versuchen hat einen ähnlichen Aufbau und setzt sich aus vier statischen
Tests an zwei Kragarmplatten üblicher Grösse, sowie elf weiteren Ermüdungsversuchen an acht
identischen Platten zusammen. Die Resultate zeigen, dass Platten die als Kragarm wirken
signifikant weniger anfällig sind durch Schubermüdung zu versagen als Balken ohne Schubbe-
währung. Die statisch durchgeführten Referenztests wiesen ein Schubversagen auf. In einigen der
auf Ermüdung getesteten Platten stellte sich zuerst ein Bruch der Bewährung ein. Im weiteren
Verlauf der Versuche konnte, trotz bereits bestehender Bewährungsbrüche, eine beträchtliche
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Zusammenfassung

Restlebensdauer der Versuchskörper festgestellt werden. Alle Platten versagten schlussendlich
auf Schub.

Schubversagen, die in den statisch durchgeführten Versuchen auf Kragarmplatten, jene dieser Ar-
beit und der Literatur, auftraten, können einigermassen gut mit der Critical Shear Crack Theory
(CSCT - Kritischer-Schubriss-Theorie) vorhergesagt werden. Dies gilt unter der Voraussetzung,
dass der Einfluss von direkten Lastabtragungen und die Umverteilung innerer Kräfte berück-
sichtigt werden und der Beitrag von geneigten Druckgurten am Schubtransfer vernachlässigt
wird. Es wird vorgeschlagen, die Berechnung der inneren Kräfte mittels linear-elastischen finiten
Elementen unter der Anwendung von Schalenelementen mit Schubdeformation durchzuführen.
Setzt man die Querdehnzahl zu null und wendet man ein Achtel des Bentonschubmoduls an, führt
das zu guter Übereinstimmung mit den gemessenen Linienauflagerreaktionen bei Versagen.

Einfach gelagerte Platten unter Punktlasten nahe Linienauflagern weisen Schub- oder Durch-
stanzversagen auf. Faktoren wie das Verhältnis zwischen der Grösse der Last parallel zum
Auflager und der Plattenbreite, sowie die Belastungsart (monolithisch oder nicht), scheinen bes-
timmend für den Versagensmodus zu sein. Bei Platten grosser Breite, mit Punktlasten fern des
freien Randes, findet sich in der Literatur jedoch meistens Durchstanzen als massgebende Ver-
sagensart. Deshalb wird in der vorliegenden Arbeit vorgeschlagen die CSCT für beide Versagens-
modi; Schub und nichtsymmetrisches Durchstanzen, in Kombination mit einigen Vorschriften zur
Bestimmung der inneren Kräfte sowie der Schub- und Durchstanzumkreise anzuwenden, um Ver-
suchsergebnisse aus der Literatur zu bewerten. Die vorgeschlagenen Vorgehensweisen sind nicht
durchgängig in der Lage die richtige Versagensart vorauszusagen, erlauben aber eine sichere
Bemessung. Des Weiteren kann eine ausreichende Genauigkeit erzielt werden, ob nun der Ver-
sagensmodus a priori bekannt ist oder nicht.

Ein einheitlicher Bemessungsansatz für Schubermüdungsversagen von Stahlbetonteilen ohne
Schubbewährung, basierend auf Bruchmechanik in Anwendung auf quasi-spröde Materialien,
in Kombination mit der CSCT, wird ebenfalls vorgestellt. Dies führt zu einfachen und doch
sicheren sowie rationalen Bemessungsgleichungen unter Berücksichtigung verschiedener Einflüsse
von Ermüdung (Minimal- und Maximallastniveaus) und Schubfestigkeit (Grössen- und Verfor-
mungseffekte, Material- und geometrische Eigenschaften). Die Genauigkeit der Bemessungsaus-
drücke wird mit zugänglichen Testdaten validiert. Die Wöhler- (S−N) und Goodmandiagramme
zeigen eine konsistente Übereinstimmung mit den Versuchen. Hinzu kommt, dass die Anzahl der
Lastzyklen bei Versagensauftritt signifikant genauer und mit geringerer Streuung abgeschätzt
werden kann, als mit den derzeitigen empirischen Schubermüdungsgleichungen in den Bemes-
sungsnormen für die Praxis.

Schlüsselwörter: Stahlbeton; Deckplatte; Platte; Punktlast; konzetrierte Last; Linienauflager;
Schubfestigkeit; Durchstanzschubfestigkeit; Vorspannrohre; Ermüdungsverhalten; Schubermü-
dung; Critical Shear Crack Theory (CSCT).
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Riassunto

Piastre in calcestruzzo armato senza armatura a taglio soggette a carichi concentrati vicino ad
appoggi lineari sono soluzioni strutturali tipiche di impalcati da ponte, piastre di ripartizione e
plinti di fondazione su pali. Questi elementi sono spesso progettati o verificati per le azioni di
taglio e punzonamento in accordo con prescrizioni normative calibrate su risultati sperimentali
su travi o piastre monodirezionali, o su solai semplicemente appoggiati su colonne in condizioni
di assialsimmetria. Tuttavia questi test non sono rappresentativi del comportamento di pias-
tre soggette a carichi concentrati vicino ad appoggi lineari. Tale configurazione determina lo
sviluppo di campi di taglio né perfettamente paralleli né radiali e potenziali ridistribuzioni delle
azioni di taglio prima della rottura. Essa può anche dar luogo a punzonamento non simmetrico.

Inoltre, la presenza di guaine di precompressione nelle mensole degli impalcati da ponte in cal-
cestruzzo armato o di solette di ripartizione approssimativamente perpendicolari al campo di
taglio può influenzare la resistenza a taglio.

Per di più, i carichi concentrati dovuti a mezzi pesanti hanno una natura ripetiva e ciclica, che
può determinare perdite di rigidezza e di resistenza dovute a fenomeni di fatica. Per tale motivo,
i carichi accidentali di natura ciclica (come traffico, vento, onde marine) sono stati indentificati
come potenzialmente significativi sulla resistenza a fatica a taglio di elementi in calcestruzzo
armato senza armatura a taglio. Nonostante numerose campagne sperimentali siano state ese-
guite in passato, e il problema possa essere studiato applicando la meccanica della frattura, le
prescrizioni di fatica a taglio della maggior parte delle norme sono basate su equazioni empiriche
calibrate su test esistenti in letteratura.

In questa tesi sono presentate due campagne sperimentali. La prima consiste in dodici test statici
su sei piastre a mensola a grandezza naturale soggette a carico concentrato appoggiate simmet-
ricamente su un supporto lineare che permette di seguire l’andamento delle reazioni. Parametri
come la posizione del carico, la presenza di guaine, il loro materiale e l’iniezione delle guaine
sono state variate nei differenti test. Tutte le piastre hanno raggiunto una rottura a taglio e
significative ridistribuzioni delle reazioni lineari sono state osservate prima della rottura.

La seconda campagna sperimentale ha un test setup simile, e consiste in quattro test statici
su due piastre a grandezza naturale (test di riferimento) e undici test a fatica su otto pias-
tre identiche. I risultati mostrano che le piastre a mensola soggette a carichi concentrati sono
significativamente meno sensibili ai fenomeni di fatica a taglio rispetto a travi senza armatura
trasversale. I test statici di riferimento hanno mostrato una rottura a taglio. Alcune piastre
testate a fatica hanno evidenziato rottura di barre longitudinali con un’importante vita residua
dopo la rottura della prima barra; la rottura finale si è verificata per taglio.
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Riassunto

Le rotture a taglio nei test statici su piastre a mensola presentati in questa tesi e in letteratura
possono essere stimati con la teoria della fessura critica (acronimo inglese CSCT) se sono presi
in considerazione l’influenza dell’appoggio diretto e la ridistribuzione degli sforzi interni, e se è
trascurato il contributo resistente dovuto all’inclinazione di elementi a sezione rastremata. Viene
proposto di calcolare gli sforzi interni mediante una modellazione ad elementi finiti elastico lin-
eari utilizzando elementi shell con deformazione a taglio. L’utilizzo di un coefficiente di Poisson
nullo e di un modulo di elasticità tangenziale del calcestruzzo armato pari a un ottavo del modulo
elastico iniziale ha mostrato una buona corrispondenza con le misure sperimentali delle reazioni
a rottura.

Piastre semplicemente appoggiate soggette a carichi concentrati vicino ad appoggi lineari possono
evidenziare rottura a taglio o a punzonamento. Parametri quali il rapporto tra la dimensione
del carico parallelo all’appoggio e la larghezza della piastra o la natura del carico (monolitico o
meno) sembrano essere cruciali nella determinazione del tipo di rottura. Tuttavia, per piastre di
grande larghezza soggette a carichi concentrati agenti lontano dagli appoggi, i risultati dei test
presenti in letteratura suggeriscono che il punzonamento sia il tipo di rottura predominante. In
questa tesi, al fine di riprodurre i risultati delle campagne sperimentali presenti in letteratura, si
propone di utilizzare la teoria della fessura critica sia per il taglio che per il punzonamento non
simmetrico combinato ad alcuni approcci proposti per determinare gli sforzi interni e la lunghezza
del perimetro di controllo. Gli approcci proposti non sono del tutto in grado di predirre accu-
ratamente il tipo di rottura, ma permettono un dimensionamento a favore di sicurezza. Una
soddisfacente accuratezza è ottenuta anche non conoscendo a priori il meccanismo di rottura.

E’ inoltre proposto un criterio di dimensionamento per elementi in calcestruzzo armato senza
armatura trasversale soggetti a fatica a taglio basato sulla meccanica della frattura applicata a
materiali quasi-fragili combinata con la teoria della fessura critica. Questo approccio, ha prodotto
una semplice ma efficace equazione per il dimensionamento, che tiene in conto sia dell’influenza
delle azioni di fatica (massimo e minimo livello di carico) sia della resistenza a taglio (effetto
scala e di deformazione, proprietà di materiale e geometriche). L’accuratezza delle equazioni di
design è verificata utilizzando i dati dei test disponibili in letteratura attraverso i diagrammi di
Wöhler (S−N) e Goodman, evidenziando una buona corrispondenza con i risultati sperimentali.
Inoltre, la stima del numero di cicli a rottura risulta più accurata e con una dispersione minore
rispetto alle formulazioni empiriche correnti utilizzate nelle norme.

Parole-chiave: calcestruzzo armato; impalcati da ponte; piaste; carico concentrato; appoggi
lineari; resistenza a taglio; resistenza a punzonamento; precompressione; comportamento a fatica;
fatica a taglio; teoria della fessura critica (CSCT).
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Resumen

Las losas de tableros de puentes, losas de transición o encepados sin armadura transversal son
elementos estructurales cuya situación de proyecto determinante corresponde a la aplicación de
cargas concentradas próximas a apoyos lineales. Generalmente, el dimensionamiento o la veri-
ficación de estos elementos frente a esfuerzos de cortante y punzonamiento se efectúa mediante
fórmulas de diseño calibradas experimentalmente a partir de ensayos. Dichos ensayos suelen cor-
responder a elementos unidireccionales cargados a lo largo de todo su ancho, así como ensayos
simétricos en losas aisladas sometidas a cargas concentradas. Sin embargo, estos ensayos no son
representativos del comportamiento real de este tipo de losas sometidas a cargas concentradas
próximas a apoyos lineales debido a la dirección no paralela de la dirección principal de las ten-
siones tangenciales, a la redistribución potencial de esfuerzos cortantes (roturas por cortante)
y a las condiciones no simétricas de los esfuerzos de punzonamiento (roturas de punzonamiento).

Además, la presencia de vainas de pretensado en las losas superiores de tableros de puentes o
en losas de edificación de reducido espesor pueden condicionar la resistencia a cortante de estos
elementos.

Por otra parte, las cargas concentradas asociadas al tráfico de vehículos pesados tienen una
naturaleza repetitiva que conlleva la pérdida de rigidez y la reducción de la resistencia de estos
elementos como consecuencia de la fatiga. El comportamiento a fatiga por cortante de elementos
de hormigón armado sin armadura transversal está gobernado por las cargas repetidas originadas
por el tráfico, el viento o el oleaje. A pesar del elevado número de trabajos experimentales exis-
tentes en vigas, y de que una aproximación racional al problema pueda obtenerse a partir de la
Mecánica de la Fractura, la mayor parte de las normativas existentes todavía proponen criterios
de dimensionamiento y comprobación basados en expresiones empíricas obtenidas a partir de
ajustes de datos experimentales.

En esta Tesis se presentan dos campañas experimentales. La primera de ellas consta de doce
ensayos estáticos llevados a cabo en seis losas de hormigón armado sin armadura transversal a
escala real sometidas a dos cargas concentradas simétricas con un apoyo central lineal del que
se ha determinado la evolución de la reacción lineal. La posición de la carga concentrada y
la presencia de vainas de pretensado han sido estudiados como principales parámetros. Todas
las losas ensayadas presentaron roturas por cortante con una significativa redistribución de la
reacción lineal medida en el apoyo central antes de producirse la rotura.

La segunda campaña de ensayos presenta una configuración similar a la anterior, estando com-
puesta de cuatro ensayos estáticos realizados en dos losas de hormigón armado sin armadura
transversal a escala real (ensayos de referencia) y once ensayos de fatiga en ocho losas de sim-
ilares características. Los resultados obtenidos indican que este tipo de elementos son menos
sensibles al fallo por fatiga a cortante que las vigas sin armadura transversal. Los ensayos
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estáticos de referencia presentaron roturas por cortante. Varias de las losas ensayadas a fatiga
colapsaron debido a la rotura por fatiga de barras de la armadura longitudinal en tracción. Estos
elementos presentaron una importante resistencia adicional tras producirse la rotura por fatiga
de la primera barra de la armadura longitudinal desarrollando finalmente un fallo por cortante.

Las roturas por cortante observadas en los ensayos estáticos en losas de hormigón armado sin
armadura transversal llevados a cabo en esta Tesis, así como en otros trabajos existentes en la
literatura, pueden ser estimadas con suficiente precisión mediante la teoría de la fisura crítica
del cortante (CSCT, acrónimo en inglés) siempre que se tenga en cuenta la influencia de la
esbeltez de cortante en la transmisión de parte de la carga aplicada directamente al apoyo, la
redistribución de esfuerzos y que no se considere el efecto del canto variable en la transmisión del
esfuerzo cortante. La determinación de los esfuerzos se ha llevado a cabo mediante un modelo
de elementos finitos elástico y lineal en el que se han empleado elementos de tipo lámina y se
ha tenido en cuenta la deformación por cortante. En este modelo el coeficiente de Poisson se ha
considerado nulo y el módulo de elasticidad transversal se ha tomado igual a un octavo del valor
del módulo de elasticidad transversal del hormigón de acuerdo con las medidas registradas en el
apoyo lineal en el instante de rotura.

Las losas de hormigón armado simplemente apoyadas y sometidas a cargas concentradas próx-
imas a apoyos lineales presentan roturas por cortante o punzonamiento. Parámetros como la
relación entre la dimensión de la carga paralela al apoyo y el ancho de la losa o el tipo de carga
aplicada (monolítica o no) son determinantes para definir el modo de rotura de estos elemen-
tos. Sin embargo, en losas de gran anchura sometidas a cargas concentradas próximas a apoyos
lineales, los resultados experimentales observados en los trabajos existentes indican que el tipo
de fallo por punzonamiento es el mecanismo de rotura que gobierna este tipo de elementos. En
la presente Tesis, con el objetivo de reproducir los resultados experimentales existentes, se ha
propuesto el uso de la CSCT para ambos modos de rotura empleando criterios adicionales para
determinar la distribución de esfuerzos en la losa y las longitudes efectivas que condicionan las
roturas de cortante y punzonamiento. A pesar de que la metodología propuesta no es capaz de
predecir el modo de rotura en todos los casos analizados, aporta un criterio seguro de diseño.
Independientemente de que se conozca o no el modo rotura, se obtiene además una precisión
correcta de la resistencia a través de la metodología propuesta.

Una metodología para la evaluación de la resistencia a fatiga por cortante de elementos de
hormigón armado sin armadura transversal se presenta en esta Tesis basada en conceptos de
Mecánica de la Fractura aplicada a materiales cuasi-frágiles en combinación con la CSCT. A
partir de esta metodología se ha propuesto una expresión de dimensionamiento simple y racional
en la que intervienen las principales variables asociadas a las acciones de fatiga (niveles de carga
máxima y mínima) y a la resistencia a cortante (efecto tamaño, influencia de la deformación de
la armadura longitudinal, propiedades geométricas y de los materiales empleados). La precisión
de la expresión de diseño propuesta ha sido contrastada mediante curvas de Wöhler (S −N) y
diagramas de Goodman. Los resultados que se obtienen haciendo uso de la expresión propuesta
en esta Tesis para la estimación del número de ciclos resistentes hasta producirse la rotura por
fatiga a cortante presentan mayor precisión y menor dispersión que los obtenidos empleando las
expresiones empíricas existentes en los principales códigos de diseño actuales.

Palabras Clave: hormigón armado; losas de tableros de puentes; losas planas; cargas concen-
tradas; apoyos lineales; resistencia a cortante; resistencia a punzonamiento; vainas de pretensado;
comportamiento a fatiga; fatiga por cortante; teoría de la fisura critica de cortante (CSCT).
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As lajes em betão armado sem estribos solicitadas por cargas concentradas na vizinhança de
um apoio linear são casos típicos de lajes de tabuleiros de pontes, lajes de transição ou maciços
de encabeçamento de estacas. Estas estruturas são habitualmente dimensionadas ao esforço
transverso e punçoamento com regras normativas que foram calibradas através de ensaios de
vigas sem estribos, bandas de lajes solicitadas em toda a sua largura, ou ainda lajes isoladas
apoiadas sobre uma coluna, em condições axissimétricas. No entanto, estes ensaios não são rep-
resentativos do comportamento de lajes solicitadas por cargas concentradas na vizinhança de um
apoio linear. Esta configuração de carregamento cria nas lajes um fluxo de esforço transverso
que não é nem perfeitamente paralelo, nem perfeitamente radial, e que permite redistribuições
de esforço transverso antes da rotura. No que diz respeito ao punçoamento, esta configuração
está associada a condições não-axissimétricas.

No caso específico de pontes construídas por avanços sucessivos, a presença de bainhas para
cabos longitudinais de pré-esforço no interior da laje de tabuleiro pode também influenciar a
resistência ao esforço transverso, assim como as condutas no interior de lajes fungiformes de
edifícios.

Por outro lado, as cargas concentradas que solicitam as lajes de tabuleiros de pontes (prove-
nientes da acção do tráfego de pesados) são de natureza repetitiva, actuando um determinado
número de vezes durante a vida útil da obra e podendo deste modo originar problemas de fadiga.
No que diz respeito à rotura ao esforço transverso por fadiga de elementos em betão armado
sem estribos, ela pode ser potencialmente determinante em elementos estruturais solicitados por
elevadas sobrecargas de natureza repetitiva (como o tráfego, o vento ou as ondas marítimas).
Muito embora várias campanhas experimentais tenham sido levadas a cabo no passado, e que
uma abordagem do problema possa ser efectuada com base na Mecânica da Fractura (MF), a
maior parte dos códigos de dimensionamento possui regras de dimensionamento empíricas, cali-
bradas com base nos ensaios existentes na literatura.

Nesta tese são apresentadas duas campanhas experimentais. A primeira é composta por 12 en-
saios estáticos de grande escala de 6 lajes em consola, solicitadas por uma carga concentrada na
proximidade de um apoio linear, apoio este que permite registar a evolução da reacção linear.
Redistribuições importantes das reacções lineares de apoio foram observadas antes da rotura.
A influência de parâmetros como a posição da carga concentrada e a presença de bainhas de
pré-esforço no interior das lajes foi investigada.

A segunda campanha experimental é semelhante, e contém 4 ensaios estáticos de grande escala de
duas lajes (ensaios de referência) e 11 ensaios de fadiga de 8 outras lajes idênticas. Os resultados
experimentais mostram que as lajes são menos susceptíveis a uma rotura de esforço transverso
por fadiga do que as vigas sem estribos. Algumas das lajes testadas apresentaram roturas de
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barras de armadura, exibindo uma vida residual bastante significativa após a rotura da primeira
barra. As roturas finais foram ao esforço transverso.

As roturas ao esforço transverso de lajes em consola podem ser satisfatoriamente estudadas com
a Teoria da Fissura Crítica de Esforço Transverso (CSCT, no acrónimo inglês), desde que a
influência do apoio directo e da redistribuição de esforços seja tomada em conta, e que nenhuma
contribuição para a transferência de esforço transverso devida à inclinação da corda comprimida
em flexão seja considerada. Para a determinação dos esforços nas lajes são propostas análises
com elementos finitos elásticos lineares, utilizando elementos casca com deformação por corte.
A adopção de um coeficiente de Poisson nulo e de um oitavo do módulo de distorção do betão
origina uma boa correspondência entre os modelos e as reacções lineares medidas aquando das
roturas.

As lajes simplesmente apoiadas e solicitadas por cargas concentradas na vizinhança de um apoio
linear podem apresentar roturas de esforço transverso ou de punçoamento. Factores como o
rácio entre a dimensão da carga paralela ao apoio e a largura da laje, ou o tipo de carregamento
(monolítico ou não) são aparentemente cruciais para determinar o modo de rotura correcto. No
entanto, para lajes muito largas solicitadas por cargas concentradas suficientemente afastadas
de um bordo livre, os ensaios existentes na literatura sugerem que o punçoamento é o modo
de rotura determinante. Nesta tese é proposta a utilização da CSCT para eforço transverso e
punçoamento não-simétrico para análise dos fenómenos. Estas teorias são combinadas com deter-
minadas propostas de como determinar os esforços actuantes e os comprimentos dos perímetros
de controlo de punçoamento e de esforço transverso a adoptar, de modo a reproduzir os resul-
tados de ensaios experimentais da literatura. As metodologias propostas não são capazes de
prever com certeza absoluta o modo de rotura correcto, mas permitem um dimensionamento se-
guro. Uma fiabilidade satisfatória é obtida, conhecendo ou não à partida qual o modo de rotura.

Uma metodologia consistente e racional para a verificação de roturas ao eforço transverso em
fadiga de elementos em betão armado sem estribos é também apresentada, baseada na MF dos
materiais quasi-frágeis combinada com a CSCT. Esta metodologia origina uma fórmula de di-
mensionamento simples e ao mesmo tempo racional, que incorpora as diferentes influências das
solicitações de fadiga (níveis máximos e mínimos do carregamento) e da resistência ao eforço
transverso (efeito escala, efeito da deformação, propriedades geométricas e materiais). A pre-
cisão da expressão de dimensionamento é controlada através de diagramas de Wöhler (S − N)
e de Goodman de ensaios existentes na literatura, obtendo-se uma boa correspondência entre os
ensaios e o modelo. Adicionalmente, a estimativa do número de ciclos até à rotura é significati-
vamente mais precisa e com menos dispersão do que as formulações das normas actuais.

Palavras-chave: betão armado; laje de tabuleiro; laje fungiforme; carga concentrada; apoio
linear; resistência ao esforço transverso; resistência ao punçoamento; bainhas de pré-esforço;
comportamento em fadiga; resistência ao esforço transverso em fadiga; Teoria da Fissura Crítica
de Esforço Transverso (CSCT).
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Notation

A variable not present in this list is defined in the manuscript. The following notation
is used in this thesis:

Latin characters

lower case

a crack length
a shear span (distance between the center of the loading plate and the

center of the support)
a′ effective crack length
a∗ reference crack length
a0 initial crack length
ac critical crack length
aef effective shear span
af crack length leading to failure
al ligament length
al
∗ transitional ligament length

aN crack length after N cycles
aP shear span
av free shear span (distance between the edge of the loading plate and

the edge of the support)
b beam or strip width
b0 control perimeter
b0,el elastic control perimeter
bs support strip width
bx control perimeter in x direction
bw effective shear width
bw beam width
by control perimeter in y direction
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c compression zone depth
c loading plate dimension
c concrete cover
cN factor independent of size characterizing the structure shape and type

of loading
c1 depth of flexural crack tip
cx loading plate x-dimension
cy loading plate y-dimension
d effective flexural depth
d characteristic dimension
d plate width
d0 insertion dimension
d0 transitional characteristic dimension
da maximum aggregate size
dg maximum aggregate size
ds effective flexural depth
dmax maximum effective flexural depth
dv effective shear depth
dxb effective flexural depth of bottom reinforcement in x direction
dxt effective flexural depth of top reinforcement in x direction
dyb effective flexural depth of bottom reinforcement in y direction
dyt effective flexural depth of top reinforcement in y direction
fc compressive strength of concrete measured in cylinders
fc,cube compressive strength of concrete measured in cubes
fc,N compressive strength of concrete after N cycles
fc,Ref compressive strength of concrete measured in cylinders of the static

test
fcm compressive strength of injection mortar
fq linear load
fs yielding strength of reinforcement steel
ft tensile strength
f ′t tensile strength
fu ultimate strength of reinforcement steel
fy reinforcement steel stress
fy yielding strength of reinforcement steel
gf local fracture energy
h height
kd SIA262:2013 parameter related to strain and size effect
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kdg fib-Model Code 2010 parameter related to maximum aggregate size
kg SIA262:2013 parameter related to maximum aggregate size
kv fib-Model Code 2010 shear parameter
kψ fib-Model Code 2010 punching shear parameter
l length
l span
lch characteristic length
m Paris-Erdogan’s law parameter for shear-fatigue model
m unitary bending moment
mmax maximum unitary bending moment
mr radial moment
mR yielding bending moment
ms applied bending moment
mxx unitary bending moment in x direction
mxy torsional moment
myy unitary bending moment in y direction
n Paris-Erdogan’s law parameter
n number of cycles for Palmgren-Miner’s rule
r radius
r0 punching cone maximum radius
rl first-order plastic zone radius
rp second-order plastic zone radius
rq load radius
rs distance from the center of the load or column to the point of zero

radial moment
t time
ql linear load at cantilever tip
u displacement
uy displacement in y direction
v unitary shear force
v0 intensity of resultant unitary shear force
vavd,4d averaged perpendicular shear force over a distance 4d
vavd,4d+cy

averaged perpendicular shear force over a distance 4d+ cy

vel,perp elastic unitary shear force perpendicular to control perimeter
vel,perp,max maximum elastic unitary shear force perpendicular to control

perimeter
vel,tot total elastic unitary shear force
vperp unitary shear force perpendicular to control perimeter
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vperp,max maximum unitary shear force perpendicular to control perimeter
vmax maximum unitary shear force
vR unitary shear strength
vR,x unitary shear strength in x direction
vR,y unitary shear strength in y direction
vtot total unitary shear force
vx unitary shear force in x direction
vy unitary shear force in y direction
x x-axis or coordinate
x0 x coordinate of initiation section
xcontrol control section x coordinate
xN required depth of compression zone
xrot depth of compression zone at failure
w crack width
wc thickness of fracture zone
wcr crack width
wcr,max maximum crack width
wcr,min minimum crack width
wl limit crack width for stress transfer
y y-axis or coordinate
z inner flexural arm

upper case

A crack area
As reinforcement area
B thickness
B Bažant’s size effect law parameter
C compliance
C compressive force
C Paris-Erdogan’s law parameter
CN unloading compliance in cycle N
C Paris-Erdogan’s law parameter
CMOD crack mouth opening displacement
CTOD crack tip opening displacement
CTODc elastic critical crack tip opening displacement
D discontinuity depth
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Dmax maximum aggregate size
E Young’s modulus
Ec Young’s modulus of concrete
Es Young’s modulus of steel
Es strain softening modulus
F applied load
Fc compressive force
Fcalc calculated load
Fflex bending strength
Fmax maximum applied load
Fs steel force
Fu ultimate load
G shear modulus
G energy release rate (crack-extension force)
Gc measured energy release rate
Gf global fracture energy
GF fracture energy
H characteristic dimension
K kinetic energy
K stress intensity factor
Kc measured fracture toughness
KF fracture toughness
KI stress intensity factor in mode I
KS
I stress intensity factor in mode I calculated at the tip of the effective

crack
KS
I,Mom stress intensity factor in mode I calculated at the crack tip due to

bending moment
KS
I,Steel stress intensity factor in mode I calculated at the crack tip due to

closure effect of reinforcement
KIc fracture toughness in mode I
KS
Ic critical stress intensity factor in mode I calculated at the tip of the

effective crack
KIf fracture toughness of concrete in mode I
KT stress concentration factor
L length
L0 vertical crack length
LL load level
M bending moment
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ME acting bending moment
MEd0 design acting bending moment
N cycle
N fatigue life
N normal force
Ndiag number of cycles to diagonal cracking
NR number of cycles to failure
Nrot number of cycles at failure
P applied load
Pu ultimate load
Pu,d ultimate load associated to distributed load
Pu,p ultimate load associated to point load
R ratio between minimum and maximum stress levels
Rl linear reaction force
Rtests ratio between minimum and maximum stress levels of experimental

tests
Rtot total measured reaction
S stress level
T period
T tensile force
Q applied load
Qu ultimate load
Utotal total energy
UE elastic energy
UP plastic energy
V shear force
Vc concrete contribution to shear strength
Vc,1 monotonic shear strength
Vc,N shear strength after N cycles
Vcu static shear strength
Vcalc calculated shear strength
VCC shear force transferred by the compression chord
VCSC shear force transferred through the critical shear crack
VCSCT shear strength calculated according to the CSCT
VDA shear force transferred by dowel action
VEcd design acting shear force transferred due to the inclination of the

compression chord
VE acting shear force
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VE,max maximum acting shear force
VE,min minimum acting shear force
VEd design acting shear force not transferred due to the inclination of the

compression chord
VEd0 design acting shear force
Vf punching shear force
Vflex shear force corresponding to bending strength
Vmax maximum shear force
V totmax maximum total applied shear force
Vmin minimum shear force
Vpl plastic shear strength
VR shear strength
VRef reference static shear strength
VR,x shear strength in x direction
VR,y shear strength in y direction
VR,c concrete contribution to shear strength
Vstatic static shear strength
Vtest experimental shear strength
Vtot total applied shear force
W energy
W work
W plate width
Y geometry factor

Greek characters

lower case

α compression chord inclination
α notch depth ratio
β brittleness number
β shear force reduction factor due to arching action
βL reduction factor of shear strength calculated over the full width
γ diagonal crack angle
γ energy required to form unit new material surface
δ displacement
δ distance
ε strain
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ε0 strain corresponding to zero tensile stress after post-peak behavior
εc concrete compressive strain
εct strain corresponding to peak tensile stress
εmax maximum strain
εmin minimum strain
εp strain corresponding to peak tensile stress
εv SIA262:2013 reference strain for shear
εx fib-Model Code 2010 reference strain for shear
η shear strength increasing factor due to loading rate
θ angle in polar coordinates
θlimit angle to limit control perimeter in a given direction
κ proportionality factor
λ Bažant’s size effect law parameter
λ0 Bažant’s size effect law parameter
ν Poisson’s ratio
ρ root radius
ρ reinforcement ratio
ρl longitudinal reinforcement ratio
ρxb reinforcement ratio of bottom reinforcement in x direction
ρxt reinforcement ratio of top reinforcement in x direction
ρyb reinforcement ratio of bottom reinforcement in y direction
ρyt reinforcement ratio of top reinforcement in y direction
σ stress
σc concrete compressive stress
σc critical stress
σI principal stress I
σII principal stress II
σmax maximum stress
σN nominal stress
σys yielding stress in y direction
σyy stress in y direction
τ shear stress
τc shear strength stress of concrete
τmax maximum shear stress
φ reinforcement diameter
φ0 angle of resultant unitary shear force
φduct diameter of duct
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φrebar reinforcement diameter
ψ slab rotation
ψf slab rotation at failure
ψmax rotation on the direction of maximum rotation
ψmin rotation on the direction of minimum rotation
ψx slab rotation in x direction
ψy slab rotation in y direction
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Γ energy spent in increasing crack area
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Chapter 1

Introduction

1.1 Problem statement

The static design of reinforced concrete bridge deck slabs without shear reinforcement
is generally governed by the action of concentrated loads of heavy vehicles, which may
cause shear, punching shear or flexural failures. The concentrated loads resulting from
heavy vehicles have a repetitive nature and may cause potential stiffness and strength
reductions due to fatigue effects.
Investigations on the static and shear-fatigue behavior of reinforced concrete members
without shear reinforcement have mainly focused in the past on tests on beams or
one-way slabs loaded over their full width (static and fatigue cases) and two-way axis-
symmetric flat slab elements supported on columns (static cases). However, it should
be noted that the results from these tests are not directly applicable to slabs under
concentrated loads near linear supports, due to the principal direction of the shear force
(not perfectly parallel or radial) and the acting shear force and bending moment at the
shear critical region, which may potentially vary as the level of load increases, due to
redistributions on shear and moment fields after cracking and/or yielding of the flexural
reinforcement.
The rational and sound models for shear and punching shear existing nowadays might
need to be adapted to study slabs under concentrated loads near linear supports in a
simple and practical manner.
With respect to shear-fatigue assessment, rational approaches also exist. However, their
use for practical purposes is not straightforward, and simpler, yet sound and rational
approaches are desirable.

1.2 Aims

The main objectives of this thesis are:
— To increase the number of available monotonic tests on typical European can-

tilever bridge deck slabs under concentrated loads near linear supports;
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1. Introduction

— To study the influence of internal forces redistributions, the location of the con-
centrated load and the presence of injected or non-injected ducts parallel to the
support (classic case of the deck slabs of prestressed balanced cantilever bridges);

— To perform fatigue tests on typical European cantilever deck slabs under concen-
trated loads;

— To study the influence of fatigue loading on the shear-fatigue strength of cantilever
slabs;

— To present simplified rules to account for shear force redistributions due to both
shear and flexural cracking;

— To present simple guidelines on how to model with linear elastic finite elements
reinforced concrete slabs (which present a highly nonlinear behavior), in order to
determine internal forces for shear and punching/shear assessment;

— To develop and validate a simple, yet sound and rational shear-fatigue model,
based on the Critical Shear Crack Theory (CSCT).

1.3 Structure

This thesis is organized as follows:
— Chapter 2 provides a phenomenological description of the static and fatigue

shear/punching shear behavior of reinforced concrete members without shear
reinforcement. Existing static tests on cantilever slabs and simply supported
one-way slabs under concentrated loads, as well as fatigue campaigns on beams
and simply supported slabs are presented;

— Chapter 3 presents sound and rational models to suitably model shear, punching
shear and shear-fatigue failures. The basic principles of linear elastic fracture me-
chanics (LEFM) and fracture mechanics (FM) applied to quasi-brittle materials
are also presented;

— Chapter 4 presents and discusses the main aspects and results of an experimental
static campaign on cantilever slabs under concentrated loads near linear supports;

— Chapter 5 describes and discusses the main aspects and results of an experi-
mental fatigue campaign on cantilever slabs under concentrated loads near linear
supports;

— Chapter 6 presents several proposals on how to apply the CSCT for both shear
and punching shear assessment of slabs under concentrated loads near linear
supports, combined with linear elastic finite elements (LEFE);

— Chapter 7 presents a simple and practical, yet sound and rational approach to de-
termine the shear-fatigue strength of reinforced concrete members without shear
reinforcement;

— Chapter 8 draws the main findings of this thesis, shows the main contributions
and outlines future research lines.
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Chapter 2

Phenomenological description and
available testing

2.1 Introduction

The present chapter aims to provide a phenomenological description of the static and
fatigue shear/punching shear behavior of reinforced concrete members without shear
reinforcement. In order to study one-way slabs under concentrated loads near linear
supports and beams or one-way slabs loaded over their full width, several static experi-
mental programmes on haunched beams, cantilever slabs and simply supported one-way
slabs subjected to concentrated loads are presented. In addition, experimental cam-
paigns on the shear-fatigue behavior of beams and simply supported or inner slabs are
also presented.
The chapter is organized as follows:

— Section 2.2 presents the shear-transfer actions in reinforced concrete members
without shear reinforcement;

— Some experimental tests on haunched beams are presented in Section 2.3, in order
to discuss whether there is a contribution due to the inclination of the compression
chord in shear transferring;

— The punching behavior of slabs is introduced in Section 2.4. Comparisons between
beams failing in shear and slabs failing in punching are performed;

— Section 2.5 presents the shear fields in reinforced concrete slabs, which is an useful
tool to visualize how the shear flux develops in these elements;

— The mechanical behavior of reinforced concrete slabs subjected to concentrated
loads near linear supports is presented in Section 2.6. Comparisons between the
behavior of clamped and simply supported slabs are also performed in this section;

— Section 2.7 and Section 2.8 present experimental programmes on cantilever and
one-way slabs subjected to concentrated loads near linear supports, respectively;

— Section 2.9 presents the shear-fatigue behavior of beams without shear reinforce-
ment and several experimental campaigns from the literature;
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2. Phenomenological description and available testing

— Section 2.10 presents some fatigue tests on simply supported or inner slabs and
explains why these tests are not representative of cantilevers slabs subjected to
concentrated loads.

2.2 Shear-transfer actions

Reinforced concrete beams without shear reinforcement can only be analyzed using the
theory of elasticity at an early loading stage, due to the much weaker tensile strength of
concrete when compared with its compressive one. With increasing load levels, flexural
cracks appear in several locations of a beam subjected to a point load, leading to the
initial cracking pattern of Figure 2.1(e). Shear can still be transferred through the
following actions [Mut10] (an extensive list of published works on each action can be
found in references [Cam13a, Cam13b]):

— cantilever action (Figure 2.1(a)): the concrete teeth (as named by Kani [Kan64])
between two consecutive flexural cracks are horizontally loaded by the flexural
reinforcement, due to the varying acting bending moment in the longitudinal
direction (beam axis). These uneven tensile forces acting on the reinforcement
are equilibrated by a diagonal strut and tie, allowing shear transfer. This shear-
transfer action is known as cantilever action because each tooth is clamped in the
compression zone;

— aggregate interlock (Figure 2.1(b)): this shear-transfer action is originated when
aggregates on one side of a crack contact the cement paste on the opposite side,
creating normal and tangential stresses, allowing shear transfer through a com-
pression strut (Figure 2.1(b)). The aggregate interlock stress intensity depends
on the crack opening, relative slip and crack roughness. Larger crack openings
or lower roughnesses are associated with lower aggregate interlock shear-transfer
potential, as the contact surface area diminishes. One of the most widely spread
aggregate interlock models has been developed by Walraven [Wal81];

— dowel action (Figure 2.1(c)): the flexural reinforcement can transfer shear forces
from a diagonal strut to a diagonal tie through cracks by acting as a dowel. The
ability to transfer the shear force depends on the reinforcement bar stiffness, which
on its turn depends on the diameter, the concrete cover and tensile strength, and
boundary conditions that might prevent concrete spalling or delamination;

— residual tensile strength (Figure 2.1(d)): up to a certain crack opening, concrete
can transfer tensile stresses through cracks, allowing diagonal ties carrying shear
forces to develop near the crack tip [Hil83] (the so-called fracture process zone
(FPZ), refer to Section 3.7.1).

The so-far presented shear-transfer actions are referred as beam shear-carrying actions,
as they allow keeping an almost constant lever arm between the compression and tension
chords. The forces in these chords vary according to the acting bending moment at each
section. The stress state created in concrete by these actions (Figure 2.1(f)) leads to
the propagation of flexural cracks into shear cracks (Figure 2.1(g)), reducing or even
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Shear-transfer actions

Figure 2.1: Shear transfer actions and development of cracking pattern [Mut10]:
(a) cantilever action; (b) aggregate interlock; (c) dowel action; (d) residual
tensile strength; (e) initial flexural cracks; (f) tensile stresses due to (a-d); (g)
final crack pattern; (h) arching action for point load; and (i) distributed load

disabling their shear-transferring capacity.
Shear forces can also be transferred through arching action assuming a constant force in
the flexural reinforcement, leading to the plasticity-based stress field of Figures 2.1(h,i)
proposed by Drucker [Dru61]. The plasticity-based arching action is in agreement with
test results for short span members (a/d < 2.5, refer to Figure 2.2(a)) [Sag10], but not
for slender beams with corrugated flexural reinforcement, as for these the full plastic
strength can not be attained because flexural cracks might develop across the compres-
sive strut, diminishing its strength [Kan64, Mut08a].
The development of a shear crack might still allow shear to be transferred by arching
action [Mut08a] through an elbow-shaped strut (limited by the member tensile strength)
and a direct strut developing through the so-called critical shear crack thanks to aggre-
gate interlock and residual tensile strength, as it will be shortly presented (refer to cases
B and C in Figure 2.2(b)). However, for large shear spans the propagation of the critical
shear crack leads to failure.
The governing shear-transfer actions at failure depend on the member slenderness. This
fact is shown in Kani’s valley, refer to Figure 2.2.
For very low shear spans (region A of Figure 2.2(a)) the shear strength VR is the plastic
strength Vpl corresponding to the stress field of Figure 2.1(h), because flexural cracks do
not penetrate the compression strut (Figure 2.2(b)).
Increasing the shear span (region B of Figure 2.2(a)) might allow the penetration of flex-
ural cracks within the compression strut, and consequently reducing the strut strength,
as it becomes dependent on the aggregate interlock force transfer across the critical shear
crack and on the elbow-shaped compression strut (Figure 2.2(b)) [Mut08a]. This region
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of the Kani’s valley (the so-called left-hand side or stable crack propagation side) can
be properly investigated with stress fields [Cam13b] that account for the influence of
cracking in the compression field strength [Vec86]. In this region of Kani’s valley the
development of inclined cracks through the compression strut is done in a stable way
and failure is due to concrete crushing, which presents a reduced strength caused by
transverse tensile strains and crack propagation [Cam13b].
Larger shear spans (region C of Figure 2.2(a)) develop simultaneously arching action
and beam shear-transfer actions (Figure 2.2(b)), and the latter becomes dominant for
even larger shear spans (region D, Figure 2.2(b)), before bending becomes once again
the governing failure mode (region E of Figure 2.2(a)). The so-called right-hand size of
Kani’s valley exhibits an instable crack propagation [Cam13b], as an important and fast
localization of deformations occurs in the critical shear crack.

Figure 2.2: Kani’s valley: (a) subsets of Kani’s valley; and (b) governing shear
transfer actions [Mut10]

The slender members located on the right-side of Kani’s valley might present the follow-
ing shear-transfer actions at failure (Figure 2.3): residual tensile strength of concrete and
aggregate interlock (VCSC), compression chord (VCC) and dowel action (VDA) (which
may be neglected [Mut08a]). The shear component transferred through the critical
shear crack VCSC is highly dependent on the crack opening. This dependency is the
basis of the important size-effect observed for slender members [Cam13b]. The behav-
ior of these members can be suitably analysed with the Critical Shear Crack Theory
(CSCT) [Mut08a] (Section 3.2), which accounts for size and strain effects. According to
the CSCT, the shear strength depends on the critical shear crack width and its rough-
ness. The critical shear crack width is proportional to the strain state in a control

6



Haunched beams without shear reinforcement

section, which on its turn is proportional to the applied bending moment.

Figure 2.3: Shear-transfer actions at failure for slender members

Shear failures are generally brittle, i.e., no visible signs of an imminent failure can be
perceived from a structural visual inspection, reason why engineers shall design their
structures in such a way that these kind of failures do not become governing.

2.3 Haunched beams without shear reinforcement

Haunched geometries are usually employed in reinforced concrete structures, such as
bridge deck slabs (Figure 2.4), bridge girders, pile caps, framed structures, etc., as they
allow material and weight savings.

Figure 2.4: Haunched bridge deck slab

Several codes of practice (fib-Model Code 2010 [MC2010], Eurocode 2 [EC2-1], Swiss
code [SIA262:2013]) consider that shear forces in reinforced concrete members without
shear reinforcement may also be carried by the compression and tension chords, refer to
Figure 2.5.

Figure 2.5: Inclined chord contribution to shear transfer

For members without prestressing and with horizontal flexural reinforcement subjected
to a shear force VEd0 and a bending moment MEd0, the shear force not carried by the
compression chord VEd is given by:

VEd = VEd0 −
MEd0
z

tanα (2.1)
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where z is the inner arm (that can generally be taken as 0.9d, being d the flexural depth)
and α is the compression chord inclination.

The very first tests on haunched beams failing in shear were performed by Mörsch [Mor29],
refer to Figure 2.6. A description and interpretation of these tests can be found in ref-
erence [Mut90]. Plain rebars were used in this test series. The reinforcement ratio
(ρ = As/bdmax = 1.67%) and the shear span (a/dmax = 2.1) were kept constant. Two
haunched beams were tested, with an inclination angle α = 18.4◦. Beam 1037 differed
from beam 1034 because it had stirrups in the non-tapered region. Compared with
the reference non-tapered beam 1027, beam 1034 without stirrups presented a lower
strength. On the contrary, beam 1037 with stirrups presented an increase of strength.
These tests set up a design philosophy for the following years.

Figure 2.6: Tests on haunched beams performed by Mörsch [Mor29] (dimensions
in [mm])

Many years later, in 1982, Debaiky and Elniema [Deb82] published a series of tests on
33 beams with shear reinforcement to study the behavior of haunched members, having
proposed the following formula for the concrete contribution to shear strength:
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Vc
bds

= 0.66
√
fc(1 + 1.7 tanα) (2.2)

where b is the beam width, ds is the effective depth at the support and fc is the concrete
compressive strength. According to these authors the shear contribution of the inclined
chord to the overall shear strength can be obtained by the factor 1.7 tanα.
Some years later (1994) MacLeod and Houmsi [Mac94] presented a series of tests on
haunched beams failing in shear, varying the inclination angle from α = 0.0−10.4◦, refer
to Figure 2.7. Four beams presented a shear span a/dmax = 4.8 and a reinforcement ratio
ρ = As/bdmax = 2.25%, and one other beam a/dmax = 3.9 and ρ = As/bdmax = 1.83%.
A positive contribution of the inclination angle could be observed in this test series.

Figure 2.7: Tests on haunched beams performed by MacLeod and Houmsi [Mac94]
(dimensions in [mm])

More recently (2011) an experimental campaign on haunched beams was performed
by Rombach and Nghiep [Rom11], refer to Figure 2.8. The reinforcement ratio ρ =
As/bdmax = 1.56% was the same for all beams. Four beams failing in shear with a shear
span a/dmax = 3.0 and with an inclination varying from α = 0.0−10.0◦ showed a positive
contribution of the inclination compared to a non-tapered beam. However, larger values
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of inclination did not always imply larger shear strengths. Three others beams with
a larger shear span a/dmax = 5.0 and an inclination varying from α = 0.0 − 5.9◦ also
failing in shear presented a negative contribution of the inclination angle.
In 2012, Pérez Caldentey et al. [Per12] presented a series of tests failing in shear on
cantilever beams subjected to rectangular and triangular distributed loads, as well as
point loads, refer to Figure 2.9. The adopted reinforcement ratio was ρ = As/bdmax =
0.79%. Point load tests presented a shear span a/dmax = 2.9. Cantilevers subjected
to rectangular distributed load presented a ratio between the cantilever length and the
maximum effective depth of l/dmax = 5.7, while cantilevers with triangular distributed
load presented a l/dmax = 8.6 ratio. A positive contribution of the inclination could
only be clearly observed for the tests on cantilevers under rectangular distributed load.
In 2014, Gallego [Gal14b] presented four more static tests on haunched beams with a
varying shear span a/dmax = 2.1−5.0 and an inclination angle of α = 3.8◦. Three beams
presented a reinforcement ratio of ρ = As/bdmax = 0.76% and the other one 2.35%. All
beams failed in shear.
The available experimental evidence does not allow to generally accept a positive contri-
bution of variable-depth members due to the inclination of a compression chord carrying
shear. As pointed out by Gallego [Gal14b], a potential positive effect may be limited
by a simultaneous decrease of the internal lever arm, that may lead to an increase of
strains and crack openings.

2.4 Punching shear

Reinforced concrete slabs without shear reinforcement subjected to concentrated loads or
supported by columns may exhibit a punching shear failure mode around the load/reaction
introduction zone. Like shear failures, punching shear also exhibits a brittle behavior.
In 1960, Kinnunen and Nylander [Kin60] performed a series of punching tests and
observed that higher reinforcement ratios are associated with higher punching shear
strengths and reduced deformation capacities. Based on the test series, Kinnunen and
Nylander [Kin60] presented a theory to determine the punching shear strength, assum-
ing that failure occurs for a critical value of slab rotation ψ outside the punching cone.
The slab behavior was determined by simplifying the slab kinematics and assuming a
bilinear moment-curvature relationship.
Slabs supported on columns or subjected to concentrated loads differ from beams without
shear reinforcement under point loads. While a beam presents constant shear force and
linear varying moment (Figure 2.10(a)), slabs exhibit unitary shear forces and radial
bending moments that increase rapidly close to the supported area (Figure 2.10(b)).
The beam shear-transfer actions have enough strength where moderate shear has to be
transferred. However, close to the support beam shear-transfer actions are disabled and
arching action develops [Mut08b]. In contrast with beams, where the governing shear-
transfer actions depend on the member slenderness, for slabs supported on columns,
arching action is the governing shear-transfer action, defining an effective shear span aef
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Punching shear

Figure 2.8: Tests on haunched beams performed by Rombach and Nghiep [Rom11]
(dimensions in [mm])
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2. Phenomenological description and available testing

Figure 2.9: Tests on haunched beams performed by Pérez Caldentey et al. [Per12]
(dimensions in [mm])
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Punching shear

smaller than the geometric one [Mut10] (Figure 2.10(b)) and corresponding to that of
beams on the left-side of Kani’s valley.

Figure 2.10: Arching action and beam shear-transfer actions in beams and slabs
supported on columns: (a) shear forces and bending moments of a beam; (b)
unitary shear forces and radial bending moments of a slab supported on columns;

and (c) elbow-shaped strut [Mut10]

The observations performed by Kinnunen and Nylander [Kin60] that punching strength
decreases with increasing slab rotations have been explained by Muttoni and Schwartz
[Mut91], who have established a link between the reduction of punching shear strength
with the presence of a critical shear crack that propagates into the inclined compression
strut carrying the shear force to the column (Figure 2.10(b)).
Like beams, the arching action on slabs supported on columns also presents an elbow-
shaped strut (Figure 2.10(c)). This strut is grounded on experimental evidence [Kin60,
Gua09], which shows a decrease of the radial compression strain in the soffit of the slab
near the column close to failure, after a maximum has been attained at lower load levels.
Reinforced concrete slabs without shear reinforcement have generally non-axis-symmetric
conditions, i.e. where bending deformations are non-symmetric around the column or
concentrated load. In general this can be consequence of [Sag11]:

— loading: load eccentricity (i.e. moment transfer) or one-way spanning with bal-
anced moments;

— geometry: columns with irregular shapes (e.g. rectangular) or slabs with openings
near the column;

— reinforcement layout: different flexural reinforcement layouts in each ortogonal
direction.

13



2. Phenomenological description and available testing

Non-axis-symmetry conditions may result in a substantial different behavior when com-
pared with symmetric conditions, as they might allow shear redistributions due to both
bending and shear cracking [Sag11].
Actual flat slabs, even in axis-symmetric conditions are subjected to compressive mem-
brane actions [Ein15], arising from the restraint against the slab expansion provided by
stiff surrounding structural elements, but also due to the restraint against expansion of
the hogging moment area, provided by the inplane stiffness of the sagging moment area.
Due to this effect, the deflections of a continuous flat slab are smaller than the ones of
a corresponding isolated specimen (more commonly tested), which leads to lower crack
widths and potentially larger punching strengths.

2.5 Shear fields

The shear field is a vector field that comprises the direction φ0 and magnitude v0 of the
principal shear force per unit length of a loaded slab [Mar90]. Considering a sandwich
model (Figure 2.11(a)), the slab can be divided into a central core (Figure 2.11(b))
transferring shear forces and two outer panels (Figure 2.11(c)) carrying compression
and tension forces due to both bending and torsional moments. The unitary shear
forces (vx,vy) acting in the cross-section of the core are equilibrated by in-plane shear
forces acting on the top and bottom faces of the core (Figure 2.11(b)). These in-plane
shear forces are in their turn in equilibrium with force-increments acting in the outer
panels (Figure 2.11(c)). The in-plane shear forces transferred between the core and the
outer planes (vx,vy) have a resultant vector, the principal shear force, defined by its
intensity v0 and direction φ0 (Figure 2.11(d)). This in-plane principal shear force is
in equilibrium with the cross-section principal shear force, having the same magnitude
v0 and being comprised in a perpendicular plane to the in-plane principal shear force
(Figure 2.11(d)). The magnitude v0 and the angle φ0 can be calculated as follows:

φ0 = arctan
(
vy
vx

)
(2.3)

v0 =
√
vx2 + vy2 (2.4)

Vaz Rodrigues [Vaz07] developed an useful representation of the shear field that is used
in this thesis, representing it by a set of lines parallel at each point to the shear field
direction and whose thickness is proportional to its magnitude, refer to Figure 2.12.

2.6 Mechanical behavior of linearly supported slabs under
concentrated loads

Reinforced concrete slabs subjected to concentrated loads near linear supports are com-
monly found in practice: bridge deck slabs (Figures 2.13(a,b)), slab bridges (Figure
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Mechanical behavior of linearly supported slabs under concentrated loads

Figure 2.11: Sandwich model of a reinforced concrete slab [Vaz08]: (a) sandwich
layers and forces; (b) forces acting on the core; (c) forces acting on the panels;

and (d) magnitude and direction of principal shear force

Figure 2.12: Shear flux representation for cantilever slab subjected to a concen-
trated load
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2. Phenomenological description and available testing

2.13(c)), pile caps (Figure 2.13(d)) and flat slabs loaded by walls and supported on
piles or columns (Figure 2.13(e)). These systems are characterized by high shear forces
concentrated in the region between the concentrated loads and the linear support.

Figure 2.13: RC slabs subjected to concentrated loads near linear supports: (a)
girder bridge; (b) box-girder bridge; (c) slab bridge; (d) pile cap; and (e) slab

loaded by wall and supported by piles or columns

In a slab, with respect to the manner in which shear forces are transferred, several
cases can be found. The first case is characterized by the development of parallel shear
forces and is typically found on linearly supported one-way slabs subjected to distributed
loading (Figure 2.14(a)). For two-way flat slabs supported on columns and subjected to
distributed loads, the shear forces develop radially towards the columns (Figure 2.14(b)).
Intermediate cases are also possible, with shear forces developing neither perfectly in a
parallel or radial manner. This is generally the case of concentrated loads near linear
supports (Figure 2.14(c)). Depending on the geometry and properties of the slab, as
well as on its loading conditions, slabs subjected to concentrated loads may present dif-
ferent failure modes: shear near the line support [Reg82, Reg88, Coi07, Vaz08, Rom09,
Rom13, Lan13a, Rei13a, Rei13b] (Figure 2.15(a)), punching shear around the concen-
trated loads [Reg82, Reg88, Coi07, Lan13a, Rei13a] (Figure 2.15(b)) or development of
a flexural mechanism (Figure 2.15(c)).
The behavior of slabs subjected to concentrated loads near linear supports is different
from the behavior of one-way and two-way flat slabs subjected to distributed loading.
The first difference is found on the principal direction of the shear force, as previously
seen (not perfectly parallel or radial). Another difference is related to the acting shear
force and bending moment at the shear critical region, which may potentially vary as the
level of load increases (due to redistributions on shear and moment fields after cracking
and/or yielding of the flexural reinforcement). Moreover, the ratio between the maxi-
mum acting moment mmax and the maximum acting shear force vmax in cantilever slabs
at the support is lower than for cantilever beams with the same shear span [Rom09]
(Figure 2.16). Despite such different behavior, most available testing has only concen-
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Mechanical behavior of linearly supported slabs under concentrated loads

Figure 2.14: Shear transfer modes and typical failure crack patterns: (a) shear
developing in a one-way slab; (b) two-way slab supported on columns; and (c)

linearly supported slab subjected to concentrated loads

Figure 2.15: Failure modes of bridge deck slabs: (a) shear; (b) punching shear;
and (c) flexural mechanism
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2. Phenomenological description and available testing

trated on one-way slabs or beams loaded over the full width or two-way slabs with
axis-symmetric punching conditions. Design codes reduce in the majority of cases shear
design situations to these two limit cases.

Figure 2.16: Comparison between the bending to shear ratio of a beam and a
cantilever slab subjected to a concentrated load [Rom09]

The boundary conditions of the linear support play a significant role in the distribution
of internal forces. This can for instance be observed in Figure 2.17, where the values of
shear forces and bending moments of a simply supported slab (similar to the side span
of Figure 2.13(a)) and a fully clamped slab (similar to Figure 2.13(b)) are presented. As
Figure 2.17(c) shows, the maximum moment for a clamped slab is located close to the
support, while for the simply supported slab, it is located under the load. In addition,
these two maximum bending moments have opposite signs. For both types of slabs,
the highest shear forces (Figure 2.17(c)) develop near the concentrated load, where the
directions of the shear forces (Figure 2.17(b)) and the bending moments are similar to
those in the column region of a flat slab (refer to Figure 2.14(b)). This means that
non-symmetric punching might be a potential failure mode in this region.
With respect to the directions of the shear forces in the critical region between the load
and the support, it can be observed that they in fact develop differently for both cases
(Figure 2.17(b)). In the case of clamped slabs, the shear forces are practically perpen-
dicular to the supported edge. This means that, in this region, the slab behaves similarly
as a one-way strip with almost constant shear force in the x-direction (perpendicular
to the edge), but with a high concentration on the symmetry axis and a rapid decrease
along the y-direction (Figure 2.17(d)), as reported by Rombach and Velasco [Rom05].
As it is shown in Figure 2.17(d), clamped slabs present in this region higher shear forces
compared to simply supported ones. The fact that most design codes propose to perform
design in this situation by checking the shear strength at a control perimeter parallel
to the line support and the punching strength at a perimeter around the concentrated
loads might be suitable for cantilever slabs.
With respect to simply supported slabs, the shear behavior of the element has to be
dependent of the the loading plate to specimen width ratio (cy/b), refer to Figure 2.18.
A slab strip with a ratio cy/b = 1 is similar to a beam or a one-way slab loaded over the
full width, and can only fail in shear (excluding flexure), as a punching shear perimeter
around the load cannot develop. As it was discussed in Section 2.2, the control section
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Figure 2.17: Comparison between slabs subjected to a concentrated load near
a linear support (l = 3000 mm; h = 330 mm; d = 300 mm; c = 400 mm): (a)
statical systems: clamped (left column) vs simply supported edge (right column);
(b) shear fields (av/d = 3); (c) unitary shear forces and moments at load axis
(av/d = 3); and (d) unitary shear distribution parallel to the edge as a function
of av (internal forces calculated assuming a linear-elastic behavior of material and

shell finite elements with shear deformation, considering ν = 0.2)
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has to be located close to the load and not close to the support, due to the larger
acting bending moment close to the load, associated with larger critical shear crack
opening and smaller shear strength (strain effect). It is reasonable to expect that the
control section for shear has to be independent of the cy/b ratio, and elements with
cy/b = 1 or cy/b→ 0 should be treated in the same way for consistency. However some
codes of practice [EC2-1, MC2010] consider that the shear control section is located
close to the support. In this point the Canadian code CSA-A23.3-04 based on the
Modified Compression Field Theory [Vec86] seems to be consistent, as it proposes for
wide reinforced concrete members a punching shear check in a control perimeter around
the load, and a shear check in a section close to the load [Lub06], refer to Figure 2.19.
Lubell [Lub06] has investigated the shear behavior of wide members and has proposed to
reduce the shear strength of these elements calculated over the full width by the factor
βL = 0.8+0.2cy/bw, based on experimental tests [Reg82, Reg88, Ser02, Lub06]. However,
this approach does not take into account the three-dimensional force flow (associated
with the punching shear mechanism) needed to achieve an uniform distribution over the
full width.

Figure 2.18: Loading plate to specimen width ratio (cy/b) of simply supported
slabs

The effective shear width assumed to participate in the shear strength mechanism usually
depends on national practices [Lan14b], refer to Figures 2.20(a,b) for the Dutch and
the French ones, respectively. fib-Model Code 2010 [MC2010] has recently proposed
an effective width dependent of the degree of clamping of the support, refer to Figure
2.20(c). Besides these geometric rules, another approach commonly used in practice is
the linear elastic effective width (bw), refer to Figure 2.21. The effective width can be
obtained from a linear elastic finite element analysis with shell elements by dividing the
total shear force going through the control section (V ) by the maximum unitary shear
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Mechanical behavior of linearly supported slabs under concentrated loads

Figure 2.19: Control sections for shear and punching shear of wide reinforced
concrete members under a concentrated load according to CSA-A23.3-04 [Lub06]

Figure 2.20: Effective shear widths according to the: (a) French practice; (b)
Dutch practice; and (c) fib-Model Code 2010
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2. Phenomenological description and available testing

force perpendicular to the control section (vperp,max).

Figure 2.21: Determination of the linear elastic effective width

The location of the load also plays a significant role in the behavior of the slab. This
is shown in Figure 2.17(d) where the shear force in the region between the load and
the support is plotted for different locations of concentrated load (defined with the free
shear span av, see Figure 2.17(a)) for clamped and simply supported slabs. For both
cases, the maximum shear force depends on the clear shear span av, with smaller shear
spans related to larger shear forces.
The location of the load does not only influence the internal forces in the slab, but
also its shear strength. This fact, for beams without shear reinforcement was already
demonstrated by Leonhardt and Walther [Leo62] and Kani [Kan66] (Figure 2.22(c)).
An explanation of this phenomenon is given in [Mut08a] (Section 2.2): for small values
of shear span, an inclined strut between the support and the load is less disturbed
by the development of inclined cracks (Figure 2.22(a)). For larger shear span values,
bending cracks develop through the inclined strut between the load and the support,
thus decreasing the shear strength of the member (Figure 2.22(b)). This means that in
members with short shear spans, larger shear strengths can be reached (Figure 2.22(c)).
This dependency on the shear span is also observed in slabs subjected to concentrated
loads close to linear supports, as it will be shown later in this thesis by analysis of
test results. Contrary to beams, where the shear span is geometrically and statically
defined, on slabs subjected to concentrated loads near a linear support, the shear span is
generally defined as a geometric parameter: the (shorter) distance from the load to the
support (even though the shear forces develop in various directions, and depending on
the considered direction, different values of shear span are potentially found, as discussed
by Lantsoght et al. [Lan13a]).
In addition to the boundary conditions and load location, another significant aspect
influencing the design/assessment of two-way slabs subjected to concentrated loads is the
presence of ducts (injected or not). Incorporating ducts is becoming increasingly popular
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Figure 2.22: Comparison of cracking pattern and theoretical direct strut for: (a)
small; and (b) larger shear span a (according to [Mut08a]); and (c) shear strength
of beams without shear reinforcement tested by Kani [Kan66] as a function of the

shear span

in flat slabs of residential buildings (water or heating pipes), as well as the classic case
of deck slabs of bridges where it allows placing post-tensioning tendons (typically the
case of deck slabs of bridges erected with a balanced cantilever construction method).
The influence of duct material and potential injection of the prestressing ducts on the
strength of concrete girders subjected to in-plane shear is a well known phenomenon
[Mut06, Fer08], as the ducts disturb the compressive field of the web, creating transverse
tensile stresses and thus reduce the strength of concrete. In bridge deck slabs under
concentrated loads near the supports, the inclined struts carrying shear also have to
deviate at the location of the ducts, potentially reducing the shear strength. Although
some researchers have investigated this problem for beams without shear reinforcement
with circular and square openings [Han69, Som74, Sal77, Ars12], no previous research
was found on two-way slabs with linear supports subjected to concentrated loads.

2.7 Static tests on cantilever slabs under concentrated loads

The existing experimental database on cantilever slabs without shear reinforcement un-
der concentrated loads is somewhat limited.
Vaz Rodrigues [Vaz02] performed in 2002 a 1/3 scale test on a cantilever slab subjected
to a concentrated load in the edge. The reinforcement ratio was ρ = 1.19% for the
transversal top reinforcement over the clamped edge. The slab was haunched and its
thickness varied from 110 mm to 140 mm. The free shear span to effective depth ratio
was av/dmax = 6.0. Punching shear was the reported failure mode.
Lu [Lu02] performed in 2003 a series of nine tests on reduced scale cantilevers with
thicknesses of 50 mm and 60 mm. The main transversal reinforcement varied from
ρ = 0.15 − 1.00%. The author reported both flexural and brittle failures due to shear
or punching shear. The author observed the positive influence of increasing the rein-
forcement ratio in both flexural and shear strengths, as well as adding an edge beam to
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improve the slab load-carrying capacity.
Vaz Rodrigues et al. [Vaz08] performed six tests on two large-scale slabs, refer to Figure
2.23. Two main transversal reinforcement ratios in the clamped section were adopted,
ρ = 0.78% and ρ = 0.60%. Three different loading configurations were used, with four,
two and one concentrated loads. The free shear span to effective depth ratio varied from
av/dmax = 2.3 − 3.4. All slabs (except DR1a) failed in shear in the region between the
load and the linear support, while DR1a failed between the closest and farthest loads.

Figure 2.23: Tests on cantilevers slabs performed by Vaz Rodrigues et al. [Vaz08]
(dimensions in [mm])

Rombach and Latte [Rom09] performed four tests on four slabs without shear reinforce-
ment, refer to Figure 2.24. The main transversal reinforcement ratio in the clamped
section varied from ρ = 0.81 − 1.20% and the free shear span to effective depth ratio
from av/dmax = 2.1−3.1. Three tests were preloaded with a linear load at the cantilever
edge. All slabs failed in shear.
Reissen and Hegger [Rei13b] performed four tests on two slabs without shear reinforce-
ment, refer to Figure 2.25. The main transversal reinforcement ratio in the clamped
section was ρ = 0.98% and the free shear span to effective depth ratio av/dmax = 3.3.
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Figure 2.24: Tests on cantilevers slabs performed by Rombach and Latte [Rom09]
(dimensions in [mm])
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Two tests were preloaded with a linear load at the cantilever edge. All slabs failed in
shear.

Figure 2.25: Tests on cantilevers slabs performed by Reissen and Hegger [Rei13b]
(dimensions in [mm])

2.8 Static tests on simply supported one-way slabs under
concentrated loads

Simply supported one-way slabs under concentrated loads received greater attention
from the scientific community in the last century than cantilever slabs. A database of
experimental tests on these elements has recently been compiled by Lantsoght et al. and
can be found in references [Lan13b, Lan14a].
Among the first researchers to study these elements, Leonhardt and Walther [Leo62]
performed a series of four-point bending tests on slab strips (500 mm wide) loaded by
a concentrated load and a linear load, refer to Figure 2.26. Seven out of nine tests that
failed in shear did so on the side with the concentrated load, suggesting that the shear
strength of the slab strip diminishes proportionally to the loading plate to specimen
width ratio (cy/b). However, as it was observed by Lubell [Lub06], this influence could
not be seen as a definite conclusion, as the results are within normal laboratory scatter.
An extensive test programme (29 tests) to study to a greater extent the influence of the
loading plate to specimen width ratio (cy/b) and to a lesser extent the influence of the
load location on one-way slab strips was performed by Regan and Rezai-Jorabi [Reg88].
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Figure 2.26: Tests on simply supported one-way slabs performed by Leonhardt
and Walther [Leo62] (dimensions in [mm])

The width of the specimens varied from 400 mm to 1200 mm and the loading plate to
specimen width ratio (cy/b) from 0.06 to 1.00, refer to Figure 2.27. Reported failure
modes included shear, punching shear around one concentrated load and punching shear
around the two concentrated loads.

Figure 2.27: Tests on simply supported one-way slabs performed by Regan and
Rezai-Jorabi [Reg88] (dimensions in [mm])

In order to study the influence of the load location on one-way slabs, as well as the
influence of the transversal reinforcement, Ferreira [Ferr06] performed 12 tests, refer to
Figure 2.28. All tests but one were reported to have failed in punching shear. The
remaining one failed in flexural punching shear.
Damasceno [Dam07] performed a series of 8 tests on one-way slabs centrally loaded
by monolithic rectangular columns. The transverse reinforcement and the column to
specimen width ratio (cy/b) have been varied, refer to Figure 2.29. Three tests are
reported to have failed in punching shear, three others in flexural punching shear, and
the remaining in flexure.
More recently, Reissen and Hegger [Rei13a] presented a series of 13 tests on one-way slab
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Figure 2.28: Tests on simply supported one-way slabs performed by Ferreira
[Ferr06] (dimensions in [mm])

Figure 2.29: Tests on simply supported one-way slabs performed by Damasceno
[Dam07] (dimensions in [mm])
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strips to study to a greater extent the influence of the loading plate to specimen width
ratio (cy/b) and to a lesser extent the influence of the load location, refer to Figure 2.30.
The width of the specimens varied from 500 mm to 3500 mm and the loading plate to
specimen width ratio (cy/b) from 0.11 to 0.80. Some tests failed in shear and others in
punching shear.

Figure 2.30: Tests on simply supported one-way slabs performed by Reissen and
Hegger [Rei13a] (dimensions in [mm])

Many other tests exist in the database compiled by Lantsoght et al. [Lan13b, Lan14a].
However, some of them present extremely small shear spans (a/d < 2.5) and are thus
suitable to be investigated with stress fields, or they present cy/b ratios close to 1 and
can be practically treated like beams.
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2.9 Shear-fatigue of beams without shear reinforcement

Fatigue problems in reinforced concrete elements have traditionally been associated to
rupture of the reinforcement bars, normally due to bending actions. Nevertheless, in-
vestigations on the fatigue behavior of some members such as bridge deck slabs (Figure
2.31(a)) have shown that shear-fatigue might be governing, particularly for high values
of the maximum applied shear force. Shear-fatigue may be also governing for other
structures exposed to large cyclic actions, such as wind towers and their foundations or
offshore structures, refer to Figures 2.31(b,c). These cases related to structural engi-
neering are usually governed by ratios of the minimum applied shear force to maximum
applied shear force close to zero, or can even be subjected to reversal actions.

Figure 2.31: Examples of structural elements potentially sensitive to shear-fatigue
failures: (a) bridge deck slabs; (b) wind towers; and (c) offshore platforms

In the past, most research on shear-fatigue failures of reinforced concrete members has
concentrated on beams tested under three- or four-point bending configuration. An
extensive summary on this topic can be found in reference [Gal14b]. These experimental
programmes have focused on analysing the influence of parameters like the shear span-
to-depth ratio (a/d), the flexural reinforcement ratio (ρ = As/bd), the concrete strength
(fc) or the influence of the maximum and minimum levels of shear forces (Vmax, Vmin).
One of the first most comprehensive and systematic testing was carried out by Chang
and Kesler [Cha58a, Cha58b] in the fifties. They tested 64 beams under fatigue loading
with a constant value of shear slenderness (a/d = 3.72) and three different flexural
reinforcement ratios (ρ = 0.0102, 0.0186 and 0.0289). According to their experimental
results, Chang and Kesler identified two potential shear-fatigue failure modes (refer to
Figure 2.32): shear-compression failure and diagonal cracking failure. Both were due
to the development and propagation with the number of cycles of an eventually critical
shear crack. In the former failure mode, the propagation of the crack limits the depth
and strength of the compression zone near the load, which eventually crushes. In the
latter, the critical shear crack propagates in an unstable manner leading to a sudden
collapse of the member.
Stelson and Cernica [Ste58] tested 11 specimens with ρ = 0.0290 and similar cross
section than those of Chang and Kesler, but higher shear slenderness (a/d = 5.65). Four
specimens presented shear-fatigue failures by diagonal cracking at a very similar number
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Figure 2.32: Failure modes by Chang and Kesler [Cha58a,Cha58b]: (a) shear-
compression failure; (b) diagonal cracking failure; and (c) Zanuy [Zan08]: crack-

ing evolution and shear-compression failure
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of load cycles to the corresponding series of Chang and Kesler.
Verna and Stelson [Ver62] carried out 60 fatigue tests in reinforced concrete beams
without stirrups. They focused on the description of fatigue failure and identified the
following failure modes: shear-fatigue, fatigue of the reinforcement, fatigue of concrete
in compression and fatigue of the anchorage. The latter failure mode was related to the
propagation of a diagonal crack towards the support and at the level of the longitudinal
reinforcement, similar to the delamination cracks due to dowel action [Mut08a]. Tay-
lor [Tay59] investigated the influence of the type of reinforcement, by testing specimens
with plain and ribbed bars with a constant value of the shear slenderness (a/d = 4.1) and
for different amounts of flexural reinforcement. The results showed very similar fatigue
strength of specimens with different reinforcement, even though the bond properties of
reinforcement are known to play a significant role in the actions involved in resisting
shear force [Mut08a].
Shear-fatigue tests carried out in Japan in late seventies focused on the influence of
the shear slenderness and the load levels. Higai [Hig78] and Farghaly [Far79] tested
reinforced concrete beams with shear slenderness ranging from 1.5 to 6.4. Their results
showed that the diagonal crack developed in the first cycle for the shortest specimens,
but the residual fatigue life after diagonal cracking was much larger than specimens with
higher shear slenderness. Moreover, a higher sensitivity to diagonal cracking failure than
to shear-compression was observed as the shear slenderness increased.
The influence of the ratio between the minimum and the maximum shear load (R =
Vmin/Vmax) was investigated by Ueda [Ued82]. His tests showed that elements subjected
to higher values of parameter R had higher fatigue life than elements tested with lower
R values.
Rombach and Kohl [Rom12, Rom13] have recently tested 7 reinforced concrete beams
with a/d = 5.0 and ρ = 0.0157, obtaining shear-fatigue failures (by shear-compression)
in the beams where the maximum load exceeded 60% of static strength.
Other experimental works on lightly and normally reinforced beams (ρ varying from
0.0052 to 0.0160) [Sch98, Joh04] only presented some cases of shear-fatigue failures after
rebar fractures, being fatigue of the reinforcement the most common failure mode.
A number of tests including shear-fatigue failures was also carried out by other re-
searchers that focused on details like the shape of the section [Fre83, Mar84], the influ-
ence of large member size [Ten84] or the effect of high strength concrete [Kwa01].
Despite the significant efforts devoted to experimental programmes, most codes of prac-
tice still ground their provisions on empirical formulas [EC2-1, MC2010, SIA262:2013].
With respect to the previous experimental campaigns, it can be noted that shear-fatigue
failures are due to the development and growth of an eventually critical shear crack,
leading to the loss of the beam shear-transfer actions strength [Hig78]. Such failures are
associated to members with moderate-to-high slenderness, where the shear strength de-
pends on size and strain effects (governing the width of the critical shear crack [Mut08a]).
However, for low slender members, arching action is prevalent, which seems to be less
prone to failures under shear-fatigue (refer to [Hig78], Figure 2.33). Shear failures in
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these cases are associated to the crushing of the compression strut carrying shear, which
is sensitive to strain effects (transverse strains) but where size effect (localization of
strains on a single crack) plays a more limited role [Zha07]. This fact has recently been
accounted for by Gallego et al. [Gal14a] (Section 3.8), who proposed a consistent ap-
proach for shear-fatigue design of slender reinforced concrete members, including for the
development and growth of a critical shear crack based on fracture mechanics applied
to quasi-brittle materials. This approach has shown to lead to consistent and accurate
estimates of the fatigue shear strength (number of cycles leading to failure) and failure
modes. Its application for practical purposes remains yet complex.

Figure 2.33: Influence of fatigue loading on the shear strength of compact mem-
bers (governed by arching action) and slender members (governed by beam shear-

transfer actions) [Hig78]

2.10 Shear-fatigue of slabs subjected to concentrated loads

As it was previously seen (Sections 2.6 and 2.7) and observed in this thesis (Chapters 4
and 5), shear is the most common governing failure mode of reinforced concrete cantilever
slabs subjected to concentrated loads, under a quasi-static application of the load.
The concentrated loads resulting from heavy vehicles have a repetitive nature and may
cause potential stiffness and strength reductions due to fatigue effects [CEB88]. Fatigue
failure modes are the same as the static ones and can be due to rebar fracture and/or
failure of concrete.
However, it should be noted that the results obtained for beams and one-way slabs
(Figure 2.34(a)) are not directly applicable to cantilever slabs subjected to concentrated
loads (Figure 2.34(d)), as beams do not exhibit a two-way action (Section 2.6).
With respect to fatigue testing of reinforced concrete slabs without shear reinforcement
under concentrated loads, previous research has mainly focused on simply supported or
inner slabs [Saw71, Haw76, Bat78, Oka78, Son82, Per88, Per89, You98, Tou01, Gra02,
Hwa10] supported on two or four edges, refer to Figures 2.34(b,c). Table 2.1 presents
some geometric properties of available experimental evidence. With respect to typical
deck slabs of concrete bridges, it can be observed that several specimens have rela-
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2. Phenomenological description and available testing

tively low thicknesses (< 100 mm) and others have low reinforcement ratios ρ (6 0.2%,
including specimens even with no flexural reinforcement) or fairly large ones (> 1.5%).
To the author’s knowledge, no tests are available on cantilever deck slabs (Figure
2.34(d)), whose mechanical behavior may significantly differ from simply supported slabs
(Section 2.6).

Figure 2.34: Structural reinforced concrete members failing in fatigue shear load-
ing: (a) simply supported beam; (b) slab supported on two edges; (c) slab

supported on four edges; and (d) cantilever slab

tests ρ[%] thickness [mm] supports spans [cm] widths [cm] type*
Sawko & Saha [Saw71] - 38 two edges 229-152-114 152 PC
Sawko & Saha [Saw71] 1.7 76 two edges 114 152 RC

Hawkins [Haw76] 1.3 127 two edges 122 127 RC
Batchelor, Hewitt & Csagoly[Bat78] 0.0-0.2-0.4-0.6 22-18-12 two edges 30 305 RC
Okada, Okamura & Sonoda [Oka78] 1.1-1.3 170-180 four edges 235-360 - RC

Sonoda & Horikawa [Son82] 1.3 60 four edges 80-250 - RC
Perdikaris & Beim [Per88] 0.0-0.3-0.7 32 two edges 32 230 RC

Perdikaris, Beim & Bousias [Per89] 0.0-0.3-0.4-0.7 72 two edges 71 170 RC
Youn & Chang [You98] 1.0 60 two edges 70 210 RC

Toutlemonde & Ranc [Tou01] 1.2 180 two edges 250 500 RC
Graddy et al. [Gra02] 3.2 191 two edges 183 213 RC
Hwang et al. [Hwa10] - 115 two edges 270 430 PC

* RC - reinforced concrete; PC - prestressed concrete

Table 2.1: Properties of slabs tested under concentrated fatigue loads
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Chapter 3

Shear, punching shear and
shear-fatigue modeling

3.1 Introduction

The present chapter aims to present mechanical models suitable to model shear, punch-
ing shear and shear-fatigue behavior of reinforced concrete members without shear re-
inforcement.
The chapter is organized as follows:

— Section 3.2 presents the Critical Shear Crack Theory (CSCT) for one-way shear
and Section 3.3 the shear formulations of some design codes used in Europe;

— Section 3.4 and Section 3.5 present the CSCT for both axis-symmetric and non-
axis-symmetric punching shear, respectively;

— The basics of linear elastic fracture mechanics are presented in Section 3.6 for
both monotonic and fatigue loading. These concepts form the basis of nonlinear
fracture mechanics applied to quasi-brittle materials presented in Section 3.7;

— Section 3.8 presents the mechanical model of Gallego et al. [Gal14a] to model
shear-fatigue failures of beams without shear reinforcement.

3.2 The Critical Shear Crack Theory (CSCT) for shear

The CSCT was firstly presented by Muttoni and Schwartz [Mut91], and it is suitable to
analyze slender reinforced concrete beams without shear reinforcement situated on the
right-side of Kani’s valley (Section 2.2).
According to this theory [Mut08a], the shear strength VR depends on the member geom-
etry (width b and effective flexural depth d), the square root of the concrete compressive
strength

√
fc [Moo54], the critical shear crack width wcr and its roughness (characterized

by the maximum aggregate size dg):

VR
bd

=
√
fcf(wcr, dg) (3.1)
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3. Shear, punching shear and shear-fatigue modeling

Even though shear is a two-dimensional problem, sectional analysis are preferred by
engineers. The CSCT assumes [Mut08a] that the shear strength is governed by a section
(depending on the load configuration) where the width of the critical shear crack can
be adequately represented by the strain at a depth of 0.6d from the compression face
(Figure 3.1(a)), and that the critical crack width wcr is proportional to the product of
the longitudinal strain in the control depth ε times the effective flexural depth d:

wcr ∝ εd (3.2)

Figure 3.1: CSCT for reinforced concrete beams without shear reinforcement: (a)
control section for point loading and distributed loading; and (b) determination
of longitudinal strain in control depth using internal forces N and M [Mut08a]

The longitudinal strain ε is evaluated in the control section assuming that plane sections
remain plane and a linear-elastic behavior of concrete in compression (neglecting its
tensile strength), refer to Figure 3.1(b).
Assuming that no axial force is applied, the strain in the control depth is given by:

ε = M

bdρEs(d− c/3)
0.6d− c
d− c

(3.3)

and the depth of the compression zone c is:

c = dρ
Es
Ec

(√
1 + 2Ec

ρEs
− 1

)
(3.4)

where M is the applied bending moment, ρ is the flexural reinforcement ratio, Ec is the
Young’s modulus of concrete and Es is the Young’s modulus of steel.
Equation 3.3 is only valid for a rectangular cross section without skin reinforcement on
the side faces.
The CSCT proposes the following failure criterion [Mut08a]:

VR
bd
√
fc

= 1
3

1
1 + 120 εd

16+dg
[MPa, mm] (3.5)
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Code provisions on shear of beams without shear reinforcement

The shear strength is obtained by substituting Equation 3.3 in Equation 3.5 and solv-
ing the resulting quadratic equation. For high-strength concrete (fc > 60 MPa) or
light-weight concrete, dg should be taken as zero, because the cracking surface develops
through the aggregates.
The CSCT presents good agreement with tests results, as it is shown by Muttoni and
Fernández Ruiz [Mut08a] with a database of 285 tests.

3.3 Code provisions on shear of beams without shear re-
inforcement

This section presents the shear formulations of some codes of practice for rectangular
beams without shear and skin reinforcement.

3.3.1 fib-Model Code 2010

The shear strength formulation according to fib-Model Code 2010 [MC2010] is based on
the Simplified Modified Compression Field Theory [Ben06, Sig13]. The shear strength
(VR,c) is given by:

VR,c = kv
√
fczbw [fc in MPa] (3.6)

where the effective shear depth z can be taken as 0.9d (being d the effective flexural
depth), bw is the member width, fc is the concrete compressive strength and

√
fc shall

not be taken as greater than 8 MPa.
For a Level II approximation [Mut12], kv is determined by:

kv = 0.4
1 + 1500εx

1300
1000 + kdgz

z in [mm] (3.7)

Parameter kdg can be determined as:

kdg = 32
16 + dg

≥ 0.75 dg in [mm] (3.8)

For concrete compressive strengths larger than 70 MPa and light-weight concrete dg
shall be taken as zero in order to account for the loss of aggregate interlock in the cracks
due to fracture of aggregates.
If no axial force is applied, the strain εx at the mid-depth of the effective shear depth
in the control section is given by:

εx = 1
2EsAs

(
ME

z
+ VE

)
(3.9)

where Es is the reinforcement modulus of elasticity, As is the tensile reinforcement area,
and ME and VE the applied bending moment and shear force, respectively.
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3. Shear, punching shear and shear-fatigue modeling

One may determine the static shear strength by substituting Equation 3.9 into Equation
3.7 and then Equation 3.6.
The control section for three or four-point bending tests on beams is located at d from
the point load.

3.3.2 Eurocode 2

The shear strength formulation according to Eurocode 2 [EC2-1] was empirically cal-
ibrated with experimental data through a statistical approach. No mechanical model
grounds Eurocode 2 formulation. The shear strength (VR,c in [N]) is given by:

VR,c = 0.18k(100ρlfc)1/3bwd ≥ 0.035k3/2f1/2
c bwd (3.10)

where fc is the concrete compressive strength (in MPa), bw is the member width (in
mm), d is the effective flexural depth (in mm), and ρl is the reinforcement ratio (that
shall not be taken larger than 0.02). Parameter k can be determined as:

k = 1 +
√

200
d
≤ 2 d in [mm] (3.11)

3.3.3 SIA262:2013

The Swiss code [SIA262:2013] shear formulation is based on the CSCT [Mut08a] (Section
3.2). The shear strength (vR) is given by:

vR = kdτcdv (3.12)

τc = 0.3
√
fc (3.13)

kd = 1
1 + εvdkg

d in [mm] (3.14)

kg = 48
16 +Dmax

Dmax in [mm] (3.15)

where dv is usually equal to the effective flexural depth d, fc is the concrete compressive
strength and Dmax is the maximum aggregate size. For concrete compressive strengths
larger than 70 MPa and light-weight concrete Dmax shall be taken as zero in order to
account for the loss of aggregate interlock in the cracks due to fracture of aggregates.
If the main flexural reinforcement remains in the elastic domain, the specific deformation
εv can be calculated as:

εv = fs
Es

m

mR
(3.16)
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The Critical Shear Crack Theory (CSCT) for axis-symmetric punching shear

where fs represents the yielding stress of the rebar steel, Es is the reinforcement mod-
ulus of elasticity, m is the acting moment in the control section and mR is the yielding
moment. Assuming a plastic behavior of the reinforcement after yielding, a rectan-
gular stress diagram in the concrete compression zone and neglecting the compressive
reinforcement contribution, the yielding moment can be calculated as:

mR = ρfsbd
2
(

1− ρfs
2fc

)
(3.17)

where ρ is the reinforcement ratio and b the beam width.
If the reinforcement enters the plastic domain, εv is given by:

εv = 1.5 fs
Es

(3.18)

The control section for three or four-point bending tests on beams is located at dv/2
from the point load.

3.4 The Critical Shear Crack Theory (CSCT) for axis-
symmetric punching shear

Muttoni and Schwartz [Mut91] observed that the width of the critical shear crack wcr
that reduces the strength of the compression strut carrying shear (Section 2.4) can be
assumed to be proportional to the product between the slab rotation ψ and the effective
flexural depth d (Figure 3.2).

Figure 3.2: Correlation between the opening of the critical shear crack, slab
thickness and rotation [Mut08b]

Muttoni [Mut08b] proposed the following failure criterion for punching shear:

VR
b0d
√
fc

= 3/4
1 + 15 ψd

16+dg

[MPa, mm] (3.19)

where b0 is the control perimeter located at d/2 from the face of the column,
√
fc is the

square root the concrete compressive strength and dg is the maximum aggregate size.
The load-rotation relationship of the slab is needed to determine its punching shear
strength, given by the intersection between the failure criterion and the load-rotation
relationship (Figure 3.3). The axis-symmetric case of an isolated slab can be treated an-
alytically after some simplifications [Mut08b]. For practical purposes Muttoni [Mut08b]
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3. Shear, punching shear and shear-fatigue modeling

proposes the following simplified load-rotation relationship (refer to Figure 3.3):

ψ = 1.5rs
d

fy
Es

(
V

Vflex

)3/2

(3.20)

where Vflex represents the flexural strength of the slab.

Figure 3.3: Punching strength given by the intersection between the failure cri-
terion and the load-rotation relationship

The CSCT presents good agreement with test results, as it is shown by Muttoni [Mut08b]
with a database of 99 tests.

3.5 The Critical Shear Crack Theory (CSCT) for non-axis-
symmetric punching shear

Based on the shear field representation (Section 2.5), in order to account for non-uniform
distribution of shear forces along the control perimeter, Vaz Rodrigues et al. [Vaz08] have
proposed to reduce the control perimeter as follows:

b0,el = V

vel,perp,max
(3.21)

where V is the applied shear force and vel,perp,max is the maximum perpendicular unitary
shear force acting in the control perimeter, given by a linear elastic finite element analysis
with shell elements, refer to Figure 3.4.
This approach is equivalent to the one considering a constant shear force of vel,perp,max
along the reduced control perimeter b0,el. Using this reduced control perimeter b0,el to
calculate the punching shear strength for a given failure criterion corresponds to consider
that failure occurs when the maximum applied unitary shear force at one point of the
control perimeter reaches the unitary punching shear strength. As b0,el is calculated
with linear elastic finite element analysis, no redistributions due to bending cracking or
reinforcement yielding are considered.
Vaz Rodrigues [Vaz07] has used Muttoni’s [Mut08b] punching shear failure criterion
(Equation 3.19) combined with nonlinear finite element analysis to account for bending
cracking and reinforcement yielding. By establishing the load-rotation relationship be-
tween two points (one placed in the center of the punching loads or columns, and the
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The Critical Shear Crack Theory (CSCT) for non-axis-symmetric punching shear

Figure 3.4: Shear forces perpendicular to the control perimeter

other placed in the slab in order to get approximately the maximal relative rotation),
Vaz Rodrigues was able to calculate the unitary punching shear strength as a function
of the applied load. With increasing load levels, at a certain point the applied unitary
shear force perpendicular to the control perimeter reaches the unitary punching shear
strength and failure occurs. This corresponds to assuming that failure is governed by
the maximal crack width along the control perimeter, not allowing shear redistributions
due to shear cracking. The same procedure can be performed with other load-rotation
relationships (e.g. Equation 3.20 for internal columns in axis-symmetric conditions) and
using the same reduced elastic control perimeter b0,el (Equation 3.21). Considering the
maximum crack width (dependent of the maximum rotation ψmax) as the governing
parameter for punching shear strength is known as the CSCT(ψmax) method [Sag11].
Sagaseta et al. [Sag11] presented a new approach to account for shear redistributions
along the control perimeter for non-axis-symmetrical punching shear around internal
columns. Due to the non-axis-symmetric conditions, the slab rotations depend on the
considered direction and are uneven along the control perimeter, meaning that some
parts of the slab reach their ultimate strength while others still have a potential strength
capacity. However this does not imply the slab collapse, as the areas which reached its
strength can develop a softening process (side A of Figure 3.5) while others continue
increasing its shear force (side B of Figure 3.5, assuming that shear forces along each
side of the control perimeter are roughly constant [Sag11]). This redistribution results
in higher punching shear strengths and rotations when compared with the CSCT(ψmax)
method, provided that the shear increase in side B (Figure 3.5) balances the shear
softening in A.
Based on these considerations Sagaseta et al. [Sag11] have presented the so-called CSCT
(ψx-ψy) method (Figure 3.6). Dividing the control perimeter into four segments (Figure
3.6(a)) and assuming constant rotations ψx-ψy and unitary strengths vR,x-vR,y for each
segment, the punching shear strength VR is given by:

VR = vR,xbx + vR,yby = VR,x
b0

bx + VR,y
b0

by (3.22)
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3. Shear, punching shear and shear-fatigue modeling

Figure 3.5: Shear stress redistributions along the control perimeter [Sag11]

where vR,x and vR,y are calculated according to Muttoni’s failure criterion (Equation
3.19) with the ψx-ψy rotations, VR,x and VR,y represent the strength of segments bx-by
(Figure 3.6(a)), and b0 = bx + by. Lengths bx-by are generally taken as b0/2 in square
columns (θlimit = 45◦, Figure 3.6(a)). However reduced lengths of bx-by are recom-
mended to be taken (θlimit = 90◦) for punching loads close to the flexural loads [Sag11],
as wide crack openings may limit the redistribution capacity of the slab.

Figure 3.6: Shear redistributions according to CSCT(ψx-ψy) method: (a) dis-
cretisation of control perimeter and distribution of unitary shear strength; and (b)

redistribution process [Sag11]

The redistribution process can be seen in Figure 3.6(b) according to the CSCT(ψx-ψy)
method. Point O corresponds to the punching shear strength VR,0 of the CSCT(ψmax)
method, point B to the force component in the segment by after redistribution, and
point C to the predicted punching shear strength VR and maximum rotation. The
redistribution process ends when the shear force being redistributed from segment by to
bx reaches the failure criterion in the x direction.
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The work developed by Sagaseta et al. [Sag11] for square columns has also been extended
for flat slabs supported on rectangular columns [Sag14].

3.6 Linear elastic fracture mechanics

The present section aims at providing the basics of Linear Elastic Fracture Mechanics
(LEFM), and its content is based on the book of Wang [Wan96]: Introduction to Fracture
Mechanics.

3.6.1 Linear elastic materials

Wang [Wan96] defines Fracture Mechanics (FM) as a set of theories that describe the
behavior of solids or structures with geometrical discontinuities at the scale of the struc-
ture, as notches or cracks.
A notch can be defined as a geometric discontinuity which has a definite depth (D) and
root radius (ρ), and a crack can be seen as a notch with a root radius ρ → 0. Let us
consider the plate of Figure 3.7 containing a notch and uniaxially loaded (stress σ). The
linear elastic analysis of this plate (analytically, numerically or experimentally) allows
to study the severity of the notch, i.e., how disturbed the stress field is in the vicinity of
the notch compared with the uniform distribution. The maximum applied stress σmax
is related with the nominal stress σN by the stress concentration factor KT , which can
be approximated for elliptical notch shapes as follows:

KT = σmax
σN

= 1 + 2
√
D

ρ
(3.23)

When ρ → 0, KT → ∞, and as a result σmax → ∞. The stress concentration factor is
thus not suitable to distinguish between different crack lengths and applied stress levels.

Figure 3.7: Notch on uniaxially loaded plate [Wan96]

The basic concept proposed by Griffith [Gri21] in 1921 to formulate the linear elastic
theory of crack propagation is the following: whether a stressed cracked body remains
stable or becomes unstable is dependent on whether the cracked body contains sufficient
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3. Shear, punching shear and shear-fatigue modeling

energy to afford creating additional surface maintaining equilibrium. Let us consider
the stressed cracked thin plate with a crack length of 2a and thickness B of Figure 3.8.

Figure 3.8: Stressed cracked plate [Wan96]

According to the law of conservation of energy the work performed per unit time by the
applied loads Ẇ must be equal to the rates of change of the internal elastic energy U̇E ,
plastic energy U̇P and kinetic energy K̇ of the body, and the energy per unit time Γ̇
spent in increasing the crack area:

Ẇ = U̇E + U̇P + K̇ + Γ̇ (3.24)

Assuming a slow crack growth, the kinetic energy can be neglected (K = K̇ = 0). Since
all changes with respect to time are caused by changes in crack size, the differential
operator with respect to time δ/δt can be given by:

δ

δt
= δ

δA

δA

δt
= Ȧ

δ

δA
(3.25)

where A = 2aB represents the crack area. However the total crack surface area is twice
the crack area. Therefore Equation 3.24 can be rewritten as:

− δΠ
δA

= δUP
δA

+ δΓ
δA

(3.26)

where

Π = UE −W (3.27)

represents the potential energy of the system. Equation 3.26 shows that the reduction
of the potential energy is equal to the energy dissipated in plastic work and surface
creation.
For an ideally brittle material UP = 0, i.e., the dissipated energy in plastic energy
is negligible. The law of conservation of energy of Equation 3.26 can once again be
rewritten as

− δΠ
δA

= δΓ
δA

= 2γ (3.28)

where γ represents the energy required to form unit new material surface (material
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property) and factor 2 to the two new material surfaces formed during crack growth.
Equation 3.28 obliges that sufficient available potential energy is available in the system
to overcome the surface energy of the material in order to have crack growth. A crack-
extension force G can be defined as

G = −δΠ
δA

(3.29)

The total energy of the system can be defined as:

Utotal = (−W + UE) + Γ (3.30)

According to Clapeyron’s theorem of linear elastostatics that states that the potential
energy of deformation of a body, which is in equilibrium under a given load, is equal to
half the work done by the external forces, and assuming these forces remained constant
from the initial state to the final state, we have:

W = 2UE (3.31)

The crack-extension force can be rewritten as:

G = δUE
δA

(3.32)

and the total energy of the system:

Utotal = −UE + Γ (3.33)

Griffith [Gri21] applied the stress solutions of Inglis [Ing13] to show that the increase in
strain energy due to the elliptic cavity (zero radius) in an infinite plane of thickness B
is given by:

UE = πa2σ2B

E
(3.34)

where E is Young’s modulus of the material. The energy spent increasing the crack area
is given by:

Γ = 4aBγ (3.35)

Thus, the total system energy of the thin plate becomes

Utotal = −πa
2σ2B

E
+ 4aBγ (3.36)

which exhibits a maximum at the following crack length:

ac = 2γE
πσ2 (3.37)

meaning that the critical crack length below which the crack would remain stable de-
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creases with the applied stress. Alternatively, the critical stress level that the plate can
sustain for a given crack length a is

σc =
√

2Eγ
πa

(3.38)

All the presented equations are only valid for linear elastic materials.
The energy release rate G characterises the amount of energy released if the crack ad-
vances a unit length. When this value is greater than the surface energy of the material
the crack can grow, otherwise no crack propagation is possible.
The energy release rate G can be determined from experimental tests. Figure 3.9(a)
presents a cracked specimen made of a linear elastic material subjected to a load P

and/or a displacement u. When the crack length is a, the specimen is less compliant
than when the crack length is a + δa. The compliance C of the specimen (geometry
dependent) is given by:

C = u

P
(3.39)

Figure 3.9: Edge stressed cracked plate and load displacement characteristics
[Wan96]: (a) geometry; (b) constant load crack extension; and (c) crack extension

under constant displacement

If we consider a test performed at constant load conditions (Figure 3.9(b)), an increase
of crack length of δa results in a potential energy change of δΠ (difference between the
external work and the stored but recoverable elastic strain energy). The increase of
elastic strain energy δUE is given by:

δUE = 1
2P1u2 −

1
2P1u1 (3.40)

and the work performed by the load P in the distance (u2 − u1) as:

δW = P1(u2 − u1) (3.41)

The energy spent in increasing crack surfaces is given by:

− δΠ = δW − δUE = P1(u2 − u1)− 1
2P1(u2 − u1) = 1

2P1(u2 − u1) = 1
2P1δu (3.42)
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which means that the energy spent in crack development was supplied by the work of
the external load.
In a similar way, if we consider a test performed at constant displacement conditions
(Figure 3.9(c)), an increase in crack length causes a decrease in the stored elastic strain
energy of:

δUE = 1
2(P1 − P2)u1 = 1

2u1δP (3.43)

which is spent in increasing crack surface since no external work is done.
When an increase in crack area δA tends to zero, the compliance C is the same for both
constant load and constant displacement conditions, which means that the difference
between the energy spent in crack growth in both cases tends to zero:

1
2P1δu = 1

2u1δP ⇔ δu = u

P
δP = CδP (3.44)

and the energy release for both cases is given by:

G = 1
2CPδP (3.45)

The strain or potential energy release rate with respect to crack length for small crack
area increases δA = Bδa can be found experimentally in a plate of uniform thickness B
as:

G = 1
2P

δu

δA
= P 2

2
δC

δA
(3.46)

G can be determined by means of measurements of the compliance of a specimen with
different crack lengths.
There are three different stressing modes of a crack. The opening mode or mode I (Figure
3.10(a)) corresponds to normal separation of crack surfaces under tensile stresses. The
sliding mode or mode II corresponds to a crack propagation normal to the crack front
under shear stresses. Finally, the tearing mode or mode III corresponds to a crack
propagation parallel to the crack front, also when subjected to shear stresses. A stressed
body can experience one or a combination of these modes.

Figure 3.10: Stressing modes of a crack [Wan96]: (a) opening mode or mode I;
(b) sliding mode or mode II; and (c) tearing mode or mode III
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The stress, strain and displacement fields of a cracked linear elastic body can be calcu-
lated analytically by using the Westergaard method [Wes39], for example. Solving this
problem yields these fields in the vicinity of a crack as a linear proportional function
of the stress intensity factors K, which embody the loading and geometry conditions.
The stress intensity factors and the searched fields can be found in many handbooks. In
general the stress intensity factor depends on the applied stress, crack size and geometry:

K = Y σ
√
πa (3.47)

where Y is the so-called geometry factor, dependent of the body and crack geometries.
For a center crack in an infinite plate, Y = 1. Y can be found in many handbooks for
various practical situations, but in general, Y can be obtained from linear elastic finite
element analysis.
As the stress and displacement fields are linearly proportional to the stress intensity
factor, the superposition principle is applicable in LEFM.
Let us now recall Griffith’s energy concept to show that it is related with the stress
intensity factor. Figure 3.11 shows the forces needed to close a crack over an infinitesimal
distance δ in a plate of thickness B. The work done by these forces is equal to the energy
needed to make the crack grow this δ distance:

δUE = 2B
∫

0

δ 1
2σyuydx = 2B

∫ a

a−δ

1
2σyuydx (3.48)

where factor 2 is related to the two surfaces of the crack and factor 1/2 is the assumed
proportionality between tractions and the corresponding displacement uy. Using the
expressions for σy and uy that can be found in many handbooks and adopting polar
coordinates with origin at the crack tip (r,θ), we get:

G = lim
δ→0

2K2
I

πEδ

∫
0

δ
√
δ − r
r

dr = lim
δ→0

2K2
I

πE

∫
0

π/2
√

cos2 θ

sin2 θ
2δ sin θ cos θdθ (3.49)

yielding:

G = K2
I

E
(3.50)

for plane stress conditions and:

G = K2
I

E
(1− ν2) (3.51)

for plane strain conditions. Subscript I stands for mode I.

3.6.2 Linear elastic-perfectly plastic materials

Linear elastic-perfectly plastic materials cannot exhibit very high elastic stresses in the
vicinity of a crack tip, because the maximum admissible stress is the material’s yield
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Figure 3.11: Forces applied to close a crack over an infinitesimal distance [Wan96]

condition. As a consequence local plastic yielding occurs. Let us consider the elastic
stress distribution in the crack tip of Figure 3.12, given by:

σyy = KI√
2πr

(3.52)

where r is the distance from the crack tip. As a first approximation the boundary
between the elastic and plastic behavior occurs when the elastic stress is equal to the
yielding stress σys, and the so-called first-order plastic zone size is given by:

rl = K2
I

2πσys2 (3.53)

However, when yielding occurs, stress redistributions must be present in order to satisfy
equilibrium. Assuming that the force carried by the elastic stress distribution is the
same before and after plastic yielding, force equilibrium yields the second-order plastic
zone size [Irw68]:

σysrp =
∫

0

rl
σyydr =

∫
0

rl KI√
2πr

dr ⇒ rp = 1
π

(
KI

σys

)2

(3.54)

It can be shown that according to the Von Mises yield criterion the effective yield stress
σy is given by [Wan96]:

σy =
{

σys
1−2ν plane strain
σys plane stress

(3.55)

where σys is the uniaxial yield stress. Considering ν = 1/3 and σy = 3σys, the plas-
tic zone under plane strain condition is approximately 1/9 of that under plane stress
condition.
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Figure 3.12: First-order and second-order estimates of plastic zone size [Wan96]

3.6.3 Fracture toughness as a failure criterion

As it was discussed in Section 3.6.2, materials may exhibit plasticity at the crack tip. If
the stress redistribution associated with the yielding has a minimal effect on the crack
tip elastic stress field, LEFM (Section 3.6.1) can still be applied and the stress intensity
factor K is enough to describe the stress field of a cracked body. In these conditions,
there is a critical stress and strain state at the crack tip that causes the crack to propagate
in a brittle manner, described by the critical stress intensity factor or fracture toughness
Kc.
Tests show that the fracture toughness Kc depends on the thickness B of the tested
specimens. Plane strain conditions are associated with small plastic regions in the crack
tip, and plastic contraction is restrained by the surrounding elastic material. On the
other hand, plane stress conditions associated with negligible stresses normal to the
specimen’s plane are able to dissipate more energy as a result of plastic deformation
near the specimen surface, resulting in higher fracture toughness than the one associated
with plane strain conditions. Figure 3.13 represents schematically the dependency of
the specimen’s thickness on the measured fracture toughness. With increasing thickness
the measured fracture toughness approaches the fracture toughness under plane strain
conditions KIc (mode I), which is a material property.
Knowing the fracture toughness allows us to calculate the residual strength of a cracked
element as:

σc = Kc

Y
√
πa

(3.56)

where Y is the geometry correction factor (dependent of the body and crack geometries).
Conservatively Kc = KIc can be assumed. If the stress state is known, the critical crack
size can be calculated as:

ac = 1
π

(
Kc

Y σ

)2
(3.57)
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Figure 3.13: Effect of thickness on fracture toughness [Wan96]

Equations 3.56 and 3.57 form the basis of the LEFM based design methodologies.

3.6.4 Fatigue crack growth

When a structure is subjected to a constant range of cyclic stresses, stable fatigue crack
growth can occur at stress levels well below the yield stress of the material. The prop-
agation of a crack with the load cycles (da/dN) depends on the stress intensity factor
amplitude at the crack tip (∆K), refer to Figure 3.14. Three regimes can then be dis-
tinguished: (a) initiation of crack propagation; (b) stable crack propagation or linear
regime; and (c) unstable crack propagation. The former is governed by a threshold
(∆K0) below which no propagation occurs. The latter leads to a fast and unstable crack
propagation resulting in failure. With respect to the stable crack propagation regime, it
can be characterized by the empirical law observed by Paris-Erdogan [Par63]:

da
dN = C∆Kn (3.58)

where C and n are constants depending on the material properties. This law depends
on the ratio R between minimum and maximum applied stresses, and its validity has
been largely verified for metallic materials.

Figure 3.14: Crack growth rate as a function of the stress intensity factor
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TheWöhler diagrams (also known as S-N curves, refer to Figure 3.15) can be determined
by calculation of the number of cycles to failure N under a constant range of cyclic
stresses (S):

N =
∫ af

a0

da
C∆Kn

(3.59)

where a0 is the initial crack length and af is the critical crack length leading to unstable
crack growth, which may be calculated from the fracture toughness (Section 3.6.3).
If the structure is loaded with different stress ranges, damage sum can be performed
according to the Palmgren-Miner’s rule [Min45]:

∑
i

ni
Ni

(3.60)

where ni represents the number of cycles of amplitude Si, and Ni is the number of cycles
to failure if the only applied stress range is Si, refer to Figure 3.15. Failure theoretically
occurs when the damage sum reaches 1. However, it cannot be seen as an universal law.

Figure 3.15: Typical S-N curve and damage cumulation [Min45]

3.7 Nonlinear fracture mechanics for quasi-brittle materi-
als

This section presents the basics of nonlinear fracture mechanics (NLFM) applied to
quasi-brittle materials, like concrete. Size-effect laws are presented to study both mono-
tonic and fatigue loading.

3.7.1 Hillerborg’s fictitious crack model

This section presents Hillerborg’s [Hil76, Hil83] fictitious crack model aimed at studying
the nonlinear fracture process of concrete. This model is based on Dugdale’s strip-yield
model [Dug60].
The fracture behavior of concrete in tension is different from metallic materials, due to
the fact that the fracture of concrete is preceded by micro-cracking instead of yielding.
Micro-cracking allows stress decrease with increasing deformation. When micro-cracks
grow and form a crack, stress transfer is still possible through the crack. Figure 3.16
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presents a three-point bending test of an unreinforced concrete notched element and
the typical stress distribution ahead of the crack tip. The relatively large depth of the
fracture process zone (FPZ) does not allow for a clear definition of the crack tip like
metallic materials do.

Figure 3.16: Three-point bending test of an unreinforced concrete notched ele-
ment and typical tensile stress distribution [Hil83]

In concrete microcracking no substantial contraction occurs (compared with the one
occurring when metal yields). Consequently the influence of plane stress or strain condi-
tions is expected to be the same, i.e., the concrete behavior is expected to be independent
of the specimen width.
The tensile behavior of concrete can be described by stress-strain and post-peak stress-
displacement diagrams obtained by displacement-controlled tests, refer to Figure 3.17.
The region A where fracture occurs has a certain width. However, Hillerborg [Hil83]
proposes to adopt an original width of the fracture zone equal to zero and to concentrate
all the post-peak displacements in a line crack, reason why the model is named as
fictitious crack model.

Figure 3.17: Uniaxial tensile test of an unreinforced concrete element and deter-
mination of stress-strain and post-peak stress-displacement diagrams [Hil83]

The energy per unit area spent to perform a complete separation of the two halves of
the uniaxial tensile test in the fracture zone is given by:
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GF =
∫ wl

0
σdw (3.61)

where wl = w(σ = 0). The energy absorbed outside the fracture zone can be calculated
based on the stress-strain diagram, but a purely elastic material does not exhibit energy
absorption outside the fracture zone.
The fictitious crack model can be implemented in a finite element code in order to study
the stability and crack growth, refer to Figure 3.18. The simplest possible assump-
tions regarding the stress-strain and post-peak stress-displacement relations are those of
Figure 3.19, which depend on the material properties ft and GF (besides the Young’s
modulus E). These values can be combined into a characteristic length:

lch = EGF
f2
t

(3.62)

The characteristic length is a material property, and the length of the fracture zone
during crack growth is of the order 0.3-0.5lch [Hil83].

Figure 3.18: Stress distribution in front of a crack tip before and after growth of
the real crack [Hil83]

The post-peak stress-displacement can be determined by an uniaxial tensile test. How-
ever this kind of tests is difficult to perform, because it requires a very stiff test rig. But
other tests can be performed in order to determine GF , like the three-point bend test,
the compact tension test or the wedge splitting test.
LEFM (Section 3.6) assumes that there is no fracture zone ahead of the crack tip. Even
though this assumption is only true for concrete when the specimen dimensions are much
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Figure 3.19: Simplest possible assumptions regarding the stress-strain and post-
peak stress-displacement relations for finite element implementation [Hil83]

larger than the fracture zone, Hillerborg [Hil83] has used the fracture toughness failure
criterion (Section 3.6.3) to study how great are the errors of using LEFM compared with
a finite element implementation of the fictitious crack model. In order to perform this
study, Hillerborg [Hil83] assumed that the fracture toughness Kc (and the corresponding
critical energy rate (Equation 3.50)) correspond to K (and G) when the maximum load
in a test is attained. As for concrete there is no well defined crack tip, a notched beam
can be used to perform this study. Figure 3.20 shows the result of such a test. It can be
observed that Kc and Gc depend on the geometry and are not material properties. They
only become material properties when the specimen dimensions become large enough
and Gc approaches GF .

Figure 3.20: Theoretical variation with beam depth ofKc andGc for a three-point
bending test and application of LEFM [Hil83]

3.7.2 Bažant’s size effect law

As discussed in Section 3.7.1, the global response of concrete structures depends on
the dimensions of the structure. This phenomenon is known as the deterministic size
effect, and it shall not be misinterpreted as the statistical site effect [Wei51]. In this
section the Bažant’s [Baz84] size effect law is presented, which is valid for structures
with geometrically similar shapes, like beams of the same span-to-depth ratio and the
same notch-to-depth ratio, for example.
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According to the strength of materials (SOM) standard criterion, failure occurs when
the nominal applied stress σN reaches the direct tensile strength of concrete f ′t . The
nominal applied stress σN can be expressed as:

σN = cN
P

bd
(3.63)

where P represents the load (or loading parameter), b is the thickness of the element,
d is the characteristic dimension, and cN is independent of size and characterizes the
structure shape and type of loading.
If we consider the LEFM failure criterion (Section 3.6.3), it can be shown that σN is
inversely proportional to

√
d.

The SOM and the LEFM failure criteria are plotted schematically in Figure 3.21. How-
ever, concrete structures exhibit a gradual transition from the SOM to the LEFM crite-
ria, the so-called nonlinear fracture mechanics (NLFM) criterion.

Figure 3.21: Deterministic size effect according to SOM, LEFM and NLFM cri-
teria [Baz84]

In concrete, the thickness of the fracture zone wc can be assumed to be related to the
maximum aggregate size da by an empirical constantly n (wc = nda), which can be taken
as 3 [Baz83]. Bažant and Oh [Baz83] state that wc has to be a material property in
order to obtain consistent numerical results when implementing their crack band theory
for fracture of concrete.
The uniaxial tensile behavior of concrete can be described by the stress-strain relation
of Figure 3.22, characterized by the elastic modulus Ec, the tensile stress f ′t and the
strain-softening modulus Et (negative value).
The fracture energy per unit thickness may be calculated as:

GF = wc

(
1− Ec

Et

)
f ′t

2

2Ec
(3.64)

Bažant and Oh [Baz83] analysed numerous test data and proposed the following empir-
ical expression:
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Figure 3.22: Crack band fracture and idealized tensile stress-strain diagram for
fracture process zone [Baz84]

GF =
(
2.72 + 0.0214f ′t

)
f ′2t

da
Ec

in [psi] (3.65)

More recently Bažant and Becq-Giraudon [Baz02] proposed updated expressions for GF
based on more tests.
Considering the uniaxial tensile test of the concrete panel of Figure 3.23, before cracking
the strain energy density in the panel is uniform and equals σ2/2E. When cracking
occurs, we can assume that the crack band forces both strain energy and stress relief in
the area delimited by points 123456, where line 16, 56, 23 and 43 have a certain fixed
slope k1 close to 1. The total energy release can be approximated as:

W = W1 +W2 = 2k1a
2b
σ2

2Ec
+ 2ndaab

σ2

2Ec
(3.66)

where W1 is the energy contained in volumes 156 + 243 and W2 the energy contained in
volume 1245.

Figure 3.23: Uniaxial tensile test of a concrete panel and crack band propagation
[Baz84]
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Assuming the top and bottom boundaries to be fixed during cracking, the external work
is zero. The potential energy release rate of the panel is thus:

δW

δa
= 2 (2k1a+ nda) b

σ2

2Ec
(3.67)

which has to be equal to the energy consumed per unit crack band extension:

δW

δA
= GF b (3.68)

Substituting GF from Equation 3.65 in Equation 3.68, one may obtain an equation with
the following solution:

σN = Bf ′t√
1 + λ

λ0

(3.69)

B =
√

1 + Ec
−Et

(3.70)

λ0 = n

2k1

d

a
(3.71)

where λ = d/da. B and λ0 are constants when geometrically similar specimens are
considered.
Assuming that the total potential energy release W caused by fracture is a function of
both the fracture length a (crack band) and the cracked zone area ndaa, Equation 3.69
can be generalized for various geometries and loading configurations:

σN = Bf ′t√
1 + d

λ0da

(3.72)

where once again B and λ0 are constants when geometrically similar specimens are
considered.
Dam concrete or other concretes with crushed aggregates can exhibit cracks predomi-
nantly going through the aggregates. Based on this observation, Brühwiler and Roelf-
stra [Bru89] reached the conclusion that maximum aggregate size cannot be alone the
sole material parameter to describe fracture. Instead they propose Hillerborg’s charac-
teristic length [Hil83] (Section 3.7.1, Equation 3.62) to be considered as the appropriate
material parameter. Bažant’s size effect law may be thus formulated by a more general
expression:

σN = Bf ′t√
1 + H

H0

(3.73)

where H0 is a characteristic property of the concrete (related to lch) and H is a char-
acteristic dimension of the concrete structure (the fracture ligament length in compact
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tension tests, for instance).

3.7.3 Hu and Wittmann’s size effect law

Hu and Wittmann [Hu92] have observed that there is an influence of the free boundary of
specimens in the FPZ ahead of real crack in a concrete structure. The energy required to
propagate the crack decreases as the crack becomes closer to a free boundary [Hu00]. The
change in the local fracture energy gf can be approximated by a bilinear function [Hu92],
refer to Figure 3.24. The transition from the constant value GF to the descending branch
occurs at the transition ligament length al, dependant of the material properties and
specimen size and shape. The global fracture energy Gf measured in tests is the average
of the local fracture energy gf distribution:

Gf (a,W ) =
∫W−a

0 gf (x)dx
W − a

(3.74)

Gf (a,W ) =

 GF
(
1− al/W

2(1−a/W )

)
1− a/W > al/W

GF
1−a/W
2al/W 1− a/W ≤ al/W

(3.75)

Figure 3.24: Local fracture energy distribution ahead of real crack [Hu04]

In order to obtain GF and al for a certain concrete mix, the Gf value of at least four
specimens with single size and a full range variation of the notch depth must be previ-
ously determined [Hu04], one can then apply the least squares method. This procedure
leads to a GF value that is essentially independent of the specimen size W and relative
notch depth α = a/W [Hu07, Cif13].
A first approach performed by Hu and Wittmann [Hu00] to obtain a size-effect law was
based on the fracture properties of a large plate with an edge crack of various lengths.
A simple asymptotic function was proposed to model the transition between the SOM
and the LEFM criteria (Figure 3.25), as a function of the ratio between the crack length
a and the reference crack a∗ ∝ lch:

σN = Bf ′t√
1 + β a

lch

(3.76)

where B and β are dimensionless constants to account for variations in loading conditions
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and specimen geometry. β depends on the α ratio, being constant for geometrically
similar specimens of different sizes with a constant α.

Figure 3.25: Tensile failure of a large plate with a short edge crack [Hu00]

A second approach developed by Duan, Hu andWittmann [Dua02] has adopted the bilin-
ear function to approximate the distribution of fracture energy along the ligament [Hu92]
(Figure 3.24) and the transitional ligament al∗ was introduced to define the intersection
of the two linear functions. This model revealed the role of specimen back free surface
in determining the FPZ fracture energy, relating it to the crack length ratio a/a∗l .
The two approaches previously presented differ from size-effect laws based on the spec-
imen size. The first difference lies on the fact that the size-effect may occur in a large
specimen if the edge crack or ligament is not long enough. Another difference is that
the reference crack length a∗ or the transitional ligament al∗ and the ratios a/a∗ and
a/al

∗ determine the size effect rather than the physical size W .
The transition between the SOM and the LEFM criteria (Figure 3.25) can be expressed
as a function of the ratio between the crack length a and the reference crack a∗, and
Equation 3.76 can be rewritten as:

σN = A(α)f ′t√
1 + a

a∗

(3.77)

where α = a/W and A(α) is a factor depending on the loading configuration. The
intersection between the SOM and LEFM criteria yields:

KIc = A(α∗)f ′tY (α∗)
√
πa∗ (3.78)

where KIc is the fracture toughness, Y (α∗) is a geometric factor that depends on the
reference crack ratio α∗ = a∗/W .
For a large plate with an edge crack where W � a, α = 0, A = 1 and Y = 1.12. The
reference crack size a∞∗ is a material constant given by:

a∞
∗ = 1

1.122π

(
KIc

f ′t

)2
= lch

1.122π
(3.79)

60



Nonlinear fracture mechanics for quasi-brittle materials

with

lch = EGF

f ′t
2 =

(
KIc

f ′t
2

)2

(3.80)

For specimens with a given α-ratio, the reference crack size a∗ is influenced by α as
follows:

a∗ = 1
πY 2A2

(
KIc

f ′t

)2
=
( 1.12
Y (α)A(α)

)2
a∞
∗ = a∞

∗

B(α) (3.81)

B(α) =
(
Y (α)A(α)

1.12

)2
(3.82)

The size-effect law is thus given by:

σN = A(α)f ′t√
1 +B(α) a

a∗∞

(3.83)

Equation 3.83 shows that the transition between the SOM and the LEFM criteria is
significantly affected by the specimen geometry and size.

3.7.4 Jenq and Shah’s two parameter fracture model

Jenq and Shah [Jen85] developed a two parameter fracture model to be used with LEFM
(Section 3.6) in order to reproduce the nonlinear fracture behavior of concrete. The
critical stress intensity factor KS

Ic in mode I is calculated at the tip of the effective
crack and the critical effective crack extension is dictated by the elastic critical crack
tip opening displacement CTODc. The proposed model has been shown to be size
independent in tests on notched beam specimens. Moreover the model is able to predict
size effects on notched and unotched beams and tensile specimens.
The concept of Jenq and Shah’s model can be explained with Figure 3.26. In the be-
ginning the relation between the load P and the crack mouth opening displacement
(CMOD) is linear up to about the load corresponding to approximately half the max-
imum load. In this stage, the intensity factor KI < 0.5KS

Ic. This phase is followed
by another one where inelastic displacement occurs. Failure occurs when the CTOD
reaches a critical level CTDOc and K = KS

Ic.
The model was validated through three-point bending tests on geometric similar notched
beams. In these tests, from the measured maximum loads and corresponding elastic
component of CMOD, the value of the effective elastic crack was determined such that
the calculated CMOD was equal to the measured one. For that value of crack length,
KS
Ic and CTODc were determined. The obtained values are essentially independent of

the size of the beams.
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Figure 3.26: Fracture resistance stages of plain concrete [Jen85]: (a) KI <
0.5KS

Ic; (b) nonlinear range; and (c) critical point

3.7.5 Bažant and Xu’s size effect in fatigue fracture of concrete

Bažant and Xu [Baz91] performed a series of monotonic and fatigue tests on geometri-
cally similar notched beams (Figure 3.27). Three different characteristic sizes were used
(d = 38, 76, 152mm) and the notch size and span were a0 = d/6 and L = 2.5d, respec-
tively. As it was already discussed (Section 3.7.1) it is difficult to clearly define the crack
length in concrete. In order to do it, the indirect method CMOD-compliance C method
can be used. This method consists in applying a small load in a notched beam a certain
number of cycles and measuring the compliance, and subsequently increasing the notch
depth and measuring the new compliance, refer to Figure 3.28. The applied load has to
be small to ensure that the increment in the notch size with a saw completely removes
the fracture process zone, and that the beam can be considered as virgin for the next
notch depth.
All the fatigue tested specimens were loaded between zero and 80% of the monotonic
static strength.
In order do determine the crack evolution law as a function of the stress intensity factor,
based on the load P - CMOD diagrams of the fatigue tests, one can calculate for each
cycle the compliance of the unloading branch (CN , refer to Figure 3.29(a)). Knowing
the compliance CN , it is possible to determine the crack length (aN/d, refer to Figure
3.29(b)) from the previously determined compliance-notch depth diagrams of Figure 3.28
and to plot the crack growth as a function of the loading cycles N (Figure 3.29(c)). One
can also calculate the stress intensity factor KI (as we know the applied stress and the
crack length) and plot in logarithmic scale the rate of crack increment with the number
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Figure 3.27: Geometry of the fatigue and static tests performed by Bažant and
Xu [Baz91] (dimensions in [mm])

Figure 3.28: CMOD-compliance method: experimental determination of the
relationship [Baz91]
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of cycles as a function of the variation of the stress intensity factor normalised by the
fracture toughness of concrete KIf , refer to Figure 3.29(d).

Figure 3.29: Determination of crack evolution law as a function of the stress
intensity factor [Baz91]: (a) P − CMOD diagram; (b) C − a/d diagram; (c)

a/d−N diagram; and (d) ∆a/∆N −∆KI/KIf diagram

Figure 3.29(d) shows that depending on the size of the specimen we get different best-
fit lines, even though with the same slope. Comparing Figure 3.29(d) with the typical
materials that can be described by LEFM (Section 3.6.4 and Figure 3.14), it can be
seen that Paris law (Equation 3.58) is invalid for concrete, because according to it there
should only exist one line, dependent of material properties and not on the specimen
dimensions.
Bažant’s size effect law for monotonic loading (Section 3.7.2 and Equation 3.69) can be
rewritten as follows:

σN = Bf ′t√
1 + β

(3.84)

where β = d/d0 is the so-called brittleness number and (B, d0) are empirical constants
characterizing both the material properties and structure shape. It was previously dis-
cussed that the size effect law coincides with LEFM when β →∞. Due to these devia-
tions from the LEFM, the critical value of KIc of stress intensity factor KI at which the
crack can propagate at monotonic loading depends on the specimen size and geometry.
When β →∞, KIc → KIf .
Recalling the general expression for the nominal stress σN (Equation 3.63), it can be
shown that the stress intensity factor KI is a function of the ratio crack length / beam
depth a/d:
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KI = σN
√
d
f
(
a
d

)
cN

(3.85)

In order to determine the size-dependency of KIc, we can introduce Equation 3.84 in
Equation 3.85:

KIc = Bf ′t
√
βd0√

1 + β

f
(
a
d

)
cN

= KIf

√
β

1 + β
(3.86)

KIf = Bf ′t
√
d0
f
(
a
d

)
cN

(3.87)

where KIf is the fracture toughness because KIc → KIf when β → ∞. The fracture
toughness can thus be calculated from parameters B and d0, which in their turn can be
calculated from the monotonic tests.
To take into account the size-dependency of KIc, Bažant and Xu [Baz91] proposed the
following modified Paris law:

∆a
∆N = C

(∆KI

KIc

)n
(3.88)

Constant d0 (also known as transition size from SOM to LEFM) applies only to peak-
load states at monotonic loading. Bažant and Xu [Baz91] raised doubts on whether it is
correct to consider it constant and with the same value as the monotonic one for fatigue
testing. In order to obtain a size-independent plot of the ∆a/∆N −∆KI/KIf diagram
for all specimen dimensions, Bažant and Xu [Baz91] proposed to use a d0 ten times
larger than the monotonic one. As the fracture process zone seems to be proportional to
d0 [Baz90], this would mean that the fracture process zone is greatly enlarged by cyclic
loading.
The size-adjusted Paris law from Equation 3.88 can be rearranged by introducing ∆KI

from Equation 3.85, yielding:

∆a
∆N = C

(√
1 + β∆σN

)n
(3.89)

C = C

(√
d0

f
(
a
d

)
cNKIf

)n
(3.90)

3.8 Gallego, Zanuy and Albajar’s shear-fatigue mechanical
model

In this section the mechanical model developed by Gallego, Zanuy and Albajar [Gal14a,
Gal14b] to study shear-fatigue failures of reinforced concrete beams without shear rein-
forcement is presented.
One of the basic assumptions of the model is that the diagonal crack develops from
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a flexural crack at an initiation section located at d (flexural depth) from the point
load, refer to Figure 3.30(a). This assumption is taken from the average position of the
crack in several experimental tests. The strain and stress states at the initiation section
are shown in Figures 3.30(b-d) and the stress states at points A (neutral axis), B (tip
of the flexural crack) and in between line AB are shown in Figures 3.30(e-g). Before
the diagonal crack formation, aggregate interlock and dowel action are assumed to be
not yet activated, and the shear force is fully carried by the the uncracked zone. The
shear stress distribution is assumed to be parabolic with a maximum at the neutral axis
(Figure 3.30(d)). Vertical stresses are considered to be zero in order to preserve the strain
compatibility condition between both sides of the flexural crack (Figures 3.30(h-i)).

Figure 3.30: Determination of stress state at the initiation section and on the
boundaries of a concrete tooth [Gal14a]: (a) location of the initiation section; (b)
strain distribution; (c) normal stress distribution; (d) shear stress distribution;
(e) stress state at point A; (f) stress state at point B; (g) stress state at a
point on line AB; (h) stress state on the boundaries of a concrete tooth; and (i)

distribution of vertical stresses on concrete teeth borders

The diagonal crack is assumed to start from point A. Mohr’s circle in point A shows
that that the principal stress σI is:

σI = τmax (3.91)

Recalling that the assumed shear stress distribution is a second order parabolic function,
the shear force is given by:

V = 2
3τmaxbc1 (3.92)

where b is the beam width and c1 the depth of the flexural crack tip (Figure 3.30(b)).
The principal stress is thus:

σI = 3
2
V

bc1
(3.93)

Comparing the values of σI and the number of cycles to diagonal crack formation Ndiag

of 72 tests from 9 different experimental campaigns, Gallego et al. [Gal14a] proposed
the following equation:
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logNdiag = A(1−R)B
(
σI,max
f∗ct,fl

)C
(3.94)

f∗ct,fl = fct,C−T

(
1.6− h

1000

)
≥ fct,C−T h in [mm] (3.95)

fct,C−T = fct

(
1− σII

fc

)
(3.96)

where fct is the concrete tensile strength, f∗ct,fl [EC2-1] incorporates the size effect in
the normalization of the flexural concrete tensile strength, fct,C−T [Kup69] refers to the
influence of the biaxial stress state at the tip of the flexural crack, R is the ratio between
minimum and maximum applied stresses, and A = 3.01, B = −0.08 and C = −0.99 are
constants fitted with the least squares method.
After the sudden development of the diagonal crack, the fatigue loading will contribute
to the crack propagation, that will diminish the available compression depth. Failure
finally occurs when the required depth of the compression zone to resist the applying
bending moment equals the available compression zone depth, refer to Figure 3.31. The
decrease in the available compression zone depth is the result of the fatigue damage of
the concrete compression zone. The residual compressive strength of a concrete specimen
subjected to a fatigue process of constant stress limits fc,N is given by [Hsu81]:

fc,N = fc[1− 0.0662(1− 0.556R) logN − 0.0294 log T ] N > 1000 (3.97)

fc,N = fc[1.2− 0.2R− 0.133(1− 0.779R) logN − 0.053(1− 0.445R) log T ] N ≤ 1000
(3.98)

where fc is the concrete monotonic compressive strength and T is the load period.
According to the proposed sectional equilibrium of Figure 3.31 and assuming z = 0.9d,
the required compression zone depth is given by:

xN
d

=
1−

√
1− 1.6Mmax

0.68bd2fc,N

0.8 ≤ Asfy
0.68bdfc,N

(3.99)

where Mmax is the maximum applied bending moment, fy is the reinforcement yield
stress and As is the longitudinal reinforcement sectional area.
The evolution of the available compression zone depth is performed with a model based
on Jenq and Shah’s two parameter fracture model [Jen85] (Section 3.7.4).
Even though the diagonal crack propagation is a mixed-mode propagation problem due
to the interaction between shear and bending, it is assumed that the crack propagates
exclusively in mode I.
The geometry of the development of the diagonal crack is shown in Figure 3.32, inspired
from the work of Carpinteri et al. [Car11] for monotonic loaded beams. The diagonal
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3. Shear, punching shear and shear-fatigue modeling

Figure 3.31: Evolution of the available and required compression zone depth after
diagonal cracking, and proposed sectional equilibrium [Gal14a]

crack is assumed to be composed of a vertical part of height L0 and a second part starting
at the tip of the flexural crack and extending towards the load application point.

Figure 3.32: Geometry of the development of the diagonal crack [Gal14a]

The determination of the stress intensity factor KS
I at the shear crack tip can be per-

formed using the following equation (refer to Figure 3.33):

KS
I = KS

I,Mom + βKS
I,Steel (3.100)

where β is a factor dependent on the inclination angle of the diagonal crack.

Figure 3.33: Estimation of the stress intensity factor at the tip of the effective
diagonal crack [Gal14a]

The stress intensity factor due to the applied momentKS
I,Mom can be expressed as [Gal14a]:

KS
I,Mom = 6M

bh2
√
πaF

(
a

h

)
(3.101)

whereM is the applied moment, h is the beam height, a is the sectional projected height
of the shear crack and F

(
a
h

)
is a geometric factor that can be found in reference [Gal14a].

The stress intensity factor due to the closure effect of the steel reinforcement KS
I,Steel is
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given by:

KS
I,Steel = 2P

b
√
πa

G
(
c
a ,

a
h

)
(
1− a

h

)3/2
√

1−
(
c
a

)2 (3.102)

where P is the force in the steel reinforcement, c is the concrete cover and G
(
c
a ,

a
g

)
is a

geometric factor that can be found in reference [Gal14a].
The stress intensity factor due to the closure effect of the steel reinforcement is affected
by a factor β dependent on the inclination angle of the diagonal crack, that reduces the
closure effect of the reinforcement when the diagonal crack diminishes its inclination.
The following β expression has been proposed by Carpinteri et al. [Car11]:

β =
(
γ

90

)0.2
γ in degrees (3.103)

The study of the capabilities of the model has been performed by Gallego et al. [Gal14a]
on the beams tested by Chang and Kesler [Cha58a, Cha58b] and beam VA1 tested by
Zanuy [Zan08], adopting the Paris law proposed by Toumi et al. [Tou98]:

da
dN = C

(
∆KS

I

KS
Ic

)m
(3.104)

Fmax
Fu

= 4.58 lnC + 87.7 (3.105)

where parameter m was taken as 2.5 and Fu was calculated according to [EC2-1]. The
fracture toughness of concrete KS

Ic was assumed to be 1.52 MPa
√

m. As the Jenq and
Shah’s two parameter fracture model [Jen85] (Section 3.7.4) is used, the stress intensity
factor variation and the concrete toughness to apply the Paris law are those referred to
the tip of the effective diagonal crack.
The study of the propagation of the diagonal crack can be performed through a step-
by-step analysis with a predetermined number of cycles.
The evolution of the maximum applied stress intensity factor at the tip of the effective
diagonal crack with the crack length is schematically plotted in Figure 3.34.

Figure 3.34: Evolution of the maximum applied stress intensity factor at the tip
of the effective diagonal crack with the crack height [Gal14a]

Failure due to shear-compression fatigue occurs when the required compression zone
depth to resist the applied bending moment equals the available compression zone depth,
refer to Figure 3.35(a). However, if after diagonal cracking the stress intensity factor at
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the effective diagonal crack tip reaches the fracture toughness of concrete, an unstable
crack propagation occurs and a diagonal shear-fatigue failure is produced, refer to Figure
3.35(b).

Figure 3.35: Scheme of the process of shear-fatigue failures [Gal14a]: (a) shear-
compression; and (b) diagonal-cracking
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Chapter 4

Static Experimental Campaign

4.1 Introduction

This chapter describes the main aspects and results of one experimental static campaign
on cantilever slabs under concentrated loads near linear supports, carried out within the
framework of this thesis.
The campaign comprises twelve static tests on six full scale slabs (3.00 m x 3.00 m x
0.18 m), corresponding to three different loading locations, three types of longitudinal
ducts and a slab type with no ducts.
Detailed test results are available in a specific test report. A summary of the main
aspects and results of this test campaign can be found in reference [Nat14a].

4.2 Campaign

Prestressed concrete cantilever bridges usually have longitudinal ducts with prestressing
cables in the deck slab, as it is the top flange of a concrete box girder. In addition to the
previously discussed influences (Section 2.6) of boundary conditions and load location,
another significant aspect influencing the design of deck slabs is the presence of ducts
(injected or not) in the slab. The incorporation of ducts is not only limited to the classic
case of balanced cantilever bridges, as nowadays water and heating pipes are commonly
inserted in reinforced concrete flat slabs.

4.2.1 Specimens

Twelve tests were performed on six full scale slabs (3.00 m x 3.00 m x 0.18 m) with
a central line support. Four parameters were varied, namely the concentrated load
location, the material, the diameter and the filling of the longitudinal ducts. The slab
geometry (Figure 4.1(b)) was adapted from an existing viaduct built in Switzerland in
the late 60′s [Pig71] (Figure 4.1(a)). The slab’s central region over the support was
thicker in order to reproduce gussets near bridge webs.
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Figure 4.1: Tested slabs: (a) investigated region; and (b) geometry (dimensions
in [mm])

The geometry and reinforcement layout was the same for all slabs. Also concrete prop-
erties were kept as constant as possible. The bending top reinforcement in transverse
x-direction (perpendicular to the support) consisted of 16 mm diameter bars spaced 100
mm with a nominal effective depth dxt = 152 mm (reinforcement ratio ρ = 1.32%), and
the bottom one 14 mm diameter bars spaced 125 mm with a nominal effective depth
dxb = 153 mm. In the longitudinal direction, the top reinforcement consisted of 12 mm
diameter bars spaced 125 mm (dyt = 138 mm) and the bottom one 10 mm diameter
bars spaced 300 mm, as well as 12 mm diameter bars spaced 300 mm (dyb = 140 mm),
refer to Figure 4.2. Three tests have been performed on slabs without ducts (side A),
three on slabs with empty ducts (side C), three on slabs with injected steel ducts (side
D) and three on injected polypropylene ducts (side B) (refer to Table 4.1).
The case with empty steel ducts was investigated in order to simulate a deficient in-
jection, unbonded prestressing or the presence of pipes in a building slab. The duct
diameter (φduct) was 63 and 72 mm (refer to Table 4.1), which represents 41% and 47%
respectively of the nominal effective flexural depth (d = dxt). All specimens presented
a duct located at d (its center) from the gusset edge. The spacing between axes of
ducts was equal to 167 mm (≈ d) thereafter. For the injected ducts, 7 prestressing ten-
dons (0.6”) were arranged, but no longitudinal prestressing force was applied to allow
comparisons with the reference specimen without ducts.

Concrete Injection Mortar
Slab Side Test av av/d Ducts φduct Age fc Ec Age fm

[mm] [mm] [days] [MPa] [MPa] [days] [MPa]
SN1 A SN1A 304 2 no ducts 250 30.3 27’500
SN2 A SN2A 456 3 no ducts 220 30.1 27’400
SN3 A SN3A 608 4 no ducts 286 30.4 27’600
SN1 B SN1B 304 2 injected, polypropylene 63 81 28.3 26’600 62 50.3
SN2 B SN2B 456 3 injected, polypropylene 63 150 29.5 27’100 131 67.1
SN3 B SN3B 608 4 injected, polypropylene 63 164 29.7 27’200 145 67.8
SN4 D SN4D 304 2 injected, steel 72 270 28.8 26’900 249 53.6
SN5 D SN5D 456 3 injected, steel 72 234 28.7 26’700 213 48.8
SN6 D SN6D 608 4 injected, steel 72 291 28.9 27’000 270 54.2
SN4 C SN4C 304 2 non-injected, steel 72 182 28.4 26’200
SN5 C SN5C 456 3 non-injected, steel 72 199 28.5 26’400
SN6 C SN6C 608 4 non-injected, steel 72 171 28.3 26’100

Table 4.1: Properties of test specimens
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Figure 4.2: Reinforcement layout (dimensions in [mm])

4.2.2 Material properties

Normal strength concrete was used in all slabs. Table 4.1 presents the compressive
strength and modulus of elasticity (measured on concrete cylinders, 320 mm high, 160
mm diameter), as well as the concrete age at the time of slab testing, calculated from
evolution curves of the concrete strength and modulus of elasticity with time (14 concrete
strength tests performed from 14 to 300 days and 9 modulus of elasticity tests from 28
to 200 days). The compressive strength ranged from 28.3 MPa to 30.4 MPa and the
modulus of elasticity from 26′100 MPa to 27′500 MPa. One cubic meter of concrete was
made of 887 kg of sand, 98 kg of gravel ranging from 4 to 8 mm, 405 kg of gravel ranging
from 8 to 16 mm, 681 kg of gravel ranging from 16 to 32 mm, 300 kg of Portland cement
and 129 kg of water. The maximum aggregate size dg was 32 mm for all specimens.
The average compressive strength of the injection mortar is also presented in Table
4.1, obtained from 4 compression tests performed the day the specimen was tested and
according to EN196-1 [EN196-1]. The measured compressive strength at the age of
testing varied between 48.8 and 67.8 MPa.

The average reinforcement mechanical properties of 3 tests per diameter are presented in
Table 4.2 and the stress-strain relationships in Figure 4.3 (quenched and self-tempered
steel for 16 mm-diameter bars and cold-worked steel for the others).
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φrebar [mm] fy [MPa]* fu [MPa] Type
16 547 601 quenched and self-tempered
14 550 602 cold-worked
12 548 604 cold-worked
10 570 640 cold-worked

* Offset yield-point at 0.2% strain for cold-worked rebar

Table 4.2: Mechanical properties of the reinforcement
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Figure 4.3: Measured stress-strain relationships of reinforcement bars

4.2.3 Test setup

The test setup is shown in Figure 4.4. The specimen was supported on the bottom of
its gusset by means of a 80 mm high I-shaped aluminium profile. On each side of the
profile web, 30 strain gauges were glued with a 100 mm spacing to record the vertical
strains, as shown in Figures 4.4(c,d).
At the interface between the aluminium profile and the tested slab there was a thin layer
of plaster of about 3 mm, in order to get leveled surfaces. The loads were introduced by
means of two hydraulic jacks supported on a steel frame connected to the strong floor
of the laboratory. The loading area had the dimensions of 400 mm × 400 mm in-plane
and load was applied through a 10 mm thick neoprene pad. Each load was introduced
in this area by means of four 200 mm × 200 mm × 40 mm steel plates, loaded in their
turn by a 280 mm × 280 mm × 40 mm steel plate. Between top and bottom plates
steel spheres (30 mm diameter) were placed at the center of the bottom plates (Figure
4.4(b)). This device was designed in order to distribute the load as uniformly as possible
over the square contact area and is consistent to the load model of EN1991-2 for road
bridges [EC1-2].
Two HEB120 steel profiles linked to the loading frame and connected to the gusset over
the support by means of two embedded rods (embedment length of 350 mm) prevented
the horizontal displacement of the specimens (Figure 4.5). The rods had a 400 mm
spacing between them.
Three different loading locations were investigated, corresponding to a clear distance
from the end of the gusset (av) of 2d, 3d and 4d, where d(= dxt) is the flexural effective
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Figure 4.4: Test setup (dimensions in [mm]): (a) view; (b) loading plates; (c)
cross-section; and (d) 3-d view of aluminium profile

Figure 4.5: Test setup picture
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depth of the slab (Figure 4.1(b)).
After failure was achieved on one side of the slab, that side was strengthened using steel
external profiles and plates bolted on top and bottom faces, by means of prestressed
bars. After strengthening, the slab was reloaded leading to a second failure on the other
side (Figure 4.6).

Figure 4.6: Slab repair

4.3 Test results

The main results of the test campaign are shown in the following sections.

4.3.1 Load-displacement

Figure 4.7 plots the load-deflection curves for all tests, where the deflection δ was mea-
sured at the center of the loading plates. For all cases, except for the slabs with non-
injected steel ducts, once the maximum load was attained, the slabs presented a softening
behavior, with a significant decrease of the applied load for increasing displacements.
For the slabs with non-injected ducts, the load reached a plateau and the displacements
could be significantly increased for a fairly constant applied load.

4.3.2 Crack patterns

The crack patterns as well as the saw-cuts at the center of all slabs are presented in
Figures 4.8 and 4.9. All slabs presented a crack pattern on the top surface that developed
parallel to the linear support in the central region. On the bottom surface, cracking
was however mostly perpendicular to the line support and concentrated in the loading
area. The observed failure crack in the central section of the saw-cuts of slabs without
ducts or with injected ducts was similar to typical shear cracks of beams without shear
reinforcement. For large shear spans (av/d = 3 and 4), the shear crack developed almost
horizontally in the compression zone (slab soffit) near the gusset edge. For these cases,
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Figure 4.7: Load-deflection curves (at the center of the loading plates)
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the shear crack intercepted the top transverse reinforcement with a steep angle at a
distance approximately equal to d from the loading plate edge. Cover spalling in this
region was due to dowel action of the main reinforcement. For shorter shear spans
(av/d = 2), the shear crack was steeper and more straight on average, and intercepted
the upper main reinforcement near the loading plate edge. For slabs with empty ducts,
the failure cracking pattern was different and developed horizontally along the bottom
and the top reinforcements.

Figure 4.8: Crack patterns after failure: top and bottom faces
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Figure 4.9: Crack patterns after failure: central cuts

4.3.3 Strength

Table 4.3 presents the maximum loads for all tests. No significant differences were
observed between the strength of slabs with injected ducts and those without ducts. On
the contrary, the strength of slabs with empty ducts was in average 26% smaller than
those of reference slabs without ducts. A comparison between the strengths of all tests
is shown in Figure 4.10, normalized by the square-root of fc and the square of d. The
results show that the normalized shear strength reduces for larger values of the av/d ratio
despite the fact that the unitary shear force should be larger for lower values of the ratio
av/d (refer to Figure 2.17). This result is interesting as it denotes a significant influence
of the arching action (refer to the relatively large strength of tests with av/d = 2) but
also a potential influence of the bending moments on the shear strength. This latter
influence can further be observed by comparing the results of av/d = 3 and 4 (both with
limited arching action).

4.3.4 Thickness variation

The thickness increase of slabs (which is related to the vertical opening of the inclined
shear crack, refer to Figure 4.11) was recorded during the tests. The maximum measured
thickness increases for all tests at maximum load Vmax are presented in Figure 4.12.
Figure 4.13 shows the interpolated records for one representative test (using a cubic
function for this purpose). Significant thickness increases were observed before the
maximum load was reached (with values up to 8 mm). It can also be noted that the
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Test av/d Ducts Vmax [kN] Vmax/(d2√fc) ratio to reference test*
SN1A 2 no ducts 489 3.85
SN2A 3 no ducts 330 2.60
SN3A 4 no ducts 328 2.57
SN1B 2 injected, polypropylene 437 3.56 0.92
SN2B 3 injected, polypropylene 341 2.72 1.04
SN3B 4 injected, polypropylene 330 2.62 1.02
SN4D 2 injected, steel 494 3.98 1.03
SN5D 3 injected, steel 335 2.71 1.04
SN6D 4 injected, steel 327 2.63 1.02
SN4C 2 non-injected, steel 307 2.49 0.65
SN5C 3 non-injected, steel 266 2.16 0.83
SN6C 4 non-injected, steel 234 1.90 0.74

* ratio between the normalized load of the specimen (Vmax/(d2
√

fc)) and the one corresponding
to the reference specimen with same load location

Table 4.3: Maximum loads for all tests
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Figure 4.10: Maximum loads for all tests
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thickness increase was almost negligible up to about 60% of the maximum load, growing
at an increasing rate thereafter (Figure 4.13(e)).

Figure 4.11: Measurement of thickness increase related to critical shear crack
opening
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Figure 4.12: Maximum measured thickness increase at Vmax

Figure 4.14 presents the interpolated values of thickness variation at the moment of
maximum applied load Vmax for all tests.

4.3.5 Line reaction

The reaction along the line support could be calculated based on the average strain at
each of the 30 strain gauge locations of the I-shaped aluminium profile, assuming an
elastic behavior of the aluminium and considering a constant strain at the contributing
area of each gauge. Good agreement was found between the total measured reaction Rtot
and the total applied force Vtot, with relative errors at maximum load of less than 5%
for all tests, except SN6 (where it remained below 10%). Measurements on the reaction
along the support line were not performed for the second loading (after strengthening)
since the shear field in the strengthened zone is potentially influenced by the strength-
ening elements. The results for all tests are plotted in Figures 4.15 and 4.16. They show
clear and rather significant redistributions of the reactions. For low load levels, the re-
action concentrates mostly in the zone close to the load (refer to Figure 2.17). As the
level of applied load increased (particularly above 60% of the maximum applied load),
the reaction in the region close to the load increased at a slower rate and eventually
decreased transferring the load to the adjacent regions. The load levels at which this
phenomena was observed are consistent with those observed for the development of the
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Figure 4.13: Thickness variation in test SN3B (av = 4d) with injected plastic
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and (e) evolution of thickness increase with applied load
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inclined shear cracks previously presented. The region influenced by this softening be-
havior is also in accordance with the region where most significant variation of thickness
was observed (Figure 4.13).
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Figure 4.16: Normalized measured line reactions
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Chapter 5

Fatigue Experimental Campaign

5.1 Introduction

This chapter describes the main aspects and results of one experimental fatigue campaign
on cantilever slabs under concentrated loads near linear supports carried out within the
framework of this thesis.
The campaign comprises four static tests on two full scale slabs (3.00 m x 3.00 m x 0.25
m) and eleven other fatigue tests on eight slabs, corresponding to two different loading
locations.
Detailed test results are available in a specific test report. The summary of the main
aspects and results of this test campaign presented in this thesis can also be found in
references [Nat14b, Nat15a, Nat15b].

5.2 Campaign

To the author’s knowledge no fatigue tests are available in the literature on cantilever
slabs under concentrated loads, whose mechanical behaviour may significantly differ from
simply supported slabs (Section 2.10). In order to provide such experimental evidence,
an experimental programme has been performed within the framework of this thesis.
The specimens were full-scale slabs (3.00 m x 3.00 m x 0.25 m) with a central line
support and subjected to a single concentrated load on both sides of the support. Four
static tests were performed on two slabs (two tests per slab and load location) and eleven
fatigue tests on eight slabs (four slabs per load location).
Other topics as the influence of moving loads [Per88, Per89, Hwa10] or the influence of
impact loading on shear strength [Mic14] are not investigated within this thesis.

5.2.1 Specimens

Ten slabs (FN1-FN10) were tested. The slabs had 3.00 m x 3.00 m x 0.25 m dimensions
and contained only flexural reinforcement.
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The geometry and reinforcement layout were the same for all slabs (Figure 5.1). The
bending top reinforcement in the x-transverse direction (perpendicular to the support)
consisted of 20 mm diameter bars spaced 150 mm with a nominal effective depth dxt =
210 mm (nominal reinforcement ratio ρxt = 1.00 %), and the bottom one 16 mm diameter
bars spaced 150 mm with a nominal effective depth dxb = 212 mm (ρxb = 0.63 %). In the
longitudinal direction, the top reinforcement consisted of 12 mm diameter bars spaced
150 mm (dyt = 194 mm, ρyt = 0.39 %) and the bottom one 10 mm diameter bars spaced
150 mm (dyb = 199 mm, ρyb = 0.26 %), refer to Figure 5.1.

Figure 5.1: Geometry and reinforcement layout of tested slabs (dimensions in
[mm])

5.2.2 Material properties

Normal strength concrete was used in all slabs. Table 5.1 presents the compressive
strength and modulus of elasticity (measured on concrete cylinders, 320 mm high, 160
mm diameter), as well as the age of concrete at the time of slab testing. The compressive
strength ranged from 32.3 MPa to 46.6 MPa and the modulus of elasticity from 28′000
MPa to 35′000 MPa. One cubic meter of concrete had a nominal composition of 832 kg
of sand, 378 kg of gravel ranging between 4 to 8 mm, 681 kg of gravel ranging from 8 to
16 mm, 310 kg of Portland cement and 111 kg of water. The maximum aggregate size
dg was 16 mm for all specimens.
Conventional reinforcing bars were used in the specimens. The average reinforcement
mechanical properties of 3 tests per diameter are presented in Table 5.2 and the stress-
strain relationships in Figure 5.2.

5.2.3 Test setup

The test setup is shown in Figure 5.3. The test setup is similar to the one of the static
campaign (Section 4.2.3), just differing on the size of the loading frame and on the used
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slab side av type of age fc [MPa] Ec[MPa]
[mm] test (start-end) (start-end) (start-end)

FN1 W 440 static 129 45.2 33’000
FN1 E 440 static 186 46.6 34’000
FN2 W 440 fatigue 97-112 38.2-38.7 30’500
FN2 E 440 fatigue 97 38.2 30’500
FN3 W and E 440 fatigue 96-98 36.2 30’000
FN4 W 440 fatigue 102-110 38.4-38.6 30’500
FN4 E 440 fatigue 102 38.4 30’500
FN5 W and E 440 fatigue 34-63 32.3-34.8 28’000-29’500
FN6 W 680 static 144 45.7 33’000
FN6 E 680 static 178 46.5 34’000
FN7 W and E 680 fatigue 322 44.8 35’000
FN8 W 680 fatigue 298-325 43.5-43.7 34’500
FN8 E 680 fatigue 298-476 43.5-44.6 34’500-35’000
FN9 W and E 680 fatigue 305-316 44.7 35’000
FN10 W and E 680 fatigue 328-396 43.7-44.2 34’500-35’000

Table 5.1: Properties of test specimens

slab φrebar[mm] fy[MPa]* fu[MPa] type
FN1, FN6, FN7, FN8, FN9, FN10 20 579 680 quenched & self-tempered

16 553 650 quenched & self-tempered
12 520 620 quenched & self-tempered
10 504 595 quenched & self-tempered

FN2, FN3, FN4, FN5 20 600 700 quenched & self-tempered
16 595 709 quenched & self-tempered
12 523 591 cold-worked
10 543 606 cold-worked

* Offset yield-point at 0.2% strain for cold-worked rebar

Table 5.2: Mechanical properties of the reinforcement
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Figure 5.2: Measured stress-strain relationships of reinforcement bars: (a) FN1,
FN6, FN7, FN8, FN9 and FN10; and (b) FN2, FN3, FN4 and FN5
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actuators.
Two different loading locations were investigated, corresponding to a clear distance from
the line support (av) of 440 mm and 680 mm (Figure 5.1) (2.1d and 3.2d respectively,
where d(= dxt) is the nominal effective depth of the slab).
After failure occurred on one side of the slab, that side was strengthened using steel
external profiles and plates bolted on top and bottom faces, by means of prestressed
bars (Figure 4.6). After strengthening, the test was continued, leading to a second
failure on the other side.

(a) (b)

Figure 5.3: Test setup (dimensions in [mm]): (a) side view; and (b) picture

5.2.4 Test procedure

Two slabs were tested quasi-statically in order to obtain the reference static strengths
(VRef ) for each load location. Each slab provided two reference tests (duplicated values).
The fatigue loading was done in a combined force-displacement control mode. The forces
of the two actuators were controlled taking partially advantage of test setup symmetric
conditions. The average force of both jacks was kept constant and both forces corrected
to keep the relative displacement between them lower than 10 mm. Differences between
maximum applied forces on both sides were lower than 1% for five tested slabs (FN3
and FN7-FN10), between 2-3% for two other slabs (FN2 and FN4), and 3.1% for the
remaining one (FN5).
The target ratio R between the minimum (Vmin) and the maximum (Vmax) applied forces
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was 0.10, and the actual values varied between 0.09 - 0.12, refer to Table 5.3. These
values are reasonable as in actual bridge deck slabs the ratio R of the traffic load is 0.0,
yet dead load is also acting. A qualitative representation of the fatigue loading history
is given in Figure 5.4.
For each load location four different levels (LL) of maximum applied load were used.
The maximum applied load was corrected in order to account for small differences of
concrete compressive strength between fatigue and reference tests, as follows:

Vmax = LL · VRef

√
fc

fc,Ref
(5.1)

where VRef is the average static strength of the two reference tests, fc is the concrete
compressive strength at the day when testing started and fc,Ref is the average concrete
strength of the two reference tests. For the free shear span av = 680 mm, the target
loading levels LL were 60, 70, 80 and 90%, and for av = 440 mm 80, 85, 90 and 95%.
The sinusoidal fatigue loading was applied with a loading frequency of 1 Hz, and for
some specimens with 0.75 Hz and 0.5 Hz close to failure (FN9 and FN10, due to the
required hydraulic debit of the actuators (related to the large displacements experienced
by the slabs)).

Figure 5.4: Qualitative fatigue loading history

5.2.5 Measurements

Continuous measurements were performed during the fatigue tests, namely the applied
forces and the displacements measured by the actuators, thickness variation (up to fifteen
points around each loading plate), the strains of selected rebars at some locations using
strain gauges, and crack openings (up to ten locations) after the first loading cycle. In
addition, measurements were taken in quasi-static tests at selected loading cycles (refer
to Figure 5.4), namely the aluminium profile strains (distribution of reaction forces) and
the vertical displacements (up to fourteen points).
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5.3 Test results

5.3.1 Static reference tests

The quasi-statically tested slabs (reference specimens) failed in shear, in a similar manner
as the tests of the static campaign (Chapter 4). Table 5.3 presents the maximum loads
for all static tests. For both loading locations, once the maximum load was attained,
the slabs presented a softening behavior, with a significant decrease of the applied load
for increasing displacements (Figures 5.5(a,c)).
The crack patterns on the top surfaces developed parallel to the linear support in the
central region, while on the bottom surface, cracking was mostly perpendicular to the
support line and concentrated near the loading area, refer to Figures 5.5(b,d). The
observed failure crack in the central section of the saw-cuts (refer to Figures 5.5(a,c))
was similar to shear cracking of beams (or one-way slab strips loaded over the full width)
without shear reinforcement. For the largest shear span, the shear crack developed
almost horizontally in the compression zone (slab soffit) near the support edge. In this
case, the shear crack intercepted the top transverse reinforcement with a steep angle and
at a distance approximately equal to d from the loading plate edge. The concrete cover
spalled in this region due to dowel action of the main reinforcement. For the shorter shear
span, the shear crack was steeper and straighter on average, also intercepting the upper
main reinforcement at a distance approximately equal to d from the loading plate edge.
The critical shear crack of both slabs seems to develop from a flexural crack at a certain
distance from the loading plate (and not from the tip of the loading plate). Additionally
it exhibits a horizontal branch close to the load due to dowel action, allowing to classify
these failures as typical shear failures and not as punching failures around the load.
The reaction along the support line could be estimated (refer to Figures 5.6(a,b)) based
on the strain at each of the thirty locations of strain gauges of the I-shaped aluminium
profile. As previously observed in the static campaign (Section 4.3.5), close to failure the
reaction in the central region increased at a lower rate or even decreased transferring the
load to the adjacent regions. The level of load at which this phenomenon was observed
is consistent with those observed for the development of the inclined shear crack, whose
vertical opening is related with the increase of thickness of the slabs recorded during
the tests, refer to Figure 5.7 for a representative case. The figure also shows that the
reaction tends to concentrate in the middle part of the support line as the applied force
at the concentrated load increases (associated to the uplift of the extremities).

5.3.2 Fatigue tests

All slabs except FN5 (av = 440 mm; target LL = 80%), FN9 (av = 680 mm; target
LL = 70%) and FN10 (av = 680 mm; target LL = 60%) failed in shear-fatigue without
rebar fractures. Table 5.3 presents the main results of the test campaign. Figure 5.8
depicts the Wöhler diagrams for each loading location normalized by the average failure
loads of the static reference tests. The ratio between the maximum applied loads (fatigue
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Figure 5.7: Thickness variation in slab FN6 (av = 680 mm) side E: (a) measuring
points; and (b-d) interpolated surfaces of thickness increases (in [mm])

slab side av type Vmax Vmin R actual cycles measured measured FM***
[mm] [kN] [kN] LL [%] N dxt[mm]* dyb[mm]**

FN1 W 440 static 591 - - - 1 203 201 S
FN1 E 440 static 597 - - - 1 203 201 S
FN2 W 440 fatigue 520 53 0.10 96 1’350 212 209 S
FN2 E 440 fatigue 506 54 0.11 93 990 212 209 S
FN3 W 440 fatigue 473 48 0.10 90 72’340 214 203 S
FN3 E 440 fatigue 472 48 0.10 90 72’340 214 203 S
FN4 W 440 fatigue 467 47 0.10 86 17’300 208 209 S
FN4 E 440 fatigue 456 49 0.11 84 15’560 208 209 S
FN5 W 440 fatigue 394 36 0.09 79 501’810 210 209 RF
FN5 E 440 fatigue 382 44 0.12 77 501’810 210 209 RFFS
FN6 W 680 static 474 - - - 1 190 201 S
FN6 E 680 static 499 - - - 1 190 201 S
FN7 W 680 fatigue 427 46 0.11 89 824 197 201 S
FN7 E 680 fatigue 427 46 0.11 89 824 197 201 S
FN8 W 680 fatigue 378 42 0.11 80 5’007 210 201 S
FN8 E 680 fatigue 376 42 0.11 80 5’193 210 201 S
FN9 W 680 fatigue 333 35 0.11 70 311’200 200 201 RF
FN9 E 680 fatigue 334 38 0.11 70 311’200 200 201 RFFS
FN10 W 680 fatigue 281 30 0.11 59 734’760 199 199 RFFS
FN10 E 680 fatigue 282 30 0.11 60 734’760 199 199 RFFS

* average value measured in the middle region of the center transversal saw-cut
** average value measured in the region under the loading plates in the center transversal saw-cut
*** FM - failure mode; S - shear; RF - rebar fracture; RFFS - rebar fracture followed by shear

Table 5.3: Main properties of tested specimens
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strength) and the static shear strengths are normalized with the square-root of the
concrete compressive strength (

√
fc,Ref/fc,fat).
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Figure 5.8: Wöhler diagrams of tested slabs: (a) av = 440 mm; and (b) av = 680
mm

The slabs that failed in shear-fatigue presented similar crack patterns to the static refer-
ence specimens (Figures 5.9 and 5.10). The slabs which exhibited rebar fractures even-
tually failed in shear as well (except FN9-W), due to excessive flexural crack openings
that propagated into critical shear cracks. This failure mode is similar to the shear fail-
ure observed after yielding of longitudinal reinforcement described in reference [Vaz10].
Tests with a free shear span av = 680 mm that failed with rebar fractures presented
eight transversal 20 mm rebar fractures located at the top surface in the center line,
as well as some 10 mm longitudinal rebar fractures on the bottom surface, developing
a full flexural mechanism, refer to Figure 5.11. The 10 mm bars were located at the
transversal section that passes through the middle of the loading plates, between the
load and the free edge.
The test with free shear span av = 440 mm which presented rebar fractures is somewhat
different from previous cases. Three 20 mm rebars failed between the center line and one
loading plate, at the intersection between the critical shear crack that developed from a
flexural crack and the main flexural reinforcement, not developing a flexural mechanism.
Dowel action might have generated additional stresses in the rebars due to local bending.
This might have potentially contributed to an increase of the fatigue damage of the bars
in this region.
All bars failing under fatigue loading were extracted from the tested specimens after
failure to confirm the fatigue failures, refer to Figure 5.12.
Determining the cycle when the first 20 mm rebar failure took place was performed
through cross-interpretation of the strain evolution measured in strain gauges placed at
the center of some selected 20 mm rebars and the evolution of crack openings (devices
to track crack opening evolution were placed at selected cracks after the first loading
cycle), refer to Figure 5.13 for two representative cases. When a top transversal 20 mm
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Figure 5.9: Crack patterns: top and bottom faces
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Figure 5.10: Crack patterns: central saw-cuts
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Figure 5.11: Crack patterns and location of rebar fractures

Figure 5.12: Failed rebars due to fatigue
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diameter rebar failed, the measured strain in the failed rebar diminished abruptly and
the strain measurement in adjacent bars increased noticeably. This phenomenon could
also be tracked by devices which measured crack openings in the vicinity of the failed
bar, as a rebar failure contributes to larger crack openings. The determination of the
cycle when the 10 mm bars failed was not possible. All slabs that failed due to rebar
fractures presented a remaining life after the first 20 mm rebar fracture occurred. The
slabs FN9 and FN10 (av = 680 mm) that developed a full flexural mechanism exhibited
a significant one, 24.5% and 46.9% of the total endurance in this regime respectively,
while FN5 (av = 440 mm) whose bars failed due to dowel action only had an additional
8.3% of the endurance in this state. It is relevant to note that the number of cycles until
the first 20 mm rebar fracture for FN5 was approximately twice the number of FN9.
The fatigue loading led to progressive stiffness reductions for all tests. This phenomenon
could be observed in the load-deflection evolution curves, refer to Figures 5.14 and 5.15
for a representative case.
The linear reaction also varied with the fatigue loading. Close to failure, for both test
types failing with or without rebar fractures, load transfer from the central region to
the adjacent ones was observed, refer to Figure 5.16 and Figures 5.17 and 5.18 for
representative cases of both types. This is consistent with the observed results for quasi-
static (reference) specimens near failure and confirms the capacity of these members to
redistribute internal forces near failure.
The slab thickness increase of some tests failing in shear-fatigue without rebar fractures
is shown in Figures 5.19 and 5.20. It is interesting to note that important thickness
variations of more than 3 mm occurred many cycles before failure in the region between
the loading plate and the support. At failure these values can be larger than 10 mm,
what explains the important line reaction redistributions previously discussed.
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Figure 5.19: Thickness variation in slab FN2-E (av = 440 mm): (a) measuring
points; and (b-d) interpolated surfaces of thickness increases (in [mm])
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Figure 5.20: Thickness variation in slab FN7-E (av = 680 mm): (a) measuring
points; and (b-d) interpolated surfaces of thickness increases (in [mm])
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Chapter 6

Shear and punching shear
assessment

6.1 Introduction

The present chapter presents several proposals on how to apply the Critical Shear Crack
Theory (CSCT) for both shear and punching shear on slabs under concentrated loads
near linear supports. With the aim of keeping the proposals at a complexity level
comparable to Level III of fib-Model Code 2010 [MC2010], the following points are
discussed within this chapter:

— Which assumptions can be made in order to use linear elastic finite elements to
model reinforced concrete slabs, known by their highly nonlinear behavior;

— How to account for internal forces redistributions due to bending and shear crack-
ing;

— Where to locate the control sections;
— How to account for arching action;
— How to account for empty ducts or pipes placed in the slab core.

The proposals presented in this chapter are assessed on their suitability by performing
comparisons with the experimental static tests of this thesis (Chapters 4 and 5) and
those found in the literature as presented in Section 2.7 and Section 2.8.
Membrane action (which is known to enhance shear strength [Ein15]) influence was not
considered in this thesis.

6.2 Cantilever slabs

In this section the shear assessment of cantilever slabs subjected to concentrated loads
near linear supports is investigated, based on the CSCT. As it was shown in Section 2.7,
shear is often the governing failure mode of these structures. However, punching shear
associated with the peak of shear force near the edge of the loading plate (Figure 2.17)
has been reported to be governing in some cases, typically those where the concentrated
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loads acts near the cantilever edge [Vaz07].
In comparison with classic punching failures, cantilever slabs under concentrated loads
are somewhat different. Figure 6.1 shows the transverse bending moment and shear
diagrams in the central section of the statically tested slabs of Chapter 4. In the bridge’s
longitudinal direction there are positive moments in the concentrated load region, which
means that the bottom longitudinal reinforcement is in tension. On the contrary, in the
transversal direction, the acting bending moment in the loading plate edge is negative
for most of the possible loading configurations, which means that the bottom transversal
reinforcement is in compression and the top one is in tension. As a consequence, the
shape of the critical shear cracks seems to develop from a flexural crack at the top of
the slab, refer to Figure 6.1 and Section 4.3.2.
Slab DR1-a tested by Vaz Rodrigues et al. [Vaz08] (Section 2.7 and Figure 2.23) under
four concentrated loads exhibited a detachment of the region around the two farthest
loads from the linear support, refer to Figure 6.2. This aspect may lead to the idea
that it was a punching failure. However, as it has been previously noticed, in the
transversal direction the shear surface seems to develop from a flexural crack associated
with negative bending moments. As discussed by Latte [Lat10], if the failure region
is not situated between the linear support and the closest loading plates (like in most
existing tests), it might be due to the fact that the transversal top reinforcement in
the clamped region is twice the one between the closest and farthest loads. However,
a second shear crack was also developing between the linear support and the closest
loading plates, indicating that failure in this region was imminent.
Real bridge cantilever deck slabs are subjected to important uniform dead loads (besides
the self-weight) and linear loads at the cantilever tip, which contribute to even more
important transversal negative bending moments, compared with the experimental tests
of this thesis and others presented in Section 2.7. Punching shear failures are thus
unlikely to occur in cantilever slabs subjected to concentrated loads, and therefore they
are not investigated hereafter.

6.2.1 Finite element modeling

Finite element (FE) modeling is a widely spread tool nowadays. Isotropic linear elastic
FE analyses (LEFE) are commonly used by engineers to model reinforced concrete struc-
tures like bridge deck slabs. Shell finite elements with or without shear deformation are
used to model these structures. However, reinforced concrete is highly nonlinear. Non-
linear FE analyses can be performed, but they require larger computation times. Their
complexity can vary enormously, depending on the base assumptions. Commercial soft-
wares normally require an important number of parameters which are often difficult to
be estimated by engineers. Moreover these softwares are sometimes highly sensitive to
some of these parameters.
LEFE analyses offer the advantages of short calculation times and limited number of in-
put parameters. However, in order to account for the slab behavior after flexural cracking
and the fact that tensile forces are resisted by an orthogonal layout of reinforcement bars
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Figure 6.1: Central saw-cuts of SN series and corresponding shear and bending
moment diagrams
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Figure 6.2: Central saw-cut of slab DR1-a tested by Vaz Rodrigues et al. [Vaz08]

that does not correspond to the principal directions of bending moments, an appropriate
selection of Poisson’s ratio ν and shear modulus G has to be done.

Figure 6.3 shows the comparison between the measured line reactions of the static tests
performed in the framework of this thesis (Chapters 4 and 5) and the ones obtained
with certain LEFE analyses. Shell finite elements with shear deformation were used
(SHELL43 elements of ANSYS rAcademic Research [ANSYS] software). The supports
were modeled as linear elastic compression-only supports (axial stiffness of profile’s web),
refer to Figure 6.4. Four hypothesis were tested:

—
(
ν = 0.2;G = E

2(1+ν)

)
, where ν is Poisson’s coefficient of concrete, E is the Young’s

modulus of concrete and G is the shear modulus;
—

(
ν = 0.2;G = 1

8
E

2(1+ν)

)
;

—
(
ν = 0;G = E

2(1+ν) = E
2

)
;

—
(
ν = 0;G = 1

8
E

2(1+ν) = E
16

)
.

The use of ν = 0 is pertinent for cracked concrete. However, slabs always present
compression zones where concrete is not cracked. In order to design these structures
Rombach [Rom04] proposes the use of any value between ν = 0.0−0.2, provided that at
least 20% of the main flexural reinforcement is adopted in the perpendicular direction.
The use of 1

8G in the slab plane to account for cracking in the torsional stiffness had
already been proposed by Vaz Rodrigues [Vaz07]. This reduction is justified by the fact
that the bending stiffness is more important in the directions of reinforcement bars,
compared to diagonal directions. For this assumption to be valid, the local axis of the
finite elements must coincide with the directions of the orthogonal reinforcement bars.

Adopting
(
ν = 0;G = E

16

)
seems to be the investigated approach that best-fits the mea-

sured line reactions at failure.

All the LEFE calculations at failure performed hereafter were done with shell finite
elements (SHELL43 elements of ANSYS rAcademic Research [ANSYS] software) with
shear deformation and

(
ν = 0;G = E

16

)
, which yields the following material constitutive

law for the used element:
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Figure 6.4: FE mesh used in SN and FN tests
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(6.1)

The concentrated loads were modeled as surface pressures and line loads as nodal loads.
Self-weight was neglected.

6.2.2 Control section and internal forces

For consistency with the CSCT principles (Section 3.2), the control section for checking
one-way shear in clamped slabs subjected to concentrated loads is located near the sup-
port, as the highest bending moments developing in this region increase crack openings
and reduce thus the shear strength, refer to Section 2.6 and Figure 2.17. In agreement
with the proposed control section for beams under point loads [Mut08a] the control sec-
tion is located at distance d/2 from the support (or the gusset edge in SN series). This
distance has nevertheless to be limited to av/2.
LEFE calculations based on the uncracked behavior of reinforced concrete show a signif-
icant reaction force concentration along the transversal x symmetry axis, refer to Figure
6.3. Nevertheless, as previously shown in Section 4.3.5, the I-shaped profile measure-
ments show that a significant redistribution of internal forces occurs at this region. This
phenomenon must be related to bending and shear cracking, as in SN series reinforce-
ment yielding has to be excluded.
In order to account for both bending and shear redistributions when using LEFE calcu-
lations based on the uncracked behavior of reinforced concrete, Natário el al. [Nat14a]
proposed the adoption in a simplified manner of the average shear force in a distance 4d
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(vavg,4d, refer to Figure 6.5) centered at the location of maximum shear and combined
with the bending moment at that location, which results in a simple approach for its
use in practice. This approach was validated for the SN series.

Figure 6.5: Definition of reduced shear force vavg,4d

Figure 6.6 shows for SN series the comparison between maximum shear forces at the
control section of a LEFE calculation based on the uncracked behavior of reinforced
concrete

(
ν = 0.2;G = E

2(1+ν)

)
, a LEFE calculation with

(
ν = 0;G = E

16

)
and a nonlin-

ear analysis (NLFE) considering the stiffness loss due to flexural cracking (given by a
quadrilinear moment-curvature relation in each direction [Sag11]). For the NLFE anal-
ysis, several linear elastic calculations are performed in an iterative procedure, updating
at each step the stiffness matrix of the elements. The shear modulus is taken as 1/8
of the calculated one, based on the updated stiffness of each direction, if the element
is cracked [Sag11]. The values presented for the NLFE calculations correspond to the
failure loads according to the approach presented in reference [Nat14a] combined with
the CSCT, but without consideration of arching action.
Comparing the LEFE

(
ν = 0.2;G = E

2(1+ν)

)
approach with the NLFE one, for free shear

spans av < 3.5d, vavg,4d seems to account for both shear and bending related redis-
tributions. However, for av > 3.5d, vavg,4d does not account for the total expected
redistributions due to flexural cracks.
The LEFE

(
ν = 0;G = E

16

)
approach seems to account for both shear and bending re-

lated redistributions when av > 1.5d, in comparison with the NLFE calculations. The
use of vavg,4d allows nevertheless to account for both shear and bending related redistri-
butions when av < 1.5d and to increase the importance of shear related redistributions
when 1.5d < av < 4d.
The redistributions due to the development of the inclined shear crack might be more
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Figure 6.6: Comparison between maximum shear forces at control section for SN
series (d/2 from the support)

intense than those due to bending cracks when the load is acting closer to the line
support, associated with larger shear forces and lower bending moments. The use of
vavg,4d seems to account for this aspect, as increasing values of free shear span av present
less important differences between the peak and averaged acting shear forces.

6.2.3 Arching action

Arching action (refer to Section 2.2 and Section 2.6) is accounted assuming that the
contribution of concentrated loads applied within a distance of d < av ≤ 2.75d from the
face of the support to the design shear force v may be reduced by the factor:

β = av/2.75d ≤ 1 (6.2)

The proposed factor β is based on tests on beams [Kan66] (refer to Figure 2.22), tests
on slab strips [Cul96], cantilevers subjected to distributed loads [Per12] and SN series.

6.2.4 Empty ducts

As it was discussed in Section 4.3.3, non-injected ducts reduce the shear strength when
compared with regular slabs (with or without injected ducts). One approach to account
for this strength reduction is to reduce the effective shear depth dv (the one in the left
part of Equation 3.5). The following expression:

dv = d−
√

2
2 d0 (6.3)

is proposed for round non-injected ducts horizontally spaced of d, where d0 is the duct
diameter. Of several expressions studied by the author, Equation 6.3 is the one in better
agreement with the experimental data. The proposal might be extended to square inserts
comprised in a d0 diameter circle, refer to Figure 6.7.
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Figure 6.7: Effective shear depth reduction proposal

6.2.5 Validation with SN series

The use of the CSCT with the previously presented proposals is shown in Figure 6.8. The
model is reasonably predicting the trend and measured shear strengths. The influence
of arching action is quite significant and it is in agreement to the experimental results.
Figure 6.8 also suggests that the decrease of the unitary shear force for an increasing
av/d ratio (Figure 2.17) is compensated by the decrease of the unitary shear strength due
to a diminishing arching action and the influence of the strain effect (increasing crack
openings for larger bending moments leading to a lower capacity of the shear cracks
to transfer shear). According to Figure 6.8 the model predicts that the minimum load
leading to failure is found at the distance where the arching action starts to develop.
However, in SN series, slabs with av/d = 4 ratios presented slightly lower failure loads
than tests with av/d = 3, but the reduced number of tests and their differences might
still be within normal laboratory scatter.
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2/2d0
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Figure 6.8: Comparison between tests of SN series and the CSCT combined with
previously presented proposals

6.2.6 Comparison to tests from the literature

The combined use of the CSCT with the previously presented proposals is performed in
this section for the tests presented in Section 2.7 and the static tests performed in this
thesis (Chapters 4 and 5).
Figure 6.9 presents the FE mesh used to model the tests of Vaz Rodrigues et al. [Vaz08].
The linear support was modeled with linear elastic compression-only supports (axial
stiffness of the supports) on the support block edges. The supports were not modeled at
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the block center to better reproduce the acting bending moments in the cantilever, which
are known to play a major role in the shear strength. The tensile support was modeled
with fixed supports. The tests of Rombach and Latte [Rom09] and those of Reissen and
Hegger [Rei13b] were modeled in the same way, except that the linear supports on the
opposite side of the tested cantilever were modelled with linear elastic supports, refer to
Figure 6.10.

Figure 6.9: FE mesh for Vaz Rodrigues et al. [Vaz08]

Figure 6.11 and Table 6.1 show the comparison between the experimental tests and the
proposed approach. In total 27 tests were considered, with 10 tests on haunched slabs
and 5 subjected to a linear load at the cantilever tip.
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Figure 6.10: FE mesh for Rombach and Latte [Rom09] and Reissen and Hegger
[Rei13b]
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The analysis of the results indicates that accounting for an hypothetical compression
chord contribution leads to some too large unsafe predictions (refer to tests DR2-c and
CS35B-2). Even though the compression chord contribution yields an overall average
closer to 1.00, its scatter is significantly larger than the one without this contribution.
The use of the CSCT with the previously presented proposals without a compression
chord contribution results in a more consistent approach, with a 1.07 Average and a
0.16 Coefficient of Variation. This fact is consistent with the available experimental
evidence on beams (Section 2.3), which does not show unequivocally that there is a
positive influence of a compression chord contribution to shear transferring in reinforced
concrete members without shear reinforcement.

With respect to the arching action, it might develop even for slightly larger free shear
spans av than 2.75d, refer to the strengths underestimations for av/d around 2.0 and
the estimations close to 1.0 for av/d ≥ 3 (Figure 6.11).

The role of significant line loads at the cantilever tip cannot be understood with the used
approach. The tests of Reissen and Hegger [Rei13b] show almost identical concentrated
loads at failure, whether or not an important line load of ql = 86.4 kN/m is acting.
Assuming that the used control section is correct, this fact is in contradiction with the
CSCT principles, because larger bending moments should imply lower shear strengths.
However, for the tests of Rombach and Latte [Rom09] the strength predictions (without
compression chord contribution) present a reduced dispersion. Based on these 8 tests it
is difficult to extract valid conclusions. More experimental evidence on this subject is
desirable.

The test DR1-a of Vaz Rodrigues et al. [Vaz08] was somewhat different from all other
tests, as it failed in the region between the closest and farthest loads to the support.
This fact is most probably due to a reduced reinforcement area in this region than at
the clamped support. Considering a control section located at 3 cm from the edge of
the farthest loading plates and not averaging the acting unitary shear force results in
a Vtest/Vcalc ratio of 1.18, not considering a compression chord contribution. The same
ratio at d/2 from the clamped support was slightly larger 1.27. The used approach
predicts that failure occurs between the support and the closest loading plates. Even
though this was not observed, failure at this region was imminent (refer to Figure 6.2)
and it might be within normal laboratory scatter.

6.3 Simply supported slabs

In this section the shear and punching shear assessment of simply supported slabs pre-
sented in Section 2.8 subjected to concentrated loads near linear supports is investigated,
based on the CSCT, and considering only the bending behavior of the slab (no membrane
action [Ein15]).
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6.3.1 Finite element modeling

The investigated slabs were modeled with the same proposals discussed in Section
6.2.1, i.e., with shell finite elements (SHELL43 elements of ANSYS rAcademic Re-
search [ANSYS] software, with shear deformation and ν = 0, G = E

16). Figure 6.12
shows the typical FE mesh used to model these tests. The supports were linear elastic
compression-only supports (axial stiffness of the supports) and the concentrated loads
were modeled as surface pressures. The load introduction zone was considered as a rigid
body in the tests performed by Damasceno [Dam07], to model the monolithic connection
between the slab and the column. Self-weight was neglected.

Figure 6.12: Typical FE mesh for simply supported slabs

6.3.2 Control section and internal forces for shear assessment

The proposals discussed in Section 6.2.2 for cantilever slabs are adapted to simply sup-
ported slabs. The first difference regards the control section location. As it was discussed
in Section 2.6 and to be consistent with the CSCT principles (Section 3.2) the governing
control section has to be located close to the concentrated load. The control section is
thus located at d/2 from the edge of the load, refer to Figure 6.13. To take into account
redistributions of internal forces, it is proposed to consider an average of the acting uni-
tary shear force vavg,4d+cy in a distance 4d + cy, centered at the location of maximum
applied unitary shear force, combined with the acting bending moment at that location,
refer to Figure 6.13. Arching action is taken into account according to what has been
discussed in Section 6.2.3.

6.3.3 Control section, internal forces and rotation calculation for punch-
ing shear assessment

The punching shear assessment is performed with the CSCT(ψx − ψy) method [Sag11],
refer to Section 3.5. The control perimeter is located at dv/2 from the concentrated
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6. Shear and punching shear assessment

Figure 6.13: Control section location and reduced shear force vavg,4d+cy definition
for simply supported slabs

load, where dv is the effective depth of the interface plane defined by points of contact
between the reinforcement layers on both directions.
The rotation calculations are performed according to an approach based on the fib-Model
Code [MC2010] method presented in reference [Tas11]. In each reinforcement direction
and control perimeter face i, a rotation can be calculated as:

ψi = 1.2rsi
di

fyi
Es

(
msi

mRi

) 3
2

(6.4)

msi = 1
bs

∫ bs/2

−bs/2
(|mi|+ |mij |) dj i⊥j (6.5)

where rsi is the distance between the center of the concentrated load and the point where
the applied bending moment in the the direction of the relevant reinforcement is zero,
di is the effective flexural depth in the relevant direction, fyi is the steel yielding stress,
Es is the Young’s modulus of steel, msi is the averaged applied bending moment at
the loading plate edge i within the width bs and mRi is the yielding moment (Equation
3.17), refer to Figures 6.14(a,d). The support strip width bs is the minimum calculated
value of:

bs = 1.5√rsirsj i⊥j (6.6)

Equation 6.4 is of the same type as Equation 3.20 presented by Muttoni [Mut08b] which
considers that the rotation depends on (V/Vflex)3/2. However, this last method is more
adequate to axis-symmetric punching. For non-axis-symmetric punching, it is desirable
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Simply supported slabs

to calculate different rotations in each direction, related to the different flexural stiffness
and rs values.
For each of the control perimeter sides, it is proposed to calculate a reduced control
perimeter given by the ratio between the maximum applied unitary shear force perpen-
dicular to the control perimeter and the total shear force going through that perimeter,
refer to Figure 6.14(b). For simplicity reasons, a control perimeter without rounded
edges is proposed. When the applied loads are elongated, the recommendation of the
fib-Model Code 2010 [MC2010] has been adopted, which considers that the punching
shear control perimeter has to be limited (maximum of 3dv per side), refer to Figure
6.14(c), and that shear has to be checked in the remaining control perimeter.
Adopting a similar formulation to fib-Model Code 2010 [MC2010] for punching shear,
Muttoni’s criteria [Mut08b] (Equation 3.19) allows the calculation of the unitary punch-
ing shear strength vR as:

vR = kψfcdv [MPa, mm] (6.7)

kψ = 1
4
3 + 0.625kdgψdv

≤ 0.6 dv[mm] (6.8)

kdg = 32
16 + dg

≥ 0.75 dg[mm] (6.9)

where dg is the maximum aggregate size and fc the concrete compressive strength.

6.3.4 Comparison to tests from the literature

Table 6.2 summarizes the main geometric and material properties of the simply sup-
ported slabs presented in Section 2.8. The comparison of these tests with the proposed
approaches based on the CSCT is given in Table 6.3 and shown in Figure 6.17. An
additional flexural assessment was performed assuming the yield line pattern of Figure
6.15, which allows the calculation of the bending strength Fflex and corresponding shear
force Vflex. For some tests, a punching shear assessment is not shown because a full
control perimeter around the load can not geometrically develop. For some other tests
of Damasceno [Dam07], a shear assessment is not given, because of the high unitary
shear force concentration in the corners of the elongated monolithic columns. The given
failures modes in Tables 6.2 et 6.3 were the ones reported by the authors, except for
those of Reissen and Hegger [Rei13a], whose modes were attributed by the author of
this thesis and in good agreement with the proposals of the database of Lantsoght et
al. [Lan14a]. Failures were interpreted as punching shear if there was a visible punching
cone on the bottom face of the slabs, but not visible on both side views, refer to Figure
6.16(b). Otherwise the failures were classified as shear (Figure 6.16(a)).
Considering all the tests where the concentrated load was not introduced with a mono-
lithic column (Figure 6.17), punching shear failures occurred for ratios cy/b ≤ 0.30. The
available data suggests that punching shear is the governing failure mode when cy/b→ 0.
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6. Shear and punching shear assessment

Figure 6.14: Definition of support strip widths, reduced control perimeters and
averaged bending moments for the punching shear assessment of simply supported
slabs: (a) definition of rsi distances; (b) definition of reduced control perimeters;
(c) definition of punching control perimeter for elongated loads; and (d) definition

of averaged acting bending moments at the edges of the concentrated load124



Simply supported slabs

Figure 6.15: Assumed yield line to calculate the bending strength Fflex and
corresponding shear force Vflex

Figure 6.16: Shear and punching shear failures of Reissen and Hegger
[Rei13a,Heg13]: (a) shear failure; and (b) punching shear failure
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6. Shear and punching shear assessment

The proposed approaches combined with the CSCT are able to predict the correct failure
mode of 74% the 62 tests used for this analysis. Knowing a priori the correct failure
mode, the proposed approach has an Average ratio Vtest/Vcalc of 1.12, with a Coefficient
of Variation of 0.11. Not knowing a priori the correct failure mode, the used approach
has a 1.15 Average with a Coefficient of Variation of 0.12 (Figure 6.18).
The tests of Regan and Rezai-Jorabi [Reg88] and of Reissen and Hegger [Rei13a] are
almost all predicted to fail in shear (refer to Figure 6.19). However, some tests of Fer-
reira [Ferr06] and Damasceno [Dam07] are predicted to fail in punching. It is interesting
to note that the tests for which there is no correct prediction of the failure mode are
relatively close to the border separating shear and punching shear failures (refer to Fig-
ure 6.19), which justifies the relatively similar Averages and Coefficients of Variation
obtained, knowing or not a priori the correct failure mode. These tests might also be
within normal laboratory scatter.
From the comparisons performed in this section, the use of the CSCT for both shear
and punching shear combined with the proposals of this thesis leads to a safe de-
sign/assessment. Simply supported slab bridges are expected to fail in punching shear
close to simply supported edges if the acting load (not monolithic) has a ratio cy/b ≈ 0.
Concentrated loads with cy/b ≈ 0 applied close to a inner linear support (with a certain
degree of clamping) may exhibit shear failures like the ones analysed in Section 6.2, if
negative moments occur at the edges of the loads.
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Figure 6.17: Comparison between experimental tests on simply supported slabs
under concentrated loads and the CSCT combined with proposals, knowing a priori

the correct failure mode

127



6. Shear and punching shear assessment

all
Avg=1.15
CoV=0.12

cy/b

V
te

s
t
/
V
C
S
C
T

shear
punching shear

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Reissen & Hegger

cy/b

V
te

s
t
/
V
C
S
C
T

Reissen & Hegger - shear
Reissen & Hegger - punching shear

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

all
Avg=1.15
CoV=0.12

cy/b

V
te

s
t
/
V
C
S
C
T

shear
punching shear

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Regan & Rezai-Jorabi

cy/b

V
te

s
t
/
V
C
S
C
T

Regan & Rezai-Jorabi - shear
Regan & Rezai-Jorabi - punching shear

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ferreira

cy/b

V
te

s
t
/
V
C
S
C
T

Ferreira - shear
Ferreira - punching shear

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

all
Avg=1.15
CoV=0.12

cy/b

V
te

s
t
/
V
C
S
C
T

shear
punching shear

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 6.18: Comparison between experimental tests on simply supported slabs
under concentrated loads and the CSCT combined with proposals, not knowing a

priori the correct failure mode
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Figure 6.19: Comparison between experimental tests on simply supported slabs
under concentrated loads and the CSCT combined with proposals, for both shear
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Simply supported slabs
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6. Shear and punching shear assessment
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Chapter 7

Shear-fatigue

7.1 Introduction

In this chapter a simpler and more practical model to analyse shear-fatigue failures than
the one presented by Gallego et al. [Gal14a] (Section 3.8) is proposed, grounded on the
same principles. This model is developed in combination with the Critical Shear Crack
Theory (CSCT) [Mut08a] (Section 3.2). The combined use of both approaches leads to
simple design expressions, whose comparison to available test results on beams shows
sound agreement for the various mechanical and geometrical parameters. Also, both the
S-N curves and Goodman diagrams for fatigue loading can be derived using an analytical
manner, showing consistent agreement to test data, improving current empirical design
formulas proposed by codes of practice [EC2-1, MC2010, SIA262:2013]. The model is
also compared with the fatigue tests performed in the framework of this thesis, refer to
Chapter 5.
The majority of this chapter’s content can also be found in reference [Fer15].

7.2 Existing design approaches for shear-fatigue design

First attempts of developing design approaches for shear-fatigue failures were early de-
veloped by Chang and Kesler [Cha58a, Cha58b], who proposed a curve statistically ob-
tained from their experimental tests in a semi-logarithmically S-N diagram (Vmax/Vstatic
vs logN , where Vmax is the maximum applied load, Vstatic is the static strength load and
N is the fatigue life). The proposal presented a threshold for a maximum applied load
of about 60% of the static failure load. In a discussion of the works of Chang and
Kesler, Taylor [Tay59] pointed out that the fatigue strength was not only influenced
by the maximum applied load, but also by the ratio between minimum and maximum
applied loads and the size of the members. These investigations were later followed
by the works of Higai [Hig78] and Farghaly [Far79] who proposed linear relationships
in a semi-logarithmically S-N diagram without fatigue limits. One of the best known
approaches was later established by Ueda [Ued82]. Ueda proposed a logarithmic S-N
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7. Shear-fatigue

formulation acknowledging the influence of the quasi-static (monotonic) shear strength
and the levels of shear loading:

logVmax
Vcu

= −0.036
(

1− Vmin
Vmax

∣∣∣∣ Vmin
Vmax

∣∣∣∣) logN (7.1)

where Vmin refers to the minimum applied shear force, Vmax to the maximum level of
shear force and Vcu to the quasi-static shear strength. This expression showed a rea-
sonable fitting to test results and is even applicable to reverse shear loading, although
comparisons to tests were not provided by the author in reference [Ued82]. The for-
mula was proposed without a consistent demonstration based on rational models, but a
physical discussion on the influencing parameters is available and its shape was derived
following logical considerations (its constants being fitted on the basis of tests).
Codes of practice like Eurocode 2 [EC2-1], the Swiss code [SIA262:2013] or fib-Model
Code 2010 [MC2010] present shear-fatigue provisions for reinforced concrete members
without shear reinforcement that are based on empirical Goodman diagrams or S-N
formulations.
Eurocode 2 [EC2-1] distinguishes two different loading regimes. If the minimum (VE,min)
and maximum (VE,max) applied shear forces have the same sign (no reverse loading), the
code proposes for normal strength concrete (up to C50/60) the following Goodman
diagram:

|VE,max|
|VR,c|

≤ 0.5 + 0.45 |VE,min|
|VR,c|

≤ 0.9 (7.2)

where VR,c is the static strength (Equation 3.10). If the maximum and minimum shear
forces do not have the same sign (reverse loading cases), Equation 7.2 is modified as
follows:

|VE,max|
|VR,c|

≤ 0.5− |VE,min|
|VR,c|

(7.3)

The Swiss code [SIA262:2013] proposes the same approach as Eurocode 2 [EC2-1]. How-
ever the static strength is calculated with a different formulation (Equation 3.12).
fib-Model Code 2010 [MC2010] presents the following S-N formulation:

logN ≤ 10
(

1− Vmax
VRef

)
(7.4)

where Vmax is the maximum applied shear force, VRef the static shear strength (Equation
3.6) and N the fatigue life. It can be noted that this formulation does not include any
consideration on the level of minimum applied shear force (which has nevertheless been
observed as a potentially significant parameter [Ued82] and is explicitly incorporated
by Eurocode 2 [EC2-1] and the Swiss code [SIA262:2013]). Equation 7.4 was already
included in the previous version of the Model Code, but with a different formulation for
the estimate of the static strength.
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Consistent design for shear-fatigue

Recently, a rational approach for shear-fatigue has been proposed by Gallego et al. [Gal14a]
(Section 3.8). The fatigue strength is obtained as a result of the breakdown of re-
sisting mechanisms due to the propagation of a shear crack. The model includes a
two-parameter Fracture Mechanics-based propagation law, in which the stress inten-
sity factor is evaluated at the tip of the effective shear crack. The model allows to
understand the mechanics of the shear-fatigue process, even though its application for
practical purposes is not straightforward.

7.3 Consistent design for shear-fatigue

In this section, a new formulation for the shear strength of members without shear
reinforcement subjected to fatigue loading is presented. This model is grounded on
the principles of Fracture Mechanics (FM) applied to quasi-brittle materials (Section
3.7) together with the Paris-Erdogan law for crack propagation (Section 3.7.5). The
analyses will be performed assuming also long-length cracks (as those characterizing
shear failures). The validity of this assumption for concrete members failing in shear
was previously investigated by Gallego et al. [Gal14a].
As it was discussed in Section 3.6.4, according to Linear Elastic Fracture Mechanics
(LEFM) the propagation of a crack with the load cycles (da/dN) depends on the am-
plitude of the stress intensity factor at the crack tip (∆K), refer to Equation 3.58.
For application to concrete, the Paris-Erdogan law has shown to provide suitable results
provided that it incorporates the size effect factor (refer to [Baz91], Section 3.7.5), which
can be consistently described by Equation 3.89, which can be rewritten as:

da
dN = C

(
∆σ
√

1 + β
)m

(7.5)

Assuming, as a first approximation, that factors β (related to size effect) and C (de-
pending on material and geometrical properties) are roughly constant (other assumptions
could be adopted but will not be investigated hereafter), it is obtained by integration:

a− a0 = C (1 + β)m/2 ∆σmN (7.6)

where failure occurs for a crack a = ac at a number of cycles NR, progressing from an
initial crack length a0. The expression thus turns into:

N
1/m
R =

(
ac−a0

C(1+β)m/2

)1/m

∆σ (7.7)

This equation provides the number of cycles required to lead to failure. Its direct evalua-
tion is possible [Gal14a], yet time-consuming and might be unpractical for simple design.
Instead, the different terms can be correlated to physical values in the following manner:

— the stress amplitude can be assumed to be linearly dependent on the amplitude
of the shear action, thus ∆σ ∝ Vc,N − Vmin, where Vc,N refers to the shear force
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7. Shear-fatigue

leading to failure at a number NR of cycles and Vmin to the minimum acting shear
force during the load cycles;

— the term
(
(ac − a0) /

(
C (1 + β)m/2

))1/m
=
(
N

1/m
R (Vc,N − Vmin)

)
is assumed to

be linearly dependent on the shear strength under monotonic loading minus the
minimum acting shear force, thus

(
(ac − a0) /

(
C (1 + β)m/2

))1/m
∝ Vc,1 − Vmin.

It can be noted that the first hypothesis is reasonable and physically consistent, as
the stresses acting in the member are proportional to the acting actions (provided that
yielding of the reinforcement or crushing of concrete are not governing). Thus the acting
range of stresses (∆σ) has to depend on the difference between maximum and minimum
actions during load cycles (Vc,N − Vmin).
With respect to the second hypothesis, it is grounded on the fact that the crack length
progresses from an initial length (a0) to a critical one (ac). This progression (ac − a0)
takes place during a number of cycles N , when the applied shear force is increased (and
thereafter decreased) in each cycle from a minimum acting shear force (Vmin) to a higher
level. The critical length (ac) can be assumed to be comparable to that developed by
an identical member but loaded to failure in a monotonic manner (corresponding then
to a shear force Vc,1). Thus, the increase of length of the crack from the minimum value
during the load cycles to the critical one (ac−a0) could be related to the difference in the
actions between the monotonic strength of the member and the minimum acting shear
force during the load cycles (Vc,1 − Vmin). The validity of this assumption can be easily
verified for N → 1, when Vmin → Vc,1 leading to a0 → ac. For other cases, its accuracy
will be checked against available test results. It can be noted that future theoretical
work is nevertheless required to assess or to correct the generality of this hypothesis.
With these assumptions Equation 7.7 turns to be:

N
1/m
R = Vc,1 − Vmin

Vc,N − Vmin
κ (7.8)

The term κ is a coefficient that accounts for the proportionality of the two terms Vc,N −
Vmin and Vc,1 − Vmin. Its value can be obtained by means of comparison to test results.
As it will be shown later, κ = 1 yields good predictions of the actual behavior and will
be adopted in the following.
For the use of Equation 7.8, it may also be noted that it is convenient to include in the
notation the term R = Vmin/Vc,N ≥ 0, leading thus to:

Vc,N
Vc,1

= 1
R+N

1/m
R (1−R)

(7.9)

It can be noted that evaluation of Equation 7.9 requires assessing the shear strength
under monotonic loading (term Vc,1). This term depends on the material and geometrical
parameters of the member and is influenced by some effects, as size effect (refer to term
β). For evaluation of this term, the CSCT [Mut08a] (Section 3.2) can be used in a
consistent manner. This formulation has in-built the influence of size effect (referring to
the effective depth on which the crack width relies) and considers the geometrical and
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Comparison to test results on beams without shear reinforcement and existing design
models

mechanical parameters of the member in a consistent manner [Mut08a].
It should be noted that the CSCT is accepted valid for slender members (a/d ≥ 3)
and in cases without reverse loading. These restrictions will thus be applied for the
use of Equation 7.9, and further studies should be performed to analyze its validity
and potential modifications for these cases as well as other phenomena (like the damage
accumulation (Palgrem-Miner effect)).
It can also be noted that the estimate of the monotonic shear strength Vc,1 incorpo-
rates already a number of influences (size and strain effects, concrete and aggregate
properties). In addition, the loading rate can also be considered to estimate the shear
strength. The loading rate increases or decreases the concrete strength [Rus60, Fer07]
and this holds true also for shear-related failures under impact loading [Mic14] (with in-
creasing nominal shear strength) or sustained loading [Sar13] (with decreasing nominal
shear strength).

7.4 Comparison to test results on beams without shear
reinforcement and existing design models

The previous design expression is compared in this section to the available experimental
evidence. To that aim, the database presented by Gallego et al. [Gal14a] will be used,
considering only slender members (a/d ≥ 3) to avoid any arching action. The results
are presented in terms of both of S-N and Goodman diagrams.
It is to be noted that the loading rate is accounted for in the comparisons. This is
justified as the quasi-static reference strength provided by the shear design formula
of the CSCT (or other design models) is aimed at quasi-static failures, in cases when
loading duration is about one hour time (typical testing time). However, tests failing
in fatigue loading are typically performed at much higher loading rates, typically 1 Hz.
This implies that for NR → 1, the observed strength at higher loading rates should be
higher than the corresponding one for a reference (quasi-static) specimen [Sar13, Mic14].
This phenomenon is accounted for in a simplified manner by using fib-Model Code
2010 [MC2010] expressions for modifying the concrete strength as a function of the
loading rate. According to fib-Model Code 2010, the increase of the concrete strength
for tests performed at a loading rate of 1 Hz with respect to quasi-static specimens (1
hour-time for failure) is approximately 10% (η = 1.10 ≈ 36000.014). This value will
be accepted as affecting the monotonic shear strength Vc,1, although a more refined
investigation of this parameter will require future work.
In addition, the threshold value for propagation of crack lengths (refer to previous sec-
tion) will be assumed as Vc,N/Vc,1 = 0.50 (same as the one suggested by Eurocode [EC2-1]
and the Swiss code [SIA262:2013]):

Vc,N
Vc,1

= η

R+N
1/m
R (1−R)

≥ 0.50 (7.10)

Figure 7.1 shows the results obtained with the proposed approach (Equation 7.10) com-
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7. Shear-fatigue

pared to the available test dataset [Gal14a]. To that purpose, it has been proposed a
value m = 17 and η = 1.10. In addition, only tests with values of R ≤ 10% have been
selected. The influence of this parameter is investigated with the Goodman diagrams.
These values (m, η and threshold) refer to the average response of the test results, and
could be adapted, if necessary, to respect a target safety level (5% fractile or other). A
very good agreement is obtained for this sub-set of tests, with an average ratio between
Vmax/Vc,1 (Vc,1 calculated according to Equation 3.5) and Vc,N/Vc,1 (substituting the
experimental N in Equation 7.10) equal to 1.06 with a CoV of 13%, refer to Table 7.1.
It should be noted that the predictions show a very low scatter, with a value similar to
that obtained by the CSCT for evaluation of monotonic shear failures [Mut08a], thus the
model for cyclic behavior adding no further scatter to the estimate of the shear strength.
In addition, the threshold for shear crack propagation is attained for a number of cycles
close to 106.
The comparison of the test results in terms of Goodman diagrams allows observing the
influence of the load levels (Vc,N and Vmin) on the shear-fatigue strength. Such diagrams
are shown in Figure 7.2 for the complete range of R. The predictions are again consistent,
suitably incorporating the influence of R. The results show a good agreement between
the predicted and measured strengths (average ratio between Vmax/Vc,1 and Vc,N/Vc,1
equal to 1.00) with a low value of the CoV (15%), refer to Table 7.1. It can be noted
that the value selected for the threshold is considered independent of the ratio R in good
agreement to test results. This aspect could however be developed in future research
(for high values of parameter R, the specimen is permanently subjected to a high level
of shear stresses, which may lead to the phenomenon of concrete fatigue under sustained
loading [Fer07]).

m = 17
η = 1.1
R = 0

Vc,N
Vc,1

= η 1

R+N1/m(1−R)

Rtests ≤ 0.10

    N

V
c
,N
/
V
c
,1

Chang & Kesler (1958a-b)
Ueda (1982)
Rombach & Kohl (2012)
Frey & Thürlimann (1983)
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Figure 7.1: Comparison of the proposed approach and available test data (R ≤
10%) as a S-N diagram showing shear-fatigue failure

With respect to codes of practice, it can be noted that the formulas of Eurocode 2 [EC2-1]
and the Swiss code [SIA262:2013] are not an estimator of the number of cycles to failure,
but they provide a suitable threshold to avoid premature shear failures. Its application
to the database provides thus quite safe estimates of the shear-fatigue failures (Average
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Figure 7.2: Comparison of the proposed approach and available test data in
Goodman diagrams
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= 1.29, CoV = 0.20 for Eurocode 2, Average = 1.33, CoV = 0.19 for SIA262:2013), refer
to Table 7.1 and to Figures 7.3 and 7.4. With respect to fib-Model Code 2010 [MC2010],
the formula yields safe estimates of the strength (Average = 1.52, CoV = 0.22, as it
should be expected for a design code), particularly for members failing under a large
number of cycles, as it does not present any threshold, refer to Table 7.1 and to Figure
7.5. It can be noted that both design codes lead in fact to quite safe estimates on
average, but with significant scatter in the predictions. The test results are on the
contrary well estimated with the proposed LEFM (for quasi-brittle materials) and the
CSCT approach, with consistent and low scatter for both low and high number of cycles.
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Figure 7.3: Comparison of Eurocode 2 and available test data
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Figure 7.4: Comparison of SIA262:2013 and available test data
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7. Shear-fatigue
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7. Shear-fatigue

7.5 Comparison to test results on cantilever slabs under
concentrated loads

Figure 7.6 shows the comparison between the proposed model and the tests performed
in this thesis and presented in Chapter 5. The monotonic shear strength was calculated
according to Section 6.2. The shear-fatigue strength is underestimated and the Vc,N/Vc,1
ratios of the tests compared with the model have an Average of 1.27 (CoV= 0.14)
for av/d = 2.1 and 1.10 (CoV= 0.10) for av/d = 3.2, just considering the tests that
experienced shear failures (with or without rebar fracture) and excluding the reference
tests.
As the number of cycles increases, the safety margin seems to remain approximately
constant, indicating the pertinence of the shear-fatigue prediction and the presence of
internal forces redistributions also for fatigue specimens (refer to the internal forces
redistributions accounted for in the calculation of Vc,1). It has to be noted that the
values of maximum applied load were relatively high (60% or more of the static shear
strength) and thus no fatigue threshold was observed.
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Figure 7.6: Comparison to test results on cantilever slabs under concentrated
loads
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Chapter 8

Conclusions

8.1 Introduction

The present chapter presents a summary of the main findings and contributions of this
thesis, and identifies open questions that might be interesting to investigate in future
work.
In this thesis the static and fatigue shear behavior of reinforced concrete slabs without
shear reinforcement under concentrated loads near linear supports has been investigated.
These structures differ from beams (or one-way slabs loaded over the full width) and
flat slabs supported on columns, because shear forces do not develop perfectly in a par-
allel or radial manner, and shear and bending moments in the shear critical regions
may vary due to redistributions on shear and moment fields, after flexural and/or shear
cracking. Despite these differences, most available experimental results have only con-
centrated on beams (or one-way slabs loaded over the full width) and two-way slabs with
axis-symmetric punching conditions. In the framework of this thesis, two experimental
campaigns on full-scale cantilever slabs under a concentrated load have been performed,
both under monotonic and fatigue loading. The specimens were meant to reproduce
typical cantilever deck slabs of European bridges.
The first experimental campaign (static campaign) performed on square slabs (3.00 m x
3.00 m x 0.18 m) linearly supported in the center (aluminium profile that allows tracing
the linear reaction evolution) aimed at studying the influence of the location of the
concentrated load and the presence or not of injected and non-injected ducts (typical of
prestressed concrete balanced cantilever bridges). Twelve tests were performed on six
slabs.
The second experimental campaign (fatigue campaign), also performed on square slabs
(3.00 m x 3.00 m x 0.25 m) linearly supported in the center, aimed at studying the
influence of the location of the concentrated load and of the level of applied fatigue
loads. Four monotonic tests were performed on two slabs, and eleven fatigue tests were
performed on eight slabs.
In the framework of the Critical Shear Crack Theory (CSCT), studies have been per-
formed on how to apply it for the shear/punchig shear assessment/design of reinforced

147



8. Conclusions

concrete slabs under concentrated loads near linear supports. With the aim of keeping
a complexity level comparable to Level III of fib-Model Code 2010 [MC2010], propos-
als were made on how to model these structures with Linear Elastic Finite Elements
(LEFE), and on how to account for shear redistributions due to both flexural and shear
cracking. The combined use of the CSCT with the proposals herein was compared with
tests (both from this thesis and from the literature) on cantilevers slabs and on simply
supported slabs.
Also in the framework of the CSCT, a consistent design approach for shear-fatigue was
presented, applying the principles of fracture mechanics (FM) of quasi-brittle materi-
als combined with the CSCT. The approach leads to a simple, yet sound and rational
design equation incorporating the different influences of fatigue loading (minimum and
maximum load levels) and shear strength (size and strain effects, material and geomet-
rical properties). The accuracy of the assessment/design expression was checked against
available test data on beams and on cantilever slabs under concentrated loads near linear
supports.

8.2 Contributions and conclusions

The present section identifies the main contributions and conclusions of this thesis.

8.2.1 Static tests

The static tests performed in the framework of this thesis, both from the static experi-
mental campaign (twelve tests on six square slabs (3.00 m x 3.00 m x 0.18 m) linearly
supported in the center) and the experimental fatigue campaign (four tests on two square
slabs (3.00 m x 3.00 m x 0.25 m) linearly supported in the center), contribute with an
important number of tests to the existing testing available in the literature. The main
conclusions of these tests on cantilever slabs are:

— The tests showed shear failures to be governing for all investigated specimens,
with different locations of the load and duct types. This is consistent with the
observed crack patterns of the center saw-cuts;

— Prior to failure, redistributions of shear forces were measured as a consequence of
the opening of shear cracks in the region between the load and the line support;

— The two-way behavior of slabs indicates that tests on beams are not necessarily
representative of bridge deck slabs;

— Low free shear span-to-effective flexural depth ratios (av/d ≈ 2) present high shear
strengths when compared with larger values (3 or 4), indicating a dependence on
the arching action. For larger values of av/d (3 or 4), even though the acting shear
force close to the support decreases for larger av/d ratios, the unitary bending
moment increases (leading to larger crack openings, thus limiting shear transfer
through cracks, i.e., reducing the unitary shear strength), resulting in a fairly
constant shear strength for the static experimental campaign;
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Contributions and conclusions

— No significant shear strength differences were observed between regular reinforced
concrete slabs and those with injected ducts. In the case of empty ducts, the shear
strength was noticeably reduced.

8.2.2 Fatigue tests

The fatigue tests performed in the framework of this thesis (eleven tests on eight square
slabs (3.00 m x 3.00 m x 0.25 m) linearly supported in the center) contribute with an
important number of tests to the literature. To the author’s knowledge these tests are
among the first to be performed on cantilever slabs under concentrated loads. The main
conclusions of these tests are:

— Fatigue loading of cantilever slabs with two-way action exhibits a similar influence
on the shear strength as in beams (or one-way slabs loaded over the full width)
without transverse reinforcement, decreasing the shear strength with increasing
number of cycles;

— Redistribution of shear forces were measured for slabs failing under fatigue load-
ing;

— The redistribution of internal forces enhances the shear strength of cantilever
slabs with respect to equivalent beams failing in shear;

— Shear-fatigue failures without rebar fractures only occur for very high levels of
maximum applied load;

— Slabs failing in shear after rebar fractures occured show a considerable remaining
fatigue life after the first rebar fracture;

— Slabs presenting rebar fractures eventually fail in shear.

8.2.3 Assessment based on the CSCT

With respect to the shear/punching shear assessment of slabs under concentrated loads
near linear supports, the following conclusions could be drawn:

— Cantilever slabs are unlikely to fail in punching shear. Shear is most likely the
governing failure mode of typical European cantilever deck slabs;

— The governing failure mode of simply supported slabs without significant in-plane
confinement seems to be related to the ratio between the load dimension parallel
to the support and the slab width (cy/b). Tests from the literature suggest that
punching shear is the governing failure mode when cy/b→ 0;

— The consideration of shear transferring by a compression chord is not grounded
on unequivocal experimental evidence. Accounting for this effect is not recom-
mended;

— Arching action seems to develop for free shear spans up to approximately 3 times
the effective flexural depth.

In this thesis several proposals were presented to perform the shear/punching shear
assessment of slabs under concentrated loads near linear supports with the CSCT. The
following contributions were developed for shear assessment:
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— LEFE analyses with shell elements with shear deformation and
(
ν = 0;G = E

16

)
are a useful simple tool to determine the internal forces in reinforced concrete
slabs under concentrated loads. Comparisons between calculated linear reactions
and measurements at failure ground this modeling choice, provided that the finite
element local axis and the reinforcement directions coincide;

— Cantilever slabs should be assessed in shear at a control section located at d/2
from the support, provided that no reinforcement changes or abrupt thickness
variations occur. Otherwise one has to search for a control section where the
applied shear force and concomitant bending moment yields the minimum shear
strength;

— Shear redistributions in cantilever slabs might be considered in a simplified man-
ner by considering an averaged shear force over a distance 4d combined with the
bending moment at the location of maximum shear;

— Simply supported slabs should be assessed in shear at a control section located
at d/2 from the load;

— Simply supported slabs might be assessed with an average shear force calculated
over a distance 4d + cy combined with the bending moment at the location of
maximum shear;

— Arching action might be accounted assuming that the contribution of concen-
trated loads applied within a distance d < av < 2.75d from the face of the support
to the design shear force may be reduced by the factor β = av/2.75d ≤ 1;

— Round non-injected ducts or inserts of diameter d0 (or square ones comprised in a
d0 diameter) spaced d from each other might be considered reducing the effective
shear depth (dv = d−

√
2/2d0).

With the aim of keeping a complexity level comparable to Level III of fib-Model Code
2010 [MC2010], the following methodology was adopted to perform punching shear as-
sessments of simply supported slabs (keeping the same FE modeling as for shear):

— Punching shear redistributions can be accounted according to the CSCT for non-
axis-symmetric punching [Sag11];

— Rotations in each reinforcement direction and load face can be calculated accord-
ing to an approach based on the fib-Model Code 2010 [MC2010];

— A reduced control perimeter in each reinforcement direction and load face might
be considered. It is proposed to take the elastic control perimeter at each control
perimeter segment.

The combined used of the CSCT with the proposals of this thesis has been shown to be
reasonably adequate for cantilever slabs. For simply supported slabs, the failure mode
could not always be predicted. However, the proposals yield a safe design approach
when compared with the available experimental evidence.

Inner slabs with negligible in-plane confinement, where concentrated loads act close to
a linear support and are subjected to negative bending moments in the region between
the support and the load can be treated in the same way as cantilever slabs.
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8.2.4 Shear-fatigue

A consistent design approach for shear-fatigue of slender reinforced concrete members
(a/d ≥ 3) without transverse reinforcement was presented in this thesis, applying the
principles of FM for quasi-brittle materials in combination with the CSCT.
The following conclusions could be drawn:

— Shear-fatigue failures are due to development and growth of shear cracks. Consis-
tent design can thus be performed on the basis of FM for quasi-brittle materials
combined with the CSCT. This approach leads to a simple, yet sound and rational
design equation incorporating the different influences of fatigue actions and shear
strength: minimum and maximum load levels, size and strain effects, material
and geometrical properties;

— Shear-fatigue on beams seems not to occur for values of maximum applied load
below approximately 50% of the static shear strength, and this value can be
satisfactorily used as a threshold for shear crack propagation when compared to
test results (the number of tests with fatigue failure occurring at a number of
cycles larger than 106 cycles is yet limited);

— Consistent agreement is obtained with the proposed approach in terms of Wöhler
and Goodman diagrams, being the estimate of the number of cycles until failure
significantly more accurate and with lower scatter than current empirical shear-
fatigue formulation of fib-Model Code 2010 [MC2010]. The scatter obtained with
the proposed approach is in addition similar to that of the CSCT for members
failing in shear under monotonic loading and thus the proposed formulation adds
no significant further scatter to the phenomenon;

— With respect to cantilever slabs under concentrated loads, as the number of cycles
increases the safety margin of the proposed approach seems to remain approx-
imately constant, indicating the pertinence of the shear-fatigue predictions and
the presence of internal forces redistributions also for fatigue tested specimens.
As the values of maximum applied load in this thesis were relatively high (60%
or more of the static shear strength), no fatigue threshold was observed.

8.3 Future work

In this section, some propositions of research to be considered in future works are pre-
sented.
At the experimental level:

— More static tests on cantilever slabs under concentrated loads subjected to im-
portant line loads at the cantilever tip, in order to clarify their influence. The
existing test database is insufficient to extract valid conclusions;

— More static tests on cantilever slabs under concentrated loads, varying the lon-
gitudinal bottom reinforcement, in order to verify if there is an influence of this
parameter on the shear strength and redistribution capacity;
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— Fatigue tests on cantilever slabs under moving concentrated loads, in order to
study the influence of this parameter.

At the simplified assessment level, in order to keep the used approaches simple for their
use in practice:

— Improvements have to be made in order to make possible the prediction of the
correct failure mode of simply supported slabs under concentrated loads;

— The study of other control sections, other ways to calculate rotations and ways
to consider shear redistributions might be performed.

At the assessment level, increasing the complexity level:
— The use of the CSCT failure criteria combined with nonlinear finite element

(NLFE) analyses seems to be promising, refer to the work of Belletti et al. [Bel14];
— A method with a mechanical basis to consider internal forces redistributions due

to shear cracking is desirable;
— The correct determination of internal bending moments and shear forces is ex-

tremely important for both monotonic and fatigue assessment. Even though it is
out of the scope of this thesis, with respect to the assessment of rebar failures due
to fatigue loading, this importance is even greater to correctly assess the fatigue
life. Reliable NLFE models with input variables that can be easily determined
by engineers are though desirable. In this same particular point, concerning the
rebar stress amplitude determination, another relevant aspect that can be inves-
tigated is the determination of the residual strains in the reinforcement due to
imperfect crack closure and negative adherence (refer to Figure 5.13). The com-
monly stress amplitude calculation based on the applied bending moment and an
elastic strain distribution with cracked section might be too conservative.

At the theoretical level:
— Shear and punching shear are closely related phenomena. A unified model for

shear and punching shear should be possible to be developed.
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