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Foreword

During the last decades, and particularly since the pioneerworks of Kinnunen andNylander in Sweden

in the 1960’s, the scientific community has searched for a general and physically consistent approach

to describe failures in flat slabs due to punching at slab-column connections. These efforts have nev-

ertheless not yet allowed to reach a general consensus. Partly, this can be explained by the difficulty

in obtaining direct measurements on the development of inner punching cracks (which difficult the

understanding of the mechanisms triggering failure) but is also justified by the complexity of the phe-

nomenon. Indeed, a complex state of stresses develops in the vicinity of the connection (associated to

both radial and tangential components) and the capacity to transfer such stresses in cracked concrete is

governed by a number of phenomena such as the aggregate interlock, the response of concrete under

confined conditions or the residual resistance of concrete in tension.

Within this context, a significant research effort has been performed in the Structural Concrete Labora-

tory at École Polytechnique Fédérale de Lausanne during the last two decades, developing the Critical

Shear Crack Theory (CSCT) and applying it to cases related to shear and punching shear failures. A

number of experimental and theoretical works have been performed so far, to validate and to consoli-

date its methodology, hypotheses and failure criteria for a number of cases such as slender slabs under

symmetric and non-symmetric conditions and footings. Yet, there was still a theoretical need to make

a synthesis of these works and to integrate these findings within a more comprehensive mechanical

model describing the shear-carrying actions and mechanisms of failure for the various potential situa-

tions.

The work of Dr Simões is addressed at this question. After performing a testing programme on squat

slabs (where detailedmeasurements of the kinematics at failure were recorded), he addresses the anal-

ysis of the punching shear capacity on the basis of a refined mechanical model accounting in a general

manner for the development of a potential critical shear crack and its associated kinematics. Themodel,

grounded on the basic assumptions of the CSCT, allows generalizing previous developments and to

propose rational improvements on its failure criterion. As a result, not only refined analyses can be per-

formed and various cases be investigated on the same basis, but also simple closed-form formulations

of the failure load are derived with the aim to be incorporated in future codes of practice. The work

has also the potential to investigate on the pertinence and analogies of other theoretical approaches to

the phenomenon and can constitute thus an element to advance in finding a consensus on the causes

and effects of the phenomenon of punching shear.

Lausanne, March 2018

Prof. Dr. Aurelio Muttoni Dr. Miguel Fernández Ruiz
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Abstract

Punching shear failures of structural concrete members have been the focus of attention of numerous

works presented over the last decades. Although various rational approaches have been developed to

predict these failures, there is still no unanimity on a theory consistently describing the phenomenon.

An influential rational approach relating the punching strength to the deformation capacity of the slab

at failure was proposed by Kinnunen and Nylander (1960). The Critical Shear Crack Theory (CSCT),

whose first principles were published in 1991 by Muttoni and Schwartz, is among the works that were

later developed consistently with the ideas of the approach of Kinunnen and Nylander. The CSCT has

been the object of intensive research in the last two decades in view of its validation, improvement

and extension. Consisting of four published scientific articles, the present work investigates the con-

sistency of the principles of the theory for application to members without transverse reinforcement

and different slenderness (footings and slabs).

An experimental programme on the punching behaviour of footings is presented to better understand

the analogies anddifferences between the behaviour of slender and squatmembers. Themeasurements

show that, in addition to the rotation of the slab, the shear strains also significantly influence the state

of deformations at failure of squat members. A theoretical work is developed by applying the upper

bound theorem of limit analysis. It shows the existence of a flexural-shear interaction in compact foot-

ings, influencing their strength and defining a smooth transition between pure flexural and punching

shear regimes. A comparison between the theoretical and the experimental results shows that strain-

and size-effects need to be considered to correctly predict the punching strength of compact footings

using limit analysis.

To investigate the transition between limit analysis and the CSCT, as well as how CSCT handles the

punching failures of squatmembers, the theoretical principles of the CSCT are reviewed anddiscussed.

This study shows that, by accounting for both flexural and shear deformations in the kinematics of the

critical shear crack, the theory is applicable to both slender and squat members. In addition, a recently

proposed power-law failure criterion is justified based on the different potential failure modes of slen-

der and squat members. Furthermore, closed-form solutions for punching shear design of members

without transverse reinforcement are analytically derived combining the power-law failure criterion

and a simplified load-rotation relationship. These expressions are validated by comparing their re-

sults with a wide range of experimental results of slabs and footings.

A mechanical model is eventually developed and presented on the basis of the theoretical principles

of the CSCT, allowing for a refined calculation of the failure criterion by integration of the stresses de-

veloping along the critical shear crack. This model is applied to the case of slender slabs and validated

against experimental results, showing a good agreement. A parametric study based on the refined

failure criterion allows a theoretical validation of both analytical failure criteria of the CSCT as well as

of its main assumptions. Finally, the preliminary results of the application of the mechanical model

to prestressed slabs and footings show that the principles of theCSCT are also valid to study these cases.

Keywords: structural concrete; punching shear strength; experimental programme;mechanicalmodel;

limit analysis; Critical Shear Crack Theory (CSCT); failure criterion; footings; slabs; closed-form design

expressions.
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Résumé

Les ruptures par poinçonnement d’éléments en béton armé ont fait l’objet de nombreuses études ces

dernières décennies. Bien que diverses approches rationnelles aient été développées pour les décrire,

il n’y a pas encore d’unanimité autour d’une théorie qui décrit ce phénomène de manière complète.

Une approche rationnelle qui a eu beaucoup d’influence est celle qui a été proposée par Kinnunent et

Nylander (1960) ; elle relie la résistance au poinçonnement à la capacité de déformations de la dalle

à la rupture. La Théorie de la Fissure Critique (Critical Shear Crack Theory, CSCT en anglais), dont

les premiers principes ont été publiés en 1991 par Muttoni et Schwartz, suit les idées de Kinnunen

et Nylander. La CSCT a fait l’objet de recherches intensives ces deux dernières décennies, pour en

établir la validité, l’améliorer et l’étendre. Sur la base de quatre articles publiés, le présent travail

étudie la consistance des principes de la théorie en vue de son application aux éléments sans armature

transversale de divers élancements (fondations et dalles).

Unprogramme expérimental du comportement aupoinçonnement des dalles de fondation est présenté,

pour mieux comprendre les analogies et les différences entre le poinçonnement des éléments élancés

et trapus. Les mesures montrent qu’en plus de la rotation de la dalle, les déformations d’effort tran-

chant ont une importance significative sur l’état de déformations à la rupture des éléments trapus. Un

développement théorique basé sur le théorème de la borne supérieure de l’analyse limite montre qu’il

existe une interaction importante entre la flexion et l’effort tranchant dans les fondations trapues, influ-

encent leur résistance et en définissant une transition graduelle entre les régimes de pure flexion et de

poinçonnement. Une comparaison entre la théorie et les résultats expérimentaux montre que les effets

de déformation et de taille doivent être tenues en compte afin de prédire correctement la résistance au

poinçonnement des fondations trapues en appliquant l’analyse limite.

Pour étudier la transition entre l’analyse limite et la CSCT, ainsi que la manière dont la CSCT traite les

ruptures par poinçonnement des éléments trapus, les principes théoriques de la CSCT ont été revis-

ités et discutés. L’étude montre qu’en tenant compte des déformations de flexion et d’effort tranchant

dans la cinématique de la fissure critique, la théorie est applicable aux éléments élancés aussi bien que

trapus. De plus, une nouvelle formulation du critère de rupture sous la forme d’une loi de puissance

trouve sa justification dans les deux modes de rupture possible différents pour les éléments élancés et

trapus. Finalement, des solutions en forme close peuvent être dérivées pour le dimensionnement au

poinçonnement des éléments sans armature transversale sur la base du critère de rupture sous forme

de loi de puissance et d’une relation charge-rotation simplifiée. Ces expressions ont été validées en

comparant leurs résultats à une large palette de résultats expérimentaux sur des dalles et des fonda-

tions.

Un modèle mécanique est présenté, développé sur la base des principes théoriques de la CSCT et per-

mettant un calcul raffiné du critère de rupture par intégration des contraintes qui se développent le

long de la fissure critique. Appliqué au cas des dalles élancées, ce modèle est en bon accord avec les

résultats expérimentaux. Une étude paramétrique basée sur le critère de rupture raffiné permet une

validation théorique des deux critères de rupture de la CSCT ainsi que de ses hypothèses principales.

Finalement, une application préliminaire du modèle mécanique au cas des dalles et fondations pré-

contraintes montre que les principes théoriques de la CSCT sont aussi applicables pour étudier ces

configurations.
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Résumé

Mots-clés: béton armé; resistance au poinçonnement; essais; modèle mécanique; théorie de la plas-

ticité; théorie de la fissure critique (CSCT); critère de rupture; fondations; dalles; expressions pour

dimensionnement.
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Zusammenfassung

In den letzten Jahrzehnten haben sich viele Arbeiten mit dem Durchstanzversagen von Stahlbeton-

bauteilen beschäftigt. Trotz der Entwicklung verschiedenster mechanischer Ansätze um dieses Ver-

sagen vorherzusagen, herrscht noch immer keine Einigkeit was die beschreibende Theorie angeht. Ein

einflussreicher rationeller Ansatz, der die Durchstanzfestigkeit in einen Zusammenhang mit der Ver-

formungskapazität bringt, wurde von Kinnunen und Nylander (1960) vorgeschlagen. Die Theorie des

kritischen Schubrisses (Critical Shear Crack Theory auf Englisch, CSCT), im Jahre 1991 von Muttoni

und Schwartz erstmals publiziert, ist unter denArbeiten, die imEinklangmit denGrundlagen der The-

orie von Kinnunen und Nylander entwickelt wurden. Die CSCT war das Objekt intensiver Forschung

in den letzten beiden Jahrzehnten, was ihre Validierung, Verbesserung und ihren Ausbau angeht. Die

vorliegende aus vier veröffentlichten wissenschaftlichen Artikeln bestehende Arbeit untersucht die

Beständigkeit der Prinzipien der Theorie im Falle der Anwendung auf Bauteile ohne Schubbewehrung

und unterschiedlicher Schlankheit (Fundament- und Deckenplatten).

Zum besseren Verständnis der Analogien und Unterschiede was das Verhalten von schlanken und

gedrungenen Bauteilen angeht, wird eine Versuchsreihe, die das Durchstanzverhalten von Funda-

menten untersucht, vorgestellt. Die Messungen zeigen, dass neben den Rotationen, auch die Schub-

verzerrungen einen signifikanten Einfluss auf den Deformationszustand von gedrungenen Bauteilen

bei Versagen haben. Eine theoretische Formulierung wird unter Benutzung des kinematischen oberen

Grenzwertsatzes der Plastizitätstheorie hergeleitet. Sie zeigt die Existenz einer Biege-Schub-Interaktion

in gedrungenen Fundamenten, welche die Festigkeit beeinflusst und einen fließenden Übergang zwis-

chen reinem Biege- und Durchstanzverhalten definiert. Ein Vergleich zwischen den theoretischen und

den experimentellen Resultaten zeigt, dass Verzerrungs- und Größeneffekte berücksichtigt werden

müssen, um den Durchstanzwiderstand von gedrungenen Gründungen unter Benutzung des Gren-

zwertsatzes korrekt vorher zu sagen.

Für die Untersuchung des Übergangs zwischen Grenzwertsatz und CSCT sowie der Behandlung von

gedrungenenBauteilen durchdieCSCT,werdenderen theoretischenGrundlagenüberprüft unddisku-

tiert. Die Studie zeigt, dass die Theorie auf schlanke und gedrungene Bauteile anwendbar ist, wenn

sowohl Biege- als auch Schubverformungen in der Kinematik des kritischen Schubrisses berücksichtigt

werden. Zusätzlich dazu, wird ein kürzlich vorgeschlagenes Potenzgesetz-Versagenskriterium mit

den verschiedenen potentiellen Versagensmechanismen von schlanken und gedrungenen Bauteilen

gerechtfertigt und erklärt. DesWeiterenwerden geschlossene Lösungen für die Durchstanzbemessung

vonBauteilen ohne Schubbewehrung analytisch hergeleitet, indemdas Potenzgesetz-Versagenskriterium

mit einer vereinfachten Last-Verformungsbeziehung kombiniert wird. Diese Formulierungen werden

mit einer weiten Reihe von Versuchsergebnissen an Decken- und Gründungsplatten validiert.

In weiterer Folge wird ein mechanisches Modell auf der Basis der theoretischen Prinzipien der CSCT

entwickelt, das eine verfeinerte Berechnung des Versagenskriteriums durch Integration der Spannun-

gen im kritischen Schubriss ermöglicht. Dieses Modell, auf schlanke Platten angewandt und mit Ver-

suchsergebnissen validiert, zeigt eine gute Übereinstimmung. Eine auf dem verfeinerten Versagen-

skriterium basierende Parameterstudie erlaubt eine theoretische Validierung der beiden analytischen

Versagensmechanismen der CSCT und ihrer Hauptannahmen. Schlussendlich demonstrieren die vor-

läufigen Resultate der Anwendung des mechanischen Modells auf vorgespannte Platten und Grün-
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Zusammenfassung

dungen die Gültigkeit der Prinzipien der CSCT auch in diesen Fällen.

Schlüsselwörter: Stahlbeton; Durchstanzwiderstand; experimentelle Untersuchungen; mechanisches

Modell; Grenzwertanalysis; Critical Shear Crack Theory (CSCT); Versagenskriterium; Gründungen;

Flachdecken; Platten; Bemessungsansätze in geschlossener Form.
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Riassunto

Le rotture a punzonamento di strutture in calcestruzzo armato sono state oggetto di studio di nu-

merose ricerche svolte negli ultimi decenni. Malgrado vari approcci razionali siano stati sviluppati

per descrivere queste modalità di rottura, non è ancora presente una visione unanime su un modello

che descriva il problema in maniera consistente. Un approccio razionale il quale legava la resistenza a

punzonamento alla capacità di deformazione di una piastra a rottura fu proposta da Kinnunen e Ny-

lander nel 1960. La Teoria della Fessura Critica (CSCT), i cui principi furono pubblicati nel 1991 da

Muttoni e Schwartz, è uno tra i lavori che successivamente sono stati sviluppati in maniera consistente

seguendo le ipotesi assunte dall’approccio di Kinnunen eNylander. Negli ultimi due decenni, la Teoria

della Fessura Critica è stata oggetto di una ricerca intensiva al fine di validarne le sue ipotesi iniziali e,

allo stesso tempo, allo scopo di proporre migliorie e estensioni. Costituito da quattro articoli scientifici

pubblicati su rivista, il presente lavoro studia la coerenza dei principi della teoria per l’applicazione ad

elementi strutturali non armati a taglio aventi differenti snellezze (piastre e fondazioni).

Un programma sperimentale sulla resistenza a punzonamento di fondazioni é presentato al fine di

comprendere in modo migliore le differenze e le analogie tra il comportamernto a rottura di elementi

strutturali snelli e tozzi. Lemisure sperimentalimostrano che, oltre alla rotazione della piastra, le defor-

mazioni a taglio hanno un’ influenza importante nello stato di deformazione a rottura di elementi tozzi.

Un lavoro teorico è stato, successivamente, sviluppato adottando il teorema cinematico dell’analisi lim-

ite. Tale studio mette in evidenza l’interazione tra taglio e momento presente in fondazioni compatte,

definendo una transizione graduale tra i regimi di pura flessione e di taglio-punzonamento. Un con-

fronto tra i risultati teorici e sperimentali mostra come l’effeto di deformazione e del fattore di scala

debbano essere tenuti in conto al fine di predirre correttamente la resistenza a punzonamento di fon-

dazioni tozze nel caso si adotti un calcolo secondo analisi limite.

Per esaminare la transizione tra analisi limite e CSCT, e, allo stesso tempo, allo scopo di studiare come

quest’ultima tratti le rotture a punzonamento di elementi tozzi, i principi teorici della CSCT sono stati

revisionati e discussi. Questo studiomostra che, tenendo conto delle deformazioni flessionali e taglianti

nella cinematica della fessura critica a taglio, la teoria è applicabile sia per elementi snelli che tozzi.

Inoltre, un criterio di rottura secondo una legge di potenza, recentemente pubblicato, è stato giustificato

sulla base dei differenti potenziali modi di rottura presenti in elementi snelli e tozzi. In aggiunta,

soluzioni a forma chiusa per la verifica a taglio-punzonamento di elementi non armati a taglio sono

state derivate analiticamente combinando il criterio di rottura secondo legge di potenza e una relazione

carico-rotazione semplificata. Queste espressioni sono state validate confrontando le loro predizioni

con una vasta gamma di risultati sperimentali ottenuti su piastre e fondazioni.

Unmodello meccanico è stato, infine, sviluppato e presentato sulla base dei principi teorici della CSCT,

permettendo un calcolo raffinato del criterio di rottura il quale è stato ottenuto integrando gli sforzi in-

terni lungo la fessura critica a taglio. Questo modello è stato applicato al caso di elementi snelli e

validato mediante il confronto con risultati sperimentali, risultandone in accordo. Uno studio para-

metrico basato sul criterio di rottura raffinato ha permesso una validazione teorica sia del criterio di

rottura analitico (CSCT) sia delle sue assunzioni. Infine, i risultati preliminari dell’applicazione del

modello meccanico a piastre precompresse e fondazioni mostrano che i principi della CSCT restano

validi anche per studiare questi casi.
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tre;equazioni di progetto a forma chiusa.
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Resumo

A rotura de elementos de betão armado por punçoamento tem sido o foco de atenção de um grande

número de publicações ao longo das últimas décadas. Apesar de terem sido desenvolvidas várias

abordagens racionais para descrever este tipo de rotura, ainda não existe unanimidade em tornodeuma

teoria mecânica que descreva de forma completa e consistente este fenómeno. A teoria apresentada

por Kinnunen e Nylander (1960), que relaciona a resistência ao punçoamento com as deformações

da laje na rotura, teve um grande impacto nesta área de investigação. Posteriormente e desenvolvida

em coerência com o referido trabalho, surgiu a Teoria da Fissura de Corte Critica (CSCT no acrónimo

Inglês), cujos primeiros princípios foram publicados em 1991 porMuttoni e Schwartz. A CSCT foi alvo

de uma investigação intensa ao longo das duas últimas décadas com vista à sua validação, melhoria e

extensão. Opresente trabalho, composto por quatro artigos publicados em revistas cientificas, investiga

a aplicabilidade dos principios da CSCT a elementos estruturais sem armadura de esforço transverso

e com esbeltezas diferentes (fundações e lajes esbeltas).

Como intuito de compreender as analogias e diferenças comportamentais de lajes esbeltas e compactas,

apresenta-se um programa experimental sobre o punçoamento em fundações de betão armado. Os

resultados experimentais demonstram que, para além das deformações de flexão, também as defor-

mações de corte influenciam de forma significativa o estado de deformações na rotura de elementos

compactos. É apresentado um trabalho teórico com base na aplicação do teorema superior da análise

limite. Este trabalho demonstra a existência de uma interacção corte-flexão que influencia a resistência

de fundações compactas e que define uma transição entre os regimes de flexão e punçoamento puros.

A comparação dos resultados teóricos e experimentais revela a necessidade de considerar os efeitos de

deformação e de escala no cálculo da resistência ao punçoamento de fundações compactas com recurso

à análise limite.

Os princípios teóricos da CSCT são revistos e discutidos, não só com o objectivo de estudar a transição

entre os resultados da análise limite e da CSCT, mas também para compreender a forma como esta

teoria trata as roturas por punçoamentos em elementos compactos. Este estudo demonstra que a teoria

é aplicável tanto a elementos esbeltos como compactos, visto que de acordo comos seus princípios tanto

as deformações por flexão como também as deformações de corte são consideradas na cinemática da

fissura de corte critica. Uma nova formulação do critério de rotura da CSCT recentemente proposta é

teoricamente justificada com base nos diferentes modos de rotura de elementos esbeltos e compactos.

A combinação deste critério de rotura com uma lei simplificada da carga-deformação permite derivar

de forma analitica expressões de forma fechada para o cálculo da resistência ao punçoamento. As

expressões referidas são validadas através de comparação com resultados experimentais.

É desenvolvido e apresentado um modelo mecânico para o cálculo da resistência ao punçoamento

com base nos princípios teóricos da CSCT. Este modelo permite o cálculo refinado do critério de rotura

através da integração das tensões que se desenvolvem ao longo da fissura de corte critica. Este modelo

é aplicado ao caso de lajes esbeltas e validado por comparação com resultados experimentais onde é

obtida uma muito boa concordância. Um estudo paramétrico baseado no cálculo refinado do critério

de rotura permite validar teoricamente a utilização dos critérios analiticos da CSCT, bem como das

suas principais hipóteses. Finalmente, os resultados preliminares resultantes da aplicação do mod-

elo mecânico ao caso de fundações e lajes pré-esforçadas demonstram que os princípios da CSCT são
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igualmente válidos para estudar estes casos.

Palavras-chave: betão armado; resistência ao punçoamento; programa experimental; modelomecânico;

teoria da plasticidade; Teoria da Fissura de Corte Crítica (CSCT); critério de rotura; fundações; lajes;

expressões de dimensionamento.
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Chapter 1

Introduction

1.1 Problem statement

The use of flat slabs dates back to the beginning of the 20th century when this structural system was

developed and its advantages made it immediately very attractive (Maillart, 1926; Fürst and Marti,

1997; Gasparini, 2002; Muttoni, 2008). Compared to the conventional slabs supported on beams and

columns, flat slabs proved to be significantly more flexible and easier to build (Moe, 1961; Muttoni,

2008). On the contrary, the concentration of high bending moments and shear forces in the vicinity of

the columns, potentially triggering a punching shear failure (Muttoni and Fernández Ruiz, 2010), was

early recognized as one of the main disadvantages (Elstner and Hognestad, 1956; Moe, 1961; Fürst and

Marti, 1997; Gasparini, 2002).

Punching shear failures of structural concrete members without transverse reinforcement are charac-

terized by the development of a inclined failure surface without being necessary associated signifi-

cant deformations prior to failure (see e.g. Guandalini et al., 2009; Figure 1.1 for the case of a slender

slab). Since the deformation of the system is controlled by the bending reinforcement, the brittleness

of punching shear failures strongly depends on the behaviour of the reinforcement at failure, which

may be in the elastic regime, partly or fully yielded (Guandalini et al., 2009; Fernández Ruiz and Mut-

toni, 2017). In addition, such failures may lead to a progressive structural collapse (Mirzaei, 2010; Faria

et al., 2012), as they require a redistribution of internal forces in a structure that may already be in a

limit design situation (Fernández Ruiz et al., 2010, 2013).

Figure 1.1: Punching shear failure of slender flat slab.

The introduction of mushrooms, column capitals or drop panels was a widely used solution to deal

with the issue of punching shear in slabs when they first appeared (Maillart, 1926; Gasparini, 2002;

Muttoni, 2008). One of the first experimental works on the punching strength was actually performed

on footings and was justified by the increasing construction of tall buildings with reinforced concrete

footings subjected to very high shear forces (Talbot, 1913). It was only in the second half of the 20th cen-

tury that slab-column connections without drop panels, mushrooms or capitals became progressively

popular (Muttoni, 2008). However, more than one century after the appearance of the first flat slabs,

and despite all the efforts made to improve the knowledge on this topic (e.g. Kinnunen and Nylander,

1960; Regan and Braestrup, 1985; Regan, 1986; Shehata and Regan, 1989; Bažant and Cao, 1987; Broms,

1
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1990; Hallgren, 1996; Yankelevsky and Leibowitz, 1999; fib, 2001; Polak, 2005; Park et al., 2011; fib, 2017),
a general agreement with respect to the phenomena involved in punching shear failures of flat slabs is

not yet reached and further experimental and theoretical work is still required.

inner
column

inner column

footing

footing

soil pressure

shear and
in-plane forces

distributed
load

(a) (b)

(c)

Figure 1.2: (a) Schematic representation of a standard reinforced concrete structure; (b) slab-column
connection and (c) isolated footing.

As punching occurs in members subjected to concentrated loads, such failures may not only take place

in flat slabs but also in footings, even if bothmembers are geometrically andmechanically very different

(Talbot, 1913). Figure 1.2(a) shows schematically a simple structure composed by flat slabs, columns

and isolated footings. The sub-systems of an inner slab-column connection and of an isolated foot-

ing are represented separately in Figures 1.2(b) and (c), respectively, where it becomes very clear that

footings are significantly more compact elements (significantly smaller span-to-effective depth ratio)

subjected normally to much higher shear forces (often related to the number of stories).

Even though a considerable number of reinforced concrete footings have been tested in the first half

of the 20th century (Talbot, 1913; Richart, 1948), punching failures on footings have attracted far less

attention than punching failures on slabs in the last decades. Yet, some of the experimental, numerical

and theoretical works on the topic suggested that the punching behaviour of footingsmay be noticeably

different from the one of flat slender slabs (e.g. Dieterle andRostásy, 1987; Hallgren et al., 1998; Hallgren

and Bjerke, 2002; Timm, 2003; Broms, 2005; Hegger et al., 2009; Urban et al., 2013b; Siburg and Hegger,

2014; Kueres et al., 2013). Therefore, it is still nowadays not clear if punching shear failures of footings

and slabs can be described and theoretically dealt in a consistent manner (Hallgren et al., 1998; Broms,

2005; Kueres et al., 2017b). In order to clarify this topic it is essential to better understand themechanics

of punching shear failures of both slender and squat members.

1.2 Punching of reinforced concrete footings, open questions

A number of experimental works focusing on the punching shear behaviour and strength of footings

have been performed so far (Talbot, 1913; Richart, 1948; Kordina andNölting, 1981; Dieterle and Steinle,

1981; Dieterle and Rostásy, 1987; Dieterle, 1987; Hallgren et al., 1998; Li, 2000; Timm, 2003; Hegger et al.,
2006, 2007, 2009; Netopilik, 2012; Urban et al., 2013a,b; Siburg and Hegger, 2014; Krakowski et al., 2015;
Kueres et al., 2017a; Bonić et al., 2017).

The first tests were carried out in the United States of America already in the first decades of 20th cen-

tury (Talbot, 1913; Richart, 1948). The experimental works that followed were published considerably

2
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later and were performed in Germany (Kordina and Nölting, 1981; Dieterle and Steinle, 1981; Dieterle

and Rostásy, 1987; Timm, 2003) and Sweden (Hallgren et al., 1998). Kordina and Nölting (1981) in-

vestigated the eccentric punching shear behaviour of footings, Dieterle and Steinle (1981) studied the

punching strength of pre-fabricated foundation blocks, whereas Dieterle and Rostásy (1987), Hallgren

et al. (1998), and Timm (2003) focused specifically on the concentric punching behaviour of footings

with andwithout transverse reinforcement. More recently, the punching shear behaviour of reinforced

concrete footings attracted the attention of the Institute of Structural Concrete of RWTH Aachen Uni-

versity, where extensive experimental programmes were carried out (Hegger et al., 2006, 2007, 2009;
Ricker, 2009; Siburg and Hegger, 2014; Siburg, 2014; Kueres et al., 2017a). Large experimental cam-

paigns on the punching strength of compact members have also been performed in the last years at

University of Lodz in Poland (Urban et al., 2013a,b; Krakowski et al., 2015). Some other isolated ex-

perimental programmes were also realized on compact slabs in Canada (Li, 2000; Netopilik, 2012) or

footings resting on soil in Serbia (Bonić et al., 2017).

Various interesting experimental findings have been reported in theworks above referred. Itwas shown

that the span-to-effective depth ratio plays an important role on the punching shear strength of footings

without transverse reinforcement (Hegger et al., 2006, 2009; Urban et al., 2013b; Siburg and Hegger,

2014). The influence of the size of the member on the punching strength has also been reported by

Dieterle and Rostásy (1987) and more recently by Siburg and Hegger (2014). Hallgren et al. (1998)
suggested that the influence of concrete compressive strength on the punching strength is higher in

footings than in slabs and similar considerations have been reported by Hegger et al. (2009) for very
compact footings. The experimental results revealed also that punching failures in squat members can

occur for very limited deformations (e.g. Hegger et al., 2009; Urban et al., 2013b; Siburg and Hegger,

2014) and that the inclination of the failure surface is steeper in footings than in slabs (Hegger et al.,
2009; Siburg and Hegger, 2014). In spite of these important findings, it is worth to mention that only

a part of the experimental programmes previously mentioned included full scale specimens tested

under realistic conditions (Hegger et al., 2006, 2009). Consequently, there is still nowadays a need for

additional experimental work in order to confirm some of the reported trends and better understand

the punching behaviour of compact members.

With respect to the mechanical interpretation of punching shear failures of compact members, some

interesting phenomenological descriptions have been presented, as for instance byHallgren and Bjerke

(2002) and Broms (2005). Based on the use of non-linear finite element calculations validated against

experimental results, Hallgren and Bjerke (2002) described punching failures of footingswithout trans-

verse reinforcement as follows: the formation of flexural cracks is followed by the development of in-

clined shear cracks along which a shear deformation occurs, resulting into high compression stresses

in the concrete strut carrying shear; crushing of the concrete strut triggers a redistribution of internal

forces which eventually leads to failure. Another mechanical approach has been presented by Broms

(2005), whoproposed an extension of themechanicalmodel of Kinnunen andNylander (1960) to enable

its application for compact members as footings by considering a radial stress based criterion including

a size effect. However, the calculation of the punching strength of footings has been historically per-

formed based on empirical approaches in an analogous manner to the ones used for flat slabs (Regan

and Braestrup, 1985; fib, 2001; Hegger et al., 2009). For instance, Kueres et al. (2017b) proposed recently

an approach to deal with the punching shear failures of flat slabs and footings in a consistent manner.

These approaches are justified as a consensus with respect to the analogies and differences between

the behaviour of slender and squat members still remains to be achieved. This topic will be addressed

in this thesis within the framework of the Critical Shear Crack Theory as described in the following.
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1.3 Context of the thesis within the framework of the Critical Shear Crack

Theory

Various mechanically based models for punching shear failures of reinforced concrete members have

been presented in the last decades (e.g. Kinnunen and Nylander, 1960; Braestrup et al., 1976; Hallgren,

1996; Broms, 1990, 2016; Shehata and Regan, 1989; Muttoni and Schwartz, 1991; Yankelevsky and Lei-

bowitz, 1999; Bažant and Cao, 1987; Muttoni and Fernández Ruiz, 2008; fib, 2001; Regan and Braestrup,

1985). One of the models that probably most inspired other researchers was the one proposed by Kin-

nunen andNylander (1960) (briefly introduced in Chapters 4 and 5). In agreement with the main ideas

of Kinnunen and Nylander (1960), Muttoni and Schwartz (1991) developed a theory whose theoretical

principles are applicable for both shear and punching shear of reinforced concrete members without

transverse reinforcement, the so-called Critical Shear Crack Theory (reviewed in Chapter 4; Muttoni et
al., 2017c). According to the principles of this theory applied to punching failures, the inclined concrete

strut which carries shear in the vicinity of the column is disturbed by the formation and propagation

of a tangential crack with flexural origin (the so-called critical shear crack), refer to Figure 1.3 (Mut-

toni, 2008; Muttoni and Fernández Ruiz, 2010). In the framework of the CSCT, the punching strength

and associated deformation capacity are determined by the intersection of the load-deformation rela-

tionship of the slab and the failure criterion, refer to Figure 1.3. The former relationship describes the

behaviour of the slab, that is, the crack opening associated with a given level of applied load. The latter

relationship defines the maximum shear strength that can be transferred for a given crack opening. It

thus results that the punching strength is influenced by the crack opening of the critical shear crack,

with lower punching strengths associated to larger crack openings (Muttoni, 2008).

failure 
criterion

load-rotation
relationship

V

tangential
crack radial

crack

critical
shear crack concrete

strut

ψ

ψ

V

Figure 1.3: Calculation of punching strength according to theCritical ShearCrack Theory (Muttoni, 2008).

Since Aurelio Muttoni was appointed as Professor and head of the Structural Concrete Laboratory at

École Polytechnique Fédérale de Lausanne (EPFL) in 2000, punching shear has been one of the main

topics of research of this group. The works on this field were mainly focused on the validation and

extension of the Critical Shear Crack Theory (CSCT). The first work on this topic was carried out by

Guandalini (2005), who performed an extensive experimental programme to investigate the strain- and

size-effects (large deformations and large members). The experimental results allowed the validation

of the CSCT hyperbolic failure criterion (established in terms of punching strength as a function of

the rotation of the slab) already presented in 2003 (Muttoni, 2003) and later published by Muttoni

(2008) with an extensive testing validation. Guandalini (2005) also studied the flexural behaviour of

axisymmetric slab-column connections by means of a numerical procedure based on the compatibility

and equilibriumconditions of a slab sector, allowing the integration of sophisticatedmoment-curvature

relationships.
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Context of this thesis within the framework of the Critical Shear Crack Theory

The PhD thesis ofGuandalini (2005)was followed by a series of other thesis focusing on specific subjects

related to the punching shear behaviour and strength of slab-column connections and published be-

tween 2010 and 2012 (Guidotti, 2010;Mirzaei, 2010; Tassinari, 2011; Lips, 2012; Clément, 2012). Guidotti

(2010) investigated the different failure modes of slab-column connections with column loads by com-

bining the theory of plasticity and the CSCT, eventually obtaining an interaction diagram allowing

the identification of the several failure regimes (flexural failure, crushing of the slab-column joint or

punching shear). Guidotti (2010) based his works on a fully mechanical model to calculate the punch-

ing strength of slab-column connections. This model was developed consistently with the principles

of the CSCT, thus supporting theoretically the semi-empirical failure criterion previously proposed

by Muttoni (2008) and experimentally validated by Guandalini (2005). Mirzaei (2010) investigated the

post-punching behaviour, performing an experimental campaign and proposing a specific mechanical

model for these cases. Tassinari (2011) extended the application of theCSCT for punching shear failures

in cases of asymmetric distribution of shear stresses in the shear-critical region. In addition, Tassinari

(2011) dealt also with the cases of slab-column connections with bent-up bars. The case of punching

shear of slab-columns connections with transverse reinforcement has been studied by Lips (2012), who

performed an experimental campaign where the transverse reinforcement ratio, the shear reinforce-

ment system and the column size were the main investigated variables. The punching shear strength

of prestressed slabs has been studied by Clément (2012), who carried out a series of experimental tests

where the effects of prestressing (in-plane forces and prestressing moments) were analyzed separately.

In addition, Clément (2012) extended the mechanical model of Guidotti (2010) to the case of slabs with

in-plane forces.

More recently, Einpaul (2016) performed an experimental campaign of slab-column connections with-

out transverse reinforcement where the slenderness and the column size were varied. Einpaul (2016)

investigated also the behaviour of continuous flat slabs, thus allowing for the calculation of the punch-

ing strength accounting for the potential effects of slab continuity and membrane action. Within the

framework of the CSCT, Einpaul (2016) proposed an improvement of the simplified load-rotation re-

lationship to account for the previously mentioned effects, therefore allowing its simple application in

practice. Drakatos (2016) investigated the case of slab-column connections subjected to seismic actions.

Still with respect to the punching strength of slab-column connections, Brantschen (2016) investigated

also the influence of anchorage and bond of transverse reinforcement in the punching strength of fail-

ures occurring within the shear reinforced region.

In addition to the various PhD thesis previously mentioned, various works of collaborators of EPFL

and abroad validating and extending the application of the mechanical model of CSCT have been pub-

lished in the last fifteen years. The failure criterion has been shown to be applicable for punching

shear of slabs without transverse reinforcement in a wide range of geometrical andmaterial properties

(Guandalini et al., 2009; Mamede et al., 2013; Inácio et al., 2015; Einpaul et al., 2016c; Fernández Ruiz

andMuttoni, 2017), non-symmetric punching shear (Sagaseta et al., 2011, 2014), punching shear of con-

tinuous slabs (Einpaul et al., 2015, 2016b), punching shear of slabs with column loads (Guidotti et al.,
2011), punching shear due to impact loading (Micallef et al., 2014) or seismic action (Drakatos et al.,
2016). In addition, the CSCT has been further extended to other cases such as slabs with transverse re-

inforcement (Fernández Ruiz andMuttoni, 2009; Lips et al., 2012; Einpaul et al., 2016a), fibre reinforced
concrete slabs (Maya et al., 2012; Gouveia et al., 2014), slabs with post-installed shear reinforcement

(Fernández Ruiz et al., 2010; Inácio et al., 2012) or externally bonded fibre reinforced polymers (Faria

et al., 2014) and, still, prestressed slabs (Clément et al., 2013; Clément et al., 2014). Moreover, due to

the generality of the CSCT to deal with punching shear failures under different conditions, this the-
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ory provides nowadays the theoretical basis of the punching shear provisions included in the SIA 262

(2013) and fib Model Code 2010 (Muttoni and Fernández Ruiz, 2010; Muttoni et al., 2013).

Footings and their analogies and differences with flat slabs were some topics within the field of punch-

ing shear which have not been deeply addressed before in the framework of the CSCT, even if some

studies focusing on the applicability of the fibModel Code 2010 to footings have been presented (Siburg

et al., 2014; Bonić et al., 2017). This thesis is aimed at developing new knowledge in this field as well

as at the manner how CSCT can handle both cases. Finally, a general mechanical model based on the

theoretical principles of CSCT, consisting on the improvement of the mechanical models presented by

Guidotti (2010) and Clément (2012), is developed for the case of slender slabs, being its extension for

the cases of prestressed slabs and reinforced concrete footings also discussed. The thesis results and

models are also supported by a specific testing programme whose results allow understanding why

the theory is applicable both to squat and slender members.

1.4 Objectives of the thesis

Following the context above described, the main objectives of this work are to:

• Contribute with new experimental data on the punching strength of full scale reinforced concrete

footings;

• Increase the knowledge on the punching behaviour of reinforced concrete footings by means of

detailed experimental measurements;

• Investigate the strength of reinforced concrete footings by means of limit analysis methods;

• Review the principles of the Critical Shear Crack Theory for punching shear failures of slender

and squat members without transverse reinforcement;

• Show how the principles of Critical Shear Crack Theory can be applied to deal with the case of

squat members;

• Develop closed-form solutions to calculate the punching shear strength and deformation capacity

based on the CSCT;

• Validate the closed-form expressions analytically derived for both slender and squat members

with databases containing recent experimental programmes;

• Develop a refined mechanical model consistent with the theoretical principles of the CSCT, al-

lowing the theoretical validation of its simplified failure criteria for punching shear failures and

associated main hypotheses;

• Investigate the application of the theoretical principles of the CSCT for punching shear failures of

prestressed slabs and reinforced concrete footings by applying the developed refined mechanical

model.
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1.5 Structure of the thesis

This document is a compilation of four published scientific journal articles together with an additional

chapter. Hence, in addition to the Introduction, this thesis includes six chapters as described below:

• Chapter 2 presents an article published in the scientific journal Structural Concrete (Simões et al.,
2016a). This chapter presents an experimental campaign on the punching shear behaviour and

strength of compact and isolated reinforced concrete footings. The influence of each of the in-

vestigated parameters is described and, based on detailed experimental measurements, the phe-

nomenological behaviour of reinforced concrete footings is discussed.

• Chapter 3 presents an article published in the scientific journal Engineering Structures (Simões et al.,
2016c). In this chapter the upper bound theorem of limit analysis is applied to investigate on the

strength, governing regimes and corresponding failures modes of reinforced concrete footings

without transverse reinforcement. Limit analysis, which consists on the theory commonly used

for flexural design, is used to show from the theoretical point of view that a significant flexural-

shear interaction occurs in reinforced concrete footings. In addition, a comparison between the-

oretical and experimental results available in the scientific literature (Dieterle, 1987; Dieterle and

Rostásy, 1987; Hallgren et al., 1998) is presented.

• Chapter 4 presents an article published in the scientific journal Structural Concrete (Muttoni et al.,
2017c). This chapter presents a review of the Critical Shear Crack Theory for punching shear

failures of members without transverse reinforcement. The theoretical principles of the theory

are presented and discussed. The transition between limit analysis and the CSCT is discussed.

Furthermore, it is explained how the CSCT handles the punching shear failures of both slender

and squat reinforced concrete members. In addition, the fourth chapter presents also the an-

alytical derivation and validation against experimental results of closed-form solutions for the

punching shear design of members without transverse reinforcement based on the principles of

the mechanical model of the CSCT.

• Chapter 5 presents an article published in the scientific journal Structural Concrete (Simões et al.,
2018) where a general mechanical description of punching shear failures is presented supported

on recent detailed experimental measurements available in the scientific literature. On that basis,

a refined mechanical model if formulated for slender slabs consistently with the principles of the

Critical Shear Crack Theory. A very good agreement is obtained between the experimental and

the theoretical results. The mechanical model is also shown to provide relevant information with

respect to the role of the parameters influencing the punching strength of slabs. In addition, the

results of the mechanical model not only validate the analytical failure criterion of the CSCT but

also corroborate its main hypotheses.

• Chapter 6 presents a discussion on the potential extension of the mechanical model presented in

Chapter 5 for the case of prestressed slabs and reinforced concrete footings. The extension of the

mechanical model for prestressed slabs is shown to be simple and mechanically consistent with

the experimental observations. With respect to the footings, an adaptation of the load-rotation re-

lationship presented by Muttoni (2008) is proposed and compared with the experimental results

of Chapter 2. Eventually, a possible extension of the calculation of the refined failure criterion

presented in Chapter 5 for reinforced concrete footings is discussed and validated against exper-

imental results.

• Chapter 7 summarizes the main conclusions of this thesis and discusses topics for future research.
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Although Chapters 2 to 5 are scientific journal articles, the numbering of the figures, tables and equa-

tions was modified to respect the layout of the present document. Also the font type and size of the

figures of the mentioned chapters were adjusted to consistently agree with the layout of this docu-

ment. In addition, by being a thesis compiling different journal articles, every chapter includes its own

sections of Notation, References and Appendix.

It is worth to mention that although the present document does not include any chapter solely dedi-

cated to the sate of the art, every chapter includes its own brief presentation of the works supporting

and inspiring the research. Detailed descriptions of other models as well as experimental works deal-

ing with punching shear failures of members without transverse reinforcement is out of the scope of

this thesis. State-of-the-art and technical reports compiling such information are available in the scien-

tific literature (e.g Regan and Braestrup, 1985; fib, 2001; Polak, 2005; fib, 2017) and can be consulted for

that purpose.

1.6 Scientific contributions of the thesis

The main scientific contributions of the thesis are listed below:

• To contribute with additional experimental data on full scale members tested under realistic con-

ditions and including detailed experimentalmeasurements to improve the knowledge on the phe-

nomenological punching shear behaviour of reinforced concrete footings;

• To investigate the strength of compact reinforced concrete footings without transverse reinforce-

ment using the kinematical theorem of limit analysis, presenting a more general solution than

the one originally presented by Braestrup et al. (1976);

• To present a review of the CSCT for punching shear failures of members without transverse re-

inforcement;

• To show that the principles of CSCT can be successfully applied for both slender and squat mem-

bers, thus validating the application of the CSCT for punching shear failures of squat reinforced

concrete members without transverse reinforcement;

• To present the analytical development of closed-form design expressions to calculate both the

punching strength and the rotation at failure based on the CSCT;

• To validate the application of closed-form design expressions of CSCT to calculate the punching

strength of both slender and squat members by comparing with recent databases of experimental

tests;

• To propose a refined mechanical model for slender slabs without transverse reinforcement based

on recent experimental findings and supported on the theoretical principles of Critical Shear The-

ory;

• To validate the simplified failure criterion of CSCT for punching shear failures of members with-

out transverse reinforcement based on the developed refined mechanical model;

• To validate the application of the principles of the CSCT to investigate the punching strength of

prestressed slabs and reinforced concrete footings without transverse reinforcement.
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1.7 Limitations of the thesis

The present document deals with the case of axisymmetric punching shear failures of members with-

out transverse reinforcement subjected to a concentric andmonotonic loading. The extrapolation of the

experimental results, theoretical considerations or mechanical models discussed in the present docu-

ment to deal with punching failures occurring in different conditions than those previously stated (e.g.

including non-axisymmetric distribution of shear forces; variable loading conditions; members with

transverse reinforcement apart from the related observations in Chapter 2) is out of the scope of the

present document.

1.8 List of publications

The publications composing Chapter 2 to Chapter 5 are the following:

Simões J. T., Bujnak J., Fernández Ruiz M., and Muttoni A. (2016a): „Punching shear on com-

pact footings with uniform soil pressure“. Structural Concrete, Vol. 17, No. 4, pp. 603–617.

Simões J. T., Faria D. V., Fernández Ruiz M., and Muttoni A. (2016c): „Strength of reinforced

concrete footingswithout transverse reinforcement according to limit analysis“. Engineering Struc-
tures, Vol. 112, pp. 146–161.

Muttoni A., Fernández Ruiz M., and Simões J. T. (2017c): „The theoretical principles of the

critical shear crack theory for punching shear failures and derivation of consistent closed-form

design expressions“. Structural Concrete, pp. 1–17. doi: 10.1002/suco.201700088.

Simões J. T., Fernández Ruiz M., and Muttoni A. (2018): „Validation of the Critical Shear Crack

Theory for punching of slabs without transverse reinforcement by means of a refinedmechanical

model“. Structural Concrete, pp. 1–26. doi: 10.1002/suco.201700280.

Other publications of João Tiago Simões accomplished during the doctorate include:

Simões J. T., Faria D. M. V., Fernández Ruiz M., and Muttoni A. (2015): „Limit Analysis for

Punching Shear Design of Compact Slabs and Footings“. In: fib 2015 Symposium, Concrete - Inno-
vation and Design. Copenhagen, Denmark, p. 13.

Simões J. T., Fernández Ruiz M., and Muttoni A. (2016b): „Punching shear strength and be-

haviour of compact reinforced concrete footings“. In: 11th fib International PhD Symposium in Civil
Engineering. Tokyo, Japan, pp. 649–656.

Muttoni A., Fernández Ruiz M., and Simões J. T. (2017a): „A discussion on the development of

the delamination of concrete cover in the soffit of the slab“. Structure Magazine - Special Section:
Tall buildings. June, pp. 70–71.

Muttoni A., Fernández Ruiz M., Simões J. T., Hegger J., Siburg C., and Kueres D. (2017b):
Background document for section 8.4: Punching. Tech. rep. EPFL/RTWH - 17-01-R5. November 30th,

p. 30.
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Chapter 2

Paper I
Punching shear tests on compact footings with

uniform soil pressure

This chapter is the postprint version of the article titled Punching shear tests on compact footings with uni-
form soil pressure published in Volume 4 (pages 603-617) of the journal Structural Concrete in 2016 (DOI:

10.1002/suco.201500175). The authors of this publication are João Tiago Simões (PhD Candidate), Jan

Bujnak (Research and Development Manager in Peikko), Miguel Fernández Ruiz (Senior lecturer at

EPFL and thesis director) and Aurelio Muttoni (Professor at EPFL and thesis director). The complete

reference is the following:

Simões J. T., Bujnak J., Fernández Ruiz M., and Muttoni A. (2016a): „Punching shear on compact

footings with uniform soil pressure“. Structural Concrete, Vol. 17, No. 4, pp. 603–617.

The 8 specimens composing the experimental programme presented in this article were tested in two

phases. In the first one, specimens PP7 to PP9 were tested in IBETON as part of a private project

financed by Peikko. The contribution of Dr. Jürgen Einpaul in the experimental work performed in

the first phase is deeply acknowledged. The second phase, including 5 specimens (PS11 to PS15), was

performed in the framework of this thesis.

The main contributions of João Tiago Simões to the creation of this article were the following:

• Preparation of specimens PS11 to PS15;

• Preparation of the setup for testing specimens PS11 to PS15;

• Preparation of the measuring systems used to record the behaviour of specimens PS11 to PS15;

• Analysis of the experimental results of specimens PS11 to PS15;

• Contribution to increase the understanding of the kinematics of compact reinforced concrete foot-

ings under uniform soil pressure;

• Production of the figures included in the article;

• Preparation of the manuscript of the article.
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2. Punching shear tests on compact footings with uniform soil pressure

2.1 Abstract

Punching shear is usually the governing failure criterion when selecting the depth of reinforced con-

crete footings. Despite the fact that large experimental programmes aimed at the punching strength

of slender flat slabs have been performed in the past, only a few experimental campaigns on full-scale

compact reinforced concrete footings can be found in the literature. This paper presents the results of

an experimental programme including eight reinforced concrete footings with a nominal thickness of

550 mm. These experiments investigated the influence of column size, member slenderness and the

presence of compression and shear reinforcement. The tests were performed using an innovative test

setup to ensure a uniform soil pressure. The experimental results show that slenderness influences

the punching shear strength as well as the effectiveness of the shear reinforcement. The experiments

also show that an important interaction occurs between bending and shear for high levels of shear

force near the column (the typical case of compact footings or members with large amounts of shear

reinforcement). Different continuous measurements recorded during the experimental tests allow a

complete description of the kinematics and strains at failure. On that basis, experimental evidence is

obtained showing that crushing of the concrete struts near the column is the phenomenon that triggers

the punching failure of compact footings.

Keywords: experimental investigation, footings, punching shear strength, shear reinforcement, col-

umn size, shear slenderness, punching behaviour.

2.2 Introduction

Several experimental investigations regarding the punching shear behaviour of reinforced concrete

footings have been performed in the past (Talbot, 1913; Richart, 1948; Kordina and Nölting, 1981; Di-

eterle and Rostásy, 1987; Dieterle, 1987; Hallgren et al., 1998; Timm, 2003; Hegger et al., 2006; Ricker,
2006; Hegger et al., 2007, 2009; Ricker, 2009; Netopilik, 2012; Urban et al., 2013a,b; Siburg and Hegger,

2014; Siburg, 2014; Krakowski et al., 2015). They can be classified on the basis of the test setup, where

four types can be distinguished. The first test setup refers to the cases where the footings were sup-

ported on a bed of springs and were loaded through a column stub (Talbot, 1913; Richart, 1948) (see

Figure 2.1(a)). This arrangement may reproduce actual conditions for perfectly elastic soils, but the

analysis of the results due to the non-uniform distribution of the reaction pressure (which depends on

the deformations of the footings and varies during the test) is not straightforward. A second config-

uration often used consists of footings resting on line or concentrated supports, with the load being

applied by a column stub or steel plate, see Figure 2.1(b) (Hallgren et al., 1998; Timm, 2003; Netopi-

lik, 2012; Urban et al., 2013a,b; Krakowski et al., 2015). A similar configuration, which is considered

to be part of the same group, is the application of a finite number of concentrated loads at a certain

distance from the column, which is fixed to a reaction frame. This configuration therefore presents

two slightly different options: i) equal displacements and ii) equal force at the line of supports or con-

centrated loads. Although useful information for analysing the influence of different geometrical and

mechanical properties can be obtained from this type of experimental test, both the inclination of the

compression struts and the punching failure surface are geometrically defined by the test setup (the

latter developing between the edge of the column and the inner radius of the supports). Therefore,

in most of the tests on footings subjected to concentrated loads, the failure surface might not have

developed in a completely free manner, instead being defined geometrically by the load arrangement.

18



Introduction

As shown schematically in Figure 2.1(c), another test setup configuration currently used consists of

applying an effective uniform loading replicated through the use of several load points (Kordina and

Nölting, 1981; Dieterle and Rostásy, 1987; Dieterle, 1987; Hegger et al., 2006; Ricker, 2006; Hegger et al.,
2007, 2009; Ricker, 2009; Siburg and Hegger, 2014; Siburg, 2014). These load points are supposed to

represent the resultant of a uniform pressure in each sub-area. It should nevertheless be noted that if

the distance between load points becomes large, these tests might also lead to a geometrical definition

of the failure surface. In fact, this is an important issue when testing full-scale specimens with this

configuration, since a finite number of load points has to be applied over a large surface. Recently, a

more realistic configuration has been used (Hegger et al., 2006; Ricker, 2006; Hegger et al., 2007, 2009;
Ricker, 2009), consisting of footings supported on sand and loaded through the column (see Figure

2.1(d)). The failure surface can develop freely in this configuration, but - similarly to the situation

in the test configuration with footings supported on a bed of springs - soil pressure concentrations

can occur. In addition, soil behaviour may be difficult to characterize and pressure measurements are

needed in order to know the exact distribution of the soil reaction. Nevertheless, these tests represent

a valuable experimental contribution, allowing the investigation of the soil-structure interaction.

CL CL CLCLCL
(a) (d) (e)(c)(b)

Q Q Q Q Q

Figure 2.1: Typical test setup configurations used in experimental investigations of the punching shear
strength of footings.

For the reasons discussed previously, few experimental full-scale tests under complete uniform soil

pressure are available and more data is still needed. An experimental investigation of eight full-scale

reinforced concrete footings with an innovative test setup is presented in this paper (Figure 2.1(e)).

This setup enables the application of a uniform soil pressure to the bottom surface of the specimens.

For that purpose, a group of flat jacks connected in series (equal pressure) was placed in the bottom

of a rigid box, which was then filled with a layer of sand ∼ 300 mm deep, thus ensuring a uniform

distribution of the load and, consequently, the application of a uniform soil pressure. A sheet of poly-

tetrafluoroethylene (PTFE) and small aluminium plates were also placed between the footings and the

layer of sand to reduce the friction between soil and footing. Some parameters were kept constant -

nominal bottom flexural reinforcement ratio (0.75%), nominal concrete compressive strength (30 MPa)

and nominal thickness (550 mm) − and others varied. The parameters whose influence was investi-

gated were: column size, footing side length (allowing variations in shear slenderness), the presence

of shear reinforcement and the presence of horizontal reinforcement in the theoretical compression

zone. With respect to the shear slenderness, in this paper it will be defined as the ratio between the

clear shear span and the effective depth, where the effective clear shear span is defined as the distance

between the edge of the footing and the edge of the columnmeasured in the principal directions of the

reinforcement (placed orthogonally).

Every test was tracked with several continuous measurements to allow an understanding of the kine-

matics and strains in the specimen. Four different behaviour regimes could be clearly distinguished

and they are described in this paper.
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2. Punching shear tests on compact footings with uniform soil pressure

2.3 Experimental programme

2.3.1 Specimens and materials

The footingswere squarewith a side length of 2.12m (PS11, PS12, PP7, PP8) or 1.59m (PS13, PS14, PS15,

PP9). The columnsusedwere also squarewith a side length of 0.30m (PS11, PS13, PS14, PS15, PP7, PP9)

or 0.45 m (PS12, PP8).The bottom flexural reinforcement was arranged orthogonally and its nominal

reinforcement ratio was kept constant for all eight specimens (ratio of 0.75 %, 22 mm diameter bars

at a constant spacing of 100 mm, see Figure 2.2). Horizontal reinforcement in the top face (theoretical

compression surface) was also used, but only for some specimens (footings PS14 and PS15 had no top

reinforcement). When provided, the compression reinforcement was kept constant (with a ratio of

0.39 %, consisting of 16 mm diameter bars at a constant spacing of 100 mm). Both bottom and top

reinforcement was bent near the edges (Figure 2.2). The nominal cover was 20 mm.
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Figure 2.2: Plan and section view of layout of flexural reinforcement: (a) and (b) PS11, PS12, PP7, PP8;
(c) and (d) PS13, PS14, PS15 and PP9.

Footings PP7, PP8, PP9 andPS15 had shear reinforcement consisting of 25mmdiameter double-headed

shear studs in a radial arrangement. The layout of the shear reinforcement for each footing is presented

in Figure 2.3: PP7 had three perimeters with 16 studs, PP8 three perimeters with 20 studs and PP9 and

PS15 two perimeters with 16 studs. In order to ensure the correct positions of the studs, steel strips

(800× 30× 4 mm for PP7 and PP8, and 550× 30× 4 mm for PP9 and PS15) were welded to the heads

of the studs and the position of the flexural reinforcement was adjusted slightly where necessary.

The concrete used in all footings was of normal strength (nominal concrete compressive strength of 30

MPa) with a maximum aggregate size of 16 mm. Concrete cylinders (320 mm high, 160 mm diameter)

were cast, tested and used to verify the concrete strength. Ordinary reinforcing steel with a character-

istic yield strength of 500 MPa was used in all the footings for both flexural and shear reinforcement.
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Figure 2.3: Layout of shear reinforcement: (a) plan of PP7 and PP8, (b) plan of PP9 and PS15, (c)section
through PP7 and PP8, and (d) section through PP9 and PS15.

Its corresponding mechanical properties were measured on three different samples of each different

diameter. The cylinder concrete compressive strength on the day of the punching tests and the yield

strength of the reinforcement for each specimen can be found in Table 2.1.

Table 2.1: Main properties of experimental investigation (B refers to the side length of the square footing;
c is the side length of the square column; d is the effective depth; a is the shear span defined as (B− c)/2;
ρ is the flexural reinforcement ratio; fy is the yielding strength of flexural reinforcement; fc is the concrete
compressive strength measured in cylinders; ns is the number studs per perimeter; np is the number of

perimeters of studs; φw is the diameter of the studs; fyw is the yielding strength of the studs).

Specimen
B c d a/d c/d ρ fy fc ns np

φw fyw
[mm] [mm] [mm] [-] [-] [%] [MPa] [MPa] [mm] [MPa]

PS11 2.12 0.3 0.509 1.79 0.59 0.74 517 29.5 − − − −
PS12 2.12 0.45 0.512 1.63 0.88 0.735 517 31.1 − − − −
PS13 1.59 0.3 0.506 1.27 0.59 0.756 517 32.1 − − − −
PS14 1.59 0.3 0.51 1.26 0.59 0.75 537 31.9 − − − −
PP7 2.12 0.3 0.497 1.83 0.6 0.758 580 33.7 16 3 25 567

PP8 2.12 0.45 0.51 1.64 0.88 0.738 580 34.5 20 3 25 567

PP9 1.59 0.3 0.516 1.25 0.58 0.741 580 34.8 16 2 25 567

PS15 1.59 0.3 0.511 1.26 0.59 0.749 537 32.2 16 2 25 578

2.3.2 Test setup and experimental procedure

The test setup is shown in Figure 2.4. It consisted of a loading system under the footing and a reaction

frame above it (also used as a loading system in some cases). The loading system under the footing

consisted of a box containing a group of flat jacks hydraulically connected with a copper tube (16 jacks

for the larger specimens, nine for the smaller ones). The flat jacks were square with a side length of

500 mm and a nominal height of 55 mm. An electric pumpwas used to introduce water into the group
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2. Punching shear tests on compact footings with uniform soil pressure

of flat jacks to inflate them. The application of a uniform pressure to the bottom surface of the footing

was ensured through the introduction of a layer of sand between it and the flat jacks (compensating

for the gaps between their effective areas). The sand was confined laterally by the faces of a box made

from four steel channel sections. A sheet of PTFE was placed between the sand and the lateral surfaces

of the box, thus avoiding that the uplift of the sand would be constrained by friction. A gap of approx.

20 mm was additionally left between the lateral surfaces of the footing and the lateral surfaces of the

box to allow expansion of the bottom surface of the footing. In order to reduce friction between the

sand and the specimen, a sheet of PTFE and aluminium plates (130× 130× 5mm)were placed between

them.

4 × force transducers

4 × spherical nuts

4 × spheric nuts

aluminium plates

specimen

flat jacks
500 × 500 × 55 mm

bed of mortar

PTFE sheet

sand ~300 mm

PTFE sheet

wood plate

steel column
Ø 220 mm

steel plate

4 × high-strength
steel bars Ø 75 mm

16 × steel profiles
UPN180

4 × steel bars
Ø 36 mm

steel plates

steel plates

reaction slab

laboratory
strong floor

4 x steel profiles
320 × 160 × 2400 mm

2 × steel profiles
600 × 600 × 3000 mm

4 × hydraulic jacks

4 × force transducers

Figure 2.4: Schematic representation of test setup.

The reaction frame above the footing consisted of two perpendicular steel beams connected to a high-

strength steel column. The two steel beams were fixed to the strong floor of the laboratory with four

high-strength ∅ 75 mm threaded bars. The column was simulated by a square steel plate placed be-

tween the footing and the high-strength steel column. A thin layer of plaster was placed between the

steel column plate and the specimens in order to avoid any local stress concentrations.
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For specimens PP7 and PP8, the entire load was applied through the loading system under the footing.

For the remaining tests, four hydraulic jacks were placed on top of the reaction frame. These jacks were

used to apply part of the load at the beginning of the test, thus reducing the necessary deformation of

the flat jacks.

With respect to the experimental procedure, a loading rate of 50 kN/minwas applied. Load steps were

used during the loading of specimens PP7 to PP9 and PS11 to PS13 to perform measurements whose

results are beyond the scope of this paper.

2.3.3 Measurement devices

A general overview of the main measurement devices is shown in Figure 2.5. The applied force was

measuredwith four load cells placed on top of the reaction frame, four strain gauges placed on the steel

column with the oil pressure measured in the hydraulic jacks (placed on the top of the reaction frame)

andwith the water pressure measured in the flat jacks under the sand bed. Negligible differences were

observed between the different devices.

omega-shaped
transducers or
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3 LVDTs at the
column plate

Inc. W

Inc. E
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west edge

LVDT at the
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Figure 2.5: Schematic representation of the main measurement devices and their locations.

The footing rotation was measured on the top surface of the footing with four inclinometers aligned

with the axis and placed 100 mm from the edge of the footing. The strains at the concrete top surface

were measured in radial and tangential directions with the help of three omega-shaped gauges (PP7 to

PP9, PS11 to PS13) or strain gauges (PP14 and PS15) with a base length of 100 mm. Vertical displace-

ments were also measured at different locations on the top surface with linear variable differential

transformers (LVDT), notably at the edges of the footing aligned with the axis. Three LVDTs were also

placed on the steel column plate, enabling the calculation of the vertical displacement at its centre.

The changes in the thickness of the footing were also measured in specimens PS11 to PS15 at different

distances from the column edge. The strains in the bottom flexural reinforcement of specimen PS12

were measured at different locations using strain gauges with a base length of 6 mm. Deformations

of double-headed shear studs were measured using the same strain gauges. The expansion of the top

and south lateral surfaces of specimens PS14 and PS15 was measured with LVDTs, as will be described

later.
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2. Punching shear tests on compact footings with uniform soil pressure

2.4 Experimental results

2.4.1 Main results

The main results of the experimental campaign are presented in Table 2.2. After testing, cracking was

observed on the bottom surface, regularly spaced and coincident with the location of the reinforcing

bars in both directions (see, for instance, Figure 2.6). To investigate the tangential cracking and punch-

ing cone, the specimens were sawn along (at least) the weak axis (axis with smaller effective depth of

reinforcement).

Table 2.2: Results of experimental investigation (QR,with/QR,without refers to the ratio of strengths of the
corresponding specimens with and without shear reinforcement).

Specimen
QR Qflex QR

Qflex

QR

d2·√ fc
QR,with

QR,without
[MN] [MN] [

√
MPa]

PS11 4.769 10.059 0.474 3.389 −
PS12 6.839 12.065 0.567 4.678 −
PS13 6.285 11.422 0.55 4.333 −
PS14 5.896 11.421 0.516 4.013 −
PP7 7.651 11.014 0.695 5.336 1.57

PP8 10.8681 13.469 0.8071 7.1141 1.521

PP9 9.02 13.054 0.691 5.743 1.33

PS15 8.26 11.363 0.727 5.575 1.39
1 Experimental test stopped due to large deformations

The cracking patterns observed are presented in Figure 2.7 (where the punching cone can be clearly

seen). The specimens with shear reinforcement (PP7, PP9 and PS15) failed in punching inside the

shear-reinforced zone by crushing of the concrete struts near the loading plate. The test on specimen

PP8 with shear reinforcement was stopped after large plastic deformations. Nevertheless, shear cracks

can be very clearly seen, indicating that a punching failure was probably about to occur.

Figure 2.6: Schematic representation of cracking pattern on bottom surface of specimen PS14 after testing.
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On the basis of the saw-cuts (Figure 2.7), failure can be associatedwith the crushing observed along the

failure surface, notably, close to the column (where various parallel cracks appear). The specimenswith

shear reinforcement exhibited a more ductile failure than those without shear reinforcement. With the

exception of specimen PP8, every footing with transverse reinforcement presented a clear crushing

failure characterized by the development of a failure surface between the edge of the column and the

first perimeter of studs.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

PS11

PS12

PS13

PS14

PP7

PP8

PP9

PS15

Figure 2.7: Schematic representations of the saw-cuts: (a) PS11; (b) PP7; (c) PS12; (d) PP8; (e) PS13; (f)
PP9; (g) PS14; (h) PS15.

It is also important to note from Figure 2.7 that the inclination of the failure surface of footings without

shear reinforcement appears to be dependent on the shear slenderness, with steeper surfaces observed

for more compact slabs. This is in agreement with previous experimental campaigns presented in the

literature (Hegger et al., 2009; Ricker, 2009; Siburg and Hegger, 2014; Siburg, 2014).

2.4.2 Measured deformations

2.4.2.1 Rotation and deflections

The load-rotation curves of the test specimens are presented in Figure 2.8, where the specimens with-

out shear reinforcement are compared with the corresponding shear-reinforced specimens. From that

figure it can be observed that the presence of shear reinforcement enhances the strength and the de-

formation capacity. Both footings with and without shear reinforcement experienced a decrease in the

tangent flexural stiffness. For specimens without transverse reinforcement, this was observed close to

the failure load, whereas for specimens with shear reinforcement, this decrease was observed at lower

load levels (see Figure 2.8).
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Figure 2.8: Load-rotation curves of the corresponding specimens without and with shear reinforcement:
(a) PS11 and PP7; (b) PS12 and PP8; (c) PS13 and PP9; (d) PS14 and PS15.

Figures 2.9(a) - 2.9(d) show the load-displacement curves obtained using different measurement de-

vices for three specimens without shear reinforcement (PS11 to PS13) and for one specimen with shear

reinforcement (PS15). The displacements presented in this figure were calculated based on the rota-

tions measured with four inclinometers and on the displacement measured with LVDTs at the column

plate or edge (Figure 2.9(e)). Three different components can be distinguished, corresponding to flex-

ural deformations δψ, shear deformations δγ and, finally, column penetration δp, as shown in Figure

2.9(e). It is important to note that the information shown in Figure 2.9 is calculated based on the mea-

sured deformations at the top surface of the specimens. It is also important to note that part of the

deformation, considered here as column penetration, may also be considered as a shear deformation

(here it will be separated for clarity). In this respect, it can be seen that the punching failures of the

footings without shear reinforcement presented an enhanced total deformation capacity (sum of flex-

ural, shear and column penetration) with respect to slender flat slabs (Guandalini et al., 2009) (where

the flexural deformation component is dominant).

The three specimens without shear reinforcement shown in Figures 2.8(a) - 2.8(c) differ in the span-

to-effective depth ratio and the column size. For all specimens, the sum of the shear deformation and

column penetration can be of the same, or even higher, magnitude than the flexural deformations. It

is also possible to verify that the column penetration, which can be seen as a very local deformation,

can reach non-negligible values, particularly for the most compact footings, as a result of high levels of

shear force. It is interesting to note that for the smallest column size, the shear deformation stabilized

or even decreased near failure. This result is explained by the fact that a part of the shear deformation

is accounted for as a column penetration.

Based on the measurements recorded, the deformed shape of the footing during loading can be drawn

as shown in Figure 2.9(e), where the three components (flexural and shear deformations plus col-

umn penetration) are taken into account qualitatively. Figure 2.9(d) refers to footing PS15, which

corresponds to a shear-reinforced footing without horizontal top reinforcement. In the case of shear-

reinforced specimens, the three deformation components can again be clearly distinguished. Although

an increase in flexural deformations is observed close to failure in the case of the shear-reinforced spec-

imen (a plateau seems to be reached in the load-rotation curves, see Figure 2.8(d)), a more significant

increase in the column penetration is again observed.
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Figure 2.9: Load-displacement curves showing, separately, the flexural deformation (estimated based on
the rotation of the footing), shear deformation and column penetration of: (a) PS11, (b) PS12, (c) PS13,
(d) PS15; (e) Scheme of recorded measurements: outer rotation ψ by inclinometers, vertical displacement
at edge of footing δ f ,e with an LVDT, vertical displacement of footing 25 mm from column edge δ f ,c and

vertical displacement at centre of column plate δc.

2.4.2.2 Strains in bottom flexural reinforcement

The strains in the bottom flexural reinforcement of specimen PS12 were tracked along the weak axis

in both the radial and tangential directions. The location of the 32 strain gauges is shown in Figure

2.10(a) (where strain gauge J23 is not considered here in after due to measurement problems during

the test). Although the specimen is square and not circular, strain gauges J17 to J32 can be considered

as indicators of tangential strains.

The results are presented in Figures 2.10(b) and 2.10(c) for radial and tangential directions respectively.

Each value represented in these two figures results from the average value of two strain gauges placed

at a distance of 50 mm, e.g. εs,r at r = 25 mm is the average of J1 (r = 0 mm) and J2 (r = 50 mm), where r

is the radial distance from the centre of the specimen. It is interesting to note that a peak on the strains

profile develops at the edge of the column in the radial direction (although the average value at this

position is below the yielding strain, the strain gauge placed at r = 250 mm reached the yielding strain

locally). It should also be noted that the tangential strains measured near the edge of the footing are

larger than those measured in the radial direction.
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Figure 2.10: Strains in the bottom flexural reinforcement of specimen PS12: (a) location of the 32 strain
gauges used (16 in radial and 16 in tangential direction along the axis in the weak direction), (b) radial
strains J1-J16, and (c) tangential strains J17-J32 (J23 not considered) (percentages indicate load level com-

pared with maximum load).

2.4.2.3 Changes in the thickness of the footings

The changes in the thickness of the specimens were measured at different points in specimens without

shear reinforcement and also in the shear-reinforced footing PS15 (measurement details are shown in

Figure 2.11(a)). The results are presented in Figure 2.11, where it remains clear that the variation in the

thickness at maximum load tends to be more pronounced for the most compact footings (see Figures

2.11(b) - 2.11(e)). It should be noted that the changes in thickness measured correspond to the vertical

component of shear cracks developing inside the footing.

It is possible to verify that the changes in the thickness of the footings start to be significant at values

of ∼ 80 % of the maximum load for the specimens without shear reinforcement. It is also interesting to

note that changes in thickness tend to be more pronounced near the column. With respect to the shear-

reinforced specimen (Figure 2.11(f)), it was shown that the changes in the thickness variation start at

∼ 60 % of the maximum load, which corresponds to the load at which the changes in the thickness of

the reference specimen - without shear reinforcement - can also be observed.
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2.4.2.4 Strains at the concrete top surface

The strains at the concrete top surface were measured near the column plate. The radial and tangential

strains measured for specimen PS11 (most slender specimen) are shown in Figures 2.12(a) and 2.12(b)

respectively. With respect to radial strains, an elongation was measured, with higher values obtained

for smaller distances from the column plate. This elongation increases with increasing levels of load

up to ∼ 80 % of the total load, after which it starts decreasing. At failure, values of radial strain at the

concrete top surface near the column are very small. This behaviour, which was measured consistently

during this experimental campaign, has already been observed in footings in previous experimental

investigations (e.g. Dieterle and Rostásy, 1987; Dieterle, 1987; Hegger et al., 2006; Ricker, 2006; Hegger

et al., 2007, 2009; Ricker, 2009; Siburg and Hegger, 2014; Siburg, 2014). This behaviour is very different

from that normally observed in flat slender slabs (e.g. Kinnunen and Nylander, 1960; Guandalini et
al., 2009; Lips, 2012; Lips et al., 2012), where a shortening (related to compression) was measured in

the soffit of the slab up to a certain value, after which a decompression was normally observed. With

respect to the tangential strains at the concrete top surface, it should be noted that a shortening (related

to compression) proportional to the rotation (as a result of flexural deformations) wasmeasured up to a

certain value, where a tendency towards stabilization or even a slight decrease in the tangential strains

could be measured consistently.
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Figure 2.12: Strains at the concrete top surface of test PS11 in (a) radial and (b) tangential directions
(positive values indicate elongation).

2.4.3 Global observed behaviour of RC footings subjected to concentrated loads

The punching shear strength of the specimens with shear reinforcement is normally governed by one

of the three following failures modes: crushing of the concrete struts between the column and the

first perimeter of shear reinforcement, a failure within or outside the shear-reinforced area (Fernández

Ruiz andMuttoni, 2009). The shear-reinforced specimens in this paper which reached failure exhibited

a crushing of the concrete struts near the loading plate, with the development of a failure surface

between the column edge and the first shear reinforcement perimeter. Although the potential failure

modes of shear-reinforced specimens are well established, the phenomena that trigger the failure of

footings without shear reinforcement is still an object of discussion. In that respect, the continuous

measurements recorded in the shear-critical region (near the column) in this experimental campaign

provide valuable additional information.

Themain deformationsmeasured in the shear-critical region are presented in Figure 2.13. Five different

measurements are presented: rotation measured near the edges of the footing ψ, column penetration

δp, changes in the thickness of the specimen measured at a distance of 100 mm from the edge of the

steel column plate δh and the radial εc,radial and tangential εc,tan strains at the top concrete surface, both

measured at a distance of 100 mm from the edge of the steel column plate. The results presented in

Figure 2.13 correspond to (a) specimen PS11 and (b) specimen PS13, which are the most slender and

the most compact specimens without shear reinforcement respectively. It is important to note that in

both diagrams the load is normalized by the maximum load. With respect to the results, four different

regimes of behaviour can be distinguished:

1. Up to ∼ 30 % Q/QR, an elastic behaviour can be observed. This led to an increase in rotation

(uncracked flexural stiffness), an increase in tangential compression (negative tangential strains)

proportional to the rotation, an increase in the radial tension (as a result of local shear deformation

near the column, see Figure 2.9) and an increase in the support penetration (probably partly due

to crushing of the plaster between steel column plate and footing). No changes in the thickness

of the specimens were observed.
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2. From ∼ 30 to ∼ 80 % Q/QR for PS11 and ∼ 30 to ∼ 75 % Q/QR for PS13, flexural cracks start

developing (this was confirmed after visual inspection of the bottom surfaces after testing, see, for

instance, Figure 2.6) and a decrease in the flexural stiffness can be observed in the load-rotation

curve. The tangential compression strains at the concrete top surface increase in proportion to

the rotation. The radial tension at the top concrete surface is still increasing as a consequence of

a local shear deformation near the column and the penetration of the column accelerates slightly.

In the transition between this and the following stage, changes in the thickness of the footingwere

measured, which may be justified by the appearance of inclined cracks due to the flexural-shear

interaction.

3. From ∼ 80 to ∼ 90 % Q/QR for PS11 and from ∼ 75 to ∼ 85 % for PS13, the rotation and the

column penetration increase, but the corresponding stiffnesses are still approximately equal to

the previous regime. The tangential compression at the concrete top surface is still increasing.

However, a different behaviour may be observed: the changes in the thickness become impor-

tant and the radial tension measured at the concrete top surface attains its maximum, remaining

approximately constant.

4. Finally, from ∼ 90 % Q/QR (PS11) or ∼ 85 % Q/QR (PS13) up to maximum load, a slight loss of

flexural stiffness (also observed to occur in Figure 2.8) is observed, accompanied by a pronounced

loss of shear stiffness. The tangential compression at the concrete top surface near the column re-

mains constant or even decreases (decompression). The radial tension at the concrete top surface

decreases almost down to zero and the changes in the thickness of the footing and the column

penetration accelerate and become very significant.
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Figure 2.13: Representation of different deformations recorded in the shear-critical region for footings:
(a) PS11, (b) PS13; rotation measured at the concrete top surface, column penetration, thickness variation
measured 100 mm from edge of column plate, radial and tangential strains at the concrete top surface
measured 100 mm from edge of column plate with omega-shaped gauges (see Figures 2.5 and 2.11 for

more details of the locations of measurement devices).

The four regimes described above were clearly observed for the four footings without shear reinforce-

ment. The limits of each regime depend, however, on the mechanical and geometrical properties. For

instance, regime (4) appears to be more significant for more compact footings. This stage might be

assumed to correspond to crushing of the concrete struts near the column, which can be confirmed by

the signs of crushing observed along the saw-cuts (see Figure 2.7). Crushing of the concrete struts near

the columnwould also explain the tangential decompression observed at the concrete top surface (as a
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consequence of the pronounced lateral expansion of the concrete close to failure (Guidotti et al., 2011)).
At this stage, the column is penetrating into the footing and the sliding surface forming at the top of

the concrete struts is confirmed by the measurements of the changes in thickness (see Figure 2.11). It

is also interesting to note that the experimental evidence collected in the campaign presented in this

paper are in accordancewith those presented byHallgren and Bjerke (2002), who also observed similar

regimes when analysing the punching behaviour of footings using nonlinear finite element analyses.

2.5 Analysis of experimental evidence

2.5.1 Influence of span-to-effective depth ratio and column size

The span-to-depth ratio depends on the footing and column sizes aswell as the effective depth. Whereas

the nominal value of the latter parameterwas kept constant in the experimental investigation presented

here, the first two were varied. The maximum loads normalized by the square of the effective depth

and the square root of the cylinder concrete compressive strength are presented in Table 2.2 and shown

graphically in Figure 2.14 as a function of shear slenderness (equal column size) and column size (for

equal side length of footings).The results show that an increase in the shear slenderness reduces the

load-carrying capacity for the cases of footings without shear reinforcement (see Figure 2.14(a)) due to:

• an increase in the percentage of load outside the failure surface, where the load has to be carried

by inclined struts (increase in shear force), and

• a decrease in the inclination of the failure surface (Figure 2.7), which is associated with a decrease

in the average shear strength per unit length, according to theoretical considerations (Braestrup

et al., 1976; Simões et al., 2016b).

As shown in Figure 2.14b, increasing the column size leads to an increase in the load-carrying capacity

for footings both with and without shear reinforcement. This may be justified not only by the increase

in the column perimeter (associated with lower shear stresses acting), but also by the inherent decrease

in the shear slenderness (as the side length of the footings was kept constant).
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Figure 2.14: Normalized load-carrying capacity as a function of (a) span-to-effective depth ratio and (b)
column size-to-effective depth ratio.
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2.5.2 Influence of shear reinforcement

Aswas shown previously (see Figures 2.8 and 2.14), the shear reinforcement can enhance the punching

strength and deformation capacity compared with specimens without shear reinforcement. Its effec-

tiveness was nevertheless shown to be dependent on the span-to-effective depth ratio, as can be seen

in Figure 2.14. This has been shown previously for footings having stirrups as shear reinforcement

(Hegger et al., 2009; Ricker, 2009; Siburg and Hegger, 2014; Siburg, 2014) and is here confirmed for the

case of double-headed shear studs. The shear reinforcement controls the development of transverse

strains, as can be seen by comparing the changes in the thickness of footings PS14 and PS15 (see Figures

2.11(e) and 2.11(f)) with the activation of the shear reinforcement in footing PS15 (see Figure 2.15). The

first perimeter of shear studs in specimen PS15 is activated from approx. 80 % of the maximum load of

the reference specimen PS14, which corresponds to the level of load after which important changes in

the thickness of the specimens were measured (Figure 2.11). The excellent anchorage conditions of the

shear reinforcement used in this experimental campaign (double-headed studs with anchorage head

size equal to three diameters) enables its full activation upon the onset of transverse strains.

The decrease in the effectiveness of the shear reinforcement with decreasing shear slenderness may be

physically explained by the location and inclination of the concrete struts. Considering that the prin-

cipal transverse strains develop normal to the compressive strains and that the principal compressive

strains have approximately the same direction as the concrete struts, a decrease in the angle between

the concrete struts and the shear reinforcement leads to a lower efficiency of the latter (Vecchio and

Collins, 1988). This is the case for footings with a low span-to-effective depth ratio, which have a

steeper compression field and, consequently, lower angles between the concrete struts and the shear

reinforcement.
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Figure 2.15: Strains in shear reinforcement of specimen PS15: (a) plan, (b) section (showing locations of
strain gauges), and (c) corresponding load-deformation curves.

2.5.3 Flexural-shear interaction

It is shown in Figure 2.8 that the load-rotation curves of the specimens with shear reinforcement reach

a plateau before failure. The strengths at the plateau are significantly lower than those predicted by

classical yield line theory (Johansen, 1962; Gesund, 1983) and presented in Table 2.2. This has been
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2. Punching shear tests on compact footings with uniform soil pressure

shown to occur for slabs with large amounts of shear reinforcement (Lips, 2012; Lips et al., 2012). This
phenomenon can be seen as a flexural-shear interaction, as shown using the kinematic theorem of limit

analysis (Simões et al., 2016b). This effect is very important for compact footings (Simões et al., 2016b)
since it leads to theoretical values of strength significantly lower than those obtained for a pure flexural

failure.

2.5.4 Influence of top reinforcement

Specimens PS14 and PS15 differ from specimens PS13 and PP9 respectively because horizontal rein-

forcement was not used in the theoretical compression surface. The objectivewas to study the potential

influence of this reinforcement on the failure mode and strength of the footings. According to theo-

retical considerations (Simões et al., 2016b), horizontal reinforcement in the compression zone can act

as confinement reinforcement for the inclined strut near the column, thus increasing the load capacity.

The ratio of the normalized loads (see Table 2.2) of the specimens with and without horizontal flexural

reinforcement confirms that a small increase in the load-carrying capacity can be achieved by including

this reinforcement (8 % increase for specimens without shear reinforcement, PS13/PS14, and 3 % for

specimens with shear reinforcement, PP9/PS15).
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Figure 2.16: Changes in width of specimen PS14: (a) representation of measurement devices used, (b)
results (positive values indicate elongation).

The expansion of the top and lateral surfaces of specimen PS14 was measured with LVDTs (see Figure

2.16(a)) and the results are shown in Figure 2.16(b). An elongation of the bottom surface (measured

at the bottom of the lateral surface) and a shortening of the top surface were measured up to 80 % of

the maximum load, probably resulting from the flexural behaviour. After that, although the bottom

surface continues to elongate, the shortening of the top surface stabilizes. This may be justified by the

expansion of the diagonal concrete strut (Guidotti et al., 2011), which compensates for the continuous

contraction expected due to the flexural behaviour. Whereas for specimen PS13 (with top flexural

reinforcement) no cracks on the top surface could be observed after failure, radial cracks could be

seen on the top surface of specimen PS14 (without top reinforcement). Although the expansion of the

top surface of specimen PS13 was not measured, the differences in the load-carrying capacity and the

crack pattern on the top surface indicate that the presence of top reinforcement might increase the

strength of footings without shear reinforcement (this topic should be clarified by future experimental

and analytical research).
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2.6 Conclusions

An experimental investigation of eight full-scale reinforced concrete footings with and without shear

reinforcement is presented in this paper. The bottom flexural reinforcement (0.75 %) and the nominal

thickness (550 mm) were kept constant, while the influences of column size, slenderness and the pres-

ence of top horizontal reinforcement and shear reinforcement were investigated. Detailed measure-

ments in the shear-critical region were recorded during the experimental tests. The main experimental

evidence is summarized in the following:

1. The punching strength of reinforced concrete footings without shear reinforcement is shown to

increase with decreasing shear slenderness. Further, the inclination of the critical shear crack

appears to be steeper for low span-to-effective depth ratios.

2. The punching strength of reinforced concrete footings can be significantly increased by incorpo-

rating double-headed shear studs. The effectiveness of this reinforcement has been shown exper-

imentally to be dependent on the shear slenderness, being less effective for low span-to-effective

depth ratios.

3. Although flexural deformations might be important for describing the punching behaviour of

footings, significant shear deformations also occur due to the high levels of shear force.

4. A careful analysis of the measurements recorded in the shear critical region indicates that crush-

ing of the concrete diagonal strut close to the column is the phenomenon that triggers failure.

Observations of the saw-cuts after testing confirm the presence of crushed concrete in this zone.

5. An important flexural-shear interaction was observed in the case of footings with shear reinforce-

ment, where a plateau appears to be reached in the load-rotation curves.

6. The load corresponding to this flexural-shear plateau is significantly lower than the theoretical

flexural capacity calculated based on the yield line method. This reduction may be explained by

the high concentrations of shear forces at the edge of the column, which increases the depth of

the compression zone and, consequently, decreases the lever arm.

7. The flexural-shear regime described above has to be taken into account in the design and as-

sessment of reinforced concrete footings. A rational-based method to predict the flexural-shear

capacity of reinforced concrete footings is needed.

35



2. Punching shear tests on compact footings with uniform soil pressure

2.7 References

Braestrup M. W.; Nielsen M. P.; Jensen B. C.; Bach F. (1976): Axisymmetric Punching of Plain and Rein-
forced Concrete. Tech. rep. 75. Structural Research Laboratory, Technical University of Denmark, p. 33.

Dieterle H. (1987): „Design of reinforced concrete foundations of square columns under centric loading

with the help of design diagrams (In German: Zur Bemessung quadratischer Stützenfundamente aus

Stahlbeton unter zentrischer Belastung mit Hilfe von Bemessungsdigrammen)“. Deutscher Ausschuss
für Stahlbeton, Vol. 387, pp. 94–134.

Dieterle H.; Rostásy F. (1987): „Load-carrying behaviour of isolated reinforced concrete foundations of

square columns (InGerman: Tragverhalten quadratischer Einzelfundamente aus Stahlbeton)“.Deutscher
Ausschuss für Stahlbeton, Vol. 387, pp. 1–91.

Fernández Ruiz M.; Muttoni A. (2009): „Applications of the critical shear crack theory to punching

R/C slabs with transverse reinforcement“. ACI Structural Journal, Vol. 106, No. 4, pp. 485–494.

Gesund H. (1983): „Flexural Limit Analysis of Concentrically Loaded Column Footings“. ACI Journal
Proceedings, Vol. 80, No. 3, pp. 223–228.

Guandalini S.; Burdet O.; Muttoni A. (2009): „Punching tests of slabs with low reinforcement ratios“.

ACI Structural Journal, Vol. 106, No. 1, pp. 87–95.

Guidotti R.; Fernández Ruiz M.; Muttoni A. (2011): „Crushing and Flexural Strength of Slab-Column

Joints“. Engineering Structures, Vol. 33, No. 3, pp. 855–867.

Hallgren M.; Bjerke M. (2002): „Non-linear finite element analyses of punching shear failure of column

footings“. Cement and Concrete Composites, Vol. 24, No. 6, pp. 491–496.

Hallgren M.; Kinnunen S.; Nylander B. (1998): „Punching shear tests on column footings“. Nordic
Concrete Research, Vol. 21, pp. 1–22.

Hegger J.; Sherif A.; Ricker M. (2006): „Experimental Investigations on Punching Behaviour of Rein-

forced Concrete Footings“. ACI Structural Journal, Vol. 103, No. 4, pp. 604–613.

Hegger J.; Ricker M.; Ulke M.; Ziegler M. (2007): „Investigations on the punching behaviour of rein-

forced concrete footings“. Engineering Structures, Vol. 29, No. 9, pp. 2233–2241.

Hegger J.; Ricker M.; Sherif M. (2009): „Punching Strength of Reinforced Concrete Footings“. ACI
Structural Journal, Vol. 106, No. 5, pp. 706–716.

Johansen K. W. (1962): Yield-line Theory. Cement and Concrete Association.

Kinnunen S.; Nylander H. (1960): Punching of Concrete Slabs Without Shear Reinforcement. Tech. rep. 158.
Stockholm, Sweden: Transactions of the Royal Institute of Technology, p. 112.

Kordina K.; Nölting D. (1981): Load-carrying behaviour of eccentrically loaded isolated reinforced concrete
foundations (In German: Tragverhalten von ausmittig beanspruchten Einzelfundamenten aus Stahlbeton). Tech.
rep. DFG Research 204/27-30. Braunschweig, Germany: Technical University of Braunschweig, p. 158.

Krakowski J.; Krawczyk L.; Urban T. (2015): „Punching of RC Thick Plates - Experimental Test and

Analysis“. In: Proceedings of fib Symposium, Concrete - Innovation and Design. Copenhagen.

Lips S. (2012): „Punching of Flat Slabswith LargeAmounts of Shear Reinforcement“. PhD thesis. EPFL,

p. 217.

36



References

Lips S.; Fernández Ruiz M.; Muttoni A. (2012): „Experimental Investigation on Punching

Strength and Deformation Capacity of Shear-Reinforced Slabs“. ACI Structural Journal, Vol. 109, No.

6, pp. 896–900.

Netopilik R. J. (2012): „Punching Shear Behaviour of Thick Reinforced Concrete Slabs“. MA thesis.

University of Toronto, p. 243.

Richart F. E. (1948): „Reinforced Concrete Walls and Column Footings, part 1 and 2“. ACI Journal, Vol.
45, pp. 97–127 & 237–260.

Ricker M. (2006): „Punching in RC footings considering the soil-structure-interaction“. In: Proceedings
of 6th International PhD Symposium in Civil Engineering. Zürich.

Ricker M. (2009): „Reliability of punching design of isolated foundations (In German: Zur Zuverläs-

sigkeit der Bemessung gegen Durchstanzen bei Einzelfundamenten)“. PhD thesis. RWTH, Aachen,

p. 304.

Siburg C. (2014): „Consistent punching design in flat slabs and foundations (In German: Zur ein-

heitlichen Bemessung gegen Durchstanzen in Flachdecken und Fundamenten)“. PhD thesis. RWTH,

Aachen, p. 197.

Siburg C.; Hegger J. (2014): „Experimental Investigations on Punching Behaviour of Reinforced Con-

crete Footings with structural dimensions“. Structural Concrete, Vol. 15, No. 3, pp. 331–339.

Simões J. T.; Bujnak J.; Fernández Ruiz M.; Muttoni A. (2016a): „Punching shear on compact footings

with uniform soil pressure“. Structural Concrete, Vol. 17, No. 4, pp. 603–617.

Simões J. T.; Faria D. V.; Fernández Ruiz M.; Muttoni A. (2016b): „Strength of reinforced concrete

footings without transverse reinforcement according to limit analysis“. Engineering Structures, Vol.
112, pp. 146–161.

Talbot A. N. (1913): „ReinforcedConcreteWall Footings andColumnFootings“.Engineering Experiment
Station - University of Illinois, Vol. 67, pp. 114.

Timm M. (2003): „Punching of foundation slabs under axisymmetric loading (In German: Durch-

stanzen von Bodenplatten unter rotationssymmetrischer Belastung)“. PhD thesis. Braunschweig, Ger-

many: Technische Universität Carolo-Wilhelmina zu Braunschweig, p. 159.

Urban T.; Goldyn M.; Krakowski J.; Krawczyk L. (2013a): „Experimental investigation on punching

behaviour of thick reinforced concrete slabs“. Archives of Civil Engineering, Vol. 59, No. 2, pp. 157–174.

Urban T.; Krakowski J.; Goldyn M.; Krawczyk L. (2013b): Punching of RC thick plates. Tech. rep. 19.
Poland: Department of Concrete Structures, Technical University of Lodz.

Vecchio F. J.; Collins M. P. (1988): „The modified compression-field theory for reinforced concrete

elements subjected to shear“. ACI Journal, Vol. 83, No. 2, pp. 219–231.

37



2. Punching shear tests on compact footings with uniform soil pressure

2.8 Notation

Latin characters
Lower Case
a shear span

b0 control perimeter

c side length of square column

d effective depth of flexural reinforcement

fc cylinder concrete compressive strength

fy yield strength of bottom flexural reinforcement

fyw yield strength of shear reinforcement

ns number of studs per perimeter

np number of shear reinforcement perimeters

r radius

Upper Case

B width of specimen

L distance between LVDTs at edge of footing near the column

Q load

QR maximum load

Qflex flexural capacity

Greek characters
Lower Case
δ vertical displacement

δp column penetration

δψ vertical displacement associated with flexural deformation

δγ vertical displacement associated with shear deformation

δ f ,e vertical displacement directly measured at concrete top surface 10 mm from edge

of specimen

δ f ,c vertical displacement directly measured at concrete top surface 25 mm from col-

umn

δc vertical displacement indirectly measured at centre of column plate

εc,r radial strain at concrete surface

εc,t tangential strain at concrete surface

εs,y reinforcement yielding strain

εs,r radial strain in flexural reinforcement

εs,t tangential strain in flexural reinforcement

ρ flexural reinforcement ratio

φw diameter of transverse reinforcement

ψ outer rotation

Upper Case

ΔB change in side length of specimen

Δh change in thickness of specimen

Acronyms
CSCT Critical Shear Crack Theory

LVDT Linear Variable Differential Transformer

PTFE Polytetrafluoroethylene
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Chapter 3

Paper II
Strength of reinforced concrete footings

without transverse reinforcement according to

limit analysis
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Fernández Ruiz (Senior lecturer at EPFL and thesis director), Aurelio Muttoni (Professor at EPFL and

thesis director). The complete reference is the following:

Simões J. T., Faria D. V., Fernández Ruiz M., and Muttoni A. (2016): „Strength of reinforced concrete

footingswithout transverse reinforcement according to limit analysis“. Engineering Structures, Vol. 112,
pp. 146–161.
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V. Faria, Miguel Fernández Ruiz and Aurelio Muttoni.

The main contributions of João Tiago Simões to the creation of this article were the following:

• Performing all the calculations presented in article;

• Analyze the presented results;

• Development the simplified formulae allowing the calculation of the strength of RC footings ac-

cording to the upper bound theorem of limit analysis in an approximative manner;

• Comparison of the experimental results report by Hallgren et al. (1998) and Dieterle and Rostásy

(1987) to the theoretical results;

• Production of the figures included in the article;

• Preparation of the manuscript of the article.
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3. Strength of RC footings without transverse reinforcement according to limit analysis

3.1 Abstract

Isolated footings are reinforced concrete elements whose flexural and punching shear strengths are

usually governing for their design. In this work, both failure modes and their interaction are inves-

tigated by means of the kinematical theorem of limit analysis. Previous works in this domain have

traditionally considered failure mechanisms based on a vertical penetration of a punching cone. In

this work, two enhanced failure mechanisms are investigated considering not only a vertical penetra-

tion of the punching cone, but also a rotation of the outer part of the footing, allowing to consider

the role of both bottom and top reinforcements on the failure load. A rigid-plastic behaviour with a

Mohr-Coulomb yield criterion is considered for the concrete and a uniaxial rigid-plastic behaviour is

assumed for the reinforcement bars. The analysis shows that a smooth transition between flexural and

punching shear failure occurs, corresponding to a flexural-shear regime. With respect to the punching

shear failure regime, it is shown that the top reinforcement might play an important role (a fact usually

neglected by previous investigations). Simplified formulations, allowing easy calculation of the load

carrying capacity of footings, are derived and compared to the solutions according to limit analysis.

Both theoretical and approximated solutions are finally compared with experimental results, showing

consistent agreement.

3.2 Introduction

Concrete footings are commonly used as foundations for buildings and bridges. Although the load

carrying capacity of footings subjected to a concentrated loading originated from a column has been

the object of different research works (e.g. Talbot, 1913; Richart, 1948; Moe, 1961; Kordina and Nölting,

1981; Dieterle and Rostásy, 1987; Dieterle, 1987; Hallgren et al., 1998; Hallgren and Bjerke, 2002; Timm,

2003; Broms, 2005; Hegger et al., 2006; Ricker, 2006; Hegger et al., 2007; Ricker, 2009; Urban et al.,
2013; Siburg and Hegger, 2014; Siburg, 2014), there is still not yet a consensus on a consistent method

with physical basis for its design. In this paper, a rational approach is presented on the basis of the

kinematical theoremof limit analysis, providing anupper bound solution for the load carrying capacity

of these members. The approach may be applied to footings subjected to a distributed soil reaction (as

the case of footings with a uniform soil reaction, see Figure 3.1(a)) or to footings with concentrated

reactions (as the case of pile caps, see Figure 3.1(b)).

CL CL

(a) (b)

Figure 3.1: Schematically representation of (a) footing with uniform reaction and (b) pile caps with con-
centrated reactions.
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One of the first applications of limit analysis to reinforced concrete members subjected to in-plane

shear was proposed by Drucker (1961), who developed both a lower and an upper bound solution for

a beam without shear reinforcement (refer to Figure 3.2(a) and (b)). Drucker (1961) also showed that

the proposed upper and lower bound solutions provided the same failure load and thus corresponded

to the exact solution according to limit analysis. According to Drucker (1961), failure in shear occurs by

crushing of the inclined compression strut (with or without yielding of longitudinal reinforcement).

This has been observed to be consistent with experimental evidences only for beams with low slender-

ness (see Figure 3.2(c), for beam B1 of Leonhardt and Walther (1962)). For larger slenderness (Figure

3.2(d), beam B6 of Leonhardt and Walther (1962)), failure occurs instead by an unstable propagation

of a critical shear crack developing through the compression strut. In these latter cases, the strength

is no longer controlled by the concrete crushing and strain localization occurs. Thus, size effect and

other phenomena govern (Muttoni and Schwartz, 1991; Muttoni and Fernández Ruiz, 2008) and the

application of limit analysis is in principle unsuitable for these cases. Analogously to the behaviour

observed in beams, the strength of slender two-way slabs without shear reinforcement might be gov-

erned by the development of a critical shear crack, thus being in the range where limit analysis is not

applicable (Muttoni and Fernández Ruiz, 2008). On the contrary, footings and compact slabs failing in

punching can be considered to be similar to beams with low shear slenderness failing by crushing of

concrete struts, thus corresponding to the range of cases where limit analysis may be applied.

(a) (b)

(c) (d)

f
c

Figure 3.2: (a) Stress field and (b) kinematically admissible failure mechanism proposed by Drucker
(1961) for simply supported beams without transverse reinforcement subjected to a single load: cracking
pattern and location of theoretical strut of (c) beam B1 and (d) beam B6 by Leonhardt andWalther (1962).

Limit analysis has already been applied in several cases focusing on the flexural and shear capacity of

plain and reinforced concrete elements as joints, beams and slabs (e.g. Drucker, 1961; Johansen, 1962;

Gesund and Dikshit, 1971; Braestrup, 1974; Jensen, 1975; Braestrup et al., 1976; Müller, 1978; Nielsen

et al., 1978b,a; Braestrup, 1979; Morley, 1979; Braestrup, 1981; Gesund, 1983, 1985; Jiang and Shen, 1986;

Muttoni, 1990; Bortolotti, 1990; Kuang, 1991; Muttoni et al., 1997; Salim and Sebastian, 2002; Chen, 2007;

Fernández Ruiz and Muttoni, 2007; Nielsen and Hoang, 2011; Jensen and Hoang, 2012). With respect

to punching shear in slabs, Braestrup et al. (1976), Nielsen et al. (1978a) and Braestrup (1979), presented

a first theoretical solution based on the kinematical theorem, considering the concrete as a rigid-plastic

material with a modified Coulomb yield criterion. The adopted failure mechanism consisted on a

vertical shift of the outer slab portion, see Figure 3.3. Later, Jiang and Shen (1986), Bortolotti (1990),

Kuang (1991) and Salim and Sebastian (2002) also applied the upper bound theorem, adopting the same

mechanism proposed by Braestrup et al. (1976), but with some modifications, namely, in the adopted

failure criterion for the concrete.

41



3. Strength of RC footings without transverse reinforcement according to limit analysis

deformed shape

vertical
displacement

undeformed
shape

V

Figure 3.3: Kinematically admissible failuremechanismproposed by Braestrup et al. (1976) and Braestrup
(1979).

A drawback of the above mentioned works, based on limit analysis to punching shear in slabs, is that

the adopted failure mechanism only considers a vertical displacement along the failure surface, there-

fore neglecting the possibility of rotations leading to the activation of both bottom flexural and top

reinforcement (and thus allowing only the analysis of punching regimes and not flexural or combined

flexural-shear regimes). Moreover, all the above mentioned works deal mostly with punching shear

strength of general slabs, where the application of this theory becomes potentially questionable (influ-

ence of size effect and other phenomena (Muttoni and Fernández Ruiz, 2008)).

In the present work, a theoretical solution for the load carrying capacity of axisymmetric isolated foot-

ings with low slenderness is presented. Two different failure mechanisms were selected as potentially

governing. Both failure mechanisms consider that two footing portions are separated by a failure sur-

face, which is assumed to be rotationally symmetric. The inner portion is considered to be rigid, while

the outer portion deforms due to tangential moments according to a conical shape. Contrary to previ-

ous works, the mechanisms considered in the present paper lead to the consideration not only of the

internal energy dissipated along the failure surface, but also of the internal energy dissipated in the

bottom and top reinforcement, as well as in the concrete compression zone due to tangential bending.

The governing failure mechanism is obtained in each case by minimization of the failure load account-

ing for the fact that both failure mechanisms provide an upper bound solution of the actual failure

load.

On that basis, simplified solutions are also proposed, consistent with the upper bound solutions devel-

oped. Finally, both approximated and optimized solutions are compared with available experimental

tests results, showing the consistency and accuracy of the approach.

3.3 Kinematical theorem of limit analysis applied to isolated

reinforced concrete footings

In limit analysis, materials are assumed to behave in a perfectly plastic manner (Nielsen and Hoang,

2011). The application of the limit analysis is based on limit state theorems, and, in this paper, the

kinematical theorem is used, providing an upper bound of the load carrying capacity. Global equilib-

rium is investigated stating that the rate of internal energy dissipated has to be balanced by the rate of

external work for a licit (kinematically admissible) mechanism.

In this work, a rigid-plastic compressive behaviour of concrete with a Mohr-Coulomb yield criterion is

assumed, see Figure 3.4 (a) and (b). Also the normality condition (strain rate vector normal to the yield

locus) is respected. Due to the brittle behaviour of concrete in tension, tensile strength is neglected

(introduced as a tension cut-off in the plasticity surface). In order to take into account the brittleness

of concrete in compression as well as the influence of transverse strains on concrete strength, a plastic
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compressive strength fcp is considered, which is given by (Fernández Ruiz and Muttoni, 2007):

fcp = fc · η f c · ηε (3.1)

where fc refers to the cylinder concrete compressive strength, ηε and η f c represent the reduction factors

accounting, respectively, for the presence of transverse strains and for the brittleness of high-strength

concrete. Although different approaches have already been proposed to calculate the value of the re-

duction factor accounting for the presence of transverse strains ηε (e.g. Vecchio and Collins, 1986; Mut-

toni, 1990; Muttoni et al., 1997; Vecchio, 2000) and of a global reduction factor η = ηε · η f c (e.g. Nielsen

and Hoang, 2011), further investigations remain to be done in this field, specifically in what regards

the characterization of the state of strains of footings when subjected to concentrated loads. Thus, con-

stant values of ηε will be assumed in this work (and are considered constant for all internal dissipation

contributions, refer to Section 3.6). Regarding the reduction factor accounting for the brittleness of the

high-strength concrete, it may be obtained as (Muttoni, 1990; Muttoni et al., 1997; Fernández Ruiz and

Muttoni, 2007, 2008):

η f c =

(
fc0
fc

)1/3
≤ 1 (3.2)

with fc0 = 30 MPa (Fernández Ruiz and Muttoni, 2007). The consideration of the Mohr-Coulomb yield

criterion with a tension cut-off leads to the definition of three potential regimes occurring along the

failure surface (refer to Figure 3.4 (b)), whose strain rates as well as principal stresses may be defined

as follows:

Regime A :

⎧⎨
⎩

ε̇3
ε̇1

= − 1−sin(ϕ)
1+sin(ϕ)

σ3 = − fcp + 1+sin(ϕ)
1−sin(ϕ)

(3.3)

Regime B :

⎧⎪⎪⎨
⎪⎪⎩

− 1−sin(ϕ)
1+sin(ϕ)

< ε̇3
ε̇1
< 0

σ1 = 0

σ3 = − fcp

(3.4)

Regime C :

⎧⎪⎪⎨
⎪⎪⎩

ε̇3
ε̇1

= 0

σ1 = 0

− fcp < σ3 < 0

(3.5)

where ε̇1, ε̇3 and σ1, σ3 are respectively the principal strain rates and the principal stresses; ϕ is the

concrete friction angle, herein considered equal to ϕ = 37◦ (i.e. tan (0.75), Nielsen and Hoang (2011)).

A uniaxial rigid-plastic behaviour in both compression and tension of reinforcement steel bars is also

assumed, refer to Figure 3.4(c) (i.e., dowel action is neglected). It has to be noted that positive strain

rates and stresses refer to tension.

The geometrical and material properties used to describe the problem are presented in Figure 3.5(a)

(see Notation in Section 3.9). For a given footing geometry, two failure mechanisms (shown in Figure

3.5(b) and (c)) are considered. The minimum load carrying capacity that results from the analysis

using both mechanisms is the considered upper bound failure load. Both mechanisms consider that

two portions of the footing are separated by an axisymmetric narrow plastic zone (see Figure 3.5(a)),

where the velocity field results from the relative rotation ψ̇ (Figure 3.5) around an instantaneous centre

of rotation.
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Figure 3.4: (a) Rigid-plastic compressive behaviour considered for concrete; (b) Mohr-Coulomb yield criterion with
normality condition and (c) uniaxial rigid-plastic behaviour under tension and compression admitted for reinforce-

ment bars.

The kinematics considered for both mechanisms differ in the admissible location for the instantaneous

centre of rotation, as well as in the rotation direction. As shown in Figure 3.5(b), in the first mechanism

(M1), the location of the instantaneous centre of rotation in the radial axis is considered to be behind

the edge of the column (rICR ∈]− ∞, rc]), while in the vertical direction it is admitted to be above the

bottom reinforcement (zICR ∈]0;∞]). The kinematically admissible mechanismM1 presents a counter-

clockwise rotation when the instantaneous centre of rotation is not in the infinite. This mechanism

is often assumed to be the one occurring in flexural as well as punching shear failures of flat slabs.

For flexural failures, the instantaneous centre of rotation is close to the tip of the failure surface at

the column edge, leading to a failure with an important rotation component. For the punching shear

failure, the location of the instantaneous centre of rotation in radial direction shifts towards infinite

(rICR → −∞). In the latter case, the mechanism consists of a vertical shift of the outer portion of the

footing, without activation of both bottom and top reinforcements (as dowelling of the reinforcement

is neglected). This case corresponds to the failure mechanism originally proposed by Braestrup et al.
(1976), where only the internal energy dissipated along the failure surface contributes to the load car-

rying capacity.
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Figure 3.5: (a) Geometrical and mechanical properties of a footing; kinematically admissible mechanism
(b) M1 and (c) M2 with location of the corresponding instantaneous centre of rotation (ICR).

As shown in Figure 3.5(c), the location of the instantaneous centre of rotation in the kinematics admit-

ted for the second mechanism (M2) is assumed to be below or at the level of the bottom reinforcement

(zICR ∈]− ∞; 0]) and outside the radius where the reaction resultant is applied
(
rICR ∈]rq;∞[

)
. The ro-
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Kinematical theorem of limit analysis applied to isolated reinforced concrete footings

tation considered (clockwise) is opposite to the one assumed in the first mechanism. The kinematics

of this mechanism allows a failure mode without activation of the bottom reinforcement (when the in-

stantaneous centre of rotation is located at the same level), which, as will be later shown, may govern in

some cases. As for mechanism M1, also mechanism M2 allows a failure mode which corresponds to a

shift of the outer portion of the footing, without dissipation of energy in the bottom and top reinforce-

ments. This situation occurs when the radius of the instantaneous centre of rotation moves towards

infinite (rICR → ∞), leading again to the solution originally proposed by Braestrup et al. (1976).
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Figure 3.6: Example of mechanisms (a) M1 and (b) M2 and corresponding velocities.

The rate of external work and the components of the rate of internal energy dissipated can be computed

for each mechanism based on the velocity field occurring along the failure surface, which is a function

of the geometry of this surface and of the location of the instantaneous centre of rotation. An example

of a failure mechanism and its velocity field is shown in Figure 3.6 for mechanisms (a) M1 and (b) M2.

As shown in Figure 3.6, the velocity u̇ along the failure surface may be expressed as:

u̇ =

√
(r − rICR)2 + (z − zICR)2 · ψ̇ (3.6)

being its radial component u̇r given by:

u̇r =| z − zICR | ·ψ̇ (3.7)

where r and z represent the radial and the height coordinates, respectively. While the reaction resul-

tant applied to the footing provides the only component of the external work, different components of

dissipation of internal energy might be activated: (i) shear transfer along the failure surface, (ii) com-

pression in the concrete near top surface in the outer portion due to tangential bending, (iii) bottom

and top reinforcements. For a given location of the instantaneous centre of rotation (rICR, zICR) and for

an assumed geometry of the failure surface, each component of the rate of external work and of the

rate of internal energy dissipated may be computed as detailed in the following sections.
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3. Strength of RC footings without transverse reinforcement according to limit analysis

3.3.1 Rate of external work

The rate of external work Pe is given by:

Pe = V· | rq − rICR | ·ψ̇ (3.8)

where the shear forceV corresponds to the soil reaction applied to the footing outside the failure surface

and rq describes the location of the soil reaction resultant (Figure 3.6). In the cases of uniform soil

reaction, the total load Q is obtained considering also the soil reaction inside the failure surface:

Q = V · r2s
r2s − r20

(3.9)

where r0 refers to the radius of the failure surface at the level of the bottom reinforcement. In the

present work, it is considered that the failure surface develops between the top surface and the bottom

reinforcement (i.e. the cover of the bottom reinforcement is neglected). The radius rq may be calculated

by means of:

rq =

∫ 2·π
0

∫ rs
r0

r · (r · drdϑ)∫ 2·π
0

∫ rs
r0

r · dr · dϑ
=

2
3
·
(
r3s − r30

)(
r2s − r20

) (3.10)

In some tests, or in the case of pile caps, the reaction is concentrated at rq and Q = V. While for uniform

soil reaction cases, the failure surface may reach the bottom surface in between the edge of the column

and the edge of the footing, in the cases of concentrated reactions, the failure surface may only be

located in between the edge of the column and the inner radius of the loading areas (considering that

supports are rigid).

3.3.2 Rate of internal energy dissipated in the concrete along the failure surface

The energy dissipated along the failure surface is one of the components contributing to the total rate

of internal energy dissipated in both mechanisms (Figure 3.7). The calculation of this component was

already investigated by several researchers (e.g. Jensen, 1975; Braestrup et al., 1976; Nielsen et al., 1978a;
Braestrup, 1979, 1981; Nielsen and Hoang, 2011). This dissipation of energy occurs in a narrow plastic

zonewith a thicknessΔ. The dissipation of energy along the failure surface can be analyzed considering

an infinitesimal part of it and assuming a velocity field as the one represented in Figure 3.7(b), where a

radial view of the plastic zone that develops in the failure surface is shown. As derived in Section 3.10.1

(Appendix), the rate of internal energy dissipated along the failure surface Pi,c,FS may be computed as:

Pi,c,FS = −π · fcp · ψ̇ ·
∫ d

0
[sin (χ)− 1] ·

√
(r − rICR)2 + (z − zICR)2 · r

cos (α)
dz (3.11)

where α refers to the angle between the failure surface and the vertical axis; χ represents the angle

between the failure surface and the velocity. Depending on this latter angle, three different regimes

of dissipation of energy, corresponding to the regimes shown in Figure 3.4 (b), may occur. In Regime

A, which represents a sliding failure, the angle between the failure surface and the velocity is equal

to the concrete friction angle (χ = ϕ), corresponding to the regime where dissipation of energy is

maximum. In this case, the geometry of the failure surface generatrix is a logarithmic spiral, since it

is known that the angle between the normalized vector tangent to the failure surface generatrix at a

certain point, and the normalized vector connecting this point and the instantaneous centre of rotation

has to be equal to the complementary angle of the concrete friction angle. It can be noted that if the
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Kinematical theorem of limit analysis applied to isolated reinforced concrete footings

instantaneous centre of rotation moves towards infinity, the geometry of the failure surface generatrix

in RegimeA becomes a straight line. In Regime B, the angle between the failure surface and the velocity

is in between the concrete friction angle and 90◦. The last regime corresponds to the case where the

velocity is normal to the failure surface, which is the reason why it is called as separation failure. In

the latter case, neglecting the concrete tensile strength, there is no dissipation of energy. The geometry

of the failure surface generatrix in Regime C is known to be a straight line, as the normalized vector

tangent to the failure surface at a certain point has to be equal to the normalized vector that connects

the same point and the instantaneous centre of rotation.
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3.3.3 Rate of internal energy dissipated in the concrete due to tangential

compression

As can be seen in Figure 3.6(a), for mechanismM1, when the instantaneous centre of rotation is inside

the slab in terms of height (0 < zICR < d), and only in this case, tangential compression in the concrete in

the outer portion of the footing occurs. This component of dissipation of energy is zero in mechanism

M2, since its kinematics does not allow the development of tangential compression in the concrete.

The tangential compression near the top surface in a footing sector is represented in Figure 3.8. It is

shown in Section 3.10.2 (Appendix) that the rate of internal energy dissipated corresponding to this

component is given by:

Pi,c,t = π · (rs − rc) · 〈d − zICR〉2 · fcp · ψ̇ (3.12)

where 〈d − zICR〉 is equal to zero when the component d − zICR is negative, corresponding therefore to

the cases where there is no compression in the concrete due to tangential bending of the outer portion

of the footing.
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Figure 3.8: Top view of footing sector representing the concrete tangential compression.
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3. Strength of RC footings without transverse reinforcement according to limit analysis

3.3.4 Rate of internal energy dissipated in the reinforcement

When the failure mechanism considers a velocity field with a non-zero radial component at the level of

the reinforcement, dissipation of energy occurs in both radial and tangential directions. Formechanism

M1, the bottom reinforcement is considered to be in tension, while the top reinforcement may be in

tension or compression, depending upon the location of the instantaneous centre of rotation (above or

below the top reinforcement, respectively). In mechanismM2, both reinforcements are in tension. The

rate of internal energy dissipated in bottom (Pi,s,b) and top reinforcements (Pi,s,t) are derived in Section

3.10.3 (Appendix), being shown to be respectively given by:

Pi,s,b = 2 · π · d · fcp · [r0ωr + (rs − r0) · ωt] · | zICR | ·ψ̇ (3.13)

Pi,s,t = 2 · π · d · fcp · [rc · ωr + (rs − rc) · ωt] · | zICR
(
d − d′

) | ·ψ (3.14)

where ωr and ω′
r are respectively bottom and top mechanical reinforcement ratios in radial direction;

ωt and ω′
t are respectively bottom and top mechanical reinforcement ratios in tangential direction;

being given in a general manner by ω = ρ · fy/ fcp. For simplicity, it is considered here that the radial

reinforcement ratio is constant along the radius.

3.3.5 Determination of the failure load

The rate of work equation states that the rate of external work has to be equal to the total rate of internal

energy dissipated as: Pe = Pi (according to the convention followed in Chen (2007) and Nielsen and

Hoang (2011)). The rate of the external work (given by Eq. (3.8)) and each component of the total rate

of internal energy dissipated (Eqs. (3.11)-(3.14)) are non-negative scalars.

The solution to the problem (location of the instantaneous centre of rotation and geometry of the fail-

ure surface) results from the minimization of the failure load. As shown in Braestrup et al. (1976), the
generatrix of the failure surface in the Regime B can be found by calculus of variations, using Lagrange-

Euler equations (Courant and Hilbert, 1953). Alternatively, the problem may also be solved numeri-

cally, dividing the failure surface in a finite number of segments, and searching for both the location

of the instantaneous centre of rotation and the geometry of the failure surface that lead to the lowest

load carrying capacity. This corresponds to a constrained non-linear optimization problem, since the

location of the instantaneous centre of rotation as well as the angle between the failure surface and

the velocity are constrained. In the following, results will be presented solved by means of a numeri-

cal optimization of the geometry of the failure surface and the location of the instantaneous centre of

rotation.

3.4 Influence of different parameters on the load carrying capacity

In this section, the results given by the optimization of the proposed kinematical approach are pre-

sented and the influence of the most important parameters is investigated. The results presented in

this section consider: (i) uniformly distributed soil reaction applied to bottom surface; (ii) equal rein-

forcement ratio in both radial and tangential directions for bottom and top reinforcements (ρ = ρr = ρt)

and (ρ′ = ρ′r = ρ′t) (iii) effective depth of top reinforcement equal to d′ = 0.1 · d. The remaining pa-

rameters are the footing (parameter rs/d) and column sizes (parameter rc/d), as well as the bottom(
ω = ρ · fy/ fcp

)
and the top

(
ω′ = ρ′ · f ′y/ fcp

)
mechanical reinforcement ratios. The load carrying ca-

pacity is normalizedusing the concrete plastic compressive strength
(
fcp

)
and the square of the effective

depth
(
d2

)
.
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Influence of different parameters on the load carrying capacity

3.4.1 Governing failure mechanisms

Figure 3.9(a) depicts the relationship between the normalized load carrying capacity and the bottom

mechanical reinforcement ratio, considering both mechanisms, for a case having as parameters rs/d =

2.0, rc/d = 0.5 and without top reinforcement (ω′ = 0). In the same figure, also the flexural capacity

computed based on the yield line pattern shown in Figure 3.10 is presented:

Qf lex = 2 · π · mR · rs

rq − rc
· r2s
r2s − r2c

(3.15)

where r2s/
(
r2s − r2c

)
is introduced in order to consider the uniform soil reaction under the column and

rq is given by Eq. (3.10) using r0 = rc . Themoment capacity of the section mR, which depends upon the

location of the neutral axis (above, below or at the level of the top reinforcement), is calculated again

assuming a rigid-plastic behaviour for concrete and steel:

mR =

⎧⎪⎪⎨
⎪⎪⎩

fcp · (ω + ω′) · d · (d′ − c
2
)
+ ω · fcp · d · (d − d′) , if ω + ω′ < d′/d

fcp · (ω − ω′) · d · (d′ − c
2
)
+ ω′ · fcp · d · (d − d′) , if ω − ω′ > d′/d

fcp · d ·
(

d′2
2·d + ω · (d − d′)

)
, otherwise

(3.16)

Figure 3.9(b)-(g) present several failure mechanisms for the cases highlighted in Figure 3.9(a), repre-

senting mechanisms M1 and M2. The principal strain directions along the failure surface (computed

using Eq. (3.318)), which represent the principal direction of the compression, are also represented.

A clear flexural failure mode is shown to occur only for fairly low amounts of bottom mechanical re-

inforcement ratio (refer to Figure 3.9 (a)), where the load carrying capacity given by mechanism M1

is very close to the flexural capacity computed using Eq. (3.15). As shown in Figure 3.9(a), mecha-

nismM1 is governing for low amounts of bottommechanical reinforcement ratio, defining a transition

between flexural and punching shear failures. In fact, mechanism M1 considers in its kinematics the

rotation known to occur for a flexural failure (Figure 3.9(b)). On the contrary, mechanism M2 con-

siders a clockwise rotation, therefore leading to a failure mechanism more related to a translational

movement (associated to punching failures) during the flexural-shear failure regime (Figure 3.9(c)).

While for mechanism M1, the instantaneous centre of rotation is close to the column, thus leading to

an important component of rotation, in mechanismM2, the instantaneous centre of rotation is far from

it, leading to a dominant translational movement with low rotation associated. Therefore, in mecha-

nism M1 (Figure 3.9(b)), a steep failure surface with biaxial compression (Regime A) close to the top

surface, and a separation failure (Regime C) without dissipation of energy, close to the bottom surface,

is observed. Hence, in mechanismM1, a considerable amount of the rate of internal energy dissipated

occurs in the bottom reinforcement due to the important component of rotation in its failuremode. This

is the reason why an increase of the bottommechanical reinforcement leads to a significant increase in

the load carrying capacity, accompanied by a reduction of the rotation component. For higher values

of the bottom mechanical reinforcement ratio, the significance of the rotation decreases, reducing the

influence of the bottom reinforcement. At this point, the dissipation of energy in the concrete along the

failure surface increases, and the biaxially compressed zone extends towards the bottom surface. The

evolution of the described process regarding mechanism M1 may be observed with the help of Figure

3.9 (b), (d) and (e), where it is possible to follow the decrease of the rotation component and the growth

of the importance of Regime A along the failure surface.
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The transition betweenmechanismsM1 andM2 occurs when the rotation component disappears. This

corresponds to the case where the instantaneous centre of rotation is in the infinite and the failure

mechanism corresponds to a pure translationalmovementwith a horizontal component (Figure 3.9(e)).

For increasing values of the bottommechanical reinforcement ratio, mechanismM1 leads to a reduction

of the horizontal component of this translational movement, until the failure mechanism consists only

in a vertical shift of the outer portion of the footing (Figure 3.9(f)). This process is characterized by a

decrease of the dissipation of energy in the bottom reinforcement, as a consequence of the decrease

of the radial component of the velocity. This reduction is accompanied by an increase of the energy

dissipated along the failure surface, which results from the increment of the length of Regime A along

the failure surface (compare Figure 3.9(e) and (f)). However, as it can be observed in Figure 3.9(a), for

fairly large values of the bottom mechanical reinforcement ratio, this solution does not correspond to
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Influence of different parameters on the load carrying capacity

the lowest upper bound solution, since another failuremechanism is governing. The failuremechanism

governing in this case, represented in Figure 3.9(g), includes an important rotation component contrary

to the one normally considered in a flexural failure. In this failuremechanism, the instantaneous centre

of rotation is located close to the footing and at the level of the bottom reinforcement, thus not activating

it. From the comparison of Figure 3.9(f) and (g), respectively, corresponding to failure mechanisms

M1 and M2 for equal bottom mechanical reinforcement ratio, it is possible to observe that the second

mechanism leads to a lower contribution of the biaxially compressed zone (Regime A).

r
c

r s

Figure 3.10: Yield line pattern considered in flexural failure of a circular footing with a circular column.

3.4.2 Parametric analysis

The results presented in Figure 3.9 are extended in Figure 3.11 for several cases varying the footing

size (ratio rs/d = 1.5; 2.25; 3.0), the column size (ratio rc/d = 0.2; 0.4; 0.6), as well as the top mechan-

ical reinforcement ratio (ω′ = 0; 0.05). In Figure 3.11 is also shown the normalized flexural capacity,

computed according to Eqs. (15) and (16). Although the influence of the ratios rs/d, rc/d and ω′ is
important, the evolution of the normalized load carrying capacity with the bottom mechanical rein-

forcement ratio presented for the general case of Figure 3.9, is also observed in all the cases shown in

Figure 3.11. Although the influence of top mechanical reinforcement ratio (when reasonable values of

it are adopted) tends to be reduced in the cases wheremechanismM1 is governing, it shows a consider-

ably influence in the results wheremechanismM2 governs. This influencemay be observed comparing

Figure 3.11(a)-(c) with Figure 3.11 (d)-(f), respectively, where the consideration of a low amount of top

mechanical reinforcement ratio (ω′ = 0.05) leads to a significant increase of the load carrying capac-

ity. A large value of top mechanical reinforcement ratio leads to a limit situation corresponding to the

instantaneous centre of rotation located at infinite in the radial axis, thus leading to a failure mode

characterized by a vertical movement of the outer portion of the footing. In this case, both mechanism

M1 and M2 lead to the same failure mechanism and load carrying capacity, which corresponds to the

solution originally proposed by Braestrup et al. (1976). This phenomenon may be observed, for exam-

ple, comparing the case of rs/d = 2.25 and rc/d = 0.4 presented in Figure 3.11 (b) and (e). An increase

of the punching shear strength with the increase of the top mechanical reinforcement ratio is related

to a decrease of the rotation component and to the increase of the biaxially compressed zone along the

failure surface. This is the kinematical reason why the top reinforcement becomes more efficient for

more compact slabs and larger column sizes, since these are the cases where a larger clockwise rotation

component in the punching shear regime exists (mechanismM2 governing, compare e.g. Figure 3.11(a)

and (c)). It is interesting to note that although this conclusion is obtained through a kinematical ap-

proach, it is physically consistent with the fact that the development of confinement stresses, due to the

presence of top reinforcement, enables the improvement of the capacity of the diagonal compression

strut carrying shear that develops inside the footing (Guidotti et al., 2011).
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With respect to the ratio of the column size (ratio rc/d), it may be observed that for larger column sizes,

although the failure surface is slightly steeper, not only the radius of the failure surface at the level

of the bottom reinforcement, but also the area of the failure surface is larger, leading to a higher load

carrying capacity.

As shown in Figure 3.11, and as previously explained, the punching shear strength increases with in-

creasing column size, with increasing top mechanical reinforcement ratio and with decreasing footing

size. As a consequence, the flexural-shear regime becomes more important, covering a larger range

of bottom mechanical reinforcement ratios, meaning that this regime is relevant for the analysis of

footings.

Although the presented analysis has been carried for uniform soil reaction, it may also be performed

for concentrated reactions, leading to the same general conclusions. In these cases, as observed by

Braestrup et al. (1976), when concrete tensile strength is neglected, as in the present work, the failure

surface develops between the column and the inner radius of the support, accounting for the size of

the loading areas (necessary to distribute the reaction forces).
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3.5 Simplified formulations - practical application

The application in the practice of the kinematical approach above presentedwould be time consuming.

For this reason, the development of simplified expressions, allowing a simpler, yet accurate, calculation

of the load carrying capacity of footings becomes important. The application of the expressions that

will be presented in the following is limited to the cases of footings (i) without shear reinforcement,

(ii) considered to be subjected to a uniform soil reaction and (iii) with rc/d ≤ 1.2, 1.0 ≤ a/d ≤ 3.0

(where a = rs − rc) and 2.0 ≤ rs/rc ≤ 12.0. For simplicity reasons, only cases without top reinforcement

will be investigated. This consideration is sufficiently approximated for practical purposes as the top

reinforcement does not yield to significant differences except for very compact members with large

columns (refer to Figure 3.11). In accordance to what is presented in the previous section, two different

regimes are considered: flexural-shear regime for low amounts of bottom mechanical reinforcement

ratio and punching shear regime for large amounts of the same parameter.

In accordance to what is presented in the previous section, two different regimes are considered:

flexural-shear regime for low amounts of bottom mechanical reinforcement ratio and punching shear

regime for large amounts of the same parameter.

3.5.1 Flexural-shear failures

It was previously shown that this regime, where an interaction between flexural and shear behaviour

is observed, leads to lower load carrying capacity than the one predicted considering a flexural failure

with the yield pattern shown in Figure 3.10 (Eqs. (3.15) and (3.16)). In fact, a flexural failure considers

a compression zone resulting from a pure flexural behavior, thus being only a function of the bottom

and topmechanical reinforcement ratios (Eq. (3.16)). However, this does not occur for compact footings

subjected to a concentrated load. In these cases, a concentration of large shear forces near the column

is observed, resulting from a compression strut whose radial force component equilibrates most of

the force of the whole tension reinforcement. For this reason, the height of the compression zone in

the radial direction is significantly larger than in the tangential direction. For cases without shear

reinforcement as those treated in this chapter, the latter can even disappear as the instantaneous centre

of rotation is located outside the footing.

Due to the inclination of the actual compression strut carrying shear and the location of its resultant,

the effective lever arm is reduced with respect to the one corresponding to a flexural analysis (Figure

3.12(b)). The location of the resultant of the compression strut at the edge of the column (zc in Fig-

ure 3.12(a)) can be calculated on the basis of the results of the optimized theoretical solution using

equilibrium conditions, as the load carrying capacity and the reinforcement forces are known. A good

estimation of these results is given by the following equation:

zc

d
=

ω

2
·
(
1+ 0.4 · rs

rc
· d
rq − rc

)
(3.17)

where rq is calculated using Eq. (3.10) with r0 = rc . The load carrying capacity Qf s can thus be

calculated according to Eq. (3.15) but using a reducedmoment capacity mR accounting for the reduced

lever arm, defined as:

mR = fcp · d2 · ω
(
1− zc

d

)
with zc/d from Eq. (3.17) (3.18)

It has to be noted that this equation is valid only for the flexural-shear failure as yielding of bottom

reinforcement is assumed. For large amounts of bottom reinforcement, pure shear regime becomes

governing.
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Figure 3.12: Schematic representation of a rigid-body of footing uniformly loaded in the flexural-shear
regime: (a) actual failure mechanism obtained with the kinematical theorem of limit analysis and (b)
failure mechanism considered in the calculation of the flexural-shear capacity through the simplified

formulation.

3.5.2 Punching shear failures

Considering that sufficient amount of bottom flexural reinforcement is used to avoid a flexural-shear

failure, a punching shear failurewithout plastic activation of the flexural reinforcement governs. In this

regime, the load carrying capacity relies only on the internal energy dissipated by the concrete along

the failure surface. Thus, a nominal control sectionwhere an effective shear stress is to be verified helps

investigating this regime (typical approach of design codes). The location of this control section has to

be a function of the inclination of the failure surface as well as of the distribution of the internal energy

dissipated along the failure surface. A steeper inclination of the failure surface as well as a higher

concentration of the energy dissipated near the column requires a control section closer to it. Besides

being important to define the location of a nominal control section, the inclination of the failure surface

is also important to define the amount of uniform soil reaction that acts inside the failure zone.

Figure 3.13 depicts the secant inclination β of the failure surface as a function of the shear slenderness

ratio a/d, for different values of the column size to effective depth ratio rc/d. This inclination is defined

as:

cot (β) =
r0 − rc

d
(3.19)

It is shown in Figure 3.13 that this inclination is mostly a function of the shear slenderness (it decreases

with increasing of the shear slenderness). This is in accordance with different experimental evidences

(e.g. Hegger et al., 2009; Ricker, 2009; Siburg and Hegger, 2014; Siburg, 2014), which have shown a

relationship between the inclination of the shear crack of the punching cone and the shear slenderness,

with steeper shear cracks observed for more compact footings. Based on the results of the kinematical

approach herein presented, a simple formula for the secant inclination β can be proposed:

β =
π/2

0.8+ 0.5 · a
d
[rad] (3.20)

54



Simplified formulations - practical application

Based on this inclination, the radius of the failure surface r0 at the level of the bottom reinforcement can

be calculated according to Eq. (3.19). On that basis, it is also possible to define the part of the uniform

soil reaction acting inside the failure zone (and thus do not influencing the shear strength) and the total

load carrying capacity Qp corresponding to this regime:

Qp = Vp · r2s
r2s − r20

(3.21)

whereVp represents the effective shear strength in the case of punching shear regime, thus correspond-

ing to the uniform soil reaction outside the radius of the failure surface at the level of bottom reinforce-

ment. Based on the column radius as well as on the radius of the failure surface at the level of the

bottom reinforcement, a control section and its corresponding perimeter b0 may be defined as:

b0 = 2 · π · [rc + 0.2 · d · cot (β)] (3.22)

Parameter 0.2 defines a control section located at 0.2 · d · cot (β) from the column edge. This choice is

justified by the curvature of the failure surface with a steeper inclination near the column, precisely

where a concentration of energy dissipation tends to occur (see Figure 3.13(c)-(f)).

Eq. (3.20)
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Figure 3.13: (a) Theoretical and approximated values of the inclination of the failure surface as a func-
tion of the shear slenderness for different column sizes to effective depth ratios; (b) normalized effective
punching strength as a function of footings size to effective depth ratio for different column sizes to ef-
fective depth ratios; failure mechanisms corresponding to punching shear regime with principal strain
directions along the failure surface and control section: (c) rs/d = 1.75 and rc/d = 0.25; (d) rs/d = 1.75

and rc/d = 0.50; (e) rs/d = 2.25 and rc/d = 0.25; (f) rs/d = 2.25 and rc/d = 0.50.
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3. Strength of RC footings without transverse reinforcement according to limit analysis

The punching shear carrying capacity, normalized by the plastic concrete compressive strength fcp
and by the control section b0 · d, is shown as a function of the footing size in Figure 3.13(b) for different

column sizes. The figure shows that the normalized effective punching shear strength is mostly a

function of the footing size to effective depth ratio rs/d. An increase of this parameter leads to a decrease

of the normalized effective punching load, which is in accordance to what is physically expected. A

simplified expression can be proposed to calculate the normalized effective punching strength as a

function of the footing size to effective depth ratio:

Vp =
1

0.9+ rs
d
· fcp · b0 · d (3.23)

It can be noted that fcp is calculated using Eq. (3.1) to account for concrete brittleness and the presence

of transverse strains. The results obtained with the proposed expression are also shown in Figure

3.13(b), approximating fairly well the results numerically obtained through the optimization of the

kinematical approach above presented.
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Figure 3.14: Load carrying capacity calculated obtained with optimized kinematical solution and simpli-
fied expressions as a function of the bottom mechanical reinforcement ratio for different column sizes to

effective depth ratios: (a) rs/d = 1.50; (b) rs/d = 2.25 and (c) rs/d = 3.0.

The lowest failure load obtained by the simplified expressions proposed for each regime is the govern-

ing load carrying capacity. A general comparison of the normalized load capacity obtained through

the optimized solution of the kinematical approach above presented and the proposed simplified ex-

pressions is presented in Figure 3.14, for different footing and column sizes (span to effective depth

ratio a/d varying from to 1.0 to 2.9). A very good agreement of the optimized kinematical solution by

the proposed expressions can be observed.

3.6 Comparison with experimental results

Several experimental investigations concerning the punching shear strength of footings have been per-

formed in the past (e.g. Talbot, 1913; Richart, 1948; Kordina and Nölting, 1981; Dieterle and Rostásy,

1987; Hallgren et al., 1998; Timm, 2003; Hegger et al., 2006; Ricker, 2006; Hegger et al., 2007, 2009;
Ricker, 2009; Urban et al., 2013; Siburg and Hegger, 2014; Siburg, 2014). The experimental investiga-

tions presented by Hallgren et al. (1998) and Dieterle and Rostásy (1987) are particularly interesting,

since both testing campaigns contained several tests with the same loading conditions and where all

the parameters
(
rs; rc; rq; d;ω′) were kept approximately constant, only varying the bottom mechanical

reinforcement ratio ω.
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Table 3.1: Description of experimental tests performed by Hallgren et al. (1998) and Dieterle and Rostásy (1987).

Source Specimen
Footing’s rs

a Column’s rc
b d fc,cube

c ρd fy VR,test
shape [m] shape [m] [m] [MPa] [%] [MPa] [MN]

Hallgren
et al.
(1998)e

S1

Square 0.48 Circular
0.125

0.242 49.8 0.40

621

1.363
S2 0.243 35.5 0.40 1.015
S3 0.250 37.2 0.39 1.008
S4 0.232 32.1 0.66 0.992
S7 0.246 18.0 0.40 0.622
S8 0.245 39.3 0.25 0.915
S9 0.244 31.9 0.40 0.904
S12

Circular 0.48 Circular 0.125
0.242 34.1 0.42

621
1.049

S13 0.244 24.7 0.42 0.803

Dieterle
and
Rostásy
(1987)

B-1

Square 0.846 Square 0.191

0.296 28.2 0.20 453 1.054
B-2 0.294 28.4 0.42 451 1.522
B-3 0.293 33.8 0.62 415 2.065
B-4 0.292 28.9 0.83 395 1.902

B-4/2 0.290 30.4 0.89 458 2.090
B-4/3 0.294 29.2 0.86 464 2.068
B-4/4 0.292 29.8 0.83 395 1.889
V2 0.294 33.0 0.40 486 1.800

a In the case of square footings, rs is calculated considering an equal area for the bottom surface.
b In the case of square columns, rc is computed assuming an equal column perimeter.
c To compare with the theoretical results, an fc = 0.8 · fc,cube is considered.
d The reinforcement ratio was considered equal in both radial and tangential directions; its value was assumed to be
equal to the average reinforcement ratio determined in orthogonal direction.
e For the square footings of Hallgren et al. (1998), rq is simplified considering to be equal to the one of the experimental
tests in circular footings (rq = 337 mm).

The parameters selected to compare the theoretical solution with the experimental values represent

average values of the experimental tests considered in the comparison (the main properties of each

experimental test are shown in Table 3.1, where a circular column with an equal perimeter of a rectan-

gular columnwas considered and, in the case of square footings, rs was calculated considering an equal

area for the bottom surface). The plastic concrete compressive strength was calculated according to Eq.

(3.1) considering a constant value for the reduction factor accounting for the presence of transverse

strains ηε. Actually, this factor is not constant within the group of experimental tests considered, since

it is a function of the state of strains in the region of the theoretical failure surface (Vecchio and Collins,

1986; Vecchio, 2000; Fernández Ruiz and Muttoni, 2008), therefore depending on the bottom mechan-

ical reinforcement ratio. Higher values of the latter ratio are associated to lower transverse strains.

For this reason, two different values of the reduction factor accounting for the presence of transverse

strains are considered in the comparison between the experimental results of Hallgren et al. (1998) and
the theoretical values of the normalized load carrying capacity, computed based on the optimization

of the kinematical solution, shown in Figure 3.15(a) ηε = 0.5 and (b) ηε = 0.6. These values are in agree-

ment with the reductions factors usually adopted for concrete with shear cracks (Fernández Ruiz and

Muttoni, 2008; Nielsen and Hoang, 2011; fib Model Code 2010, 2013). The results show a fairly good

agreement between theory and experimental results. It is interesting to note that the test results with

lower amounts of bottommechanical reinforcement ratio approximate better the theoretical results for

smaller values of the reduction factor ηε. On the contrary, for the footings with larger amounts of bot-

tom mechanical reinforcement ratio, a better agreement is found (and thus smaller strains at failure) if

a higher value is considered for the reduction factor ηε.

Figure 3.15(b) shows a comparisonwith the tests performed byDieterle and Rostásy (1987) (main prop-

erties shown in Table 3.1). According to the authors of the experimental campaign, the four tests with

ρ > 0.8% presented a bond failure at the plane of the bottom flexural reinforcement, leading to a po-

tentially premature punching shear failure. Nevertheless, it is not clear if bond failure was the cause
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3. Strength of RC footings without transverse reinforcement according to limit analysis

of a premature punching failure or was just a consequence of punching. For that reason, the referred

experimental tests are also considered herein. For this group of tests, a reduction factor accounting for

the presence of transverse strains ηε varying within 0.45 and 0.55 is considered (slightly lower than for

the previous series). The different range of values considered for each group of experimental tests may

be justified by the different geometrical andmaterial properties, as well as different loading conditions

and potential bond failures. As this group of experimental tests was conductedwith a uniform loading

applied to the bottom surface of the footings, the simplified expressions are also presented in Figure

3.15(b) approximating very well the optimized solution of the kinematical approach of limit analysis.
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Figure 3.15: Comparison between theoretical and experimental values of load carrying capacity from:
(a) Hallgren et al. (1998), considering rs/d = 1.98, rc/d = 0.51, rq/d = 1.39, r0/d = 1.18 and ω′ = 0; (b)

Dieterle and Rostásy (1987) considering rs/d = 2.90, rc/d = 0.65 and ω′ = 0.

Although the comparisons between experimental results and theoretical values have shown a fairly

good agreement for both groups of experimental tests, it remains clear that the value of the reduction

factor ηε to be applied in order to take into account the state of strains has to be further investigated. In

addition, the potential influence of size is also a topic of future works.

3.7 Conclusions

The kinematical theorem of limit analysis is used in order to determine the load carrying capacity

of isolated footings subjected to concentrated loads. The concrete is considered to have rigid-plastic

behaviour with a Mohr-Coulomb yield criterion.

A rigid-plastic behaviour in both compression and tension is also adopted for the reinforcement bars.

The influence of each physical parameter in the load carrying capacity based on the proposed approach

is assessed. The main conclusions are:

1. Pure flexural failure only occurs for fairly low amounts of bottom mechanical reinforcement,

while pure punching shear failure results only for large amounts of flexural reinforcement;

2. For intermediate amounts of flexural reinforcement, a combined flexural-shear mechanism be-

comes governing, allowing a smooth transition betweenflexural andpunching shear failuremodes.

It is shown that this regime is particularly important for compact footings and larger columns,
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Conclusions

thus showing its importance when predicting the load carrying capacity of footings;

3. In what respects the punching shear regime, it is shown that the consideration of a failure charac-

terized by a translational verticalmovement of the outer portion of the footingmight overestimate

the punching shear strength in the cases of low amounts of top mechanical reinforcement ratios.

This difference is more important for compact footings and for larger column sizes. In these cases,

the top reinforcement ratio might play an important role;

4. A physical explanation for the previous conclusion on the influence of the top reinforcement, is

that this reinforcement enables the development of confining stresses along the failure surface,

increasing the capacity of the compression strut that carries shear directly inside the footing;

5. Simplified formulations for practical use are presented for the cases of footings subjected to uni-

form soil reaction, incorporating simplified expressions that allow the calculation of the load

carrying capacity corresponding to each regime. It is shown that the simplified formulations

proposed approximate fairly well the optimized kinematical solution;

6. The lower load capacity observed in the flexural-shear regime, when compared to the pure flexu-

ral capacity, is explained by the loss of lever arm due to the increase of the compression height at

the column edge, where both shear and radial compression are carried by an inclined compres-

sion strut. This shows that the Johansen’s yield line theory (Johansen, 1962) developed for thin

slabs is not really applicable for compact footings;

7. In what respects the punching shear regime, it is shown that the inclination of the failure surface

is mostly a function of the shear slenderness and that the control section for assessing the shear

strength should be located rather close to the column (closer than values usually adopted for

punching design of flat slabs). This is justified by the fact that the failure surface presents, in a

wide range of cases, a curved geometry with a steeper inclination close to the column, precisely

where an important amount of internal energy is dissipated;

8. The proposed plastic approach is shown to approximate fairly well the experimental results of

Hallgren et al. (1998) and Dieterle and Rostásy (1987);

9. Further investigation remains to be done regarding the value of the reduction factor that takes

into account the state of transverse strains of the footings on the concrete strength and potentially

also size effect.
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3.9 Notation

Latin characters
Lower Case
a shear span

b0 control perimeter

c height of the compression zone

d effective depth of bottom flexural reinforcement

d′ effective depth of top reinforcement

dA unit of failure surface

dAr,s,b, dAr,s,t unit of area of bottom and top tangential reinforcement

dVol unit of volume

dVolt,s,b, dVolt,s,t unit of volume of bottom and top tangential reinforcement

dPi,c,FS rate of internal energy dissipated in the concrete per unit of failure surface

dPi,c,t rate of internal energy dissipated in the concrete per unit of area due to tangential

bending

dPtan
i,s,b, dPtan

i,s,t rate of internal energy dissipated in the bottom and top reinforcement per unit of

reinforcement area in the radial direction

dPrad
i,s,b, dPrad

i,s,t rate of internal energy dissipated in the bottom and top reinforcement per unit of

reinforcement area in the radial direction

dϑ angle of a footing sector

fc cylinder concrete compressive strength

fc0 reference compressive strength

fc,cube cube concrete compressive strength

fcp plastic concrete compressive strength

fy yield stress of bottom steel reinforcement

f ′y yield stress of top steel reinforcement

h height of the footing

mR moment capacity per unit of length

mR reduced moment capacity per unit of length

n, t normal and tangential directions in Figure 3.7

q uniform soil pressure

Q total load carrying capacity

r radial coordinate

rc radius of a circular column

rICR radial coordinate of the instantaneous centre of rotation

rq radius of the reaction resultant

rs radius of circular footing

r0 radius of the failure surface at the level of the bottom flexural reinforcement

u̇ velocity

u̇n normal velocity

u̇t tangential velocity

u̇r radial component of velocity

u̇r,s,b, u̇r,s,t radial component of velocity at the level of the bottom and top reinforcements

z height coordinate

zc location of the diagonal compression strut at the column edge

zICR height coordinate of the instantaneous centre of rotation

Upper Case

Pe rate of external work

Pi total rate of internal energy dissipated

Pi,c,FS rate of internal energy dissipated in the concrete along the failure surface

Pi,c,t rate of internal energy dissipated in the concrete due to tangential bending

Pi,s,b, Pi,s,t rate of internal energy dissipated in the bottom and top reinforcements

Prad
i,s,b, Ptan

i,s,b rate of internal energy dissipated in bottom reinforcement in radial and tangential

directions
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Prad
i,s,t, Ptan

i,s,t rate of internal energy dissipated in the top reinforcement in radial and tangential

directions

Qf lex flexural capacity

Qf s flexural-shear capacity

Qp punching shear capacity

V load carrying capacity

Vf lex effective flexural capacity

Vf s effective flexural-shear capacity

Vp effective punching shear capacity

Greek characters
Lower Case
α angle between failure surface and the vertical axis

β secant inclination of the failure surface

γ̇n,t deviatoric strain rate in a radial view of the plastic zone along the failure surface

ε̇n, ε̇t normal and tangential strain rate in a radial view of the plastic zone

ε̇1, ε̇2, ε̇3 principal strains rate

ε̇c,t concrete tangential strain rate in the outer portion of the footing

ε̇tan
s,b , ε̇tan

s,t tangential strain rate in the bottom and top reinforcements

ηε reduction factor accounting for the presence of transverse strains

η f c reduction factor accounting for the brittleness of high-strength concrete

η global reduction factor

θ principal strain direction

ρ experimental bottom reinforcement ratio

ρr, ρt bottom reinforcement ratio in radial and tangential directions

ρ′r, ρ′t top reinforcement ratio in radial and tangential directions

σ1, σ3 principal stresses

φ concrete friction angle

χ angle between failure surface and velocity

ψ̇ relative rotation rate around the instantaneous centre of rotation

ωr, ωt bottom mechanical reinforcement ratio in radial and tangential directions

ωr, ωt top mechanical reinforcement ratio in radial and tangential directions

Upper Case

Δ thickness of the plastic zone

Acronyms
ICR instantaneous centre of rotation
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3.10 Appendix

3.10.1 Rate of internal energy dissipated in the concrete along the failure surface

This appendix describes the calculation of the rate of internal energy dissipated in the concrete along

the failure surface. As stated in Section 3.3.2, this component has already been studied by several

researchers (e.g. Jensen, 1975; Braestrup et al., 1976; Nielsen et al., 1978a; Braestrup, 1979, 1981; Nielsen

and Hoang, 2011). This dissipation of energy is investigated considering an infinitesimal region of the

plastic zone occurring along the failure surface and assuming a velocity field as the one represented

in Figure 3.7(b), where a radial view of this plastic zone is shown. Tangential and normal velocities as

well as tangential, normal and deviatoric strains rates in this radial plane are respectively defined as:

u̇t =
n
Δ
· u̇ · cos (χ) (3.24)

u̇n =
n
Δ
· u̇ · sin (χ) (3.25)

ε̇t =
∂u̇t

∂t
= 0 (3.26)

ε̇n =
∂u̇n

∂n
=

u̇
Δ
· sin (χ) (3.27)

γ̇nt =
∂u̇t

∂n
+

∂u̇n

∂t
=

u̇
Δ
· cos (χ) (3.28)

where u̇ is the velocity (refer to Eq.(3.6)) and χ is the angle between the velocity and the failure surface

(refer to Figure 3.7). As shown in Figure 3.7(c), based onMohr’s circle, the principal strains rates ε̇1 and

ε̇3, as well as the principal directions of compression θ an be respectively determined by:

ε̇1 =
u̇

2 · Δ
· sin (χ) +

√
u̇2

4 · Δ2 · [sin2 (χ) + cos2 (χ)
]
=

u̇
2 · Δ

· [sin (χ) + 1] (3.29)

ε̇3 =
u̇

2 · Δ
· sin (χ)−

√
u̇2

4 · Δ2 · [sin2 (χ) + cos2 (χ)
]
=

u̇
2 · Δ

· [sin (χ)− 1] (3.30)

tan (2 · θ) =
cos (χ)

sin (χ)
= cot (χ) = tan

(π

2
− χ

)
⇒ θ =

π

4
− χ

2
(3.31)

With respect to ε̇2, it varies linearly in the thickness of the plastic zone from zero (inner region) to the

value of the tangential strain rate in the outer portion of the footing. Due to the fact that the thickness

of the plastic zone is negligible with respect to the volume of the outer portion of the footing, the rate

of internal energy dissipated in the plastic zone due to ε̇2 can be neglected. Using the relations defined

in Eqs. (3.3), (3.4) and (3.5) for the rigid-plastic behaviour considered for the concrete (refer to Figure

3.4(b)), the rate of internal energy dissipated per unit of failure surface area dPi,c,FS for the three different

regimes can be computed as:

dPi,c,FS = (ε̇1 · σ1 + ε̇3 · σ3) · Δ · dA

=
u̇
2
· [sin (χ) + 1] · σ1 · dA +

u̇
2
· [sin (χ)− 1] · σ3 · dA

= −1
2
· fcp · [sin (χ)− 1] ·

√
(r − rICR)2 + (z − zICR)2 · ψ̇ · dA

(3.32)

The rate of internal energy dissipated along the failure surface Pi,c,FS is therefore determined by:

Pi,c,FS =
∫

dPi,c,FS (3.33)

65



3. Strength of RC footings without transverse reinforcement according to limit analysis

being the unit of area defined by:

dA = r · dϑ · dz
cos α

(3.34)

where α refer to the angle between the failure surface and the vertical axis. Using Eqs. (3.32) and (3.34),

Eq. (3.33) can be rewritten as:

Pi,c,FS = −
∫ 2·π

0

∫ d

0

1
2
· fcp · [sin (χ)− 1] ·

√
(r − rICR)2 + (z − zICR)2 · ψ̇ · r

cos α
· dz · dϑ

= −π · fcp · ψ̇ ·
∫ d

0
[sin (χ)− 1] ·

√
(r − r − ICR)2 + (z − zICR)2 · r

cos α
· dz

(3.35)

3.10.2 Rate of internal energy dissipation in the concrete due to tangential bending

This appendix describes the rate of internal energy dissipated in the concrete due to tangential com-

pression outside the failure surface (deformation of the footing portion outside the failure surface con-

sidered to have a conical shape). The strain rate in tangential direction within the compression zone

(zICR < z ≤ d)) is a function of the radial component of the velocity:

ε̇c,t = − u̇r (z)
r

= −| z − zICR |
r

· ψ̇ (3.36)

where z refers to the coordinate varying along the depth of the compression zone, thus being within

z ∈ [zICR; d]. The rate of internal energy dissipated per unit of volume dPi,c,t due to this component

given by:

dPi,c,t = −ε̇c,t · fcp · dVol (3.37)

Hence, the rate of internal energy dissipated in the concrete due to the tangential compression Pi,c,t is

defined by:

Pi,c,t = −
∫

ε̇c,t · fcp · dVol (3.38)

with

dVol = dA · dz = r · dr · dϑ · dz (3.39)

where dϑ represents the angle of a footing sector. Using Eqs. (3.36), (3.37) and (3.39), Eq. (3.38) can be

rewritten as:

Pi,c,t, =
∫ d

zICR

∫ 2·π

0

∫ rs

rc

| z − zICR |
r

· fcp · ψ̇ · r · dr · dϑ · dz

=
∫ d

zICR

∫ 2·π

0

∫ rs

rc
| z − zICR | · fcpψ̇ · dr · dϑ · dz

= π · (rs − rc) · 〈d − zICR〉2 · fcp · ψ̇

(3.40)

where 〈d − zICR〉 is equal to zero when the component d − zICR is negative. These correspond to the

cases where compression due to tangential bending of the outer portion of the footing does not exist.

Alternatively, the same result could be obtained by considering that the continuum tangential deforma-

tion of the outer portion is replaced by assuming tangential displacement discontinuities in a number

of vertical (radial) failure surfaces where plane stress conditions are assumed.
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3.10.3 Rate of internal energy dissipation in the reinforcement

This appendix describes the rate of internal energy dissipated in both bottom flexural and top rein-

forcement when the radial component of the velocity is non-zero. This component of the velocity at

the level of the bottom reinforcement (z = 0) is given by:

u̇r,s,b = u̇r(r=0) =| zICR | ·ψ̇ (3.41)

being the rate of internal energy dissipated in radial direction per unit of area of bottom radial rein-

forcement dPrad
i,s,b defined by:

dPrad
i,s,b = u̇r,s,b · fy · dAr,s,b (3.42)

and the corresponding rate of internal energy dissipated Prad
i,s,b is thus given by:

Prad
i,s,b =

∫
u̇r,s,b · fy · dAr,s,b (3.43)

where the unit of area of bottom radial reinforcement dAr,s,b is determined by:

dAr,s,b = ρr · d · r0 · dϑ (3.44)

Replacing Eqs. (3.39), (3.40) and (3.42) in Eq. (3.41), the rate of internal energy dissipated in the bottom

reinforcement in the radial direction can be defined as:

Prad
i,s,b =

∫ 2·π

0
| zICR | · fy · ρr · d · r0 · ψ̇ · dϑ (3.45)

In what respects tangential direction, the corresponding strain rate ε̇tan
s,b results from the radial compo-

nent of the velocity at the level of the corresponding reinforcement (z = 0):

ε̇tan
s,b =

u̇r,s,b

r
=

| zICR |
r

· ψ̇ (3.46)

being the rate of internal energy dissipated per unit of volume of bottom tangential reinforcement dPtan
i,s,b

defined by:

dPtan
i,s,b = ε̇tan

s,b · fy · dVolt,s,b (3.47)

where

dVolt,s,b = ρt · d · r · dr · dϑ (3.48)

The rate of internal energy dissipated in tangential direction Ptan
i,s,b is therefore defined by:

Ptan
i,s,b =

∫ 2·π

0

∫ rs

r0
| zICR | · fy · ρt · d · ψ̇ · dr · dϑ (3.49)

Taken into account the contributions of both radial and tangential directions, defined in Eqs. (3.45) and

(3.49), the rate of internal energy dissipated in the bottom reinforcement can be computed as:

Pi,s,b = Prad
i,s,b + Ptan

i,s,b

=
∫ 2·π

0
| zICR | · fy · ρr · d · r0 · ψ̇ · dϑ +

∫ 2·π

0

∫ rs

r0
| zICR | · fy · ρt · d · ψ̇ · dr · dϑ

= 2 · π · d · fy · [r0 · ρr + (rs − r0) · ρt] · | zICR | ·ψ̇

(3.50)
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Defining respectively the bottom mechanical reinforcement ratio in radial and tangential direction as

ωr = ρr · fy/ fcp and ωt = ρt · fy/ fcp and ωt = ρt · fy/ fcp, Eq. (3.50) can be rewritten:

Pi,s,b = 2 · π fcp · [r0 · ωr + (rs − r0) · ωt] · | zICR | ·ψ̇ (3.51)

The rate of internal energy dissipated in the top reinforcement can be computed in an analogous man-

ner as for the bottom reinforcement. Hence, concerning the radial direction, the radial component of

the velocity at its level u̇rad
r,s,t, the rate of internal energy dissipated per unit of area of top radial rein-

forcement dPrad
i,s,t and the rate of internal energy dissipated Prad

i,s,t are respectively given by:

u̇r,s,t = u̇r(z=d−d′) =| zICR − (
d − d′

) | ·ψ̇ (3.52)

dPrad
i,s,t = u̇r,s,t · f ′y · dAr,s,t , with dAr,s,t = ρ′r · d · rc · dϑ (3.53)

Prad
i,s,t =

∫ 2·π

0
| zICR − (

d − d′
) | · fy · ρr · d · rc · ψ̇ · dϑ (3.54)

With respect to the tangential direction, the corresponding strain rate ε̇tan
s,t , the rate of internal energy

dissipated per unit of volume of top tangential reinforcement dPtan
i,s,t and the rate of internal energy

dissipated Ptan
i,s,t can be respectively computed as:

ε̇tan
s,t =

u̇r,s,t

r
=

| zICR − (d − d′) |
r

· ψ̇ (3.55)

dPtan
i,s,t = ε̇tan

s,t · f ′y · dVolt,s,t , with dVolt,s,t = ρ′t · d · r · dr · dϑ (3.56)

Ptan
i,s,t =

∫ 2·π

0

∫ rs

rc
| zICR − (

d − d′
) | · f ′y · ρ′t · d · ψ̇ · dr · dϑ (3.57)

The rate of internal energy dissipated in the top reinforcement Ptan
i,s,t results from the sum of both

tangential and radial components, respectively given by Eqs. (3.54) and (3.57). Taking into account

that top mechanical reinforcement ratio in radial and tangential directions are respectively defined by

ω′
r = ρ′r · f ′y/ fcp and ω′

t = ρ′t · f ′y/ fcp, the rate of internal energy dissipated in the top reinforcement may

be determined in accordance to Eq. (3.58):

Pi,s,t = 2 · π · d · fcp ·
[
rc · ω′

r + (rs − rc) · ω′
t
] · | zICR − (

d − d′
) | ·ψ̇ (3.58)
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Chapter 4

Paper III
The theoretical principles of the Critical Shear

Crack Theory for punching shear failures and

derivation of consistent closed-form design

expressions

This chapter is the postprint version of the journal article titled The theoretical principles of the critical shear
crack theory for punching shear failures and derivation of consistent closed-form design expressions published
in the journal Structural Concrete in 2017 (DOI: 10.1002/suco.201700088). The authors of the publication

are Aurelio Muttoni (Professor at EPFL and thesis director), Miguel Fernández Ruiz (Senior lecturer

at EPFL and thesis director) and João Tiago Simões (PhD Candidate). The complete reference is the

following:

Muttoni A., Fernández Ruiz M., and Simões J. T. (2017): „The theoretical principles of the critical shear
crack theory for punching shear failures and derivation of consistent closed-form design expressions“.

Structural Concrete, pp. 1–17. doi: 10.1002/suco.201700088.

The work presented in this article is an extension of a conference paper of the directors of thesis titled

Critical Shear Crack Theory for punching shear design: from the mechanical model to closed-form design expres-
sions presented in the ACI/fib Symposium in 2016 at Philadelphia (Muttoni and Fernández Ruiz, 2017).

In the mentioned publication, the directors of this thesis proposed a new failure criterion for punching

shear failures and introduce the concept of closed-form design expressions based on the Critical Shear

Crack Theory. In this paper, the pertinence of the new failure criterion is theoretically justified and

systematically validated with test results.

The journal article which constitutes this chapter differs from the mentioned conference article by: (i)

presenting a full state-of-the art of the Critical Shear Crack Theory for punching shear failures and the

basis of its development; (ii) justifying the newly proposed failure criterion with basis on mechanical

models; (iii) developing closed-form solutions to calculate not only the punching strength but also the

associated rotation at failure; (iv) validating the newly proposed failure criterion and the developed

closed-form solutions for slender slabs and footings based on databases with recent data; (v) clarifying

how different approaches of Critical Shear Crack Theory for punching shear design may be used.
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The main contributions of João Tiago Simões to the creation of this article were the following:

• In charge of the review of Critical Shear Crack Theory based on the existing works of Guidotti

(2010) and Simões et al. (2016b) (consistently with the original work of Braestrup et al. (1976));

• Participation in the development of the derived close-form solutions;

• Performing all the calculations;

• Comparison of the experimental results against the Critical Shear Crack Theory following the

different possible approaches;

• Comparison of the results of the closed-form design expressions against recent databases and

individual series of experimental tests;

• Production of the figures included in the article;

• Preparation of the manuscript of the article.
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Abstract

4.1 Abstract

The mechanical model of the critical shear crack theory (CSCT) has been used in the past to investigate

a number of shear-related problems, such as punching of slab-column connections with and without

transverse reinforcement. In this paper, a discussion on the differences and analogies between slender

slabs and squat members (footings) without transverse reinforcement is presented on the basis of the

CSCT. This discussion highlights how bending and shear deformations influence the opening of the

critical shear crack and eventually its ability to transfer shear forces. On that basis, it is investigated

and justified a power-law expression to characterize the failure criterion of the CSCT. This criterion,

in combination with a suitable load-deformation relationship, can be used to derive closed-form ex-

pressions for punching shear design. The accuracy of these expressions is verified against databases

of slender slabs (121 specimens) and footings (34 specimens) with consistent agreement.

Keywords: closed-formdesign expressions, concrete structures, critical shear crack theory, experimen-

tal verification, mechanical model, punching shear

4.2 Introduction

Research on punching shear and its design implications has drawn much interest of the scientific and

practitioner communities (fib, 2001; Polak, 2005; fib, 2017). This has been motivated by a number of

reported collapses (Fernández Ruiz et al., 2010, 2013) and by the fact that many design expressions

found in codes of practice still have an empirical nature (Eurocode 2, 2004; ACI 318, 2014). Following

this research effort, a number of mechanically based models have been developed in the past with the

aim of providing consistent design expressions for punching shear.

One of the first models with a rational basis to calculate the punching shear strength was proposed

by Kinnunen and Nylander in the 1960s (Kinnunen and Nylander, 1960). This model considers that

shear is carried by a conical strut whose failure in compression triggers the punching failure of the slab-

column connection. Assuming that (a) failure of the strut occurs for a given level of the compressive

tangential strain developing in the soffit of the slab in vicinity of the column and (b) by adopting a kine-

matics defined by a conical deformation in the outer region of the slab, Kinnunen and Nylander (1960)

established a failure criterion as a function of the rotation of the slab (whose calculationwas performed

adopting a bilinear moment-curvature relationship). The rational theory of Kinnunen and Nylander

(1960) was later adapted by other researchers and extended to footings, high strength concrete and to

have consistent treatment of size effect (e.g. Broms, 1990; Hallgren, 1996; Broms, 2016).

Consistentlywith the principal ideas of Kinnunen andNylander’smodel, Muttoni and Schwartz (1991)

developed a rational approach to punching. The main ideas of Muttoni (2008) are that strains localize

in a critical shear crack (Figure 4.1(a)) that governs the ability of a slab to transfer shear forces (as a

function of the crack lips displacements and their roughness) (Muttoni and Schwartz, 1991; Muttoni,

2008, 2003). This approach was also shown to be applicable in a consistent manner to failures in shear

for one-way slabs (Muttoni, 2003) and for shear-reinforced slabs (Fernández Ruiz and Muttoni, 2009)

and was named as the critical shear crack theory (CSCT).

In agreement to the CSCT assumptions, and as confirmed experimentally (Muttoni, 2008; Guandalini

et al., 2009), larger openings of the critical shear crack reduce the capacity of transferring shear forces.

Thus, the punching strength and the deformation capacity of a slab-column connection at failure can

be related by means of a failure criterion (Figure 4.1(c)). By intercepting the failure criterion with
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Figure 4.1: (a) Schematic representation of cracking at a slab-column connection; (b) potential punch-
ing failures; (c) failure criterion of critical shear crack theory (CSCT) Muttoni (2008) compared to tests

according to the database of (Muttoni, 2008).

the load-deformation relationship, the punching shear strength and its associated deformation can be

calculated, see Figure 4.1(b).

With respect to the load-deformation relationship for slender slabs, it can be characterized by the ro-

tation (ψ) of the slab (Muttoni, 2008). Such load-rotation relationship is highly nonlinear and influ-

enced by cracking, tension-stiffening effects, and potential reinforcement yielding (Fernández Ruiz

and Muttoni, 2017), thus being influenced by the reinforcement amount and properties. As a con-

sequence, failures can occur in different regimes (Figure 4.1(b)) (Guandalini et al., 2009): with all

reinforcement remaining elastic, part of the reinforcement being yielded or even at the flexural ca-

pacity. Although detailed calculation of the load-rotation relationship can be performed (considering

quadri-linearmoment-curvature diagrams incorporating cracking and tension-stiffening effects) (Mut-

toni, 2008), the use of a non-linear parabolic law (derived from the quadri-linear model (Muttoni et al.,
2013)) has shown to be efficient for design purposes in terms of accuracy and ease of use (Muttoni,

2008):

ψ = km · rs

d
· fy
Es

·
(

ms

mR

)3/2
(4.1)

where rs refers to the distance between the axis of the supported area and the line of zero radialmoment,

d is the effective depth, fy and Es are respectively the yield strength and the modulus of elasticity of

flexural reinforcement, ms is the average acting bendingmoment in the support strip (see, e.g., Muttoni

and Fernández Ruiz (2012) for its definition), mR is the average moment capacity in the support strip

(Muttoni et al., 2013), and km is a factor whose value depends on the level of refinement used to estimate

the acting bending moment (value of 1.2 for refined analysis or 1.5 otherwise) (Muttoni et al., 2013). It
can be noted that an advantage of this approach is that tailored load-rotation relationships can be

developed for particular cases (Maya et al., 2012; Faria et al., 2014; Belletti et al., 2015; Einpaul et al.,
2015, 2016a).

With respect to the failure criterion, Muttoni and Schwartz (1991) considered that, for slender slabs,

the opening of the critical shear crack (w) could be assumed proportional to the slab rotation ψ times

72



The mechanical model of CSCT for punching shear

the effective depth d. Thus, by assuming that w ∝ ψ · d, the following failure criterion was proposed

(Muttoni, 2008):

VRc

b0 · d ·
√

fc
=

3/4

1+ 15 · ψ·d
dg0+dg

(4.2)

where units are in SI [N, mm], b0 is the control perimeter (located at d/2 from the edge of the supported

area; round corners in case of square columns) and dg0 represents the reference aggregate size (dg0 = 16

mm for normal weight concrete (Muttoni, 2008)). The term dg0 + dg (originally introduced by Vecchio

and Collins (1986)) refers in fact to a reference crack roughness accounting for the maximum aggregate

size (dg) but also for the fact that the crack surface is not perfectly planar (Fernández Ruiz et al., 2015).
It can also be noted that the term ψ · d actually accounts in a combined manner for the influence of size

and strain effects (Fernández Ruiz et al., 2015).

With respect to compact slabs or footings, the main assumptions of the CSCT have been demonstrated

to be also valid (crack localization and influence of crack width and crack roughness on the capacity to

transfer shear forces at the failure surface) (Simões et al., 2016a). Yet, in these cases, the crack kinematics

at failure is more complex and shall account for shear deformations, as also demonstrated by Simões

et al. (2016a). In this chapter, the mechanical model of the CSCT is presented and discussed in terms of

its failure mechanism and associated stresses developing on the failure surface. The calculation of the

punching strength on the basis of the stresses on the failure surface is also reviewed and discussed for

slender members (where flexural deformations govern) based on the work of Guidotti (2010) and for

squat members (where shear deformations govern) having as basis the works of Braestrup et al. (1976)
and Simões et al. (2016b). On the basis of this review, it is presented how the CSCT failure criterion can

be formulated to account in a general manner for both cases. The resulting failure criterion is thereafter

used in combination with the load-deformation relationship to calculate the punching strength in a

closed-form manner. It is also shown that the closed-form expression derived from the mechanical

model of CSCT can be extended in a very simple manner to account for other effects, as membrane

action and slab continuity.

These closed-form expressions are very convenient for design and assessment purposes, allowing a

direct calculation of the punching strength and providing the designer with a clear view of the role

of the various parameters implied. The results obtained are compared with databases of slabs and

footings showing consistent agreement.

4.3 The mechanical model of CSCT for punching shear

4.3.1 Failure mechanism and associated internal stresses

Two-way slabs develop radial and tangential cracking due to the presence of respectively tangential

and radial bending moments in the supported area (see Figure 4.1(a)). Due to the presence of shear

forces, the tangential cracks in the region of the column develop in an inclined manner, disturbing the

inclined compression strut carrying shear (Muttoni, 2008).

The mechanical model of the CSCT considers that crack localization occurs in a single crack (named

as critical shear crack), and that the capacity of the critical shear crack to transfer shear forces depends

upon the displacements between crack lips and their roughness (Muttoni and Schwartz, 1991; Muttoni,

2003, 2008).
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Figure 4.2: Mechanical approach of the critical shear crack theory (CSCT) for punching shear failures:
(a) general kinematics due to flexural deformation; (b) general kinematics prior to failure; (c) schematic
representation of stresses developing along failure surface with inclined strut carrying shear function of

the opening w and roughness of the critical shear crack.

Calculation of the punching resistance can be performed on the basis of the assumptions by defining

a critical shear crack composed of two different segments with different phenomenological behaviors,

refer to Figure 4.2(a) and (b). Segment A corresponds to the crack originated by bending and segment B

develops between the edge of the column and the segmentA.With respect to segmentA, it corresponds

to a crack where a mixed-mode (opening and sliding) response occurs, while segment B behaves po-

tentially as a shear band (with smeared cracking, eventually leading to coalescence in a single crack,

Figure 4.2(b) and (c)).

The kinematics of the critical shear crack in both segments can be defined as a function of the dis-

placements normal and parallel to the crack lips, as for instance shown in Simões et al. (2016b). Such
kinematics results from the vector addition of the initial flexural crack opening (function of the slab ro-

tation ψ) and of the shear deformations (characterized by the displacement δ occurring with a variable

angle γ with respect to the critical shear crack, see Figure 4.1(b)). The general kinematics of the critical

shear crack considers therefore a combination of both rotational and translational displacements. The

extent of the two regimes developing along the critical shear crack previously mentioned, the kine-

matics (ψ, δ and γ) and the shape of the critical shear crack depend significantly on mechanical and

geometrical properties. As a consequence, also the resulting stresses developing along the critical shear

crack are a function of the referred variables. The slenderness of the member is probably one of the

most influencing parameters with this respect (Simões et al., 2016a). In the following, previous works

used to investigate suitable kinematics and resulting internal stresses based on the CSCT mechanical

model for slender slabs and squat members (footings) are presented and discussed.
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4.3.2 Application to slender members

The case of slender slabs with medium to large rotations was investigated in the frame of CSCT by

Guidotti (2010). As shown in Figure 4.3(a), Guidotti (2010) considered a simplified shape for the critical

shear crack developing between the edge of the column and the level of the flexural reinforcement

with a constant inclination of β = 45◦ (corresponding only to segment A of Figure 4.2). The resulting

kinematics in this case (Guidotti, 2010) is composed of a rotation leading to a crack opening normal

to the crack lips, followed by a crack sliding δ (developing with a constant angle γ with respect to the

crack lips), see Figure 4.3(a) and (b).

For such failure mechanism, the potential shear-transfer contributions developing along the failure

surface and contributing to the punching shear strength can be calculated. They correspond to the ag-

gregate interlock (calculated by Guidotti (2010) according toWalraven (1981)), residual tensile strength

(calculated according to Hordijk (1992)) and dowelling action (that can be neglected compared to the

others due to the development of the spalling cracks, according to Guidotti (2010)). With respect to

the aggregate interlock contribution, Guidotti (2010) considered a consistent kinematics at failure (ini-

tial crack opening w0 developing before the crack sliding δ taking place, refer to Figure 4.3(b) to (d)

for kinematics and calculated shear and normal stresses). It should be noted that, as shown in Figure

4.3(c) and (d), crack sliding δ is required to activate the aggregate interlock stresses.
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Figure 4.4(a) shows the punching shear strength calculated under the assumptions of Guidotti (2010)

for a general case (h = 0.25 m; d = 0.21 m; fc = 40 MPa; dg = 16 mm and ρ = 0.75%) as a function of the

rotation of the slab. Also, the resulting internal stresses developing along the critical shear crack are

shown in Figure 4.4(a) for three different rotations: low, medium, and high rotations. A decay of shear

strength with the increase of the crack width can be clearly observed, as a result of the decrease of the

capacity of the different shear-transfer actions (due to loss of contact in the upper part of the slab and

by the softening in the lower part due to increasing crack opening). It can be noted that the resulting

stress state can be described by an inclined compression strut whose strength is thus strain and size

dependent. This result is in agreement with the CSCT assumptions as well as those of Kinnunen and

Nylander (1960). As shown in Figure 4.4(a), the hyperbolic failure criterion proposed byMuttoni (2008)

anddefined in Eq. (4.2) approximates fairlywell the results predicted by themechanicalmodel of CSCT

presented by Guidotti (2010).

The approach of Guidotti (2010) also allows validating the assumption of the CSCT for slender slabs

that the crack width w can be assumed to be correlated to the product ψ · d. This fact is shown in Fig-

ure 4.4(b) where the numerical results from Guidotti (2010) for the crack width w measured at peak

load and at d/2 from the edge of the column are shown. It can be noted that the crack width at fail-

ure, accounting for the development of the flexural and shear deformations (ψ and δ), follows a trend

which is almost linear. This result is physically justified as larger crack openings require larger shear

deformations δ to mobilize aggregate interlock forces and thus both parameters are related.
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4.3.3 Application to footings and squat members

For small rotations, the approach of Guidotti (2010) is not necessarily governing, as other shapes of

the failure surface and associated kinematics may limit the punching shear strength. This topic has

been investigated in the past (for instance by Braestrup et al. (1976) on the basis of limit analysis and

more recently by Simões et al. (2016b) (see Chapter 3)) showing that for footings or squat members,

flexural deformations play a more secondary role (Simões et al., 2016a; see Chapter 2). In these cases,

the behaviour is mostly controlled by segment B in Figure 4.2(b), where the shear deformations are

governing.

According to Braestrup et al. (1976), a kinematically admissible mechanism in these cases consists of

a vertical translation of the outer portion of the member (Figure 4.5(a), also used by other researchers

(Jiang and Shen, 1986; Bortolotti, 1990; Kuang, 1991; Salim and Sebastian, 2002)). It is interesting to

note that the failure mechanism originally proposed by Braestrup et al. (1976) corresponds to a limit

situation of the mechanical model of CSCT where only segment B develops. Also, in agreement to the

CSCT assumptions, and as discussed by Simões et al. (2016b) (see Chapter 3), the capacity of the govern-

ing failure surface to transfer shear forces in these cases is affected by its state of deformations (crack

opening). The punching strength calculated accounting for such failure mechanism and by adopting

a rigid-plastic constitutive law for concrete (Figure 4.5(b) and (c)) can be consulted in Braestrup et al.
(1976). It can be in a general manner expressed as (see Figure 4.5(d) using axis of ordinates on the left,

neglecting the capacity of the concrete cover):

VR = kv · b0 · d · fce (4.3)

where kv is a parameter which depends upon the member slenderness (function of rc, d, and r0) and

the friction angle of concrete (ϕ). It shall be noted that in Eq. (4.3), the punching strength (VR) is

also dependent on the effective compressive strength of concrete ( fce). This parameter accounts for the

brittleness of concrete in compression and for the influence of the state of deformations as proposed

by Nielsen and Hoang (2011):

fce = fc · η = fc · η f c · ηw (4.4)

where η is a global effectiveness factor that, for this case, can be split into two distinct ones: η f c and ηw

referring to the effectiveness factors accounting for concrete brittleness and the state of deformations,

respectively. With respect to the concrete brittleness in compression, previousworks on the application

of limit analysis for the case of punching shear (e.g. Nielsen et al., 1978; Braestrup, 1979; Hoang, 2006;

Nielsen and Hoang, 2011) have suggested adopting a relationship η f c = k f c/
√

fc. With respect to ηw,

its value may depend on the state of strains (Simões et al., 2016b) and also on the size of the member

(Nielsen and Hoang, 2011). For practical purposes, the maximum achievable punching strength can

therefore be calculated as (see Figure 4.5(d) using axis of ordinates on the right):

VR = kv · k f c · ηw · d · b0 ·
√

fc (4.5)

It can be noted that this equation presents the same parameters d, b0, and
√

fc as that of the CSCT failure

criterion (refer Eq. (4.2)). Additionally, it considers that the shear capacity is affected by the size and

strains of themember, both parameters influencing the opening of the critical shear crack as considered

in the CSCT mechanical model. As shown in the results of Figure 4.5(d), since the variation of the

maximum achievable punching shear strength is relatively limited, the consideration of a constant

value for the multiplication of the parameters kv · k fc · ηw equal to 0.55 is a reasonable simplification for

design purposes.
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4.4 Considerations on the failure criterion of the CSCT

Calculating the punching response on the basis of the mechanical model of the CSCT by performing a

numerical integration of the resulting stresses on the failure surface (Guidotti, 2010; Simões et al., 2016b)
is a general but not suitable approach for design purposes. To provide a simpler design approach, it can

be observed that, when normalized in terms of the main physical parameters of the CSCT mechanical

model, both numerical integrations (Guidotti, 2010; Simões et al., 2016b) and test results remain within

a narrow failure region (Figure 4.1(c)). These results indicate a decrease of the normalized strength for

increasing normalized crack opening. On that basis, Muttoni (2008) proposed a simplified expression

for the failure criterion with a hyperbolic shape (refer Eq. (4.2) and Figure 4.1(c)).
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This hyperbolic failure criterion and the parabolic load-rotation relationship (Eq. (4.1)) can be used in

a simple and direct manner for design using the Levels-of-Approximation approach (Muttoni, 2008;

Muttoni and Fernández Ruiz, 2010; Muttoni and Fernández Ruiz, 2012; Muttoni et al., 2013; fib Model

Code 2010, 2013; SIA 262, 2013). This design approach has proven to be general and efficient for design

and to suitably account for size and strain effects (Fernández Ruiz andMuttoni, 2017). Yet, closed-form

solutions (whichmay enhance the usability of the theory for design and assessment and also clarify the

significance of the various mechanical and geometrical parameters on the punching strength) cannot

be obtained by using the previous Eqs. (4.1) and (4.2).

Despite the advantages of the hyperbolic failure criterion, a more general expression could be for-

mulated by accounting for the two relatively distinct behaviors described before (failures governed

by flexural deformations (Guidotti, 2010) and failures governed by shear deformations (Simões et al.,
2016b)) in order to address in amore clearmanner the differences between slender and squatmembers.

A proposal with this respect has been recently presented by Muttoni and Fernández Ruiz (2017), by

considering the following power-law expression:

VRc = VRc,0 ·
( ddg

25 · ψ · d
)2/3

≤ VRc,0 (4.6)

where units are in SI [N, mm], ddg refers to the reference value of roughness of the crack and VRc,0 refers

to the maximum achievable punching shear strength. With respect to term ddg, it can be calculated as:

ddg = dg0 + dg ·min

((
60
fc

)2
, 1

)
≤ 40mm (4.7)

where dg0 is the reference roughness value of the crack, which can be adopted equal to 16 mm for

normal concrete. This term for the roughness is thus consistent to that previously assumed by the

CSCT (refer Eq. (4.2)), but accounts additionally for two effects: (a) the limit on the positive influence

of aggregate size on the shear-transfer capacity for large aggregate sizes (limit to 40mm in accordance to

Sherwood et al. (2007)) and (b) the reduced roughness of the surface for high strength concrete (fracture

developing through the aggregates (Muttoni and Fernández Ruiz, 2008)).

With respect to term VRc,0, its value can be calculated based on Eq. (4.5) as follows:

VRc,0 = 0.55 · b0 · d ·
√

fc (4.8)

It can be noted that this value is considered constant, although according to Eq. (4.5) a dependency on

the crackwidthmay result. Such dependency allows for a smooth transition between both regimes, but

will be neglected for simplicity reasons. The power-law failure criterion defined in Eqs. (4.6) and (4.8)

is compared in Figure 4.6(a) to the strength calculated according to the approach by Guidotti (2010)

(for the same case as presented in Figure 4.4). It can be noted that the simplified failure criterion finely

agrees with the numerical integration of stresses and also yields close results to those of the hyperbolic

failure criterion of Eq. (4.2). In addition, the power-law failure criterion is compared in Figure 4.6(b)

with the experimental results of the database presented by Muttoni (2008). It can be seen that for low

rotations, the strength limit (VRc0) is governing whereas for large rotations the power law is limiting

the strength and deformation capacity. When compared to tests, the scatter is low (comparable to that

of the hyperbolic failure criterion, Figure 4.1(c)) with all experimental results concentrated within a

narrow region.
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4.5 Closed-form solution of the CSCT

4.5.1 Development of closed-form expressions for elements

without transverse reinforcement

The failure criterion presented in Eq. (4.6) can be used to calculate the failure load in combination

with the parabolic load-rotation relationship (Eq. (4.1)) yielding closed-form solutions of the punching

resistance (Muttoni and Fernández Ruiz, 2017). This can be done by introducing the rotation as a

function of the acting shear force Equation (4.1) into Equation (4.6) and assuming ms/mR = VRc/Vflex:

VRc = VRc,0 ·
(Vflex

VRc

)
·
( ddg

25 · km · d · d
rs

· Es

fy

)2/3

≤ VRc,0 (4.9)

which leads to:

VRc =
√

VRc,0 ·Vflex ·
( ddg

25 · km · rs
· Es

fy

)1/3

≤ VRc,0 (4.10)

The punching strength results thus a function of the maximum shear capacity (VRc,0) and the flexural

strength (Vflex), shear force associated with full yielding of all radial and tangential flexural reinforce-

ment (Muttoni, 2008)) as well as of other parameters characterizing roughness, size and strain effects.

In addition, the deformation capacity at failure can also be calculated from Eqs. (4.1) and (4.10) (as-

suming ms/mR = VRc/Vflex):

ψRc =

(
km

25
· rs

d
· ddg

d
· fy
Es

)1/2

·
(

VRc,0

Vflex

)3/4

≤ km · rs

d
· fy
Es

·
(

VRc,0

Vflex

)3/2

(4.11)

For designpurposes, the calculation of the flexural strength of the slab (Vflex) can be simplified assuming

the following relationship between the flexural strength and the moment capacity (Muttoni, 2008):

Vflex = a · mR (4.12)

where parameter a relates the flexural strength to sectional moment capacity (it can be taken as 8 for

inner columns according to Muttoni (2008)), and mR can be calculated as:

mR = d2 · ρ · fy ·
(
1− ρ · fy

2 · fcp

)
(4.13)

where fcp refers to the plastic compressive strength of concrete in uniaxial compression, calculated as

fcp = fc · (30/ fc)
1/3 ≤ fc (accounting for the influence of the concrete brittleness in compression) (Mut-

toni, 1990). In order to develop simple closed-form design expressions, Eq. (4.13) can be approximated

in the following manner (Muttoni and Fernández Ruiz, 2017):

mR = k1 · d2 ·
(
ρ · fy

)k2 · f 1−k2
c (4.14)

with k1 = 0.75 and k2 = 0.9. Using the relationships established in Eqs. (4.12) and (4.14), the flexural

strength Vflex can thus be rewritten as:

Vflex = a · 0.75 · d2 · ρ0.9 · f 0.9y · f 0.1c (4.15)

80



Closed-form solution of the CSCT

Furthermore, by replacing Eq. (4.15) into (4.10) yields:

VRc
b0 · d = (0.55 · 0.75)0.5 · b−0.5

0 · d0.5 · f 0.25c · a0.5 · (ρ · fy
)0.45 · f 0.05c ·

· (25 · km · fy
)−1/3 ·

(ddg

rs
· Es

)1/3

≤ 0.55 ·√ fc

(4.16)

which eventually leads to:

VRc
b0 · d = k3 ·

√
a · d

b0
·
(

Es · ρ · fc ·
ddg

rs

)1/3

≤ 0.55 ·√ fc (4.17)

where k3 = (0.55 · 0.75)0.5 · (25 · km)−1/3 · f−0.033
c · (ρ · fy

)0.117
can be approximated as k3 = 0.225 (km=1.2,

fc ≈ 30 MPa, ρ · fy ≈ 5 MPa; low values of the exponents of fc, ρ, and fy lead to a small influence of

these variables on the value of k3). Considering a constant modulus of elasticity Es = 200 000MPa, Eq.

(4.17) can finally be written as:

VRc = kb ·
(
100 · ρ · fc ·

ddg

rs

)1/3

· b0 · d ≤ 0.55 · b0 · d ·
√

fc (4.18)

where the coefficient kb can be computed as follows:

kb =

√
8 · a · d

b0
≥ 1 (4.19)

This coefficient accounts for the effective depth-to-control perimeter ratio as well as for parameter a

(defined in Eq. (4.12), relationship between flexural strength and moment capacity). It enhances the

unitary shear strength for small column sizes and decreases it for large column sizes. This is physically

consistent, defining a transition for failures in shear in one-way slabs (very large length of the control

perimeter) (Van Der Voet et al., 1982; Birkle, 2004) and is acknowledged in design codes (e.g. ACI 318,

2014).

It can be noted that Eqs. (4.18) and (4.19) do not explicitly account for the level of deformation of the

slab, although it can be back calculated by means of Eq. (4.11). In addition, some of the parameters

implied in the equations (as rs and a) have a physical meaning consistently with the CSCT, and their

estimate can be performed with simple geometrical rules for conventional cases, but refined by means

of more detailed analyses upon necessity (for design of complex structures or for assessment of critical

connections).

It shall also be noted that, as a consequence of the assumptions used to the analytical derivation of the

closed-form expression of Eq. (4.18), some additional considerations have to be accounted for when

using it. These considerations refer to the flexural resistance of squat members and to the location of

its control perimeter and are explained in the following.

The first consideration (flexural resistance of squat members) is related with the use of Eq. (4.13) (sim-

plified with Eq. (4.14)) to calculate the moment sectional capacity, which, together with yield-line

theory (Johansen, 1962), allows calculating the flexural strength of slender slabs. However, the use of

the referred theory to the case of footings has been shown to have limitations (Simões et al., 2016b).
Simões et al. (2016b) have used the upper bound theorem of limit analysis to show that the application

of yield-line theory (Johansen, 1962) may lead to a significant overestimate of the flexural capacity of
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4. Principles of CSCT for punching failures and derivation of closed-form design expressions

compact slabs and footings without shear reinforcement. In those cases, the flexural strength has to be

reduced to account for the flexure-shear interaction resulting from the presence of an inclined strut car-

rying shearwhich reduces the flexural lever arm (Simões et al., 2016b). The assumption that the flexural

strength can be approximated as defined in Equation (15) requires thus a reduction of the longitudinal

reinforcement ratio when applying Equation (18) to the case of footings or squat slabs without shear

reinforcement. A simple expression for these cases is derived in Section 4.10 (Appendix) and results in

the following relationship:
ρred

ρ
=

1− 0.5 · ω · rs/rc

1− 0.5 · ω
(4.20)

where ρred is the reduced longitudinal reinforcement ratio to be introduced in Eq. (4.18) when applying

it to the cases of footings without transverse reinforcement; ω is the mechanical reinforcement ratio(
ρ · fy/ fc

)
; rc is the radius of a circular column with the equivalent perimeter.

The second consideration (location of control perimeter for squat members) results from the fact that

Eq. (4.18) considers a constant distance of the control perimeter to the edge of the supported area

(control perimeter located at d/2 from the edge). This approach has been shown to be consistent for

the case of slender slabs (Einpaul et al., 2016b). For the sake of simplicity, the same distance between

the column edge and the control perimeter in the case of footings is also assumed. Nevertheless, as

shown by Simões et al. (2016b), the location of the control perimeter for squat members should rather

be related to the inclination of the failure surface, which is actually a function of geometrical prop-

erties. According to this theoretical consideration, with decreasing span-to-effective depth ratio, the

inclination of the failure surface tends to be steeper (Simões et al., 2016b). In addition, this theoretical

consideration has been confirmed also experimentally (Hegger et al., 2009; Siburg and Hegger, 2014;

Simões et al., 2016a). For consistency, the control perimeter should be shifted to a distance closer than

0.5 · d in those cases, leading to lower punching resistances. To keep the control perimeter at a distance

of 0.5 · d from the column edge, thus, a lower limit of the distance between the axis of the supported

area to the line of zero radial moment rs has to be considered. To that aim, it is suggested to adopt

rs ≥ 2.5 · d, corresponding to the limit case where an angle of the failure surface of approximately 45circ

has been observed in the analysis of Simões et al. (2016b).

4.5.2 Development of closed-form expressions for slab continuity and compres-

sive membrane action

An interesting consideration of the CSCT and its derived expressions is that, since the theory is based

on a mechanical model, it can be tailored to specific situations by suitably evaluating its mechanical

parameters. This is presented in this section with reference to slab continuity and compressive mem-

brane action. As shown by Einpaul et al. (2015, 2016a) this effect might have a significant influence

on the punching behaviour and strength of slab-column connections. This phenomenon is relevant

particularly for inner connections where compressive in-plane forces may develop around the column

area.

The influence of slab continuity and compressive membrane action have been accounted for in the

frame of the CSCT by Einpaul et al. (2015, 2016a) by modifying the load-rotation relationship of Eq.

(4.1) by means of a factor named kcs (Einpaul et al., 2016a):

ψ = kcs · km · rs

d
· fy
Es

·
(

V
Vflex

)3/2

(4.21)
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As justified by Muttoni and Fernández Ruiz (2017) factor kcs can be expressed as a function of the

ratio mcr/mR (supported on the evidence that the confinement at the column region is provided by the

surrounding concrete during the crack development stage) in the following manner):

kcs =

(
0.08 · mR

mcr

)3/4
≤ 1 (4.22)

where mcr refers to the cracking moment per unit length. By intersecting the modified load-rotation

relationship with the failure criterion, the punching resistance thus results:

VRc = kb ·
(
100 · ρ · fc ·

ddg

kcs · rs

)1/3

· b0 · d ≤ 0.55 · b0 · d ·
√

fc (4.23)

It can be noted that Eq. (4.23) is analogous to Eq. (4.18), provided that the value of rs is corrected

(reduced) to account for the compressive membrane action. Considering that the flexural capacity per

unit length mR can be calculated with Equation (14) and that the cracking moment per unit length can

be computed as (assuming a ratio d/h ≈ 0.9):

mcr =
h2

6
· fct ≈ d2

0.92 · 6 · fct (4.24)

The factor kcs can be simplified as follows (by introducing Eqs. (4.14) and (4.24) into Eq. (4.22) and

rounding exponents and constant values):

kcs ∼=
(
0.08 · 6 · 0.9

2

d2 · fct
· 0.75 · d2 · (ρ · fy

)0.9 · f 0.1c

)3/4

⇒kcs = k4 ·
√

100 · ρ

(
fy
fct

)3/4

≤ 1.0

(4.25)

where the constant k4 =
(
0.08 · 6 · 0.92 · 0.75)3/4 · ( fc/ fy

)3/40 · ρ7/40 · 100−1/2 can finally be simplified as

k4 = 1/75 ( fc ≈ 30 MPa, ρ ≈ 0.0075, and fy ≈ 500 MPa; low values of the exponents of fc, ρ and fy lead

to a small influence of these variables on the value of constant k4).

4.6 Comparison of closed-form expressions against experimental results

The accuracy of the CSCT (and more specifically the closed-form design expressions previously de-

rived in Eqs. (4.10) and (4.18)) is compared in this section to available experimental data. For slender

slabs, the database considered is that of Einpaul (2016) (update of database of Muttoni (2008)) but

completed with some additional tests. The considered database comprises a total of 121 slender slabs

without transverse reinforcement (Elstner and Hognestad, 1956; Kinnunen and Nylander, 1960; Moe,

1961; Schaefers, 1984; Tolf, 1988; Ramdane, 1996; Hallgren, 1996; Hassanzadeh, 1996; Sistonen et al.,
1997; Birkle, 2004; Guandalini et al., 2009; Fernández Ruiz et al., 2010; Guidotti, 2010; Tassinari, 2011;

Clément, 2012; Lips et al., 2012; Heinzmann et al., 2012; Inácio et al., 2015; Einpaul et al., 2016b; Drakatos

et al., 2016) (see Table 4.1 for details). With respect to footings, a database accounting for 34 footings

without transverse reinforcement subjected to uniform loading was compiled (Dieterle and Rostásy,

1987; Hallgren et al., 1998; Hegger et al., 2009; Siburg and Hegger, 2014; Simões et al., 2016a) (see Ta-

ble 4.2). Only specimens that do not reach their flexural strength (VR,test < Vflex) are included in the

databases, as Eqs. (4.10) and (4.18) are only addressed to the shear strength. These databases are con-

sistent with others available in the literature (Walkner, 2014; Siburg, 2014).
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4. Principles of CSCT for punching failures and derivation of closed-form design expressions

Table 4.1: Summary of database containing 121 specimens without transverse reinforcement: rc - radius of a circular column; c -
side length of a square column; d - effective depth; fc - cylinders concrete compressive strength; fy - yielding strength of flexural

reinforcement; dg - maximum aggregate size; B - size of the slab along orthogonal directions.

Authors Numberof tests
B d rc c fc dg ρ fy
[m] [m] [m] [m] [MPa] [mm] [%] [MPa]

Elstner and Hognestad
(1956)

19 1.829
0.114
-

0.118
-

0.254
-

0.356

12.8
-
50.6

25.4
-
38.1

1.15
-
3.70

321
-
409

Kinnunen and Nylander
(1960)

10 1.840
0.117
-

0.128

0.075
-

0.150
-

24.2
-
31.0

32
0.65
-
1.50

434
-
461

Moe (1961) 7 1.829 0.114 -
0.152
-

0.254

22.1
-
26.5

9.5
-
38.1

1.05
-
1.14

328
-
482

Schaefers (1984) 2 1.960
0.113
-

0.170
0.105 -

21.3
-
27.1

32
0.55
-
0.83

450

Tolf (1988) 8
1.270
-

2.540

0.098
-

0.200

0.063
-

0.125
-

22.6
-
28.2

16
-
32

0.34
-
0.81

657
-
720

Hallgren (1996) 7 2.540
0.194
-

0.202
0.125 -

84.1
-

108.8
18

0.33
-
1.19

596
-
643

Ramdane (1996) 12 1.700
0.098
-

0.100
0.075 -

26.9
-

101.8

10
-
20

0.58
-
1.28

550
-
650

Hassanzadeh (1996) 1 2.540 0.199 0.125 - 28.4 18 0.80 493

Sistonen et al. (1997) 10
1.770
-

2.470

0.170
-

0.177

0.101
-

0.451
-

19.0
-
25.8

16
0.45
-
1.17

576
-
621

Birkle (2004) 3
2.248
-

3.911

0.124
-

0.260
-

0.250
-

0.350

31.4
-
36.2

14
1.10
-
1.51

488
-
531

Guandalini et al. (2009) 5
1.500
-

6.000

0.096
-

0.456
-

0.130
-

0.520

27.7
-
34.7

16
0.32
-
1.50

520
-
577

Guidotti (2010) 11 3.000
0.194
-

0.208
- 0.260

31.5
-
51.7

8
-
32

0.76
-
1.62

510
-
551

Tassinari (2011) 2 3.000
0.196
-

0.212
- 0.260

66.3
-
67.0

16
0.82
-
1.48

540
-
552

Fernández Ruiz et al.
(2010)

1 3.000 0.210 - 0.260 34.0 16 1.50 709

Clément (2012) 3 3.000
0.346
-
0.35

-
0.220
-

0.440

31.6
-
33.9

16
0.75
-
1.53

520
-
541

Lips et al. (2012) 4 3.000
0.193
-

0.353
-

0.130
-

0.520

30.5
-
36.5

16
1.50
-
1.63

556
-
583

Heinzmann et al. (2012) 1 4.100 0.294 0.200 - 35.5 32 1.20 577

Inácio et al. (2015) 3 1.650
0.101
-

0.102
- 0.200

35.9
-

130.1

13.2
-
13.9

1.24
-
1.48

523
-
532

Einpaul et al. (2016b) 10
1.700
-

3.900

0.197
-

0.218

0.042
-

0.330
0.260

34.2
-
44.1

16
0.74
-
1.59

517
-
542

Drakatos et al. (2016) 2 3.000
0.195
-

0.200
- 0.390

34.3
-
39.2

16
0.80
-
1.61

507
-
593

∑ 121
1.270
-

6.000

0.096
-

0.456

0.042
-

0.451

0.130
-

0.520

12.8
-

130.1

8
-
38.1

0.32
-
3.70

321
-
720

84



Comparison of closed-form expressions against experimental results

Table 4.2: Summary of database with 34 footings without transverse reinforcement subjected to uniform loading: rc - radius of a
circular column; c - side length of a square column; d - effective depth; fc - cylinders concrete compressive strength; fy - yielding

strength of flexural reinforcement; dg - maximum aggregate size; B - size of the footing along orthogonal directions.

Authors Number of tests
rc c d B fc dg ρ fy
[m] [m] [m] [m] [MPa] [mm] [%] [MPa]

Dieterle and Rostásy
(1987)

12 -
0.150
-

0.450

0.290
-

0.760

1.500
-

3.000

20.1
-
27.3

30
-
32

0.21
-
0.89

395
-
574

Hallgren et al. (1998) 2 0.125 -
0.235
-

0.240
0.850

20.1
-
26.5

8 0.41 621

Hegger et al. (2009) 8 - 0.200
0.295
-

0.470

1.200
-

1.800

21.1
-
36.4

16
0.82
-
0.86

528 -
566

Siburg and Hegger
(2014)

8 -
0.200
-

0.300

0.400
-

0.590

1.200
-

2.700

19.6
-
53.3

16
0.29
-
0.88

515
-
627

Simões et al. (2016a) 4 -
0.300
-

0.450

0.506
-

0.512

1.590
-

2.120

29.5
-
32.1

16
0.74
-
0.76

517
-
537

∑ 34 0.125
0.150
-

0.450

0.235
-

0.760

1.200
-

3.000

19.6
-
53.3

8
-
32

0.21
-
0.89

395
-
627

Table 4.3: Summary of the results of critical shear crack theory (experimental-to-calculated punching
strengths) obtained following different approaches.

Specimens
Number of

tests
Approach Average COV [%]

Slabs 121

Approach (1)a 1.07 8.3

Approach (2)b 1.03 8.6

Approach (3)c 1.04 10.0

Approach (4)d with a = Vflex/mR 1.03 9.7

Approach (4)d with a = 8 and rs = B/2 1.02 10.6

Footings 34

Approach (3)c with
Vflex calculated with ρred, rs = B/2 0.96 9.4

Approach (4)d with
a = 8, ρred and rs = B/2

0.95 11.5

Approach (4)d with
a = 8, ρred and rs = B/2 ≥ 2.5 · d 1.01 11.7

a Load-rotation relationship based on quadri-linear moment curvature law (Muttoni, 2008) (with the equivalent ax-
isymmetric value of rs calculated from the yield-line value ofVflex) andhyperbolic failure criterion (Eq. (4.2)) (Muttoni,
2008) with ddg of Eq. (4.7).
b Load-rotation relationship based on quadri-linear moment curvature law (Muttoni, 2008) (with the equivalent ax-
isymmetric value of rs calculated from the yield-line value of Vflex) and the power-law failure criterion (Eq. (4.6)).
c Closed-form solution function of Vflex (Eq. (4.10) with km = 1.2).
d Closed-form solution function of ρ (Eq. (4.18)).

Several comparisons to the tests are presented in the following (refer Table 4.3):

• The first approach (1) corresponds to the original formulation of the CSCT by Muttoni (2008),

accounting for the hyperbolic failure criterion of Eq. (4.2) and the load-rotation curve calculated

based on the quadri-linear moment-curvature relationship;

• The second approach (2) corresponds to the power-law failure criterion (Eq. (4.6)) and the load-

rotation curve of the slab resulting from the integration of the quadri-linear moment-curvature

relationship (Muttoni, 2008);

• The third one (3) refers to the closed-form solution as a function of the flexural capacity Vflex (Eq.

(4.10); Vf lex,red for footings), derived analytically considering the power-law failure criterion and

the simplified load-rotation curve of Eq. (4.1);
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4. Principles of CSCT for punching failures and derivation of closed-form design expressions

• Finally, the fourth one (4), refers to the closed-form solution as a function of the flexural reinforce-

ment ratio ρ (Eq. (4.18); ρred for footings).

The twofirst approaches are applied only to slender slabs, in accordance to the validity of the derivation

of the load-rotation curve based on the quadri-linear moment-curvature diagrams (Muttoni, 2008).

4.6.1 Detailed results for slender slabs

As shown in Table 3, the four approaches yield very similar results in terms of average measured-to-

calculated strengths and coefficient of variation (COV). Particularly, very similar results are obtained

if, instead of a constant value for parameter a (shear force to average strip moment ratio, a ≈ 8), this

value is calculated as defined in Eq. (4.12), with Vflex determined on the basis of the yield-line theory

(e.g. Johansen, 1962; Muttoni, 2008; Guandalini et al., 2009; Einpaul, 2016).

Average = 1.03

COV = 9.7 %
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Figure 4.7: Ratio of experimental-to-calculated punching strength according to Eq. (4.18) with a =
Vflex/mR (approach (4)) as a function of: (a) effective depth; (b) flexural reinforcement ratio; (c) concrete
compressive strength; (d) radius of the slab-to-effective depth ratio (equivalent rs based on Vflex); (e) col-
umn radius-to-effective depth ratio slabs (equivalent radius of a circular column with equal perimeter
for square columns); (f ) control perimeter-to-effective depth ratio. Database including 121 specimens

without transverse reinforcement (see Table 4.1).

Figure 4.7 shows the ratio of experimental-to-predicted punching strength obtained with the closed-

form expression based on the flexural reinforcement ratio derived from the CSCT (Eq. (4.18)) for the

case of slabs without transverse reinforcement. For this comparison, the value of parameter a is calcu-

lated according to Eq. (4.12) (using the yield-line theory (Johansen, 1962) to determineVflex). The results

show that the closed-form expression derived from the mechanical model of CSCT yields consistent

results (average of measured-to-calculated values of 1.03 and COV of 9.7%), without any noticeable

trend for the main geometrical and mechanical properties.
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Guandalini et al. (2009)
f
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 = 30 MPa ; d

g
 = 16 mm

ρ = 0.33 % ; f
y
 = 550 MPa

c/d = 1.24 ; r
s
/d = 7.14 ; r

q
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Figure 4.8: Comparison of punching shear resistance according to Eq. (4.18) with different series of experimental
results of slabs without transverse reinforcement showing the influence of (a = 2 ·π · rs/(rq − rc) adopted): (a) effec-
tive depth (Guandalini et al., 2009); (b) concrete compressive strength (Ramdane, 1996); (c) flexural reinforcement
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A detailed comparison with selected series is also shown in Figure 4.8 for slender slabs. The various

plots refer to the influence of size effect (Figure 4.8(a)), the concrete strength (Figure 4.8(b)), the flexural

reinforcement ratio (Figure 4.8(c) and (f)), the slab slenderness (Figure 4.8(d)), and the column size

(Figure 4.8(e)). The results show that the various failure regimes are suitably reproduced by the closed-

form expression and that the trends are finely captured.

4.6.2 Detailed results for footings

With respect to footings, all results presented in Table 4.3 are, again, similar. With respect to lim-

iting rs/d to 2.5, it can be noted that this condition is clearly pertinent (with an average measured-

to-calculated strength of 1.01). The results of the closed-form design expression as a function of the

reduced flexural reinforcement ratio (Eq. (4.18)) are compared in Figure 4.9 to the test results consid-

ering the lower limit of rs/d to 2.5 (loads applied inside the control perimeter not contributing to the

acting shear force). It can be seen that the results are consistent and trend free for the main geometri-

cal and mechanical parameters. As for the slender slabs, the various failure modes are again suitably

addressed (Figure 4.10) as well as the influence of the individual parameters.
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of (a = 8): (a) effective depth; (b) flexural reinforcement ratio; (c) concrete compressive strength; (d) side
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Figure 4.10: Comparison of punching shear resistance according to Eq. (4.18) with different series of
experimental results of footings without transverse reinforcement showing the influence of (a = 8): (a)
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shear span-to-effective depth ratio (Hegger et al., 2009).

4.7 Conclusions

In this paper, the CSCT is reviewed and used to derive closed-form expressions to calculate the punch-

ing shear strength of slabs and footings without transverse reinforcement. The main conclusions of

this paper are listed below:

1. The mechanical model of the CSCT can account for different situations where punching failure

governs the strength. At failure, localization of the strains in a critical shear crack occurs. The

kinematics is governed by a rotation and a shear deformation, and the resulting stresses on the

failure surface form an inclined compression strut (whose strength decays for increasing openings

of the critical shear crack and lower crack roughness);

2. Slender and squat members are shown to have a different significance of the rotational and shear

deformation components at failure. This also influences the failure surfaces and associated strengths.

Yet, both can be consistently addressed by the CSCT mechanical model;
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3. On the basis of the distinct behaviour of slender and squatmembers, it is justified to adopt a failure

criterion characterized by a power law limited by a maximum achievable punching strength;

4. The power-law failure criterion in combination with a load-rotation relationship for the slab al-

lows deriving closed-form expressions for calculation of the punching resistance. The derived

expressions provide a clear view of the influence of every parameter and enable the calculation

of the punching shear resistance in a direct manner, being therefore suitable for design purposes.

5. The closed-form design expressions can be consistently extended to special cases (as for instance

the influence of membrane action), by introducing in the load-deformation relationship the nec-

essary considerations. This allows deriving physically consistent design expressions for these

cases.

6. The closed-form expressions derived based on CSCT show an excellent agreement with the ex-

perimental results both for slender slabs and squat members (footings) without transverse rein-

forcement. In addition, the influence of different mechanical and geometrical properties is shown

to be consistently considered by the proposed expressions.
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4.9 Notation

Latin characters
Lower Case
a ratio between acting shear force and average moment in the support strip

b0 length of control perimeter

c side length of a square column

d effective depth (distance from the centroid of the flexural reinforcement to the out-

ermost compressed fiber)

dg maximum aggregate size

dg0 reference aggregate size (dg0 = 16 mm for normal weight concrete (Muttoni, 2008))

ddg reference value of the roughness of the critical shear crack

fc concrete compressive strength measured in cylinder

fce effective concrete compressive strength

fcp plastic compressive strength of concrete

fcc enhanced concrete compressive strength

fy yield strength of flexural reinforcement

h slab thickness

km, kv, k f c, k1, k2, k3 factors

kb shear gradient enhancement factor

kcc factor enhancing concrete compressive strength due to triaxial compression

kcs factor accounting for slab continuity and membrane action

mcr cracking moment

mR average unitary flexural strength in the support strip

mR reduced sectional moment capacity

ms average unitary moment for calculation of the bending reinforcement in the sup-

port strip

rc radius of a circular column

r0 radius of the failure surface at the level of the flexural reinforcement

rs distance of the column axis to the line of contraflexure of bending moments

rq distance of the column axis to the line of load introduction

w crack width

w0 initial crack opening due to flexural deformations

x height of compression zone due to bending

x increased height of compression zone due to flexure-shear interaction

Upper Case

B side length of a square slab

Es modulus of elasticity of flexural reinforcement

V punching shear force

Vflex shear force associated with full yielding of both radial and tangential flexural rein-

forcement

Vf lex,red shear force associated with full yielding of both radial and tangential flexural rein-

forcement considering flexural-shear interaction

VR punching shear strength

VRc concrete contribution for punching shear strength

VR,test experimental punching shear strength

VRc,0 maximum achievable punching shear strength of concrete

Qflex flexural strength

Qf lex,red reduced flexural strength
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Notation

Greek characters
Lower Case

β secant inclination of the failure surface

γ angle between failure surface and crack sliding vector

δ crack sliding

η global effectiveness factor

η f c effectiveness factor accounting for concrete brittleness in compression

ηw effectiveness factor accounting for the state of deformations

ρ flexural reinforcement ratio

ρred reduced flexural reinforcement ratio

σ normal stresses due to aggregate interlocking

τ shear stresses due to aggregate interlocking

ϕ concrete friction angle

ψ rotation

ψRc rotation at failure

ω mechanical reinforcement ratio

Acronyms
CSCT Critical Shear Crack Theory
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4. Principles of CSCT for punching failures and derivation of closed-form design expressions

4.10 Appendix

A simplified expression to account for a flexure-shear interaction in squat members subjected to uni-

form pressure is derived in this Appendix for practical purposes. Figure 4.11(a) shows a square footing

with a side length B subjected to a uniform soil pressure. A square column with a side length c is also

considered. The yield-line mechanism governing in this case is considered to be characterized by the

formation of a yield line along the edge of the column (see Figure 4.11(c)), where the sectional moment

capacity calculated in accordance to Eq. (4.13) is reached. According to this mechanism, which corre-

sponds to a pure flexural behavior, the height of the compression zone x is obtained by equalling the

horizontal forces developing in the section:

x
d

= ω =
ρ · fy
fcp

(4.26)

where ω represents the mechanical reinforcement ratio. Figure 4.11(b) shows a possible stress field de-

veloping along the axis of the footing (considering that tensile strength is neglected). The stress field

consists only of inclined concrete struts which are horizontally equilibrated by the flexural reinforce-

ment. With increasing flexural reinforcement ratio, the area of the inclined struts increases (as well as

the region of triaxial stresses developing under the footing). The height of this region becomes very

significant and can considerably decrease the lever arm between the horizontal compressive (concrete)

and tensile (reinforcement) forces. In addition, provided that tensile strength is neglected, the entire

horizontal tensile force has to be equilibrated by the horizontal compressive force under the column.

Therefore, for practical purposes and taking into consideration the stress field illustrated in Figure

4.11(b), a sectional analysis as the one shown in Figure 4.11(d) can be adopted to calculate a reduced

sectional moment capacity mR as follows:

mR = ρ · fy · d2 ·
(
1− x

2 · d
)

(4.27)

where x represents an increased compression zone accounting for the flexure-shear interaction, which

can be computed from the horizontal equilibrium in the section as (tensile force developing along the

width of the footing B equilibrated by the compressive force developing along the width of the column

c with an enhanced concrete compressive strength due to triaxial compression fcc = kcc · fc):

x
d

=
ρ · fy

kcc · fcp
· B

c
≤ 1 (4.28)

A reduced reinforcement ratio ρred accounting for the decrease of the lever arm due to flexure-shear

interaction can be calculated equalling the moment capacity established in Eq. (4.13) and the reduced

moment capacity defined in Eq. (4.27) as follows:

mR = mR ⇒ ρ ·
(
1− ρ · fy

2 · kcc · fc
· B

c

)
= ρred ·

(
1− ρred · fy

2 · fc

)
(4.29)
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Appendix

The solution of interest of the second degree parabola defined in Eq. (4.29) is given by:

ρred
ρ

=
1
ω

·
(
1−

√
1− 2 · ω ·

(
1− ω

2
· B
kcc · c

))
≥ 0.5 (4.30)

Eq. (4.30) is nevertheless not convenient for practical purposes. An approximated solution can be

simply obtained based on Eq. (4.29) (assuming that dimension B in Figure 4.11(a) represents 2 · rs and

replacing dimension c by 2 · π · rc/4, where rc represents the radius of a circular supported area with

equal perimeter), resulting into:

ρred
ρ

=
1− 0.5 · ω · rs/rc

1− 0.5 · ω
(4.31)

where ω is the mechanical reinforcement ratio defined in Eq. (4.31) (note that, according to its deriva-

tion, the limit rs/d ≥ 2.5 does not apply in this equation). Both exact (considering a beneficial effect of

triaxial compression with kcc ≈ 1.3) and approximated solutions yield very similar results, as shown in

Figure 4.11(e). The simplified expression (Eq. (4.31)) can therefore be applied in practical cases to re-

duce the longitudinal reinforcement ratio contributing to the punching strength of compact slabs and

footings.
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Figure 4.11: (a) Square footing with square column subject to uniform soil pressure; (b) stress field ob-
tained assuming zero tensile strength for concrete; (c) pure flexural failure mode; (d) simplified flexural-
shear failure mode; (e) reduction of flexural reinforcement ratio accounting for flexural-shear interaction.
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Chapter 5

PAPER IV
Validation of the Critical Shear Crack Theory

for punching of slabs without transverse

reinforcement by means of a refined

mechanical model

This chapter is the postprint version of the journal article titledValidation of the Critical Shear Crack Theory
for punching of slabs without transverse reinforcement by means of a refined mechanical model published in the

journal Structural Concrete in 2018 (DOI: 10.1002/suco.201700280). The authors of the publication are

João Tiago Simões (PhD Candidate), Miguel Fernández Ruiz (Senior lecturer at EPFL and thesis direc-

tor), Aurelio Muttoni (Professor at EPFL and thesis director). The complete reference is the following:

Simões J. T., Fernández Ruiz M., and Muttoni A. (2018): „Validation of theCritical ShearCrack Theory

for punching of slabs without transverse reinforcement by means of a refined mechanical model“.

Structural Concrete, pp. 1–26. doi: 10.1002/suco.201700280.

Theworkpresented in this articlewas developed by JoãoTiago Simões under the supervision ofAurelio

Muttoni and Miguel Fernández Ruiz. The main contributions of João Tiago Simões to the creation of

this article involved:

• Reviewing the recent experimental findings available in the scientific literature;

• Developing the refined mechanical model;

• Performing all the calculations presented;

• Comparing the results of the refined mechanical model against a database and individual series

of experimental tests;

• Validating theoretically the analytical failure criterion of the Critical Shear Crack Theory based

on the results of the refined mechanical model;

• Production of the figures included in the article;

• Preparation of the manuscript of the article.

With respect to the postprint version of the scientific article, this chapter includes additional infor-

mation in the Appendix (calculation of the neutral axis following a similar approach to that followed

by Hallgren (1996), calculation of the load-rotation relationship based on the work of Muttoni (2008)

and possible numerical procedure for calculation of the punching strength and its associated defor-

mation capacity). Also the Figure 5.4 of this Chapter presents only the schematic representation of the

observed cracking, while the scientific article includes also the corresponding pictures.
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5. Validation of Critical Shear Crack Theory for punching failures

5.1 Abstract

Despite the intensive efforts dedicated in the last decades to better understanding punching shear fail-

ures, there is still no consensus on themechanics governing this phenomenon and onhow to implement

it within a physical approach. In this paper, an analysis of recent detailed measurements on the kine-

matics and crack development associated with punching failures is presented. This allows classifying

the observed cracks by their nature and to address their interaction and development on the eventual

punching failure surface. On this basis, a complete mechanical model is formulated consistently with

the principles of the critical shear crack theory (CSCT). This model generalizes previous approaches

based on the CSCT by accounting for the various crack types and failure modes as well as for their

associated kinematics. The generality of the model is verified by extensive comparisons to test data,

showing accurate and consistent agreement. Its results are eventually used to investigate the role of

the various potential shear-transfer actions as well as the pertinence of the assumptions adopted to

simplify the CSCT by describing its failure criterion with analytical expressions.

Keywords: concrete structures, Critical Shear Crack Theory (CSCT), experimental verification, failure

criterion, members without transverse reinforcement, punching shear strength

5.2 Introduction

Punching shear failures were early identified as a governing failure mode in reinforced concrete flat

slabs, and their first designs accounted for this fact by introducing column capitals and mushroom-

shaped columns. Intensive research performed since the second half of the 20th century led (Regan and

Braestrup, 1985; fib, 2001; Polak, 2005; fib, 2017) eventually to the development of design expressions

allowing to evaluate the punching shear capacity accounting for the role of some relevant mechanical

and geometrical parameters (Richart, 1948; Hognestad, 1953; Elstner and Hognestad, 1956; Whitney,

1957; Moe, 1961). These expressions, with an empirical basis and at the origin of those provided still

today in many codes of practice (Eurocode 2, 2004; ACI 318, 2014), had however a validity limited to

the available experimental data at the time they were proposed. Theoretical approaches were later

developed, on the basis of limit analysis (e.g. Braestrup et al., 1976; Hoang, 2006), fracture mechanics

(e.g. Bažant and Cao, 1987) or accounting for mechanical models (e.g. Kinnunen and Nylander, 1960;

Shehata and Regan, 1989; Broms, 1990; Hallgren, 1996; Yankelevsky and Leibowitz, 1999; Theodor-

akopoulos and Swamy, 2002; Broms, 2005; Park et al., 2011; Broms, 2016).

The theoretical approaches constituted a major step towards the consistent understanding of the phe-

nomenon and the treatment of some important issues such as the size and strain effects (Fernández

Ruiz and Muttoni, 2017). Among these models, one of the most notable contributions was that by

Kinnunen and Nylander (1960), relating the deformation and load-carrying capacities of slab-column

connections failing by punching. The model considers that the punching strength is controlled by a

conical shell representing the inclined compression struts developing at the support of the column.

Failure in this region was assumed to be triggered by a limit value of the tangential strain in the com-

pression zone, calculated for a given level of load on the basis of a conically deformed shape of a slab

sector (Kinnunen andNylander, 1960). The physical principles of thismodel led to a notable acceptance

of the research community and inspired a number of researchers that improved the original approach.

For instance, Hallgren (1996) proposed an improved failure criterion to account for the influence of size

effect and concrete brittleness. Broms (1990, 2005, 2016) proposed also an improvement of the theory

by considering two different failure criteria based on limit tangential and radial conditions (represent-

ing different failure modes for slender and squat members). A similar approach to that of Broms (1990,

2016) was also followed by Shehata and Regan (1989), considering three failure criteria, representing
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each a different failure mode (splitting of concrete strut and crushing of concrete due to high radial or

tangential strains).

Inspired on the rational approach of Kinnunen and Nylander (1960), Muttoni and Schwartz (1991)

developed a mechanical model for punching shear failures, named as the critical shear crack theory

(CSCT) (Muttoni, 2008). According to this theory, which is also applicable to shear in beams (e.g.

Muttoni and Fernández Ruiz, 2008, 2010; Fernández Ruiz et al., 2015; Cavagnis et al., 2015, 2017), the
opening of a critical shear crack (CSC) (a crack in the shear-critical region where the compression strut

carrying shear develops) reduces the ability of concrete to transfer shear forces and leads eventually to

failure (Muttoni, 2008). On that basis, a failure criterion relating the maximum allowable shear force

that can be transferred for a level of crack opening (related to the slab rotations) was defined (Muttoni,

2008), refer to Figure 5.1(a). The punching failure load and its associated deformation capacity can

thus be calculated by intersection of the failure criterion with a load-rotation relationship (relating the

opening of the cracks with the level of applied load), refer to Figure 5.1(b).

As explained by Muttoni et al. (2017), the opening of the CSC as a function of the acting load is associ-

ated with the rotation of the slab (ψ) and also to its shear deformations (δs), see Figure 5.1(c). Several

approaches have been proposed in the past to perform a refined calculation of the failure criterion

consistently with the hypotheses of the CSCT. According to these approaches, the opening of the CSC

and its associated shear capacity (resulting from the stresses developed, refer to Figure 5.1(d)) can be

calculated on the basis of the shape of the failure surface and its kinematics (a detailed review can be

consulted in Muttoni et al. (2017)).

For slender members, refined calculations of the failure criterion of the CSCT have been proposed on

the basis of a simplified shape and kinematics of the failure surface. A complete approach for so doing

was first developed by Guidotti (2010) and some improvements were later added by Clément (2012).

As shown in Figure 5.2(a), Guidotti (2010) considered the CSC as a conical surface (inclined at 45◦)
and a kinematics defined by a rotation around the tip of the crack (column perimeter) and a constant

shear deformation. The shear strength can thus be calculated by integration of the aggregate inter-

lock and residual tensile strength contributions. As discussed by Muttoni et al. (2017), the results of

Guidotti (2010) show that, at failure, the shear strains (δs) are correlated to the rotations (ψ), and thus

the punching shear strength for slender members can be expressed as a function of the rotations of

the slab (as proposed by the failure criterion of the CSCT, see Figure 5.1(a)). The approach of Guidotti

(2010) has been observed to be more suited for slabs experiencing large rotations (thin and slender

slabs with medium to low amounts of flexural reinforcement), where bending deformations govern

the CSC width (Muttoni et al., 2017). However, when the thickness of the compression zone is rel-

atively large (prestressed slabs or slabs with fairly large reinforcement amounts), these assumptions

need to be refined. These additional considerations were later implemented by Clément (2012), who

considered the CSC composed by two conical surfaces with different responses (Figure 5.2(b)). The

limit between these surfaces was considered to be given by the height of the plastic compression zone

and is thus influenced by the presence of in-plane forces and the flexural reinforcement ratio. For the

upper conical surface, Clément (2012) considered a similar response as Guidotti (2010). For the lower

part, the contribution to the punching strength was estimated with the kinematical theorem of limit

analysis based on the work of Braestrup et al. (1976) and considering an effective concrete compres-

sive strength function of the bending deformations. The enhancement of the CSCT by Clément (2012)

has nevertheless some limitations, as it leads to a discontinuous displacement field along the failure

surface.
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Figure 5.1: Mechanical model of the Critical Shear Crack Theory (CSCT): (a) experimental validation
of the hyperbolic failure criterion of CSCT (experimental data from Muttoni (2008)); (b) calculation of
punching shear failure by intersecting the load-rotation relationship and the failure criterion; (c) adopted
kinematics at failure and (d) resulting internal forces along the critical shear crack; figure adapted from

(Muttoni et al., 2017).

For squat slabs or footings, where the role of the shear deformations is more dominant (Simões et al.,
2016a), Simões et al. (2016b) determined the shape of the failure surface and its associated kinemat-

ics based on limit analysis. In this case, the punching strength is calculated assuming a rigid-plastic

behaviour of concrete characterized by an effective concrete compressive strength accounting for the

crack opening (in agreement with the CSCT principles).

Despite the fact that all the mentioned works (Guidotti, 2010; Clément, 2012; Simões et al., 2016b)
share the principles of the CSCT, they were developed to address particular cases. Within this con-

text, the present paper is aimed at introducing a comprehensive mechanical model for punching of

slabs without transverse reinforcement consistent with the CSCT principles (Muttoni et al., 2017) and
with the crack development and kinematics measured in tests. This model generalizes the approaches

of Guidotti (2010) and Clément (2012) and allows investigating members with large and low levels of

flexural deformation (an extended discussion for squat members will not be presented in this paper

and can be consulted elsewhere, see Chapter 6). Extensive comparisons with available data as well

as detailed investigations of selected specimens validate the presented refined calculation of the fail-

ure criterion. Finally, the theoretical results are used to discuss the main assumptions and limits of

applicability of the analytical failure criterion of the CSCT.
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Analysis of the punching shear behaviour based on experimental observations
available in the scientific literature
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Figure 5.2: Mechanical models consistent with the theoretical principles of the CSCT proposed by (a)
Guidotti (2010) and (b) Clément (2012).

5.3 Analysis of the punching shear behaviour based on experimental

observations available in the scientific literature

5.3.1 Discussion on the cracking pattern observed in the saw-cuts of tested

specimens

Detailed measurements on the development of cracks within reinforced concrete members have re-

cently been performed for beams in shear (e.g. Campana et al., 2013; Cavagnis et al., 2015; Huber et al.,
2016). These measurements have shown to be instrumental for the understanding of the mechanisms

leading to shear failures and the role of the various shear-transfer actions (e.g. Campana et al., 2013;
Cavagnis et al., 2015; Huber et al., 2016). As discussed by Einpaul et al. (2017) such measurements

cannot be easily performed for punching failures and the knowledge on their crack development re-

mains limited. An attempt to obtain direct measurements inside the slab was performed by Clément

(2012), Einpaul (2016) and Einpaul et al. (2017) by using an innovative measuring system based on a

robotic arm, reading the location of target points inside the slab (accessible by means of narrow holes).

Based on thesemeasurements, the authors could track the development of inner cracking and calculate

relative crack displacements and directions at different load stages.

On that basis, Clément (2012), Einpaul (2016) and Einpaul et al. (2017) identified different types of

cracks related to punching failures. The CSC, as previously described by Muttoni (2008) corresponds

to a tangential crack with flexural origin that develops in a stable manner and whose presence disturbs

the compression strut-carrying shear. As described by Clément (2012), Einpaul (2016), and Einpaul

et al. (2017) the failure crack (eventual surface of failure) may be coincident with the CSC, partly coin-

cident with it or completely different. In this latter case, it corresponds to a crack that propagates in

an unstable manner from the compression side with a flat inclination angle (Clément, 2012; Einpaul,

2016; Einpaul et al., 2017).

In addition to the CSC and failure crack, other cracking types can typically be observed in slabs failing

by punching shear. Following a similar systematics and notation to the one proposed by Cavagnis et al.
(2015) for beams in shear, the cracks that can be observed after a punching failure may be differentiated

according to their location, shape, and origin (Figure 5.3):

• Cracks type A are associated with a flexural origin, originated on the tension side and propa-

gating towards the compression side in an inclined manner due to the shear forces (as described

by, for example, Moe (1961) and Muttoni (2008), refer to Figure 5.3(a)). Cavagnis et al. (2015) also
distinguished between primary and secondary flexural cracks. While secondary flexural cracks
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5. Validation of Critical Shear Crack Theory for punching failures

develop only at the height of the flexural reinforcement (controlled by bond conditions), the pri-

mary flexural cracks are those propagating towards the neutral axis (Cavagnis et al., 2015);

• Cracks type B are associated with the formation of a shear band with several parallel cracks that

eventually coalesce in one single crack, refer to Figure 5.3(b) (Muttoni et al., 2017). This type of

cracking normally develops close to failure, near the column support in the soffit of the slab (see

Einpaul et al., 2017). In the case represented in Figure 5.3(b), this cracking type joins the column

edge to a crack type A but it can also develop only partially, followed by the propagation of a

crack type F or F’, see Figure 5.3(f);

• Cracks type C represent cracks with flexural origin developing in an inclined manner and that

merge to a previously formed crack type A, influencing the shape of the CSC (refer to Figure

5.3(c)). This type of crack has been previously observed in one-way shear tests by Cavagnis et al.
(2015) and in two-way shear tests by Einpaul et al. (2017);

• Cracks type D represented in Figure 5.3(d) result from delamination of the concrete top cover due

to dowelling of the flexural reinforcement bars (cracking type previously identified by e.g. Krefeld

and Thurston, 1966; Fernández Ruiz et al., 2010a, 2013; Cavagnis et al., 2015; Einpaul, 2016);

• Cracks type E have been originally identified by Cavagnis et al. (2015) to develop in one-way

members originating from cracks type A, due to high local aggregate interlock stresses (when the

shape of the crack is very favorable to aggregate interlock engagement, see Jacobsen et al., 2012;
Figure 5.3(e)).

• Cracks type F and F’ correspond to unstable splitting cracks developing near the supported area

and propagating towards the flexural reinforcement with a flat inclination, as described by Clé-

ment (2012), Einpaul (2016), and Einpaul et al. (2017) (refer to Figures 5.3(f) and (e)). Cracks type

F develop from the shear band (crack type B, see Figure 5.3(f)), while cracks F’ develop without

the presence of a shear band (Figure 5.3(e)). Their distinction is however not neat in many cases.

They also have the same origin: cracks type F result from the strain and stress state in the shear

band (yielding an unstable splitting crack propagation towards the flexural reinforcement, refer

to specimen PE9 in Figure 5.4), while cracks of type F’ develop as a consequence of the tensile

strains near the supported area (refer to specimen PF21 in Figure 5.4) which result also from the

kinematics of the region of the slab at the potential location of the shear band.

(a) (b) (c) (d)

(e) (f) (g)

A C
D

F

B

B
F’

E

Figure 5.3: Different cracking types observed in a saw-cut of a punching test.
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Punching behaviour based on experimental observations available in the scientific literature

All types of cracks previously introduced in a qualitative manner in Figure 5.3 are generally present

in a combined manner in the saw-cut of slabs failed by punching shear. Figure 5.4 (interpretation of

observed cracking types) shows some instances for selected saw-cuts of slabs without in-plane forces

(PG-3 of Guandalini (2005); PG20 and PG29 of Guidotti (2010); PF21 of Clément (2012); PE6, PE9 and

PE10 of Einpaul (2016)). It can be noted from these figures that:

• Several cracks with flexural origin (cracks A) develop from the tension side towards the compres-

sion side (some may however have closed during unloading after failure and are hardly visible

or not visible in the saw-cuts);

• Crackswith flexural origin developing further away from the column (cracks typeC) are observed

to govern the shape of the CSC in some cases (if merging to other flexural crack, PG29 and PF21 in

Figure 5.4) but not in others (not merging, PE9 in Figure 5.4). In the latter case, the CSC is a crack

type A with an average inclination of about 45◦, whereas in the former case the CSC is composed

by a crack type C merged with a crack type A, thus reducing its average inclination;

• Cracks type B (associated with the shear band) may be observed in most of the saw-cuts. In

some cases, cracks type B join the edge of the column and the tip of one crack type A (PG-3 and

PG20 in Figure 5.4). In other cases, cracks type B start developing, but failure is controlled by the

propagation of a crack type F or F’ (PE6 and PE9 in Figure 5.4). In these cases, even if a crack of

type F or F’ develops, a region of cracks type B can often be identified near the column;

• Cracks type B often present a steeper inclination than cracking type A and C, see PG-3, PG20 and

PE6 in Figure 5.4;

• Specimen PE10 in Figure 5.4 shows an example of a crack type E, which probably developed due

to the shape of the upper part of the CSC (quasi-vertical branch favorable to engage aggregate

interlock forces). Similar observations have already been made by Cavagnis et al. (2015) in one-

way shear tests.

• Cracks type D can often be recognized at the level of the flexural reinforcement (associated with

delamination of the thereof; see PG20 and PG29 in Figure 5.4).
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Figure 5.4: Interpretation of observed cracking of saw-cuts of tested slabs (B/d=8.6-14.9; rq/d=4.3-7.5;
d=0.201-0.456m; c=0.22-0.52m; rc=0.083-0.166m): PG3 ofGuandalini (2005); PG20 and PG29 of (Guidotti,

2010); PF21 of Clément (2012); PE6, PE9 and PE10 of Einpaul (2016).
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5. Validation of Critical Shear Crack Theory for punching failures

According to the analysis of the cracking pattern of the saw-cuts, and as already discussed by Einpaul et
al. (2017) on the basis of the internal cracking tracked, the punching failure may occur by a localization

of the strains in the CSC (thus the CSC being coincident with the failure crack) or by the development

of a splitting crack (the CSC and the failure crack thus not being necessarily coincident). In the former

case, a crack type B joining the edge of the column and a crack type A or C develop (see, e.g., PG20 in

Figure 5.4). In the case failure occurs by development of a splitting crack, both the CSC (developing

from the tension reinforcement up to a certain height) and a failure crack (developing with a flatter

inclination, PE9 in Figure 5.4) can be observed (Einpaul et al., 2017). In this latter case, the failure crack

may develop from the shear band (crack type F, PG20, and PE9 in Figure 5.4) or may also develop

within a region near to the supported area without the complete development of the shear band (crack

type F’, PF21 in Figure 5.4).

5.3.2 Discussion on the distribution of tangential cracks with flexural origin

Another interesting aspect refers to the development of the tangential cracking in the vicinity of the

column. Figure 5.5 shows for instance the radial strains (related to tangential cracking) on the top

surface (tension side) of slabs PG-1 and PG-3 measured by Guandalini (2005). The results clearly show

that, as the level of load increases, the extent of the slabwhere tangential cracking occurs also increases.

It is interesting to note that this region may extend beyond the location of the CSC, normally assumed

to develop at a distance d from the column edge (Muttoni, 2008; Guidotti, 2010; Clément, 2012). This

fact is consistent with the observation that others cracks (type C) may potentially develop beyond the

CSC for higher shear forces without merging with it (thus not governing the shape of the CSC).
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Figure 5.5: Experimental results of Guandalini (2005): radial strains measured at the concrete top surface
for specimens (a) PG1 (B=3.0 m; d=0.21 m; c = 0.26 m; ρ=1.5%; measures performed along the east direc-
tion) and (b) PG3 (B=6.0m; d=0.456m; c=0.52m; ρ=0.33%; measures performed along thewest direction);

figure adapted from Guandalini (2005).
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5.3.3 Discussion on the kinematics of the critical shear crack

As previously introduced, Clément (2012), Einpaul (2016), and Einpaul et al. (2017) measured the dis-

placements of points inside of the slab using a robotic arm. Figure 5.6(a) shows the radial location of

the center of rotation of the CSC calculated by Clément (2012) at different load levels for test PF21. In

addition, Figure 5.6(b) plots the radial strains in the soffit of the slab as a function of the applied load

(Clément, 2012). These results show that the radial location of the center of rotation of the CSC varies

during loading (Clément, 2012). First, in the stage where the crack may be forming, the center of ro-

tation is located near the axis of the column. As the load increases, the crack probably develops and

the center of rotation shifts towards the edge of the column, but eventually moves back near failure.

The results also show that when the center of rotation starts moving back, a reduction of the radial

strains in the soffit of the slab is observed (refer to Figure 5.6(b)). As suggested by Clément (2012), this

may indicate that both the movement of the center of rotation and the changes in the behaviour of the

concrete strains measured on the soffit of the slab are a result of the shear deformations occurring close

to failure. This observation is also supported by other researchers (Hallgren, 1996; Einpaul, 2016) that

reach a similar conclusion relating the decompression of concrete strains observed in the soffit of the

slab to the shear deformations occurring near failure.
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Figure 5.6: Results of Clément (2012) for slab PF21 (B=3.0 m; c=0.22 m; d=0.35 m; ρ=0.75%): (a) radial
location of centre of rotation (east-west axis); (b) concrete radial strains measured in the soffit of the

slab; figure adapted from Clément (2012).

With the help of several measuring points placed inside of the slab, Einpaul et al. (2017) also identified

the CSC and measured its crack width at an height z/d ≈ 0.8. These results are presented in Figure 5.7

for six slabs with three different columns sizes (rc/d ≈ 0.4, 0.8 and 1.6) and two different reinforcement

ratios (ρ ≈0.75% and 1.50%). The results show that for a given level of rotation (Einpaul et al., 2017):
(a) smaller crack widths are observed for larger column sizes (i.e., the crack width is a function of the

number of cracks, with higher number of cracks for larger column sizes; refer to the average slope of

Figure 5.7(a) to 5.7(c)); (b) for a given rotation, the crack width does not seem to be dependent on the

flexural reinforcement ratio in the investigated range of cases (negligible differences between red and

blue curves of Figure 5.7) but on the column size. Furthermore, Einpaul et al. (2017) also observed that

the relative displacement of the crack lips in the upper part of the CSC is approximately normal to the

crack surface. Eventually, based on the measured displacements of points in the interior of the slab,

Einpaul et al. (2017) concluded that the center of rotation of the CSC in the tested specimens is inside

the slab in terms of height.
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Figure 5.7: Experimental results of Einpaul (2016) and Einpaul et al. (2017): width of the critical shear
crack as a function of the rotation of the slab for different column sizes and reinforcement ratios for six

slender slabs (B=3.0 m; d=0.210-0.218 m; fc=36.7-44.1 MPa); figure adapted from Einpaul (2016).

5.4 Mechanical model for punching shear failures

5.4.1 Basis of the mechanical model

Based on the previously discussed experimental findings, a comprehensive mechanical model is pre-

sented in this section describing the kinematics and load-transfer capacity of slabs failing in punching.

The principles of the model are shown in Figure 5.8(a) and described in the following:

• Primary and secondary tangential cracks due to bending develop in the tension side of the slab

after the analysis of the cracking development in Section 5.3. The primary tangential flexural

cracks are assumed to develop within a radius rχr (measured from the axis of the column) where

radial curvature is considered to be non-negligible (in accordance with the results of Guandalini

(2005) and Guandalini et al. (2009)). The spacing of such cracks is assumed to be constant (s f );

• A CSC develops from the tension to the compression side (Figure 5.8) after Muttoni (2008). Ac-

cording to Muttoni et al. (2017), this crack is assumed to be composed of an inclined tangential

crack (cracks type A and C developing from the tension side) and a shear band (smeared crack

type B developing on the compression side). The extent of each cracking type is considered to

be a function of the associated displacement field. On the tension side, a mixed-mode opening-

sliding occurs (localized cracking), while on the theoretical compression side, deformations may

localize in a shear band (smeared cracking, eventually followed by coalescence), see Figure 5.8(a)

(Muttoni et al., 2017);

• The kinematics of the CSC accounts for two components. The first one refers to the rotation

around the center of rotation due to flexural deformations (CR with coordinates (rCR, zCR)). The

second one refers to the shear deformation and consists of a constant displacement between both

faces of the CSC. First, the behaviour is governed by the flexural response (rotations) and, near

failure, shear deformations develop (Muttoni et al., 2017). Such kinematics is consistent with the

behaviour experimentally observed by Clément (2012) (Figure 5.6) and to previous assumptions

of the CSCT (Guidotti, 2010; Clément, 2012; Muttoni et al., 2017);

• The location of theCSC at the level of the flexural reinforcement (r0) is considered to be variable, in

agreement with the experimental observations on the radial deformations of Guandalini (2005),

see Figure 5.5.
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As described by Einpaul et al. (2017) and according to the experimental result observations, the failure

may occur by a localization of the strains in the CSC (thus the CSC being coincident with the failure

crack, Figure 5.8(a)) or by the development of a new splitting crack (also shown in Figure 5.8(a) and

discussed by Einpaul et al. (2017)). For the latter case, the failure crack may propagate from the shear

band (crack type F’) or at its vicinity (crack type F’), but in both cases, its development is assumed to

be governed by the kinematics, shape, and stresses transferred by the CSC. Thus, despite the fact that

the failure crack may not be coincident with the critical one, the punching strength is still governed

by the properties and response of the CSC (Einpaul et al., 2017) (as the splitting crack develops when

the strength is attained in the shear band region). For all cases, thus, it is assumed that the punching

strength can be calculated on the basis of the capacity of the CSC to transfer forces, by integration of

the internal stresses developing along it based on the adopted kinematics and considering suitable

fundamental laws for the shear-transfer actions.

It shall be noted that in the case of columns extending above the slab, see Figure 5.8(b), the cracks de-

velop mostly outside of the column region. However, the crack developing at the edge of the column

(crack G in Figure 5.8(b)) concentrates a significant fraction of the rotation, which is related otherwise

to the cracks type A developing inside the column region in the absence of an upper column. Con-

sequently, the rotation concentrated at the CSC, governing the punching strength, is not significantly

influenced by the presence of a column above the slab, as confirmed by examination and comparison of

punching models to test results based on setups presenting both types of support conditions (Muttoni,

2008).

5.4.2 Geometrical definition of regions of the slab with different behaviour

Following the experimental evidences discussed in Section 5.3 and based on the hypotheses of the me-

chanicalmodel established in Section 5.4.1, different regions of the slabwith distinct deformations have

to be defined. As shown in Figure 5.9(a), the mechanical model here presented considers that the slab

is divided into three different portions: the inner and outer portions of the slab and awedge-shaped re-

gion between them. Similarly to Kinunnen and Nylander’s approach (Kinnunen and Nylander, 1960),

it is considered that the inner portion of the slab deforms in a spherical manner (due to the develop-
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5. Validation of Critical Shear Crack Theory for punching failures

ment of principal and secondary flexural cracks) and that the outer portion of the slab behaves as a rigid

body following a conical deformation (experimentally validated by several researchers (e.g. Kinnunen

and Nylander, 1960; Hallgren, 1996; Guandalini, 2005)). The wedge-shaped region is considered as a

deformable body (whose height is equal to the neutral axis depth) ensuring compatibility conditions

associated with the rotations of the slab. This region accommodates the radial displacements due to

bending, consistently to the approach of Kanellopoulos (1986) for beams. Above the neutral axis, the

CSC separates the inner and outer portions of the slab while, below the neutral axis, the CSC separates

the inner portion of the slab and the wedge element.

5.4.3 Shape of the Critical Shear Crack

As discussed inMuttoni et al. (2017) and Einpaul et al. (2017) as well as previously introduced based on

the analysis of the cracking types (A or C compared to cracks type B in Section 5.3), the CSC presents

two regions with different phenomenological behaviors. The slope of the CSC is also typically differ-

ent in these regions, with an often steeper inclination of the shear band (near to the supported area).

This assumption is consistent with other experimental observations (Guandalini, 2005) and theoreti-

cal approaches available in the scientific literature (Braestrup et al., 1976; Yankelevsky and Leibowitz,

1999).
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In order to account for the varying slope of the CSC, a third-degree polynomial is used to characterize

the geometry of the investigated CSC (r(z)) as:

r(z) = a0 + a1 · z + a3 · z3 (5.1)

where a0, a1 and a3 are constants which can be calculated based on the following assumptions (Figure

5.9(b)):

1. The CSC develops between the edge of the column and the level of the flexural reinforcement,

that is, r(0) = rc;

2. The radial distance between the axis of column and the CSC at the level of the flexural reinforce-

ment is equal to r0, that is r(d) = r0;

3. The tangent to the CSC at the level of the flexural reinforcement passes through the centre of

rotation (rCR, zCR) and is equal to r′(d) = 1/ tan (β(d)), where β(d) refers to the slope of the CSC

at z = d. This assumption means that the displacement due to the rotation at the level of the

flexural reinforcement has a direction normal to the crack lips (consistently with the experimental

observations of Einpaul et al. (2017)).

Based on these assumptions, Eq. (5.1) becomes:

r(z) = rc +
3
2
· (r0 − rc)

d
· z − z

2 · tan (β(d))
+

z3

2 · d2 · tan (β(d))
− (r0 − rc) · z3

2 · d3 (5.2)

where tan(β(d)) = (d − zCR)/(r0 − rCR) ≥ 0.5, the lower limit representing the minimal inclination

of the CSC at z = d. It shall be noted that the punching shear resistance is not very sensitive to the

function adopted for the CSC (reasonable variations of the shape of the CSC yielding similar results).

With respect to the location of the CSC at the level of the flexural reinforcement (r0), it has been dis-

cussed in Section 5.3 that the region where tangential cracks develops progresses with the increase

of the load level. In addition, it has also been shown that the potential development of cracks type

C merging with cracks type A for higher load levels might govern the shape of the CSC. To account

for this effect, the location of the CSC at the level of the flexural reinforcement is considered to vary

between rc + 0.75 · d and rc + 1.5 · d (in agreement with the experimental observations in the saw-cuts

of tested specimens) according to the following expression:

r0
d

=
V

2 · π · d2 · τl
(5.3)

This expression accounts for the parameter τl which refers to a reference value of the nominal shear

stress causing flexural cracks to become inclined flexural-shear cracks and thus governing the shape of

the CSC. The value of τl is assumed to be correlated to the shear strength of uncracked concrete (nor-

mally depending upon the square root of the compressive strength of concrete (Vecchio and Collins,

1986)) and accounting also for the size of themember (Nielsen andHoang, 2011). In addition, the value

of τl is also considered to depend on the degree of utilization of the flexural reinforcement, in the sense

that larger deformations lead to wider flexural cracks reducing the effective height of the section en-

abling the transmission of shear stresses and thus leading to stress concentrations. As a first estimate,

the value of τl at failure is proposed to be calculated as:

τl =
√

fc · k1 ·
(

k0
d

)k2
·
⎡
⎣1− k3 ·

(
VR
Vflex

)k4
⎤
⎦ (5.4)

113



5. Validation of Critical Shear Crack Theory for punching failures

where fc refers to the concrete compressive strength (in [MPa]); VR is the punching strength; Vflex is the

flexural strength; d is the effective depth (in m); k0 is a constant reference size taken equal to k0 = 1.0

m; k1 is constant value with unit (MPa1/2) and k2 to k4 are dimensionless constant values. With respect

to the exponent governing size effect (k2), its value is taken as 1/3 in agreement to Nielsen and Hoang

(2011) for phenomena governed by the tensile strength of concrete. A suitable value for the coefficient

k1, k3 and k4 can be derived by comparison to test results where information on the saw cuts can be

observed. On the basis of available test data (Guandalini, 2005; Guidotti, 2010; Fernández Ruiz et
al., 2010b; Tassinari, 2011; Clément, 2012; Lips, 2012; Einpaul, 2016; Drakatos, 2016), it is proposed

to consider k1 = 0.2, k3 = 0.5, and k4 = 3 (refer to Figure 5.9(d)). The calculation of τl in this work is

based on experimental values, but furtherworkmay be required in view of understanding the potential

influence of other non-considered parameters. It can be noted that by calculating the value of r0 as a

function of a nominal reference value τl , one considers that, for larger values of the applied shear

stresses, the inclined flexure-shear cracks can develop at larger distances from the edge of the column

and the value of r0 becomes larger (Guandalini, 2005).

5.4.4 Kinematics and displacement field along the critical shear crack

According to the CSCT, the kinematics of the CSC at failure consists of two components (see Figure

5.10(a)):

1. a flexural deformation defined by a rotation ψcsc around the centre of rotation (rCR, zCR);

2. a shear deformation characterized by a sliding δs with an angle γ0 with respect to the steepest

region of the CSC.

Hereafter, the following notations will be used (see Figure 5.10(b)):

• w refers to a crack opening, that is, displacement normal to the face of the CSC;

• Δ is a displacement parallel to the face of the CSC;

• δ represents a vector sum of the displacements normal and parallel to the face of the CSC;

• γ defines the angle between the face of the CSC and the displacements vector sum;

• u and v are respectively the radial and vertical components of δ;

• α is the angle between the vertical axis and the displacement vector δ.

This notation is used in combination with the subscripts: ′ψ′ to describe the displacements associated

with the rotation; ′s′ referring to the components due to the shear deformation and ′T′ when referring

to the vector sum of both contributions of rotation and shear deformation.
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5.4.4.1 Flexural deformations

The displacement field along the CSC due to flexural deformations is a function of the location of the

center of rotation (rCR, zCR) and of the rotation developing in this crack (ψcsc). Considering that the

rotation of the slab ψ is equally divided in the primary tangential flexural cracks without any contri-

bution of the secondary flexural cracks, the rotation concentrated in the CSC ψcsc can be calculated

as follows as (similarly to Guidotti (2010) and in accordance with the experimental results of Clément

(2012) and Einpaul et al. (2017)):
ψcsc =

ψ

ncr
(5.5)

where ncr represents the number of primary tangential flexural cracks, which can be calculated as

(similarly to Guidotti (2010)):

ncr = 0.5+
rχr

s f
(5.6)

where s f refers to the distance between the primary flexural cracks and rχr is the extent of the region

where these cracks develop (where the term 0.5 refers to the crack forming at the axis of symmetry),

see Figure 5.8(a). Scanty information has been reported regarding this spacing (s f ) in punching tests.

However, this parameter has been experimentally investigated for beams failing in shear (e.g. Khaja and

Sherwood, 2013; Cavagnis et al., 2015), where it has been shown that this value ismainly proportional to

the effective depth s f ∝ k5 · d, with k5 varying from0.50 to 0.60 (e.g. Khaja and Sherwood, 2013; Cavagnis

et al., 2015). Consistently with these observations, a value k5 = 0.50 will be adopted in this work. With

respect to the distance rχr, it will be estimated as rc + k6 · d, where k6 = 0.25 will be considered. This

is physically consistent with the discussion of cracking observed in saw-cuts presented in Section 5.3.1

(development of crack type A or C further away from the column that only merge at higher shear

stresses) and with the experimental measurements of Guandalini (2005) presented in Figure 5.5.
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With respect to the center of rotation associated with ψcsc (Figure 5.9(b)), it is assumed that it is radially

located at the edge of the column (in accordance to the experimental results of Clément (2012) before

shear deformations take place, Figure 5.8) and at the height of the neutral axis (zCR = x) associatedwith

the tangential bending moment at r0 (curvature calculated as χ = ψ/r0 corresponding to the assump-

tion of a spherical deformed shape inside r0 consistently with the works of Kinnunen and Nylander

(1960) and others (Hallgren, 1996; Broms, 1990, 2016)). In this paper, the calculation of the height of
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the neutral axis is performed in a similar manner as Hallgren (1996), that is, adopting an elastic-plastic

behaviour of concrete and reinforcement. The uniaxial behaviour of concrete is considered to be char-

acterized by the ascending branch given by the modulus of elasticity (Ec; calculated based on the value

of the uniaxial concrete compressive strength as Muttoni (2008)) and by a plastic plateau at a stress

of η f c · fc (where the factor η f c accounts for the brittleness of high-strength concrete and is calculated

according to Muttoni (1990) as η f c = (30/ fc)1/3 ≤ 1 with fc in [MPa]). The elastic-plastic behaviour of

the reinforcement is also described by its modulus of elasticity (Es) and yield strength ( fy) (see Section

5.10.1 for details on the calculation of x).

Figure 5.9(c) shows the shape adopted for the CSC and the associated tangent inclination for a given

r0 and height of the neutral axis. Also the range of potentially governing critical shear cracks is shown

in Figure 5.9(c).

Finally, the displacement field along the CSC due to the rotation ψcsc can be calculated assuming that

(Figure 5.11):

• Above the neutral axis, all displacements localize in the CSC;

• Below the neutral axis, only the vertical displacements (equal to the one at z = zCR) localize at

the CSC, while the wedge-shape region accommodates the radial displacements (in accordance

to the approach of Kanellopoulos (1986) for beams in bending).

The radial (uψ) and vertical (vψ) components of the displacements resulting from the rotation ψcsc

around the CR localizing in the CSC are given by (see Figures 5.11(b) and (c)):

uψ(z) =

⎧⎨
⎩ψcsc · (z − zCR) if z ≥ zCR

0 if z < zCR
(5.7)

vψ(z) =

⎧⎨
⎩ψcsc · (rCR − r) if z ≥ zCR

ψcsc · (rCR − rz=zCR) if z < zCR
(5.8)

The vector of displacements due to the rotation localizing in the CSC can be computed as:

δψ(z) =
√

uψ(z)2 + vψ(z)2 (5.9)

and the angle between the vertical axis and this vector is given by:

αψ(z) = tan−1
(
−uψ

vψ

)
(5.10)

The angle between the CSC and the vector of displacement due to the rotation is finally computed as:

γψ(z) =
π

2
− β(z) + αψ(z) (5.11)

and the corresponding displacements parallel Δψ(z) and normal wψ(z) to the CSC are calculated as

follows (Figure 5.11):

wψ(z) = δψ(z) · sin (
γψ(z)

)
(5.12)

Δψ(z) = δψ(z) · cos (γψ(z)
)

(5.13)
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Figure 5.12: (a) Adopted kinematics and corresponding displacements along the critical shear crack due
to combined effects of rotation ψcsc and shear deformation δs; details of resulting displacement field in

the (b) lower and (c) upper portion of CSC.

5.4.4.2 Shear deformations

Considering that the shear deformations fully localize at the CSC, the resulting displacement field

along it is characterized only by the total constant displacement δs (corresponding to a translation) and

angle of sliding γs(z) (variable due to the potentially variable tangent inclination of the CSC). With

respect to the angle of sliding, it can be considered that the lowest anglemeasured between theCSC and

the direction of the vector of shear deformations is related to the angle of dilatancy observed in push-off

tests of concrete members (following the approach of Guidotti (2010) based on the results of Walraven

(1980)). As the point with steepest inclination along the failure surface is located at z = 0 (edge of

the column), the lowest angle of dilatancy occurs at this location and is equal to γs(0) = γ0. Based

on the analysis of experimental results and theoretical considerations (Mattock, 1974; Walraven, 1980;

Walraven, 1981; Mansur et al., 2008), Clément (2012) concluded that this angle should vary from 25◦ to
30◦. A value of γ0 = 27◦ is adopted in this work (consistently with Guidotti (2010), but limited to the

value 90◦ − β(0) corresponding to a vertical translation of the slab in the phase of shear deformations).

Thereby, the angle between the CSC and the vector of shear deformations γs(z) can be calculated as a

function β(z) as follows:

γs(z) = γ0 + (β(0)− β(z)) (5.14)

Considering a shear deformation (characterized by a constant displacement δs with and angle γs(z)),

the corresponding displacements parallel Δs(z) and normal ws(z) to the CSC are computed as follows

(Figure 5.12):

Δs(z) = δs · cos (γs(z)) (5.15)

ws(z) = δs · sin (γs(z)) (5.16)

Finally, the displacements parallel ΔT(z) and normal wT(z) to the CSC associated with the combined

effect of rotation and shear deformation are respectively given by:

ΔT(z) = Δψ(z) + Δs(z) (5.17)

wT(z) = wψ(z) + ws(z) (5.18)
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and its vector sum δT(z) and corresponding direction γT(z) with respect to the CSC plan can be ob-

tained as (Figure 5.12):

δT(z) =
√

wT(z)2 + ΔT(z)2 (5.19)

γT(z) = tan−1
(

wT(z)
ΔT(z)

)
(5.20)

It should be noted that, following the development of the shear deformation, the CRmoves away from

the column edge (compare location of CR in Figures 5.11 and 5.12). This is in agreementwith the results

of Clément (2012) shown in Figure 5.6.

5.4.5 Internal stresses along the critical shear crack

As discussed by Muttoni et al. (2017), different phenomenological responses occur along the CSC. The

zone in the tension side presents a mixed-mode opening-sliding response due to the development of a

discrete crack (localizing strains, representing a localized cracking behaviour) caused by flexural defor-

mations. The zone in the compression side may in its turn behave as a shear band, where deformations

smear in a narrow region (representing a smeared cracking behaviour) eventually leading to coalesce

in one single crack (see Figure 5.8). These two different phenomenological responses will be consid-

ered in this work by calculating the internal stresses along the CSC in accordance to the expected crack

kinematics.

5.4.5.1 Transition between single crack behaviour and shear band behaviour

The transition between these two distinct regimes (localized and smeared cracking) is a complex phe-

nomenon and depends upon the opening and direction of the crack displacement vector, the loading

path, and the concrete properties (Jacobsen et al., 2012). With this respect, some interesting results have

been reported by Jacobsen et al. (2012), who performed an experimental programwith double-notched

concrete specimens where an initial crack opening was applied (imposed displacement normal to the

notched surface) followed by a shear displacement at a given angle (mixed-mode opening and sliding).

Based on the experimental results, Jacobsen et al. (2012) concluded that a clear localized cracking be-

haviour (aggregate interlock along the notched surface) could only be obtained if: (a) a discrete crack

caused by an initial opening displacement occurs (initial crack opening corresponding to a decrease

on the normal stress of 30-50% of the tensile strength) and (b) a shear displacement with an opening-

to-sliding angle sufficiently large is applied (limit value of 40◦ suggested by the author).
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Figure 5.13: Adopted transition between localized and smeared cracking regimes function of the displace-
ment field: (a) transition criterion based on the angle of the displacement vector associated with flexural
deformations; (b) transition criterion based on the crack opening-to-crack sliding angle associated with

shear deformations; (c) transition criterion based on the crack opening due to the flexural behavior.
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The transition between these two distinct regimes (localized and smeared cracking) is a complex phe-

nomenon and depends upon the opening and direction of the crack displacement vector, the loading

path and the concrete properties . With this respect, some interesting results have been reported by ,

who performed an experimental programmewith double-notched concrete specimenswhere an initial

crack opening was applied (imposed displacement normal to the notched surface) followed by a shear

displacement at a given angle (mixed mode opening and sliding). Based on the experimental results,

concluded that a clear localized cracking behaviour (aggregate interlock along the notched surface)

could only be obtained if: (i) a discrete crack caused by an initial opening displacement occurs (initial

crack opening corresponding to a decrease on the normal stress of 30% to 50% of the tensile strength)

and (ii) a shear displacement with an opening-to-sliding angle large enough is applied (value of 40◦

suggested by the author).

In this work, based on the experimental observations of Jacobsen et al. (2012), the transition between

the localized and the smeared cracking regions will be defined on the basis of the initial crack open-

ing (wψ) and on the crack opening-to-crack sliding angles associated with flexural (γψ) and shear (γs)

deformations. The transition is thus defined according to the following criteria:

• The region of the CSCwith γψ ≤ 40◦ will be assumed to have a smeared cracking response (Figure

5.13(a));

• The response (localized or smeared cracking) of the region of the CSCwith γψ > 40◦ is assumed to

depend on the initial crack opening (wψ) and on the crack opening-to-crack sliding angle associ-

ated with the shear displacement vector (γs). In this case, the region of the CSCwith wψ ≤ 0.5 ·wc

and γs ≤ 40◦ is assumed to behave with a smeared cracking response as shown in Figure 5.13(b)

(where wc is the crack opening corresponding to a zero tensile stress). On the contrary, localized

cracking behaviour is assumed to be governing in other cases (γψ > 40◦ and γs > 40◦, inde-
pendently of wψ as shown in Figure 5.13(c); or γψ > 40◦ and wψ > 0.5 · wc independently of γs,

corresponding to a full localization of the strains).

Mathematically, the vertical coordinate where the transition between both regimes occurs (ztr) can be

expressed as follows:

ztr = min
(
zγs=40◦ , zwψ=0.5·wc

)
≥ zγψ=40◦ (5.21)

where zγs=40◦ refers to the vertical coordinatewhere γs = 40◦, zwψ=0.5·wc to the vertical coordinatewhere

wψ = 0.5 ·wc and zγψ=40◦ is the vertical coordinate where γψ = 40◦. It can be noted that in the previous

condition it is assumed (consistently with the governing kinematics) that γs ≤ γψ.

5.4.5.2 Internal stresses developing in the segment with localized cracking

In the region of the CSC where deformations localize in a single crack (opening-sliding mixed-mode

behaviour), it is considered that the shear-transfer capacity is governed by the residual tensile strength

and the aggregate interlock stresses, leading to the following normal (σagg) and shear (τagg) interlocking

stresses as a function of the crack opening (wT) and sliding (ΔT) (according to Cavagnis et al. (2017)):

σagg (wT ,ΔT) = σfct(wT) + σagg,0(wT ,ΔT , fc, dg) (5.22)

τagg (wT ,ΔT) = τagg,0(wT ,ΔT , fc, dg) (5.23)

where σfct refers to the residual tensile strength, τagg,0 and σagg,0 are the shear and normal stresses due

to aggregate interlocking engagement. According to Hordijk (1992), the residual tensile strength can
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be calculated as:

σfct = fct ·
[
1+

(
t1 · wT

wc

)3
]
· e(−t2· wT

wc ) − wT
wc

·
(
1+ t31

)
· e(−t2) ≥ 0 (5.24)

where fct refers to the tensile strength of concrete, wc is the crack opening corresponding to a zero

tensile stress and t1 = 3 and t2 = 6.93 are constants (Hordijk, 1992). The tensile strength of concrete is

computed according to the following relationships ( fc in [MPa]) (Cavagnis et al., 2017):

fct =

⎧⎨
⎩0.3 · f 2/3c if fc ≤ fc0,t

0.3 · f 1/3c0,t · f 1/3c if fc ≥ fc0,t
(5.25)

with fc0,t = 50 MPa and the crack opening wc is computed as follows (Hordijk, 1992):

wc = 5.14 · GF
fct

(5.26)

where the total fracture energy GF is calculated in accordance to the (fib Model Code 2010, 2013):

GF = 73 · f 0.18c ( fc in [MPa], GF in [N/m]) (5.27)

With respect to the aggregate interlock engagement stresses, the simplified formulation of Cavagnis

et al. (2017) will be used in this work ( fc in [MPa]):

σagg,0 = −c1 ·
√

fc · Δ7/3

(c3 · w)3+c3·Δ
(5.28)

τagg,0 = c2 ·
√

fc · Δ4/3

(c3 · w)1.8+c3·Δ
(5.29)

where c1 = 400 (unit of
√
MPa), c2 = 35 (unit of

√
MPa) and c3 = 40 are constant values; Δ = ΔT/ddg

and w = wT/ddg are the normalized displacements parallel and normal to the crack surface; ddg is the

reference value of the crack roughness and is calculated according to Cavagnis et al. (2017) as:

ddg = 16+ dg ·min

((
60
fc

)2
, 1

)
≤ 40mm (5.30)

with ddg and dg in [mm] and fc in [MPa]. According to Cavagnis et al. (2017) the reduction of dg for

high concrete grades is related to a reduction of the roughness of the crack associated with the devel-

opment of cracks trough the aggregates described by Collins and Kuchma (1999). Cavagnis et al. (2017)
proposed also the consideration of an upper limit of ddg related to the limited increased of transferred

stresses across a crack for higher aggregate sizes as experimentally observed by Sherwood et al. (2007)
for shear in beams (limit of 40 mm in Equation 5.30. It should be mentioned that Eqs. (5.28) and (5.29)

have been proposed by Cavagnis et al. (2017) based on the model of aggregate interlock of Walraven

(1981) but adopting the kinematics at failure of Guidotti (2010) (defined by an initial crack opening and

a sliding with a given angle with respect to the crack; see Guidotti (2010) for details). It is also impor-

tant to note that other approaches could also be used to calculate the aggregate interlock engagement

stresses (e.g. Walraven, 1980; Guidotti, 2010) but the approach of Cavagnis et al. (2017) is kept because
of its simplicity and validation against the recent experimental results of Jacobsen et al. (2012).
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5.4.5.3 Internal stresses developing in the segment with smeared cracking

A shear band behaviour is considered for calculating the internal stresses in the region of the CSC

where deformations are considered to develop in a band of finite thickness. The concept of shear band

introduced by Jensen (1975) is used in this work to calculate the strains developing in a band where a

given displacement field is assumed to occur. Figure 14a shows the typical cracking pattern observed

locally near the column edge (refer also to Figure 5.8). A shear band with a width λ together with a

displacement field characterized by a total displacement δT(z) and a direction γT(z) with respect to its

axis (calculated in Section 5.4.4) is shown in Figure 5.14(b), where the principal strains result (Figure

5.14(c) and (d); Jensen, 1975):

ε1,sb(z) =
δT(z)
2 · λ

· (sin(γT(z)) + 1) (5.31)

ε3,sb(z) =
δT(z)
2 · λ

· (sin(γT(z))− 1) (5.32)

where ε1,sb and ε3,sb refer to the principal tensile and compressive strains respectively in the shear band.

The principal direction of compression with respect to the shear band axis is given by (refer to Figure

5.14(c) and (d)):

θsb(z) =
π

4
− γT(z)

2
(5.33)

The width of the band λ will be considered to be related to the size of the aggregate (λ = ddg). This

simplification is consistent with other approaches, based on the concept of localization on a crack band

(Bažant and Xiang, 1997) and supported on the following considerations: (i) the width of the band is

considered to have a finite size even in the case of a zero aggregate size (λ = 16mm) and (ii) the influ-

ence of the aggregate size on the width of the band decreases in the case of high-strength concrete due

to the development of smeared cracking trough the aggregates (Collins and Kuchma, 1999; Angelakos

et al., 2001; Bentz et al., 2006; Muttoni and Fernández Ruiz, 2008) (thus reducing the influence of this

parameter on the width of the shear band).

In order to determine the associated state of stresses (Figure 5.14(g)), a strain-stress relationship adapted

from the work of Guidotti et al. (2011) will be used in this work. The formulae presented by Guidotti

et al. (2011) allows determining the axial stress (σ3) and the radial strains (ε1) of a concrete cylinder as

a function of the axial strain (ε3) and confining pressure.

The original formulation of Guidotti et al. (2011) is nevertheless valid for concrete cylinders, whereas

the state of strains in the investigated axisymmetric element (Figure 5.14(e)) is more complex (in most

cases two compressive and one tensile strains, Figure 5.14(f)). In fact, in addition to the principal tensile

and compressive strains (developing in a radial plane, ε1,sb and ε3,sb), also a state of tangential strains

in the shear band (ε2,sb in Figure 5.14(f)) results from the flexural deformations in the inner portion

of the slab inside (inside r0) and from the radial displacement field occurring in the shear band. The

former component induces a constant state of tangential strains in the band, whereas the latter leads

do a discontinuity of tangential strains along its thickness (Jensen, 1975; Figure 5.14(c)).

When analysing the behaviour of a concrete panel representing an element of shear band (Figures

5.14(e) to (g)), two distinct effects have thus to be distinguished: (i) the favourable effect of a potential

tangential compression (ε2,sb) on the peak stress and deformation capacity of the ε3 − σ3 relationship

and (ii) the potential unfavourable influence of imposed tensile strains (ε1,sb) on the ε3 − σ3 relationship

(strain softening). In the following, these phenomena are briefly presented as well as their considera-

tion in the constitutive law adopted for concrete in this region.
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Figure 5.14: Model assuming the formation of a shear band: (a) cracking; (b) geometrical definition and
relative radial displacement field; (c) strains field; (d) Mohr’s circle; (e) axisymmetric view of the shear

band; (f) strain and (g) stress state of an element of the shear band.

Influence of compressive tangential strain

As schematically represented in Figure 5.15(a), the behaviour of a panel in biaxial compression is ac-

tually in-between the behaviour of an unconfined and confined concrete element (Kupfer et al., 1969;
Kupfer and Gerstle, 1973). The behaviour of concrete panels under biaxial compression has been in-

vestigated by numerous researchers (e.g. Kupfer et al., 1969; Kupfer and Gerstle, 1973). The original

experimental research presented by Kupfer et al. (1969) showed that concrete compressive strength and

deformation capacity increase in the case of biaxial compression. On that basis, Kupfer and Gerstle

(1973) proposed an envelope in the stress-space for concrete panels under biaxial loading conditions.

Furthermore, Kupfer et al. (1969) have also shown that the increased peak stress in the case of biaxial

compression may increase up to approximately 20% of the uniaxial compression strength.

In this work, the favourable effect of biaxial compression due to tangential strains developing in the

region with smeared cracking will be considered in a simplified manner. This will be performed by

considering that the strain-stress relationship of the region with smeared cracking corresponds to the

one of a cylinder with a confining pressure leading to a peak stress of κb · fc. As previously discussed,
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the value of κb, representing the enhancement of the peak strength and deformation capacity of con-

crete (see differences between dotted black and blue curves in Figure 5.15(a) and (c)), may have values

between 1 and approximately 1.2 depending on the level of transverse compression (Kupfer et al., 1969).
In this work, a constant value of κb = 1.1 is considered, representing the case where moderate values of

the tangential compression develop in the regionwith smeared cracking (in agreement with the results

of the mechanical model).

Influence of imposed tensile transverse radial strain ε2

When investigating the shear strength of reinforced concrete panels, Vecchio and Collins (1986) identi-

fied a decrease of the concrete compressive strength (compression softening) in presence of transverse

tensile strains. Consistently to these observations, Muttoni (1990) suggested that, for the case of unre-

inforced concrete members, the influence of imposed transverse tensile strains can be investigated on

the basis of the ε1 − σ3 relationship (as for instance done by Guidotti et al. (2011)). This approach is

represented in Figure 5.15(b), where fc,eff corresponds to the value of σ3 associated with the imposed

transverse tensile strain ε∗1. In addition, a softer strain-stress relationship (green line in Figure 5.15(b))

accounting for the presence of large tensile strains can thus be derived considering that its peak occurs

at the point with coordinates (ε∗1, fc,eff).
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Figure 5.15: Adopted behaviour of concrete in the shear band: (a) influence of confining pressure (σ1)
on the compression resistance (σ3) and deformation capacity (ε1 and ε3) of different concrete elements
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developing in the shear band.

Calculation of normal and shear stresses in the region of smeared cracking

The stresses acting in the axisymmetric element of shear band can be calculated accounting for the

potential effects of biaxial compression and imposed transverse tensile strains based on the principles

described above. The procedure followed to calculate the stress σ3,sb in the shear band is shown in

Figure 5.15(c), where both ε3 − σ3 and ε3 − ε1 relationships are plotted for concretes under different

conditions. The dotted black curve represents the behaviour of an unconfined concrete cylinder. The

blue curves ε3 − σ3 and ε3 − ε1 represent the behaviour of a concrete cylinder with a confining pressure

leading to a peak strength equal to κb · fc. The difference between the black dotted and blue curves

represents the considered beneficial effect of biaxial compression on the concrete behaviour. However,

the behaviour of the concrete in the shear band is still not represented by the blue curves in Figure

5.15(c), as they do not consider the imposed tensile strain ε1,sb. To account for it, a softer ε3 − σ3,eff
relationship (green curve in Figure 5.15(c)) is derived considering that its peak occurs at the stress fc,eff
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5. Validation of Critical Shear Crack Theory for punching failures

corresponding to the imposed transverse tensile strain ε1,sb (by introducing ε1,sb in the blue curve ε3− ε1

and calculating the corresponding σ3, consistentlywith the procedure proposed byMuttoni (1990)) and

assuming ε3 − σ3,eff (green curve) to be an homothetic curve of ε3 − σ3 (blue curve). Finally, the stress

σ3,sb in the shear band can be computed by introducing ε3,sb in the green curve ε3 − σ3,eff.

By considering the ε3 − σ3 relationship proposed by Guidotti et al. (2011) and a simplified ε1 − ε3 rela-

tionship, the previously described steps can be analytically solved, leading to the following expression

to calculate the principal compressive stress in the smeared cracking region (see Appendix for detailed

analytical derivation):

σ3,sb = (α − 1) · ε3,sb · Ec,eff

α − 1+
(

ε3,sb
ε3,p,eff

)α
(5.34)

where α is a factor of the ε3 − σ3 relationship accounting for the brittleness of concrete (Eq. (5.66))

(Guidotti et al., 2011); Ec,eff is the effectivemodulus of elasticity of the concrete, whose value is a function

of the imposed transverse tensile strain in the shear band ε1,sb (Equation (5.70) derived in theAppendix);

ε3,p,eff is the strain at the peak of the ε3− σ3,eff relationship, whose value is also a function of the imposed

transverse tensile strain in the shear band ε1,sb (Equation (5.69)).

Figure 5.16 shows the ε3 − σ3,sb according to Eq. (5.34) obtained for different values of the imposed

transverse tensile strain (ε1,sb) adopting two different concrete compressive strengths. This figures

clearly shows the effects of brittleness and strain softening (due to imposed transverse tensile strains).
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Figure 5.16: Calculated ε3 − σ3,sb relationship as a function of the imposed transverse tensile strain in the
shear band ε1,sb for two concrete compressive strengths: (a) fc=40 MPa and (b) fc=80 MPa.

Still with respect to the calculation of the stress state in the shear band, it will additionally be assumed

that the principal directions of stresses are parallel to the principal directions of deformations θsb(z)

(Fernández Ruiz and Muttoni, 2007) and that the stress in the principal tensile direction is equal to

σ1,sb = 0. In these conditions, the normal and shear stresses parallel to the axis of the shear band can

be respectively calculated as:

σsb(z) = σ3,sb(z) · sin2 (θsb(z)) (5.35)

τsb(z) = −σ3,sb(z) · sin (θsb(z)) · cos (θsb(z)) (5.36)
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Mechanical model for punching shear failures

5.4.5.4 Contribution of dowel action

As shown in Figure 5.17(a), dowelling of flexural reinforcement bars may potentially develop at fail-

ure contributing to the shear strength (e.g. Rasmussen, 1963; Krefeld and Thurston, 1966; Millard and

Johnson, 1984; Fernández Ruiz et al., 2010a, 2013; Campana et al., 2013; Fernández Ruiz et al., 2015;
Einpaul, 2016). In this work, a similar approach to that followed by Einpaul (2016) is considered, con-

sisting on a combination of the approaches of Millard and Johnson (1984) (yield criterion), Fernández

Ruiz et al. (2010a, 2015) (reduced capacity of spalled concrete to carry tensile stresses), Cavagnis et al.
(2017) (expression to calculate the spalled concrete tensile stresses) and Randl (2013) (activation of the

dowel action) as explained in the following.
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Figure 5.17: Calculation of shear transfer contribution due to dowelling of flexural reinforcement: (a)
investigated phenomenon; (b) localized deformation of the bar and associated distribution of tensile
stresses in the spalled concrete; (c) representation of the equilibrium of local free-body of the bar and
surrounding concrete according to Einpaul (2016); (d) reduction of tensile stresses in the bar as a func-

tion of the state of strains in bar according to Cavagnis et al. (2017).

According to Fernández Ruiz et al. (2015), the ability of a dowelled bar to transfer shear forces when

spalling of the concrete cover is governing can be investigated based on the equilibriumof the dowelling

forces of the bar with the surrounding concrete tensile stresses (Figure 5.17(b)). The stresses in the

concrete can be evaluated assuming a reduced tensile strength developing in a given area (length Lda,

width beff) (Fernández Ruiz et al., 2015). The vertical and moment equilibrium conditions of the free

body (previously adopted by e.g. Einpaul (2016)) shown in Figure 5.17(c) allows thus for calculating

the acting shear force (Vda,bar) as a function of the acting moment (Mda,bar):⎧⎨
⎩Vda,bar = σt · beff · Lda

Mda,bar = Vda,bar · Lda
2

⇒ Vda,bar =
√

2 · σt · beff · Mda,bar (5.37)

where the effective width of spalled concrete beff (Figure 5.21(c)) can be calculated as (Fernández Ruiz

et al., 2010a):
beff = sb − φ ≤ min (4 · c; 6 · φ) (5.38)

whose parameter sb refers to the bar spacing, φ to the bar diameter and c to the concrete cover.
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5. Validation of Critical Shear Crack Theory for punching failures

The maximum capacity of the bar to carry a moment (M) in the presence of normal forces (N) is

nevertheless limited by the yield conditions of the bar and can be expressed as (parabolic yield criterion

of a bar with an equivalent square section; Millard and Johnson, 1984; Sorensen et al., 2016):

M
Mp

+

(
N
Np

)2
= 1 ⇒ M = Mp ·

(
1−

(
N
Np

)2
)

(5.39)

where Np and Mp are the plastic normal force (Np = π · φ2/4 · fy) and plastic moment (Mp = φ3/6 · fy).

By combining Eqs. (5.37) and (5.39) (Mda,bar = M), the maximum available dowelling contribution of

one bar can eventually be calculated as (similar equations have been previously derived or proposed

by other researchers as e.g. Rasmussen (1963), Millard and Johnson (1984), Randl (2013), and Einpaul

(2016)):

Vda,bar =

√
1
3
·
√

φ3 · beff ·
√√√√σt · fy ·

(
1−

(
σs

fy

)2
)

(5.40)

where the normal force in the bar is replaced by N = π · φ2/4 · σs, with σs representing the stress in the

flexural reinforcement considering only the effect of the rotation ψ based on the previously introduced

assumption of a spherical deformation inside r0, that is, shear deformation not affecting the strain and

stress of the flexural reinforcement:

σs = εs · Es =
ψ · (d − zCR)

r0
· Es ≤ fy (5.41)

With respect to the tensile capacity of the concrete cover (spalling strength), it shall be noted that the

tensile strains in the reinforcement reduce the ability of the spalled concrete to carry tensile stresses

(Fernández Ruiz et al., 2010a). Based on the works of Fernández Ruiz et al. (2010a, 2015), Cavagnis et al.
(2017) proposed the following expression to calculate the tensile stresses in the spalled concrete as a

function of the state of strains in the flexural reinforcement (Figure 5.17(d)):

σt

fct
= 0.063 · ε−1/4

s ≤ 1 (5.42)

where the strains in the flexural reinforcement εs are computed in accordance to Eq. (5.41). According

to Randl (2013), the contribution of dowel action of a bar (Vda,bar) can be calculated as a function of the

slip following a parabolic function as follows:

Vda,bar = Vda,max,bar ·min
(√

s
smax

, 1
)

(5.43)

where smax refers to the slip required to activate the maximum dowel contribution, which can be as-

sumed as 0.10φ to 0.20φ (Randl, 2013) (a value of 0.20φ is adopted in this work). The slip of the bar

refers to the vertical projection of the vector sum of flexural and shear deformations at the level of the

flexural reinforcement, which can be calculated on the basis of the adopted kinematics as:

s = (r0 − rCR) · ψcsc + δs · cos
(π

2
− β(0)− γ0

)
(5.44)

The contribution of dowel action of the flexural reinforcement to the punching shear strength canfinally

be calculated by multiplying the contribution of one bar by the number of bars intersected by the CSC

(nb = 2 · π · r0/sb with the bar spacing given by sb = π · φ2/(4 · d · ρ) considering one layer of flexural
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reinforcement in each direction) (Fernández Ruiz et al., 2013, 2015; Einpaul, 2016):

VDA = nb ·Vda,bar = 8 · r0 · d
φ2 · ρ ·Vda,bar (5.45)

With respect to dowelling action of the compression reinforcement, this effect is neglected in this work.

5.4.6 Calculation of the punching shear strength

The punching strength can be calculated in a similar manner as performed in the CSCT (Figure 5.1(b);

Muttoni (2008)), by intersecting a failure criterion (providing the shear strength for a given opening of

the CSC) with a load-deformation relationship (providing the rotations and associated crack openings

for a given level of applied load).

The load-rotation relationship can be calculated as described by Muttoni (2008) using a quadri-linear

moment-curvature relationship (briefly reviewed in Section 5.10.3). The failure criterion is obtained

by numerical integration of the internal stresses (calculated in Section 5.4.5) along the CSC (whose

geometry was defined in Section 5.4.3) as follows:

Vc (ψ, δs) =

shear-transfer due to smeared cracking︷ ︸︸ ︷
2 · π ·

∫ ztr

0

r(z)
sin (β(z))

· [τsb(z) · sin (β(z)) + σsb(z) · cos (β(z))] dz

+

shear-transfer due to localized cracking︷ ︸︸ ︷
2 · π ·

∫ d

ztr

r(z)
sin (β(z))

· [τagg(z) · sin (β(z)) + σagg(z) · cos (β(z))
]

dz

+

dowel action︷︸︸︷
VDA

(5.46)

Each point of the failure criterion is numerically determined calculating the resistance associated with

a given rotation ψ by searching for the applied shear deformation δs that maximizes the shear strength

of the CSC (Section 5.10.4 presents a possible numerical procedure to calculate the punching strength).

Failure, defined as the intersection of the failure criterion and the load-rotation relationship, provides

thus not only the punching strength VR,calc but also the associated deformation capacity characterized

by the rotation ψR and shear deformation at failure δs,R.

5.5 Comparison against experimental results

The model presented in Section 5.4 is compared with a database of experimental tests in this section.

The database presented by Muttoni et al. (2017) (including 121 experimental tests) is completed with

tests from other authors (Elstner and Hognestad, 1956; Kinnunen and Nylander, 1960; Moe, 1961;

Guandalini, 2005; Inácio et al., 2015), leading to a total of 133 specimens (where B = 1.27 − 6.00 m,

d = 0.096− 0.456 m, rc = 0.042− 0.451 m, c = 0.130− 0.520 m, fc = 12.8− 130.1 MPa, dg = 4− 38.1 mm,

ρ = 0.32− 3.70%, fy = 321− 720 MPa; see 5.1).

Themodel shows an excellent agreementwith the experimental results, leading to an averagemeasured-

to-calculated punching strength of 1.08 and a coefficient-of-variation (COV) of 7.9%. The main results

are plotted in Figure 5.18 as a function of the effective depth, flexural reinforcement ratio, concrete

compressive strength, equivalent slab radius-to-effective depth ratio, column radius-to-effective depth

ratio and maximum aggregate size. Figure 5.18 shows that the model captures in a systematic manner

the influence of the main geometrical and mechanical properties, without any noticeable trend.
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Figure 5.18: Ratio of experimental to calculated resistance as a function of (total of 133 specimens; see Ta-
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Themodel is also comparedwith some selected series of experimental tests in Figure 5.19, showing that

the influence of all investigated parameters is consistently addressed. In addition, the contributions of

dowel action, localized and smeared cracking are also presented in Figure 5.19. It should be noted that

the relative contributions of the smeared and localized cracking regions depend upon the definition

of the transition between the two regimes. Other criteria for defining the transition will have little

influence on the total strength but would influence the relative contributions of each region.

Figure 5.19(b) shows that the decrease of the normalized punching strength with the increase of con-

crete compressive strength is mainly related to the decrease of the shear-transfer contribution in the

region with smeared cracking. This result is a consequence of the increased brittleness of the compres-

sive behaviour of high-strength concrete, which leads to an increased gradient of stresses along the

CSC at failure.

Figures 5.19(c) and (d) show a decrease of the normalized punching strength with increasing column

size, resulting alsomainly from the decrease of the contribution in the smeared cracking region. This is

a consequence of the larger rotations at failure, which lead to larger crack openings and, consequently,

to smaller extents of the region governed by smeared cracking.
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Figure 5.19: Comparison of the punching strength calculated with the mechanical model against exper-
imental test series where the following parameters were varied: (a) effective depth (Guandalini et al.,
2009); (b) concrete compressive strength (Ramdane, 1996); (c) and (d) column radius-to-effective depth
ratio (Guidotti, 2010; Fernández Ruiz et al., 2010b; Lips et al., 2012; Einpaul et al., 2016); (e) slab radius-
to-effective depth ratio (Fernández Ruiz et al., 2010b; Einpaul et al., 2016); (f) flexural reinforcement ratio

(Guandalini et al., 2009; Fernández Ruiz et al., 2010b; Einpaul et al., 2016).
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5. Validation of Critical Shear Crack Theory for punching failures

Conversely, it can be noted that the contribution of the smeared cracking region to the strength increases

at a higher rate than the contribution related to localized cracking with increasing flexural reinforce-

ment ratio (Figure 5.19(f)). This can be justified by the decrease of the rotations at failure for increasing

flexural reinforcement ratio, which leads to lower crack openings and, consequently, to larger extents

of the region with smeared cracking behaviour.

It should also be noted that the contribution of dowel action of flexural reinforcement bars is null or

negligible in most of cases due to yielding of the flexural reinforcement at r0. Thus, dowel action can

only be activated in failures with small rotations, that is, members with reduced slenderness (Figure

5.19(e)) or members with large flexural reinforcement ratios (Figure 5.19(f)).

5.6 Validation of the failure criterion of the Critical Shear Crack Theory

As discussed byMuttoni et al. (2017), the calculation of the punching strength by integration of stresses

along the CSC is not suitable for design purposes. For that reason, assuming that the width of the CSC

(w) is proportional to the product of the slab rotation (ψ) times the effective depth (d) for the case of

slender slabs (w ∝ ψ · d), Muttoni (2008) proposed the following simplified failure criterion (see Figure

5.1(a) for agreement with experimental results):

VR

b0 · d ·
√

fc
=

0.75

1+ 15 · ψ·d
dg0+dg

(5.47)

where units are in SI [N, mm], VR is the punching shear strength, fc the cylinders concrete compressive

strength, b0 the control perimeter located at d/2 from the supported area, dg the aggregate size and dg0

the reference aggregate size (dg0=16 mm for normal weight concrete (Muttoni, 2008)).

Some refinements (Muttoni and Fernández Ruiz, 2017) based on theoretical considerations (transition

from slender slabs to footings (Muttoni et al., 2017)) have recently been proposed leading to a power-

law failure criterion (that can be used additionally to derive closed-form design expressions (Muttoni

and Fernández Ruiz, 2017; Muttoni et al., 2017)):

VR

b0 · d ·
√

fc
= 0.55 ·

( ddg

25 · ψ · d
)2/3

≤ 0.55 (5.48)

where units are in SI [N, mm], ddg represents the reference value of roughness of the failure surface,

whose value was defined in Eq. (5.30).

The hyperbolic (Eq. (5.47)) and power-law (Eq. (5.48)) failure criteria of CSCT are depicted in Figure

5.20(a) together with the numerical results of the model presented in Section 5.4 corresponding to the

experimental tests of the database. It is interesting to note that all points (every point representing the

numerical result of an experimental test) concentrate in a narrow band with a clear trend of decreas-

ing punching shear strength with increasing rotation. In the refined mechanical model, the decay of

the contributions of the different shear-transfer actions with increasing rotation results mainly from

the: (i) larger crack openings associated with flexural deformations which decrease the extent of the

region with smeared cracking (thus decreasing its contribution); (ii) strain softening in the shear band;

(iii) larger crack opening along the CSC which reduces its capacity to transfer stresses due to aggre-

gate interlock (localized cracking); (iv) increased stresses in the flexural reinforcement decreasing the

capacity of transferring shear forces by dowel action. It can also be seen that both simplified failure

criteria approximate fairly well the numerical results (a detailed comparison is presented in Table 5.2).
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Table 5.1: Summary of database containing 133 specimens without transverse reinforcement: rc - radius of a circular column; c -
side length of a square column; d - effective depth; fc - cylinders concrete compressive strength; fy - yielding strength of flexural

reinforcement; dg - maximum aggregate size; B - size of the slab along orthogonal directions.

Authors
Number of

tests
B d rc c fc dg ρ fy

(VR,test ≥
Vflex)

[m] [m] [m] [m] [MPa] [mm] [%] [MPa]

Elstner and Hognestad
(1956)

22 (3) 1.829
0.114
-

0.121
-

0.254
-

0.356

12.8
-
50.6

25.4
-
38.1

0.50
-
3.70

303
-
409

Kinnunen and Nylander
(1960)

12 (2) 1.840
0.117
-

0.128

0.075
-

0.150
-

24.2
-
31.0

32
0.44
-
1.50

434
-
461

Moe (1961) 8 (1) 1.829 0.114 -
0.152
-

0.254

22.1
-
26.5

9.5
-
38.1

1.05
-
1.14

328
-
482

Schaefers (1984) 2 1.960
0.113
-

0.170
0.105 -

21.3
-
27.1

32
0.55
-
0.83

450

Tolf (1988) 8
1.270
-

2.540

0.098
-

0.200

0.063
-

0.125
-

22.6
-
28.2

16
-
32

0.34
-
0.81

657
-
720

Hallgren (1996) 7 2.540
0.194
-

0.202
0.125 -

84.1
-

108.8
18

0.33
-
1.19

596
-
643

Ramdane (1996) 12 1.700
0.098
-

0.100
0.075 -

26.9
-

101.8

10
-
20

0.58
-
1.28

550
-
650

Hassanzadeh (1996) 1 2.540 0.199 0.125 - 28.4 18 0.8 493

Sistonen et al. (1997) 10
1.770
-

2.470

0.170
-

0.177

0.101
-

0.451
-

19.0
-
25.8

16
0.45
-
1.17

576
-
621

Birkle (2004) 3
2.248
-

3.911

0.124
-

0.260
-

0.250
-

0.350

31.4
-
36.2

14
1.10
-
1.51

488
-
531

Guandalini et al. (2009) 10 (5)
1.500
-

6.000

0.096
-

0.456
-

0.130
-

0.520

27.7
-
40.5

4
-
16

0.22
-
1.50

520
-
577

Guidotti (2010) 11 3.000
0.194
-

0.208
- 0.260

31.5
-
51.7

8
-
32

0.76
-
1.62

510
-
551

Tassinari (2011) 2 3.000
0.196
-

0.212
- 0.260

66.3
-
67.0

16
0.82
-
1.48

540
-
552

Fernández Ruiz et al.
(2010b)

1 3.000 0.210 - 0.260 34.0 16 1.500 709

Clément (2012) 3 3.000
0.346
-
0.35

-
0.220
-

0.440

31.6
-
33.9

16
0.75
-
1.53

520
-
541

Lips et al. (2012) 4 3.000
0.193
-

0.353
-

0.130
-

0.520

30.5
-
36.5

16
1.50
-
1.63

556
-
583

Heinzmann et al. (2012) 1 4.100 0.294 0.200 - 35.5 32 1.200 577

Inácio et al. (2015) 4 (1) 1.650
0.101
-

0.104
- 0.200

35.9
-

130.1

13.2
-
13.9

0.98
-
1.48

523
-
532

Einpaul et al. (2016) 10
1.700
-

3.900

0.197
-

0.218

0.042
-

0.330
0.260

34.2
-
44.1

16
0.74
-
1.59

517
-
542

Drakatos et al. (2016) 2 3.000
0.195
-

0.200
- 0.390

34.3
-
39.2

16
0.80
-
1.61

507
-
593

∑ 133 (12)
1.270
-

6.000

0.096
-

0.456

0.042
-

0.451

0.130
-

0.520

12.8
-

130.1

4
-
38.1

0.22
-
3.70

303
-
720
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Table 5.2: Summary of obtained experimental-to-calculated resistance VR,test/VR,calc. of 133 specimens
combining the load-rotation relationship according to Muttoni (2008) and the different failure criteria of

CSCT.

Failure Criterion Average COV [%]

Numerical integration of the refined model 1.08 7.9

Hyperbolic failure criterion (Eq. (5.47)) (Muttoni, 2008) with ddg of Eq. (5.30) (Muttoni et al., 2017) 1.08 8.0

Power-law failure criterion (Eq.(5.48)) (Muttoni et al., 2017) 1.03 8.4

With respect to the original assumption of Muttoni (2008) that the crack opening is correlated to the

product of the effective depth times the rotation of the slab (w ∝ ψ · d), its validity can also be verified

with the refined mechanical model. At failure, the opening of the CSC depends on the rotation of the

slab (ψ) and on its shear deformations (δs). As shown in Figure 5.20(b), where the normalized crack

opening at failure calculated at d/2 from the soffit of the slab is plotted as a function of the normalized

rotation, a clear correlation between both parameters appears. As suggested by Muttoni et al. (2017),
this is justified by the fact that a larger initial crack opening (associated with larger rotations) also

requires a larger crack sliding to activate the shear-transfer actions. It can be noted that for slabs whose

failure load is governed by bending (empty squares in Figure 5.20(b)) this assumption seems to be

conservative in cases where very large rotations are experienced.

The mechanical model can also be used to parametrically verify the simplified failure criteria (hy-

perbolic and power-law expressions), refer to Figure 5.21. The influence of the concrete compres-

sive strength, column size and slenderness is investigated separately in that figure, where the internal

stresses developing along the CSC are also represented for small, moderate and large rotation condi-

tions (smeared and localized cracking represented in dark and light blue, respectively). The parametric

study shows overall consistent results with suitable predictions of the trends.
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Figure 5.20: Results of the refined calculation of the failure criterion of CSCT: (a) calculated punching
shear strength as a function of the rotation and comparison with hyperbolic (Muttoni, 2008) and power-
law failure criteria (Muttoni et al., 2017); (b) calculated crack opening at d/2 from the soffit of the slab as

a function of normalized rotation and comparison with assumption of simplified criteria of CSCT.
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Figure 5.21: Comparison of the normalized punching strength calculated with the mechanical model
against the hyperbolic (Muttoni, 2008) and power-law (Muttoni et al., 2017) failure criteria of CSCT for
ρ = 0.3− 3.0%with varying: (a) concrete compressive strength; (b) column radius-to-effective depth ratio;

(c) slab radius-to-effective depth ratio.

With respect to size-effect, the results of the numerical integration of internal stresses are shown in

Figure 5.22(a), where three different cases (corresponding to different flexural reinforcement ratios)

are represented and compared to the analytical failure criteria of the CSCT. The results show again fine

agreement. In fact, a more detailed analysis shows that the size-effect predicted by the numerically

calculated failure criterion leads to a slope of approximately -1/3 in a double-log scale (Figure 5.22(b)).

Thus, the size-effect law predicted by the refined mechanical model is milder when compared to the

size-effect law resulting from the application of Linear Elastic Fracture Mechanics (LEFM), which is of

-1/2 in a double-log scale (Bažant and Cao, 1987). This result is consistent with the theoretical works

of Fernández Ruiz and Muttoni (2017) and is justified by the fact that the slab behaviour in terms of

the load-deformation response is not linear (but highly non-linear).
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Figure 5.22: Investigation of size-effect with the numerical integration of the failure criterion (calculated
by varying only the effective depth d): (a) comparison with the analytical failure criteria of CSCT; (b)

calculated size-effect law represented in a double logarithmic scale.

5.7 Conclusions

This paper validates the principles of the Critical Shear Crack Theory (CSCT) for punching shear fail-

ures of members without transverse reinforcement by means of a refined mechanical model. The re-

fined mechanical model is supported on the analysis of recent experimental results available in the

scientific literature, which show that:

1. The development of a critical shear crack governs the punching strength of flat slabs as its opening

disturbs the compression struts carrying shear. Failure may occur by localization of the strains

in this crack or by the opening of a new one (failure crack) due to the transverse tensile (split-

ting) stresses developed near the supported area. This is also consistent with the experimental

measurements of Einpaul et al. (2017) based on measurements of internal cracking in punching

tests.

2. The kinematics of a slab sector is governed at failure by the rotations of the slab as well as by the

shear deformations developing in the critical shear crack according to the experimental results of

Clément (2012);

3. Two different regions can be distinguished in the critical shear crack: a region where localized

cracking occurs and a region where smeared cracking develops (in agreement with Muttoni et
al. (2017)). This latter region is considered as a shear band, eventually failing by coalescence of

cracks;

Based on the three previously described experimental evidences, a refined mechanical model is de-

veloped considering that the shear transfer capacity of the region with localized cracking is mostly

governed by aggregate interlock, while in the shear band, an inclined compression strut allows for the

transfer of shear forces. In addition, it is considered that dowelling of the flexural reinforcement may

develop. The main results of the refined mechanical model are listed below:

1. All the shear-transfer actions decaywith increasing rotation as a consequence of larger crack open-

ings. This is justified by the fact that larger crack openings reduce the aggregate interlock action,

soften concrete in compression and limit the dowelling capacity of bars (by a reduction of the

tensile strength of the concrete cover and due to yielding of the bars);
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2. A parametric study based on the refinedmechanical model confirms the validity of the simplified

failure criteria proposed by the CSCT;

3. The assumption of a crack opening correlated to the multiplication of the rotation by the effective

depth (w ∝ ψ · d) considered byMuttoni (2008) when proposing the simplified failure criterion of

the CSCT can be justified on the basis of the proposed refinedmechanical model, as there exists a

correlation at failure between the rotations of the slab and the opening of the critical shear crack;

4. The refined mechanical model predicts a size-effect law with a slope of approximately -1/3 in

a double-logarithmic scale. This results is in agreement with the theoretical work of Fernández

Ruiz and Muttoni (2017);

5. The results of the model show a good agreement with experimental results when compared to

a database of tested specimens as well as individual series of tests where only one parameter is

varied.
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5.9 Notation

Latin characters
Lower Case
a0, a1, a3 parameters characterizing the shape of the critical shear crack

aε, bε, cε parameters characterizing the ε1-ε3 relationship proposed by Guidotti et al. (2011)
b0 length of control perimeter located at d/2 from the column edge

b1, b2, b3 constants

be f f effective width of spalled concrete involved in the dowelling of a bar

c side length of a square column

c1, c2, c3 constants to calculate the aggregate interlock engagement stresses

d effective depth (distance from the centroid of the flexural reinforcement to the out-

ermost compressed fiber)

dg maximum aggregate size

dg0 reference aggregate size

ddg reference value of the roughness of the critical shear crack (limited to 40 mm)

d∗dg reference value of the roughness of the critical shear crack (not limited)

dϑ angle of slab sector (also angle of shear band sector)

fc concrete compressive strength measured in cylinders

fcc confined concrete compressive strength

fc,eff peak of concrete compressive strength accounting for imposed transverse tensile

strain

fcp plastic concrete compressive strength

fct concrete tensile strength

fc0,t reference value of concrete compressive strength to calculate concrete tensile

strength

fy yielding strength of reinforcement

h height of reinforced concrete section

hc, hs force per unit width in the concrete and in the reinforcement, respectively

k0, k1, k2, k3, k4, k5, k6 constants

m moment

mcr cracking moment per unit width

mr radial moment per unit width

mR moment capacity per unit width

mt tangential moment per unit width

n, t axis normal a parallel to the shear and

nE ratio of the modulus of elasticity of the reinforcement and concrete

nb number of bars

ncr number of cracks

np in-plane force per unit width

r, z radial and vertical coordinates

rCR, zCR radial and vertical coordinates of the centre of rotation

rc radius of a circular column

rcr radius of cracked region

rq radial location of the resultant of vertical applied load

rs radius of isolated axisymmetric member

ry radius of the region in which reinforcement is yielding

r1 radius of the region with stabilized cracking

r0 radial distance between the axis of the column and the critical shear crack at the

level of the flexural reinforcement

r0,test radial distance between the axis of the column and the critical shear crack at the

level of the flexural reinforcement experimentally measured

rχr radial distance with non-negligible radial deformation measured from the axis of

the column

s slip of the bar

smax slip required to activate the maximum dowel action contribution
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sb bar spacing

s f distance between primary flexural cracks

t1, t2 constants to calculate the stresses associated with residual tensile strength

uψ, vψ radial and vertical components of vector of displacement due to rotation, respec-

tively

w crack opening

wc crack opening associated with a zero normal stress due to residual tensile strength

wψ, ws, wT crack opening (displacement normal to the critical shear crack) due to rotation,

shear deformation and combined effect (vector sum), respectively

wCSC,z width of the critical shear crack at the vertical coordinate z

w normalized displacement normal to the crack surface

w0 initial crack opening due to flexural deformations

x depth of neutral axis

xel depth of the compression zone assuming an linear-elastic behaviour of both con-

crete and reinforcement

ztr vertical coordinate where transition from localized and smeared cracking occurs

zγT=35◦ vertical coordinates where γT = 35◦

zγs=40◦ vertical coordinate where γs = 40◦

zwψ=0.5·wc vertical coordinate where wψ = 0.5 · wc

zγψ=40◦ vertical coordinate where γψ = 40◦

Upper Case

B side length of a square slab

C force in the concrete conical shell

Ec, Es modulus of elasticity of concrete and reinforcement, respectively

Ecc modulus of elasticity of confined concrete

Ec,eff effective modulus of elasticity of concrete accounting for the presence of imposed

transverse tensile strains

EI0 uncracked stiffness of reinforced concrete section

EI1 cracked stiffness of reinforced concrete section

GF total fracture energy

Lda length of the bar where dowel action is assumed to develop

M acting moment

Mda,bar acting moment in the bar due to dowel action

Mp plastic moment

N acting normal force

Nbar acting normal force in the bar

Np plastic normal force

V punching shear force

Vda,max,bar maximum shear force in the bar due to dowel action

Vda,bar shear force in the bar due to dowel action

VDA contribution of dowel action to the punching strength

Vc strength associated with a given rotation and shear deformation

Vf c punching strength associated with a given rotation (failure criterion)

Vflex flexural strength of an isolated specimen

VLR punching force associated with given rotation (load-rotation relationship)

VR punching shear strength

VR,calc calculated punching shear strength

VR,test experimental punching shear strength
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Greek characters
Lower Case

α angle between vertical axis and the displacement vector sum

αψ, αs, αT angle between vertical axis and vector of displacement due to rotation, shear defor-

mation and combined effect (vector sum), respectively

αc factor accounting for the brittleness of concrete on the ε3-σ3 relationship

αcc factor accounting for the brittleness of confined concrete on the ε3-σ3 relationship

α modified concrete brittleness factor

β tangent angle of the critical shear crack

γ angle between the crack surface and the displacements vector sum

γ0 angle between critical shear crack and vector of displacement due to shear defor-

mation at z = 0
γψ, γs, γT angle between critical shear crack and vector of displacement due to rotation, shear

deformation and combined effect (vector sum), respectively

δ vector sum of the displacement normal and parallel to the crack face

δs,R sliding due to shear deformation at failure

δψ, δs, δT sliding due to rotation, shear deformation and combined effect (vector sum), re-

spectively

ε0 reference strain

ε1,sb, ε3,sb principal tensile and compressive radial strains in the shear band

ε2,sb tangential strain in the outer limit of the shear band

ε1, ε2, ε3 strains in directions 1, 2 and 3, respectively

ε∗1 imposed transverse tensile strain

ε1,p strain at the peak of the ε1-σ3 relationship

ε3,p strain at the peak of the ε3-σ3 relationship

ε3,p modified peak strain

ε1,c strain of the ε1-σ3 relationship corresponding to σ3 = 0.8 · fc
ε3,c strain at the peak of the ε3-σ3 relationship corresponding to σ3 = 0.8 · fc
ε3,p,eff strain at the peak of the ε3-σ3,e f f relationship accounting for the presence of im-

posed transverse strains

εc concrete strain

εc0 strain at the beginning of the plastic plateau when considering an elastic-plastic

behaviour of concrete

εc,r,top, εc,r,so f f it radial strain at the concrete top and bottom (soffit) surface of the slab

εn,sb, εt,sb, γnt,sb normal, shear and distortional strains in the shear band, respectively (Figure 5.14)

εs strain in the flexural reinforcement bars at r0
εy yielding strain of flexural reinforcement

η f c reduction factor accounting for the brittleness of concrete in compression

κb factor accounting for the increase of the peak stress in the ε3 − σ3 due to biaxial

compression

θsb direction of principal compressive strain

λ thickness of the shear band

νc modulus of Poisson of concrete

ξ efficiency factor accounting for orthogonal reinforcement

ρ flexural reinforcement ratio

σ1, σ2, σ3 principal stresses in directions 1, 2 and 3

σ1,sb, σ3,sb principal tensile and compressive stresses in the shear band, respectively

σ3,eff effective concrete compressive strength

σlat lateral confining pressure

σs stress in the flexural reinforcement bars at r0
σagg,0, τagg,0 normal and shear stresses due to aggregate interlock engagement, respectively

σagg, τagg normal and shear stresses associated with aggregate interlock, respectively

σsb, τsb normal and shear stresses developing in the shear band, respectively

σf ct normal stress due to residual tensile strength

σc concrete strain

σt reduced tensile resistance of spalled concrete
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τl shear stresses causing a flexural crack to become an inclined flexural crack govern-

ing the shape of the critical shear crack

φ diameter of the bar

ϕ concrete friction angle

χ curvature

χr, χt radial and tangential curvatures, respectively

χcr curvature at cracking

χ1 curvature at stabilizing cracking

χy curvature associated with yielding of the reinforcement

χTS reduction of curvature associated with tension-stiffening effect due to reinforce-

ment bond

ψ rotation of the slab

ψcsc rotation of the slab at the critical shear crack

ψR rotation of the slab at failure

Upper Case

Δ displacement parallel to the CSC

Δψ, Δs, ΔT displacement parallel to the CSC due to rotation, shear deformation and combined

effect (vector sum), respectively

Δ normalized displacement parallel to the crack surface

Acronyms
CSCT Critical Shear Crack Theory

CSC critical shear crack

CR centre of rotation
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5.10 Appendix

5.10.1 Calculation of the depth of the neutral axis

This appendix describes the calculation of the height of the neutral axis due to tangential bending

(calculated at r0 as χ = ψ/r0 (Muttoni, 2008)). This calculation is performed in a similar manner as

that proposed by Hallgren (1996). An elastic-plastic behaviour is adopted for both reinforcement and

concrete (refer to Figure 5.23(a) and (b)). The uniaxial behaviour of concrete is considered to be entirely

described by themodulus of elasticity (Ec) and the uniaxial plastic concrete compressive strength ( fcp =

fc · η f c), which is obtained by multiplying the concrete compressive strength measured in cylinders

( fc) by the factor accounting for the brittleness of high-strength concrete (η f c) according to (Muttoni,

1990).The modulus of elasticity of concrete is calculated based on the value of the uniaxial concrete

compressive strength measured in cylinders as proposed by Muttoni (2008):

Ec = 10′000 · f 1/3c (5.49)

With respect to the elastic-plastic behaviour of the reinforcement, it is also described by its modulus

of elasticity (Es) and the yield strength ( fy). Different expressions to calculate the height of the neutral

axis x result from the various potentially governing regimes (refer to Figure 5.23(c) to (f)):

1. Concrete and reinforcement in elastic regime (χ · x ≤ εc0; χ · (d − x) ≤ εy):

x = d · ρ · nE ·
(√

1+
2

ρ · nE
·
(
1− np

ρ · nE · d2 · χ · Ec

)
− 1

)
(5.50)

2. Concrete in elastic regime and reinforcement in plastic regime (χ · x ≤ εc0; χ · (d − x) ≥ εy):

x =

√
2

χ · Ec
· ( fy · ρ · d − np

)
(5.51)

3. Concrete in elastic-plastic regime and reinforcement in elastic regime (χ · x ≥ εc0; χ · (d− x) ≤ εy):

x =
2 · (χ · d)2 · nE · ρ + ε2c0 − 2 · χ · np

Ec

2 · χ2 · d · nE · ρ + 2 · χ · εc0
(5.52)

4. Concrete in elastic-plastic regime and reinforcement in plastic regime (χ · x ≥ εc0; χ · (d− x) ≥ εy):

x =
ρ · fy · d − np

fcp
+

1
2
· εc0

χ
(5.53)

where np is the normal force applied in the section, nE = Es/Ec is the ratio of the modulus of elasticity

of reinforcement and concrete, εc0 = fcp/Ec and εy = fy/Es.
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Figure 5.23: Calculation of the depth of the neutral axis x assuming and elastic-plastic behaviour of rein-
forcement and concrete: (a) uniaxial elastic-plastic behaviour of concrete; (b) uniaxial elastic-plastic be-
haviour of reinforcement; (c) elastic behaviour of both reinforcement and concrete; (d) elastic behaviour of
concrete and plastic behaviour of reinforcement; (e) elastic behaviour of reinforcement and elastic-plastic
behaviour of concrete; (f) plastic behaviour of reinforcement and elastic-plastic behaviour of concrete.
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Appendix

5.10.2 Constitutive relationships adopted for concrete

5.10.2.1 Triaxial behaviour of concrete according to Guidotti et al. (2011)

This appendix describes the calculation of the longitudinal stress (σ3) and transverse strain (ε1) of a

concrete cylinder associated with a longitudinal strain (ε3) and confining pressure. For that purpose,

the strain-stress relationship presented and experimentally validated by Guidotti et al. (2011) is used
in this work. The formulae of the mentioned relationship are briefly described in the following (please

refer to Guidotti et al. (2011) for further details).

According to the relationship proposed by Guidotti et al. (2011), the compressive stress σ3 is calculated

as a function of the compressive strain ε3 as follows:

σ3 = (αcc − 1) · ε3 · Ecc

αcc − 1+
(

ε3
ε3,p

)αcc (5.54)

where Ecc refers to the modulus of elasticity of confined concrete and ε3,p is the strain corresponding

to the peak of the stress-strain relationship, whose values can be respectively computed as:

Ecc =
Ec

1− 2 · νc · σlat
fc

(5.55)

ε3,p = − αcc

αcc − 1
· fcc
Ecc

(5.56)

where,

αcc =
αc + 40 · σlat

fc

ζ + αc · (1− ζ) + 40 · σlat
fc

(5.57)

ζ =
fcc
fc

· Ec

Ecc
(5.58)

αc = 1.5+
fc
75

+
f 2c

4500
with fc in [MPa] (5.59)

with the σlat representing a lateral confining pressure, νc representing the Poisson’s coefficient (adopted

equal to 0.2 in the linear elastic regime) and fcc referring to the concrete compressive strength under

confined conditions, which can be calculated based on a Mohr-Coulomb yield criterion as fcc = fc + k ·
σlat with k = (1+ sin(ϕ))/(1− sin(ϕ)) ≈ 4 for a concrete friction angle of ϕ = 37◦ (Nielsen and Hoang,

2011). Guidotti et al. (2011) also proposed formulae to calculate the transverse strain (ε1) associated

with a given longitudinal strain (ε3):

ε1 =

⎧⎨
⎩νc · ε3 − σlat

Ecc
· (1− νc) if ε3 ≤ ε3,c

aε · ε23 + bε · ε3 + cε if ε3 ≤ ε3,c
(5.60)

where ε3,c = ε3(σ3 = 0.8 · fc) represents the strain in the beginning of the nonlinear behaviour. The

parameters aε, bε and cε are obtained establishing a smooth transition between the phases and assuming

that the lateral strain ε1 at the peak is obtained assuming a Poissonmodulus of 0.5 (Guidotti et al., 2011):

aε =
ε1,p − ε1,c + νc ·

(
ε3,c − ε3,p

)
(
ε3,p − ε3,c

)2 (5.61)

bε = νc − 2 · aε · ε3,c (5.62)

cε = ε1,c − aε · ε23,c − bε · ε3,c (5.63)

with ε1,c referring to the transverse strain corresponding to a longitudinal stress of σ3 = 0.8 · fc.
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5.10.2.2 Strain-stress relationship adopted for concrete in the smeared cracking region

The strain-stress relationship proposed by Guidotti et al. (2011) is adopted in this work in order to

calculate the stress σ3 in the smeared cracking region. As shown by Kupfer et al. (1969), the peak stress

and the deformation capacity of concrete increase in the case of biaxial compression. As discussed in

Section 5.4.5.3, the region with smeared cracking is subjected to tangential compression due to both

flexural and shear deformations. For this reason, the stress-strain relationship adopted for this region

has to account for an increased peak stress and associated deformation. In this work, it is considered

that the stress-strain relationship of the region with smeared cracking corresponds to the one of a

cylinder with a lateral confining pressure leading to a peak stress of κb · fc with κb = 1.1 (see Section

5.4.5.3 for discussion on the value). With this respect, the formulae ofGuidotti et al. (2011) are simplified

in order to: (a) to include a single parameter (κb) increasing the peak strength and deformation capacity

of the ε3-σ3 relationship; and (b) to have a ε1-ε3 relationship given by a single function. Therefore, the

ε3-σ3 relationship adopted in this work consists on the one of Guidotti et al. (2011) (Equation (5.54)) as

follows:

σ3 = (α − 1) · ε3 · Ec

α − 1+
(

ε3
ε3,p

)α
(5.64)

where ε3,p is the modified peak strain and α is the modified brittleness factor of the strain-stress re-

lationship. The modified peak strain can be obtained based on Eq. (5.56) considering fcc = κb · fc,

Ecc ≈ Ec (low confinement pressures) and αcc = α as:

ε3,p = κb · α

(α − 1)
· fc
Ec

(5.65)

The value of the modified brittleness factor α can be approximated from Eq. (5.57) for a constant value

of the ratio fcc/ fc = κb only as a function of the value of αc. In this case, for κb = 1.1, the value of α can

be reasonably estimated as:

α =
1+ αc

2− 0.05 · αc
(5.66)

with αc calculated according to Eq. 5.59.

With respect to the ε1-ε3 relationship, a satisfactory agreement can be foundwith the parabola proposed

by Guidotti et al. (2011) in the range of strains of interest (descending branch of ε1-σ3 relationship) by

considering the following third-degree parabola:

ε1 = 0.5 · ε33
ε0 · ε3,p

(5.67)

where ε0 refers to a reference strain taken equal to 0.0045 (fitting parameter to approximate the numer-

ical results of Guidotti et al. (2011) for the case of fcc/ fc = κb = 1.1).
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5.10.2.3 Calculation of ε3,sb − σ3,sb relationship accounting for imposed transverse strains

In the case where the imposed transverse tensile strain in the shear band ε1,sb does not exceed the trans-

verse strain corresponding to the peak of the ε1-σ3 relationship (ε1,p, back calculated with Eq.(5.67) and

ε3 = ε3,p), it is assumed that any effect of strain softening occurs. In this case, the ε3,sb-σ3,sb relationship

is assumed to be equal to the ε3-σ3 relationship.

On the other hand, if the imposed transverse tensile strain in the shear band ε1,sb exceeds the transverse

strain expected at the peak of the ε1-σ3 relationship (ε1,p), the peak stress κb · fc is replaced by an effective

concrete compressive strength fc,eff. The value of fc,eff corresponds to the value of the stress σ3 obtained

introducing the value of the imposed strain ε1,sb in the strain-stress ε1-σ3 relationship.

On that basis, the ε3,sb-σ3,sb relationship can be mathematically computed in a general manner as fol-

lows:

σ3,sb = (α − 1) · ε3,sb · Ec,eff

α − 1+
(

ε3,sb
ε3,p,eff

)α
(5.68)

where the effective peak strain ε3,p,eff and the effective modulus of elasticity of the concrete Ec,eff are

calculated as a function of the value of the imposed transverse tensile strain (ε1,sb). The effective peak

strain is calculated with Eq. (5.67) by knowing that the point (ε1, ε3) = (ε1,sb, 3,p,eff):

ε3,p,eff =

⎧⎨
⎩ε3,p if ε1,sb ≤ ε1,p

3
√

2 · ε0 · ε3,p · ε1,sb if ε1,sb > ε1,p
(5.69)

The effective modulus of elasticity of the concrete is calculated with Eq. (5.68) knowing that the curve

passes through the point with coordinates at the peak (ε3,p,eff, fc,eff)):

Ec,eff =

⎧⎨
⎩Ec if ε1,sb ≤ ε1,p

α
α−1 ·

fc,eff
εc,eff

if ε1,sb > ε1,p
(5.70)

where fc,eff is calculated by replacing ε3,p,eff directly in Eq. (5.60):

fc,eff = (α − 1) · ε3,p,eff · Ec

α − 1+
(

ε3,p,eff
ε3,p

)α
(5.71)
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5.10.3 Load-rotation relationship according to Muttoni (2008)

As previously described, the punching shear strength and associated deformation capacity calculated

in this work are given by the intersection of the load-rotation relationship with the refined failure cri-

terion. The calculation of the latter is described in detail in Section 5.4.

The calculation of the load-rotation relationship of slender slabs in Chapters 4 and 5 was performed as

proposed by Muttoni (2008) for isolated axisymmetric specimens. The calculation of the load-rotation

relationship and the corresponding main assumptions are briefly described in the following based on

the work of Muttoni (2008).
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Figure 5.24: Equilibrium of a slab sector with the acting vertical loads and radial and tangential moments;
figure adapted from Muttoni (2008).

The load-rotation relationship can be calculated on the basis of the equilibrium of a slab sector (refer

to Figure 5.26) which can be written in a general manner as:

V · dϑ

2 · π
· (rq − rc

)
= −mr · dϑ · r0 − dϑ ·

∫ rs

r0
mt · dr (5.72)

The radial and tangential moments (resulting from the couple of forces given by the tension in the rein-

forcement and compression in the concrete) acting in the slab sector for a given rotation are a function

of the kinematics of the slab and of the moment-curvature relationship of the reinforced concrete sec-

tion. With respect to the kinematics, Muttoni (2008) considered that (Figure 5.25): (i) inner and outer

portions of the slab are divided by a critical shear crack located at r0 = rc + d at the level of the flexural

reinforcement; (ii) as the tangential cracks concentrate in the vicinity of the column, radial curvature

is negligible in the outer portion of the slab; (iii) as the vertical load in the column is equilibrated by

an inclined concrete strut, strains in the flexural reinforcement in the inner portion of the slab are con-

stant . Based on the previously mentioned observations, Muttoni (2008) considered that the inner and

outer portion of the slab deform respectively in a spherical and conical shape (consistently with Kin-

nunen andNylander (1960)). As a result, radial and tangential curvatures inside the critical shear crack

(located ar r = r0) are equal and their value at r = r0 is given by:

χr = χt = − ψ

r0
(5.73)
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Based on the considered conical deformation of the outer portion of the slab, the tangential curvature

at a given radial location can be computed as follows:

χt = −ψ

r
(5.74)

To calculate the acting moment associated with a given curvature, Muttoni (2008) proposed a quadri-

linear moment-curvature relationship with (refer to Figure 5.26(a)): (i) an uncracked linear-elastic be-

haviour; (ii) cracking plateau; (iii) cracked linear-elastic behaviour accounting for tension-stiffening

and (iv) yielding of flexural reinforcement (plastic moment capacity). This quadri-linear relationship

is fully defined by the uncracked stiffness (EI0), cracked stiffness (EI1), cracking moment (mcr), plastic

moment capacity (mR) and differential of curvature due to tension-stiffening effect χTS. The uncracked

stiffness and the cracking moment may be calculated in a simple manner by neglecting the effect of

reinforcement before cracking as:

mcr =
h2

6
· fct (5.75)
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EI0 =
Ec · h3
12

(5.76)

The cracked stiffness can be calculated by considering a linear-elastic behaviour for both concrete and

reinforcement (Muttoni, 2008):

EI1 = ρ · ξ · Es · d3 ·
(
1− xel

d

)
·
(
1− xel

3 · d
)

(5.77)

where xel refers to the depth of the compression zone assuming an linear-elastic behaviour of both

concrete and reinforcement:

xel = ρ · ξ · Es

Ec
· d ·

(√
1+

2 · Ec

ρ · ξ · Es
− 1

)
(5.78)

with ξ representing a efficiency factor accounting for the fact that orthogonal reinforcement presents a

reduced stiffness compared to reinforcement placed in radial and tangential directions (as considered

in this axisymmetric model). As introduced in Section 5.10.1, Muttoni (2008) suggested a value of

ξ = 0.6 for this factor (used in this work). Regarding themoment capacity, it can be calculated adopting

a perfectly plastic behaviour of both reinforcement and concrete and by neglecting the influence of

reinforcement in the compression zone:

mR = ρ · fy · d2 ·
(
1− ρ · fy

2 · η f c · fc

)
(5.79)

where the factor η f c accounts for the brittleness of concrete in compression (a stress η f c · fc is adopted

for the rectangular stress block) and is calculated as η f c = (30/ fc)1/3 ≤ 1 Muttoni (1990). Muttoni

(2008) suggested that tension stiffening effects may be accounted by adopting a constant decrease in

the curvature given by:

χTS =
fct

ρ · ξ · Es
· 1
6 · h (5.80)

The curvature at crack (χcr), at the beginning of stabilized cracking (χ1) and at yielding of the flexural

reinforcement (χy) are thus calculated as follows (Muttoni, 2008):

− χcr =
mcr

EI0
=

2 · fct
Ec · h (5.81)
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− χ1 =
mcr

EI1
− χTS (5.82)

− χy =
mR
EI1

− χTS (5.83)

Finally, a closed-form solution of the applied load V as a function of the rotation ψ can be obtained

based on Eq. (5.72) by considering the previously introduced deformation shape (spherical inside the

critical shear crack and conical outside; curvatures given by Eqs. (5.73) and (5.74)) and the quadri-linear

moment curvature relationship as (Muttoni, 2008):

V =
2 · π

rq − rc
·
(

−mr · r0 + mR · 〈ry − r0〉+ EI1 · ψ · 〈ln (r1)− ln
(
ry
)〉+

EI1 · χTS · 〈r1 − ry〉+ mcr · 〈rcr − r1〉+ EI0 · ψ · 〈ln (rs)− ln (rcr)〉

)
(5.84)

where 〈Δr〉 is equal to zero when Δr < 0, rcr, r1 and ry are the radii defining the extents of the regions

where concrete is cracked, cracks are stable and reinforcement is yielding, respectively. Their values

can be calculated based on the rotation and corresponding curvatures:

rcr = − ψ

χcr
=

ψ · EI0
mcr

≤ rs (5.85)

r1 = − ψ

χ1
=

ψ
mcr
EI1

− χTS
≤ rs (5.86)

ry = − ψ

χy
=

ψ
mR
EI1

− χTS
≤ rs (5.87)

Figure 5.26(b) shows an example of a calculated load-rotation relationship, where the different regimes

where a punching failure can occur are indicated (Guandalini et al., 2009; Fernández Ruiz and Mut-

toni, 2017): flexural reinforcement in the elastic regime; flexural reinforcement partly yielded and full

yielding of flexural reinforcement. In the latter case (ry = rs with Eq. (5.87)), the applied load (V)

corresponds to the flexural capacity (Vflex) of an isolated axisymmetric element, which is given by:

Vflex =
2 · π · rs

rq − rc
· mR (5.88)
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5.10.4 Numerical procedure to calculate the punching shear strength

The numerical calculation of the punching strength according to the refined mechanical model pre-

sented in this chapter can be performed following different procedures. One possibility is shown in

Figure 5.27 and consists on the following steps:

1. Calculation of the load-rotation relationship (ψ−VLR) describing the response of the slab-column

connection in a wide range of rotations [0; ψ f inal] (performed in this work following the approach

proposed by Muttoni (2008), see Section 5.10.3);

2. Calculation of the punching shear strength associated with different values of the rotation. For a

given value of the rotation ψk:

2.1. Calculation of the value of r0,k function of the acting shear force VLR,k (associated with the

rotation ψk based on the load-rotation relationship) with Eqs. (5.3) and (5.4);

2.2. Calculation of the depth of the neutral axis xk at r0,k with Eqs. (5.50) to (5.53);

2.3. Definition of the location of the centre of rotation associated with flexural deformations at

(rCR, zCR) = (rc, x);

2.4. Calculation of the rotation localized at the critical shear crack ψcsc with Eqs. (5.5) and (5.6);

2.5. Calculation of the shape of the critical shear crack with Eq. (5.2);

2.6. Vary incrementally the value of δs in a wide range of values [0; δfinal]. Repetition of the fol-

lowing steps for each value of δs,j (light gray box in Figure 5.27):

2.6.1. Calculation of the displacement field along the CSC associated with the vector sum of

the flexural and shear deformations based on Eqs. (5.17) to (5.18);

2.6.2. Calculation of the vertical coordinate corresponding to the transition between smeared

and localized cracking (Eq. (5.21));

2.6.3. Calculation of the normal and shear stresses along the region of the CSCwith a localized

cracking response based on Eqs. (5.22) and (5.23);

2.6.4. Calculation of the normal and shear stresses along the region of the CSCwith a smeared

cracking response based on Eqs. (5.35) and (5.36);

2.6.5. Calculation of the dowelling action of the flexural reinforcement (Eq. (5.45));

2.6.6. Calculation of the punching strength associated with the rotation ψk and shear deforma-

tion δs,j by summing the different contributions (Vc,k,j with Eq. (5.46));

2.7. Calculation of the punching shear strength associated with ψk as the Vf c,k = max(Vc,k,j). This

is justified by the assumption that the critical shear crack forms due to the flexural behaviour

and thereafter starts sliding until reaching the maximum strength;

2.8. Calculation of the punching strength VR and deformation capacity (ψR, δs,R) by intersection

of the load-rotation relationship ψ − VLR and the failure criterion ψ − Vf c. It is important to

note that the calculated failure criterion as previously described is only valid at the intersec-

tion with the load-rotation relationship (ψR,VR) as only at this rotation the value of r0 (Eqs.

(5.3) and (5.4)) is calculated with the value of VLR = VR.

It is important to note that the part of the numerical procedure inside the light gray box of Figure 5.27

consists on the calculation of the punching strength for a given rotation concentrated at the CSC (ψcsc)

considering a given location of the CSC at the level of the flexural reinforcement (r0). The procedure

(inside the light gray box) is thus based on the theoretical principles of the CSCT by calculating a shape

of the CSCT, the displacement field and the associated internal stresses along it.
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formation capacity.

155





Chapter 6

A discussion on the extension of the

mechanical model for punching failures of

prestressed slabs and footings

This chapterwas prepared by João Tiago Simões and compiles an additionalworkwhich is not included

in none of the journal articles composing the previous chapters. This chapter discusses the extension

of the refined mechanical model presented in Chapter 5 to prestressed slabs and reinforced concrete

footings.

6.1 Introduction

It is widely recognized that one of the significant advantages of a mechanical model with respect to the

empirically based equations is their possible extension to other cases than those initially investigated.

In that regard, this chapter presents a discussion on the extension of the mechanical model presented

in Chapter 5 for the cases of prestressed slabs and reinforced concrete footings. An exhaustive review

of other existing models for prestressed slabs and footings, as well as their validation and comparison

with databases is out of the scope of this chapter. This chapter aims only at showing that themechanical

model presented in Chapter 5, which is based on the theoretical principles of the Critical Shear Crack

Theory (CSCT), is general enough to be extended to other cases such as prestressed slabs and reinforced

concrete footings.

This chapter is divided in three sections and presents some preliminary results of a work under de-

velopment. In the first section, a potential extension of the mechanical model to deal with the case

of prestressed slabs is discussed and a brief comparison against experimental results is shown. The

second section presents a possible extension of the mechanical model for punching shear failures of

reinforced concrete footings, together with a comparison of the theoretical results against a database

and selected series of experimental tests. Finally, the third section summarizes the main conclusions.
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6.2 Potential extension of the mechanical model to prestressed slabs

6.2.1 Introduction

The punching shear strength of prestressed reinforced concrete slabs has been the object of numerous

studies along the last decades (e.g. Kinnunen et al., 1977; Regan and Braestrup, 1985; fib, 2001; Ramos,

2003; Silva et al., 2005, 2007; Ramos et al., 2011; Clément, 2012; Ramos et al., 2014; Clément et al., 2014).
The influence of in-plane and deviation forces as well as moments due to prestressing has been experi-

mentally investigated and some theoretical approaches have been proposed (e.g. Regan and Braestrup,

1985; fib, 2001; Silva, 2005; Silva et al., 2005, 2007; Ramos et al., 2011; Clément, 2012; Ramos et al., 2014;
Clément et al., 2014). With respect to the punching shear verification according to codes of practice (e.g.

Eurocode 2, 2004), they tend to treat this case on an empirical basis, normally allowing for an increase

of the punching strength as a function of the in-plane stresses and a deduction of the deviation forces

inside the control perimeter (e.g. Ramos, 2003; Silva et al., 2007; Ramos et al., 2011; Clément et al., 2014;
Ramos et al., 2014). Detailed descriptions of the experimental programmes focusing on this topic, avail-

able analytical models as well as an evaluation of the suitability of the codes of practice to calculate the

punching strength of prestressed slab-column connections is not an objective of the present document

(works dealingwith these issues have been recently published by, among others, Silva (2005), Silva et al.
(2007), Clément (2012), Clément et al. (2013), Clément et al. (2014), and Ramos et al. (2014)). This section
aims only at discussing the potential of the mechanical model presented in Chapter 5 (calculation of a

refined failure criterion) to be applied to investigate the punching shear failures of prestressed slabs.

As discussed in the previous chapters (refer also toMuttoni et al. (2017)), the calculation of the punching

shear strength and associated deformation capacity of a slab-column connection in the framework of

the CSCT is performed determining the intersection of a suitable load-rotation relationship (relating

the applied load and the crack opening) with the failure criterion (representing the maximum shear

force that can be carried for a given crack opening), refer to Figure 6.1 (Muttoni, 2008; Clément et al.,
2014). In this section, the punching strength will be calculated using the load-rotation relationship of

prestressed slabs proposed by Clément et al. (2014) and the failure criterion calculated according to the

mechanical model of Chapter 5.
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Figure 6.1: Punching failures of prestressed slabswithout transverse reinforcement according to the prin-
ciples of the CSCT (Muttoni, 2008; Clément et al., 2014; Muttoni et al., 2017): calculation of the punching
strength by intersecting the load-rotation relationship proposed by Clément et al. (2014) with the refined

failure criterion calculated on the basis of the model presented in Chapter 5.
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As mentioned in Chapter 5, the mechanical model presented in this thesis may be considered as a en-

hancement of the model previously developed by Clément (2012), who also proposed the calculation

of a refined failure criterion for prestressed slabs based on the principles of the CSCT. With respect to

the mentioned work, the mechanical model presented in this document differs on the calculation of

the refined failure criterion by (Simões et al., 2018):

• considering of a continuous displacement field along the critical shear crack (CSC);

• considering the shape of the CSC to be a function of an acting nominal shear stress (based on

cracking development, see Section 5.3) and in-plane stresses;

• including different assumptions to define the location of the centre of rotation associated with

the flexural deformations (at the edge of the column and at the height of the neutral axis, which

is calculated adopting a linear elastic-plastic behaviour of the reinforcement and concrete);

• defining the extents of the regions with different phenomenological behaviours along the CSC

as a function of the crack shape and displacement field along the CSC (based on experimental

measurements at the material level by Jacobsen et al. (2012));

• enabling a realistic calculation of the strain and stress states along the entire extent of the CSC,

including the region of the CSC with a smeared cracking behaviour;

• considering different fundamental material laws for the aggregate interlock engagement stresses

(Cavagnis et al. (2017) instead Guidotti (2010)) and smeared cracking region;

• being based on a general theoretical framework, which is applicable to a wide range of cases

(including slabs with and without in-plane forces as well as footings).

The calculation of the load-rotation relationship proposed by Clément et al. (2014) is briefly presented

in Section 6.2.2. The influence of the in-plane forces in the calculation of the refined failure criterion

according to the mechanical model of Chapter 5 is discussed in Section 6.2.3. Finally, a comparison of

the mechanical model against the experimental results of Clément et al. (2014) is shown.

6.2.2 Load-rotation relationship of prestressed slabs according to

Clément et al. (2014)

As discussed by Clément et al. (2014), the calculation of the load-rotation relationship of a prestressed

slab has to account for the effects of prestressing on the equilibrium of the slab sector and on the

moment-curvature relationship. As also explained by thementioned authors, twodifferent approaches

may be followed to deal with these effects. On the one hand, effects of prestressing may be considered

as an auto-equilibrated state of stresses. On the other hand, a set of equivalent forces replacing the

effects of prestressing (anchorage and deviation forces) may be considered as external loads, still ac-

counting for an additional reinforcement which is a function of the prestressing level (Clément et al.,
2014). The easiness of each approach depends upon the situation, but both approaches lead evidently

to an equivalent result (Clément et al., 2014).

In this work, the calculation of the load-rotation relationship of prestressed slabs is performed as pro-

posed by Clément et al. (2014), who have considered the effects of prestressing as a set of equivalent

forces. The calculation of this relationship is briefly described in the following based on the work of

Clément et al. (2014), which should be consulted for further details.

Figure 6.2 shows a slab sectorwith the applied vertical load (V), radial (mr) and tangential (mt)moments

as well as in-plane forces (σp · h) and moments (mp) due to prestressing effects. The equilibrium of
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moments in the slab sector yields (Clément et al., 2014):

V · dϑ

2 · π
· (rq − rc

)
= −mr · dϑ · r0 − dϑ ·

∫ rs

r0
mt · dr + mp · rm (6.1)

where rc is the column radius, rs is the radius of the slab, rq is the radial distance between the axis of

the column and the location of the resultant of the vertical applied load, r0 refers to the radial distance

between the axis of the column and the location of the inclined surface dividing the inner and outer

portions of the slab at the level of the flexural reinforcement, rm is the radial locationwhere themoment

due to prestressing effects is acting. An analytical integration of Eq. (6.1) can be obtained (for instance,

as performed by Muttoni (2008)) provided that some hypotheses are adopted for the kinematics of the

slab and sectional response (moment-curvature relationship).
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Figure 6.2: Equilibrium of a slab sector with the acting vertical loads, in-plane forces and moments due
to prestressing effects, radial and tangential moments (normal tension positive in the adopted sign con-

vention; figure adapted from Clément et al. (2014)).

With respect to the kinematics of the slab, similarly to Kinnunen and Nylander (1960) and Muttoni

(2008), Clément et al. (2014) considered that an inclined shear crack develops (at r0 = rc + d at the level

of the flexural reinforcement) and separates the inner and outer portions of the slab, whose deforma-

tions follow respectively a spherical and a conical shapes. It thus results that the radial and tangential

curvatures for r ≤ r0 are equal to χr = χt = −ψ/r0, while the tangential curvature in the outer portion

of the slab is given by χt = −ψ/r.

Regarding the sectional response, Clément et al. (2014) proposed a simplified multi-linear moment-

curvature relationship including the effect of in-plane stresses. As shown in Figure 6.3(a), this rela-

tionship is characterized by a linear elastic uncracked response of the concrete, cracking plateau (which

may not develop for large in-plane compressive stresses), linear elastic cracked response of the section

andmoment capacity. From amathematical point of view, this relationship is a function of the cracking

moment (mcr), moment capacity (mR), uncracked stiffness (EI0), cracked stiffness (EI1), curvature re-

duction associated with tension stiffening (χTS) and, eventually, the variation of curvature accounting

for the effect of normal stresses (ΔχN). The cracking moment and the corresponding curvature can be

calculated neglecting the effect of reinforcement as follows:

mcr =
h2

6
· ( fct − σp

)
(6.2)

− χcr =
mcr

EI0
=

2
Ec · h · ( fct − σp

)
(6.3)
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where the stiffness of the uncracked section EI0 is calculated with Eq. (5.76), fct is the concrete tensile

strength, Ec is the modulus of elasticity of concrete, h is the height of the section and σp is the in-plane

stress (tension positive). In the phase of stabilized cracking, two different effects have to be considered.

The first refers to the tension stiffening effect due to the reinforcement bond, which, according to Mut-

toni (2008), can be accounted by reducing the curvature by a constant value χTS (Eq. (5.80)). The second

effect influencing the stiffness of the response in the cracked phase results from the presence of in-plane

stresses (Clément et al., 2014). As discussed by Clément et al. (2014), the depth of the compression zone

in the presence of in-plane stresses can be calculated by solving a non-linear equation, provided that a

linear-elastic behaviour is adopted for the reinforcement and concrete. However, a simplified formula-

tion to consider such effect was proposed by Clément et al. (2014). It consists on neglecting the change

of the depth of the compression zone due to the in-plane stresses (calculation of cracked stiffness (EI1)

and height of the compression zone (xel) with Eqs. (5.77) and (5.78), respectively) but considering an

additional variation of the curvature according to the following expression (see Clément et al. (2014)
for complete derivation):

ΔχN = − np

(d − xel/3)
2 ·

(
h/2− xel/3
ρ · d · ξ · Es

− 2 · (d − h/2)
xel · Ec

)
(6.4)

where ρ is the flexural reinforcement ratio, Es is the modulus of elasticity of the reinforcement, ξ rep-

resents the reduction factor accounting for the reduced stiffness of flexural reinforcement placed or-

thogonally with respect to reinforcement placed in radial and tangential directions, and np refers to the

in-plane force. The curvature at the end of the cracking plateau is given by:

− χ1 =
mcr

EI1
− χTS − ΔχN < χcr (6.5)

The development of a cracking plateau is a function of the level of in-plane compressive stresses. For

large values of this variable, the cracking plateau does not occur (χcr ≥ χ1) and the tension stiffening

effect associated with the normal force is governed by the condition χ1 = χcr:

ΔχN =
mcr

EI1
− mcr

EI0
− χTS (6.6)

The moment capacity can be calculated adopting a plastic behaviour of the reinforcement and concrete

and still accounting for the presence of in-plane stresses as:

mR = ρ · d · fy ·
(

d − h
2

)
+ fcp · xpl ·

(
h
2
− xpl

2

)
(6.7)

with xpl representing the depth of the plastic compression zone, which is calculated as follows (ne-

glecting again the influence of compression reinforcement):

xpl =
ρ · d · fy − σp · h

fcp
(6.8)

where the factor η f c considers the brittle behaviour of concrete in compression (calculated according

to Muttoni (1990) and fib Model Code 2010 (2013)). The curvature defining the transition between the

cracked phase and plastic strength χy is given by the following expression:

− χy =
mR
EI1

− χTS − ΔχN (6.9)
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Figure 6.3: Calculation of load-rotation relationship accounting for in-plane forces according to Clément
et al. (2014): (a) multi-linear moment-curvature relationship proposed; (b) influence of in-plane forces in

the calculated load-rotation relationship.

Eventually, a closed-form solution of Eq. (6.1) can be obtained by analytical integration based on the

adopted kinematics and on the multi-linear moment-curvature relationship (Clément et al., 2014):

V =
2 · π

rq − rc
·
(

−mr · r0 + mR · 〈ry − r0〉+ EI1 · ψ · 〈ln (r1)− ln
(
ry
)〉+

EI1 · χTS · 〈r1 − ry〉+ mcr · 〈rcr − r1〉+ EI0 · ψ · 〈ln (rs)− ln (rcr)〉+ mp · rm

)
(6.10)

where rcr, r1 and ry are the radii defining the end of the region where concrete is cracked, cracks are

stable and reinforcement is yielding. These values are calculated as follows (Clément et al., 2014):

rcr = − ψ

χcr
=

ψ · EI0
mcr

≤ rs (6.11)

r1 = − ψ

χ1
=

ψ
mcr
EI1

− χTS − ΔχN
≤ rs (6.12)

ry = − ψ

χy
=

ψ
mR
EI1

− χTS − ΔχN
≤ rs (6.13)

6.2.3 Calculation of the refined failure criterion accounting for in-plane stresses

The failure criterion defines themaximum shear force associatedwith a given crack opening (see Chap-
ter 4 and Chapter 5; (Muttoni et al., 2017; Simões et al., 2018)). The calculation of the punching strength

for a given rotation according to the mechanical model of Chapter 5 is performed by integration of the

internal stresses developing along the CSC for a given state of deformations, refer to Figure 6.1. The

basis of themechanical model are recalled in the following (refer to Figure 5.9 in Chapter 5; Simões et al.,
2018)

• Primary tangential flexural cracks with a spacing equal to s f develop on the tension side of the

slab within a radius rχr, in accordance with the analysis of the cracking development presented

in Section 5.3;

• A CSC propagates from the tension to the compression side (Muttoni, 2008). This crack is com-

posed of two regions with different phenomenological behaviours after the analysis of the crack-

ing pattern shown in Section 5.3 and in agreementwithMuttoni et al. (2017) (mixed-mode opening-

sliding behaviour on the tension side and shear band behaviour on the compression side);

• The kinematics of the CSC is described by two components, consistently with the experimental

observations of Clément (2012) and models based on the principles of the CSCT (Guidotti, 2010;

Clément, 2012; Muttoni et al., 2017): flexural and shear deformations;
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• The location of the CSC at the level of the flexural reinforcement (r0) is considered as a variable

(in accordance with the experimental observations discussed in Section 5.3).

All the hypotheses stated above are assumed to be also valid for punching shear failure of prestressed

slabs. Again, punching failuremay occur by localization of the strains along the CSC or by the develop-

ment of a splitting failure crack (Clément, 2012; Einpaul, 2016; Einpaul et al., 2017). The development

of a splitting crack at failure is assumed to be correlated to the formation and development of the CSC

and its associated displacement field (Einpaul et al., 2017). For this reason, the punching shear strength

is assumed herein to be governed in both cases by the development of the CSC (Einpaul et al., 2017).
Consequently, the punching strength can be evaluated by analysing the state of strains and stresses

along it (Einpaul et al., 2017).

The introduction of in-plane forces is considered to be the main effect of prestressing influencing the

calculation of the failure criterion (Clément, 2012; Clément et al., 2014). In the following, it is discussed

how the introduction of in-plane stresses may be accounted for in the calculation of the refined failure

criterion according to the mechanical model presented in Chapter 5 (Simões et al., 2018).

Influence of in-plane stresses on the definition of the regions of the slab with different behaviour
It is assumed in Chapter 5 (Simões et al., 2018) that the slab is divided in three different regions: an inner

and an outer portions of the slab, together with a wedge-shaped region. The inner and outer portions

of the slab are assumed to deform respectively according to a spherical and conical shapes. Thewedge-

shaped region is considered to accommodate the radial displacements below the neutral axis resulting

from the rotation concentrated at the CSC (following the approach of Kanellopoulos (1986) for beams

in bending). It is considered in this section that the division of the slab in the regions established in

Chapter 5 (Simões et al., 2018) is not affected by the presence of in-plane stresses, refer to Figure 6.4.

Influence of in-plane stresses on the shape of the CSC
In Chapter 5 (Simões et al., 2018), the shape of the CSC is defined by a third-degree polynomial (without

second order term) based on the three following conditions (refer to Figure 6.4): (i) it passes through

the root of the column (rc, 0); (ii) its radial coordinate at the level of the flexural reinforcement is equal

r0; (iii) the tangent to the CSC at the level of the flexural reinforcement passes through the centre of

rotation associated with the flexural deformations. All conditions are assumed still to be valid for the

case of slabs with in-plane stresses.
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Figure 6.4: Regions of the slab with different behaviour and conditions for establishing the shape of the
critical shear crack; figure adapted from Chapter 5 (Simões et al., 2018).

The location of the critical shear crack at the level of the flexural reinforcement (rc + 0.75 · d ≤ r0 ≤
rc + 1.5 · d) is computed as a function of a nominal shear stress (τl) in Chapter 5, referring to the nominal
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shear stress causing flexural cracks to become inclined flexural-shear cracks governing the shape of

the CSC. It is considered that the same procedure can be followed for the case of slabs with in-plane

stresses, provided that the value of this nominal shear stress is modified to account for the presence of

in-plane stresses.
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Figure 6.5: Variation of τl,σ as a function of in-plane stresses acting on the slab according to an analysis
based on Mohr’s circle.

A possible approach is to calculate the value of the nominal shear stress analysing the state of nominal

stresses in a radial plan of slabs with and without in-plane stresses. This is shown in Figure 6.5, where

the red circle represents the case of a slab without in-plane stresses, whereas the blue circle refers to

the case of a slab with in-plane compressive stresses. Limiting the value of the principal tensile stress

to the nominal shear stress defined for the case without in-plane stresses (σ1 = τl,0), the value of the

nominal shear stress causing vertical cracks to become inclined and governing the critical shear crack

in the presence of in-plane stresses (τl,σ) can be defined with the help of the Mohr’s circle as follows:

τl,0 =
σp

2
+

√
σ2

p

4
+ τ2

l,σ (6.14)

where σp is the nominal in-plane stress and τl,0 refers to the nominal shear stress leading flexural cracks

to become inclined and governing the shape of the critical shear crack with zero in-plane stresses (cal-

culated with Eq. (5.4)). Thus, the nominal shear stress τl,σ turns to be:

τl,σ

τl,0
=

√
1− σp

τl,0
(6.15)

It is worth to mention that τl,σ = τl,0 in the case of a zero in-plane stress (σp = 0), thus defining a

smooth transition between slabs without and with in-plane stresses. Indeed, Eq. (5.4) may be seen as

a particular case of Eqs. (6.14) and (6.15). Finally, the location of the critical shear crack at the level of

the flexural reinforcement is computed analogously to Eq. (5.3) as:

r0
d

=
V

2 · π · d2 · τl,σ
(6.16)

The pertinence of Eq. (6.15) can be verifiedwith the experimental results of Clément et al. (2014), where

the value of the in-plane compressive stress was one of the investigated variables (for two different flex-

ural reinforcement ratios). Similarly to the procedure followed and presented in Section 5.3 for slabs

without in-plane forces, the location of the critical shear crack at the level of the flexural reinforce-

ment r0,test was controlled in the specimens PC5 to PC10, whose saw-cuts are shown in Figure 6.6(a)

(red crack considered as critical shear crack). The shear stress leading a flexural crack to become an
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inclined flexural-shear crack was estimated by calculating the experimental nominal shear stress as

τl,σ,test = VR/(b0,r0,test · d), where b0,r0,test refers to the perimeter calculated at the section located at r0,test
from the axis of the column (average of values measured in both sides of the available saw-cut). The

experimental results of τl,σ,test of specimens PC5 and PC10 are shown as a function of the in-plane com-

pressive stresses (both normalized by τl,0 calculated with Eq. (5.4)) in Figure 6.6(b), where a consistent

agreement with Eq. (6.15) can be observed.
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Figure 6.6: Influence of in-plane compressive stresses on the location of the critical shear crack: (a) saw-
cuts of Clément et al. (2014) with indication of critical shear crack considered (red color) in the calculation
of τl,σ; (b) calculated and experimental shear stress τl,σ as a function of normalized in-plane stresses.

In addition to the calculation of r0, the in-plane stresses also influence the calculation of the neutral axis

(defining the location of the centre of rotation associatedwith flexural deformations) and, consequently,

the value of the tangent inclination of the CSC at z = d (as a consequence of the third assumption

adopted to define the shape of the CSC; see Figure 6.4). It thus results that, according to themechanical

model, in-plane stresses may change the shape of the critical shear crack by influencing its location at

the level of the flexural reinforcement and the location of the centre of rotation associated with flexural

deformations.

Influence of in-plane stresses on the kinematics and displacement field along the CSC
It has been shown in Section 5.4 that the displacement field along the CSC is composed by the vector

sum of flexural and shear deformations (Figure 5.12). With respect to the component due to the flex-

ural deformation, it is characterized by the rotation ψcsc around a centre of rotation with coordinates

(rCR, zCR). The value of the rotation developing at the CSC (ψcsc, calculated with Eqs. (5.5) and (5.6))

for a given total rotation (ψ) is influenced by the introduction of in-plane stresses, as a consequence of a

potentially different radial extent of the region where primary tangential cracks develop (rχr). Also the

location of the centre of rotation associated with the flexural deformation is influenced by the presence

of in-plane stresses, notably by means of the depth of the neutral axis (corresponding to the height of

the centre of rotation; calculated according to Section 5.10.1).

Regarding the shear deformation occurring along the CSC, it is described by a constant crack sliding

δs with an angle γs(z) with respect to the crack face (representing the crack opening-to-crack sliding

angle associated with the shear deformation). This angle has its minimum value (defined as γ0) at the

steepest region of the CSC, located by definition at the vicinity of the column edge, refer to Figure 5.12.

As discussed in Section 5.4, Guidotti (2010) and Clément (2012) suggested that the value of γ0 may

vary between 25◦ and 30◦ on the basis of the works of Mattock (1974), Walraven (1980), and Mansur
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et al. (2008). In addition, based on an analysis of the experimental results of Walraven (1980) (push-off

specimens with external restraint bars), Clément (2012) also suggested that the value of γ0 is also a

function of the in-plane compressive stresses. This effect is nevertheless not considered in this work. A

constant value equal to γ0 = 27◦ is used herein also for the case of prestressed slabs (consistently with

the value used inChapter 5 (Simões et al., 2018); still limited by the kinematical condition corresponding

to a vertical translation of the outer portion of the slab β(0) + γ0 ≤ 90◦).

Influence of in-plane forces on the internal stresses along the CSC
The presence of in-plane stresses does not require any modification in the procedure described in Sec-

tion 5.4.5 to calculate the internal stresses developing along the CSC. Both localized and smeared crack-

ing regimes may still occur along the CSC and the transition between these two regimes is still con-

sidered to occur under the conditions defined in Section 5.4.5.1 (Eq. (5.21)). The normal and shear

stresses developing in the region responding in localized and smeared cracking conditions are com-

puted as defined in Section 5.4.5 (Eqs. (5.22) and (5.23) for localized cracking and Eqs. (5.35) and (5.36)

for smeared cracking). Also the contribution of dowel action of the flexural reinforcement is performed

as described in Section 5.4.5.4.

Calculation of the refined failure criterion and the punching shear strength
Again, the punching strength and associated deformation capacity result from the intersection of the

load-rotation relationship and the calculated failure criterion (Muttoni, 2008; Clément et al., 2014; Mut-

toni et al., 2017; Simões et al., 2018). In the case of slabs with in-planes stresses, the load-rotation rela-

tionship can be calculated according to the approach of Clément et al. (2014) briefly presented in Section

6.2.2.

With respect to the calculation of the refined failure criterion, the only difference comparing to Chapter
5 (Simões et al., 2018) is the inclusion of the influence of the in-plane stresses on the calculation of

the depth of the neutral axis (x) and of the nominal shear stresses leading flexural cracks to become

inclined and governing the shape of theCSC (τl,σ). A smooth transition occurs in the calculation of both

parameters in the case of slabswith andwithout in-plane stresses. The calculation of the refined failure

criterion is thus performed as described in Chapter 5 (Simões et al., 2018) by summing the contributions

of the dowelling action, localized and smeared cracking regions (resulting from the integration of the

internal stresses), i.e. according to Eq. (5.46). The numerical procedure described in detail in Section

5.10.4 may thus be applied to calculate the punching strength and the associated deformation capacity,

with the exception of the calculation of r0, which is computed on the basis of Eqs. (6.15) and (6.16).

6.2.4 Brief comparison with experimental results

Among the numerous experimental campaigns investigating the punching strength of prestressed

slabs available in scientific literature (e.g. Kinnunen et al., 1977; Silva, 2005; Silva et al., 2005, 2007;
Ramos et al., 2011, 2014; Clément et al., 2014), the work of Clément et al. (2014) is particulary interesting

because the effects of in-plane forces and external moments due to prestressing are individually varied.

For this reason, the results of thementioned experimental programme (Clément et al., 2014) are used in

this section to investigate the consistency of the mechanical model to evaluate the punching strength

of prestressed slabs. A summary of the main properties and experimental results of the specimens

tested by Clément et al. (2014) and Guidotti (2010) (reference specimens) is given in Table 6.1 (square

specimens 0.25 m thick, with a side length of 3.0 m and supported on a 0.26 m square column).
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Table 6.1: Overview of the experimental programme of Clément et al. (2014) together with the reference
specimens of Guidotti (2010) (table adapted from Clément et al. (2014)).

Reference Specimen
d fc ρ fy σp mp VR

[m] [MPa] [%] [MPa] [MPa] [kNm/m] [MN]

Guidotti (2010)
PG19 0.206 46.2 0.78 510 0 0 0.860
PG20 0.201 51.7 1.56 551 0 0 1.094

Clément et al. (2014)

PC1 0.192 44.0 0.84 583 0 78 1.202
PC2 0.192 45.3 1.64 549 0 77 1.397
PC3 0.194 43.8 0.83 591 0 152 1.338
PC4 0.190 44.4 1.65 602 0 152 1.431
PC5 0.201 33.8 0.80 560 -2.53 0 1.141
PC6 0.203 34.7 1.55 586 -2.53 0 1.205
PC7 0.204 40.5 0.79 580 -5.04 0 1.370
PC8 0.198 41.9 1.59 528 -5.00 0 1.494
PC9 0.210 37.2 0.77 601 -1.24 0 1.105
PC10 0.208 37.5 1.51 548 -1.32 0 1.260

The results of the mechanical model presented in Chapter 5 (with the development discussed in Section

6.2.3) are compared in Figure 6.7 to specimenswhere only the in-plane compressive stresseswere varied

(for twodifferent flexural reinforcement ratios: (a) for ρ = 0.8% and (b) for ρ = 1.6%). A good agreement

is obtained between the theoretical and the experimental results, where a clear trend corresponding to

the increase of the punching strength with increasing in-plane compressive stresses can be observed

for both series of tests with regular and large flexural reinforcement ratios. According to the results of

themechanical model, this occurs due to a reduction of the crack opening along the CSC, as well as due

to a more favourable shape of the CSC. The reduction of the crack opening along the CSC is caused by

the stiffer response of the slab (accounted for in the load-rotation relationship of Clément et al. (2014))
and by the by increased depth of the neutral axis. Both the stiffness of the slab response and the depth

of the neutral axis rise with the increase of in-plane compressive stresses, leading to a reduction of

the crack opening along the CSC and, consequently, enlarging the extent of the region with smeared

cracking which increases significantly the contribution of this region. Even if the extent of the CSC

with localized cracking reduces, the smaller crack opening increases the shear-transfer in this region

and thus compensates its shorter extent. It thus remains clear that the increase of punching strength

with increasing compressive in-plane stresses observed in Figure 6.7 is partly due to the load-rotation

relationship proposed by Clément et al. (2014) and partly due to the refined calculation of the failure

criterion discussed in this section.

Figure 6.8 shows a comparison between the results of the mechanical model and the experimental

results of Clément et al. (2014) where the applied external moment (representing a moment due to

prestressing) was varied. The theoretical results show a satisfactory agreement with the experimental

results, following the increase of the punching strength experimentally observed for increasing values

of the external moment (with a sign opposite to the moment resulting from the applied vertical load).

The increase of the external moment leads to a stiffer load-rotation relationship (Clément et al., 2014),
which is associated with smaller crack openings along the critical shear crack and, consequently, larger

contributions of the regions responding in both localized and smeared cracking conditions. For very

large external moments, rotations at failure are very limited and almost the entire CSC responds in

smeared cracking conditions. In this case, the punching shear resistance reaches a maximum punch-

ing strength which remains approximately constant with the increase of the external moment. It is

important to mention that, even if the theoretical results follow the experimentally observed trend,

the results of the extended mechanical model seem to underestimate the experimental punching shear

resistances in the case of a large applied external moment.
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Figure 6.7: Influence of in-plane compressive stresses on the punching strength: comparison of the me-
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The satisfactory agreement between theoretical and experimental results shows the potential of the

mechanical model presented in Chapter 5 (Simões et al., 2018) to be extended to investigate the case

of prestressed slab-column connections. However, accounting that only a brief comparison against

the experimental results is performed in this section, additional experimental validation is required

in order to assess whether the influence of the in-plane stresses and external moments is correctly

predicted. Additional theoretical research may also be required in order to investigate if the in-plane

forces and external moments play a role in other variables of the mechanical model.
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The CSCTwas extended to deal with the case of prestressed slabs by Clément (2012) and Clément et al.
(2014) . For that purpose, Clément et al. (2014) suggested to combine the load-rotation relationship

considering the effects of prestressing (briefly presented in Section 6.2.2) and the hyperbolic failure cri-

terion of the CSCT proposed by Muttoni (2008) using a corrected rotation accounting for the influence

of in-plane stresses. According to Clément et al. (2014), considering a reduced rotation in the presence

of in-plane compressive stresses is mechanically justified by the increase of the depth of the compres-

sion chord and consequent decrease of the depth of cracked concrete, thus leading to a decrease of the

width of the critical shear crack. The preliminary results presented in this section with the extended

mechanical model (refined calculation of the failure criterion) confirm this hypothesis (in an analogous

manner as for slabs with high reinforcement ratios presented in Chapter 5 (Simões et al., 2018)). How-

ever, a full validation of the extended mechanical model presented in this section is still required in

order to investigate the suitability of the approach proposed by Clément et al. (2014).
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6.3 Potential extension of the mechanical model to footings

6.3.1 Introduction

Even though one of the first experimental programmes focusing on the punching strength of reinforced

concrete members was carried out on footings (Talbot, 1913), most research efforts have been dedicated

to the case of slender slabs thereafter. Consequently, methods to calculate the punching strength have

been historically tailored to slabs and extrapolated or adapted to footings (Hognestad, 1953; Whitney,

1957; Moe, 1961; Hegger et al., 2009) in an attempt to have a consistent design method for both types of

members (Kueres et al., 2017).

However, experimental measurements (e.g. Dieterle and Rostásy, 1987; Hallgren et al., 1998; Urban et
al., 2013; Hegger et al., 2009; Siburg and Hegger, 2014; Simões et al., 2016a), numerical calculations (e.g.

Hallgren and Bjerke, 2002; Kueres et al., 2013) and theoretical considerations (e.g. Hallgren and Bjerke,

2002; Broms, 2005; Simões et al., 2016b) suggest that some of the parameters governing the punching

capacity may have a different influence for slabs and for footings. It is thus of interest to extend the

mechanical model presented inChapter 5 (Simões et al., 2018)to deal with the case of reinforced concrete

footings without transverse reinforcement.

A review of the available models or approaches of the codes to calculate the punching shear strength

of reinforced concrete footings, as well as their comparison with available experimental data is out of

the scope of this document. This section aims only at presenting a possible approach to extend the

mechanical model presented in Chapter 5 (based on the principles of the CSCT) to the case of isolated

compact footings without transverse reinforcement and subjected to a uniform soil pressure.

ψψ
R

Q

Q
R

ψ

load-rotation

relationship calculated
adapting approach of 

Mu�oni (2008)
to footings

punching
strength

refined calculation
of the failure criterion by

extension of the mechanical
model of Chapter 5

Q

q

Q

q

Figure 6.9: Punching shear failures of reinforced concrete footings without transverse reinforcement on
the basis of the principles of the CSCT (Muttoni, 2008; Muttoni et al., 2017): calculation of the total punch-
ing strength by intersecting the load-rotation relationship with the refined failure criterion calculated on

the basis of the model presented in Chapter 5.

Following the principles of the CSCT (Muttoni, 2008; Muttoni et al., 2017), punching failure is consid-

ered to occur at the intersection of the load-rotation relationship and the failure criterion, refer to Figure

6.9. As for slender slabs, the former law relates the applied load and the deformation of the member,

while the latter relationship defines the maximum allowable shear force associated with a given state

of deformation of the member.
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Potential extension of the mechanical model to footings

With respect to the calculation of the load-rotation relationship of footings, the approach of Muttoni

(2008) for slabs is slightly adapted and compared with the experimental results presented in Chapter
2 (Simões et al., 2016a). Regarding to the calculation of the refined failure criterion, the differences

compared to the method presented in Chapter 5 are discussed and mechanically grounded modifica-

tions are suggested at the level of the definition of the shape of the critical shear crack. Finally, the

punching strengths calculated with the refined mechanical model are compared against a database of

experimental results and selected series of tests.

6.3.2 Adaptation of load-rotation relationship of Muttoni (2008) to footings

Contrary to the case of slender flat slabs (Muttoni, 2008), no generally accepted analytical calculation

of the load-rotation relationship of reinforced concrete footings is available in the scientific literature to

the author’s knowledge. Muttoni (2008) proposed the calculation of this relationship for slender slabs

based on the equilibrium of a slab sector by considering a simplified kinematics and a quadri-linear

moment-curvature relationship (see Section 5.10.3). In this section, the approach of Muttoni (2008) is

adapted to allow its application to footings without transverse reinforcement, notably by modifying

the geometry of the considered sector (to account for the lower slenderness of the member) and the

moment-curvature relationship (to consider a reduced flexural capacity, see Chapter 3).
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Figure 6.10: Geometrical definition of an axisymmetric sector of footing.

As shown in Figure 6.10, the axisymmetric sector of the footing under investigation is geometrically

defined by its effective depth (d), height (h) as well as the column (rc) and footing radius (rs). Similarly

to the works of Kinnunen and Nylander (1960) and Muttoni (2008), it is considered that an inclined

failure surface separates an inner and an outer portions of the footing. This surface is considered to

be described by its secant inclination (βp), which enables the calculation of its radial coordinate at the

level of the flexural reinforcement (r0). Based on experimental tests, Hegger et al. (2009) and Siburg and

Hegger (2014) suggested that the inclination of this surface (and thus of the value of r0) is a function

of the span-to-effective depth ratio in the case investigated in this section (footings without transverse

reinforcement and subjected to a uniformly distributed loading). In addition, the theoretical results

based on the application of the kinematical theorem of limit analysis presented in Chapter 3 (Simões

et al., 2016b) indicate that the inclination of the failure surface in the punching shear regime depends
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6. A discussion on the extension of the mechanical model to prestressed slabs and footings

mainly on the span-to-effective depth ratio of the footing. Based on these experimental and theoretical

findings, it will be assumed in the following that r0 can be estimatedwith Eqs. (3.19) and (3.20) derived

in Chapter 3 (Simões et al., 2016b):

r0 = rc + d · cot (βp
) ≤ rc + 1.5 · d with βp =

90◦

0.8+ 0.5 · a/d
(6.17)

where βp is the secant inclination of the failure surface and a represents the radial distance from the

edge of the column to the edge of the footing (a = rs − rc; a/d representing the span-to-effective depth

ratio).

It should be noted that only the load acting at the bottom surface of the outer portion of the footing is

considered as acting shear force (V). The relationship between the acting shear force (V) and the total

load (Q) is thus the following:

Q = V · r2s
r2s − r20

(6.18)

With respect to the kinematics of the footing, by analogy with the assumption adopted by Kinnunen

and Nylander (1960) and Muttoni (2008) for slabs, it is assumed that the deformation of the inner and

outer portions of the footing follow spherical and conical shapes, respectively. The equilibrium of the

axisymmetric sector of footing shown in Figure 6.10 yields (analogously to slender slabs as considered

by Muttoni, 2008):

V · dϑ

2 · π
· (rq − rc

)
= −mr · dϑ · r0 − dϑ ·

∫ rs

r0
mt · dr (6.19)

where rq is the radius where the resultant of the vertical load is applied, mr the radial moment acting at

r0 and mt the tangential moment. The analytical integration of Eq. (6.19) can be performed by adopting

amulti-linearmoment-curvature diagram (Muttoni, 2008), as for instance the one shown in Figure 6.11.

This relationship differs from the one originally proposed byMuttoni (2008) (see Section 5.10.3) only by

including a reducedmoment capacity (mR,red). As shown inChapter 3 (Simões et al., 2016b), a significant
flexural-shear interaction occurs in footings without transverse reinforcement due to the presence of

an inclined concrete strut carrying shear in the vicinity of the column (Figure 3.12). This concrete

strut increases the depth of the compression zone, thus decreasing the lever arm between tensile and

compressive forces (and consequently the moment capacity). The reduced moment capacity (mR,red)

proposed in Chapter 3 (Simões et al., 2016b) to account for the flexural-shear interaction is used in this

section (Eq. (3.18)):
mR,red = ρ · fy · d2 ·

(
1− zc

d

)
(6.20)

where ρ represents the flexural reinforcement ratio, fy the yield strength of the reinforcement and zc

the vertical distance between the top surface of the footing and the point of application of the diagonal

concrete strut (representing an augmented compression zone; see Figure 3.12), which is computed

according to (Eq. (3.17)):

zc

d
=

ρ · fy
2 · η f c · fc

·
(
1+ 0.4 · rs

rc
· d
rq,0 − rc

)
≤ 0.5 (6.21)

where rq,0 refers to the radial location of the resultant of the vertical load applied in the case of vertical

yield line developing at the edge of the column (Figure 3.12; Eq. (3.10) with r0 = rc) and where the

upper limit of zc/d represents the maximum strut width. It should be mentioned that the reduction

factor accounting for the sate of deformations (ηε) in Eq. (3.18) ( fcp = ηε · η f c · fc ) is assumed equal to

ηε = 1 for the analysis but it could eventually be considered as a function of the state of deformations

(as it will be discussed later in this section).
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Figure 6.11: Tailored quadri-linear moment-curvature relationship to footings without transverse rein-
forcement subjected to a uniform soil pressure (relationship adapted from Muttoni (2008)).

In addition to the value of the reduced moment capacity, the moment-curvature relationship shown in

Figure 6.11 is characterized by the uncracked stiffness (EI0), cracking moment (mcr), tension stiffening

effect (χTS) and cracked stiffness (EI1). These parameters can be calculated as suggested by Muttoni

(2008) (Eqs. (5.76), (5.75), (5.80) and (5.77) respectively for EI0, mcr, χTS and EI1).

Based on the adopted kinematics and quadri-linear moment-curvature relationship, Eq. (6.19) can be

expressed in a closed-form format as follows:

V =
2 · π

rq − rc
·
(

−mr · r0 + mR,red · 〈ry − r0〉+ EI1 · ψ · 〈ln (r1)− ln
(
ry
)〉+

EI1 · χTS · 〈r1 − ry〉+ mcr · 〈rcr − r1〉+ EI0 · ψ · 〈ln (rs)− ln (rcr)〉

)
(6.22)

where 〈Δr〉 is equal to zero when Δr < 0, rcr, r1 and ry are the radii defining respectively the extent of

the region where concrete is cracked, cracks are stable and reinforcement is yielding, whose values can

be calculated according to Eqs.(5.85), (5.86) and (5.87) (adopting mR = mR,red).

Definition of an equivalent axisymmetric footing
The analytical calculation of the load-rotation relationship above presented applies for axisymmetric

members. Footings are rarely axisymmetric and, for that reason, equivalent values for the radii of the

column (rc), footing (rs) and load application rq have to be considered. The radius of an equivalent

circular column (rc) may be calculated assuming an equal perimeter (rc = 2 · c/π for square columns).

With respect to the radius of the equivalent axisymmetric member (rs), it may be estimated in a first ap-

proach ensuring an equal area of the bottom surface of the footing, thus implying an equal load applied

in both actual and axisymmetric members for an equal soil pressure (which turns to be rs = B/
√
2 for

square footings). Finally, the radius of the application of the resultant of vertical loads applied at the

bottom surface of the outer portion of the footing in the axisymmetric member (rq) may be estimated

ensuring an equal flexural capacity calculated according to yield-line theory for the investigated and

axisymmetric cases (plateau in the load-rotation relationship at the same load level in both cases). For

square footings with square columns, rq turns to be:

Qflex = Qflex,axis ⇒ 8(
1− c

B
)2 =

2 · π · rs

rq − rc
· r2s
r2s − r20

rq = rc + rs · 2 · π

8
·
(
1− c

B

)2 · r2s
r2s − r20

(6.23)

where c refers to the size of a square column, Qflex is the flexural capacity of a square footing with a

square column based on yield-line theory (Johansen, 1962) assuming a cantilever mechanism (Gesund,

1983), Qflex,axis is the flexural capacity of a circular footing with a circular column (axisymmetric mem-

ber) based on yield-line theory (Johansen, 1962). It should be noted that the (reduced)moment capacity

multiplying in both sides of Eq. (6.23) (and thus accounting for the flexural-shear interaction) cancels.
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6. A discussion on the extension of the mechanical model to prestressed slabs and footings

Experimental validation of proposed load-rotation relationship
Figure 6.12 depicts a comparison between the calculated and the experimental load-rotation relation-

ships of the four specimens without transverse reinforcement presented in Chapter 2 (Simões et al.,
2016a), where the amount of top reinforcement, the column and the specimen side lengths were var-

ied (PS11 to PS14). The satisfactory agreement between the theoretical and the experimental results

demonstrates that the approach proposed by Muttoni (2008) to slabs may be adapted to footings by

considering a consistent sector of the member (modifying r0) and a tailored moment-curvature rela-

tionship (incorporating a reduced moment capacity mR,red).
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Figure 6.12: Comparison of calculated and experimental load-rotation relationships of reinforced con-
crete footings under uniform soil pressure: (a) PS11; (b) PS12; (c) PS13; (d) PS14; specimens by Simões

et al. (2016a).

However, it can be noted from Figure 6.12 that the calculated relationship seems to underestimate the

contribution of concrete in tension (cracking load and tension-stiffening effects). Therefore, a possible

adaption of the sectional response of the member to obtain a better agreement with the experimental

results remains to be investigated as future work.

In addition, although the calculation of r0 and mR,red according to Eqs. (6.17) and (6.20) appears to be

reasonable for the four specimens used for comparison, its general application also requires further

experimental validation. The calculation of the reduced moment capacity (mR,red) deserves particu-

lar attention in future works as it represents the flexural-shear interaction experimentally observed in

Chapter 2 (Simões et al., 2016a) and theoretically described in Chapter 3 (Simões et al., 2016b). It is of

interest to understand whenever a reduction factor function of the state of deformations (ηε) should

be included in the calculation of the reduced moment capacity by means of the plastic concrete com-

pressive strength ( fcp in Eq. (6.21)). From the mechanical point of view, the weakening of the concrete

strength with increasing deformations (Vecchio and Collins, 1986) leads to an augmented height of the

compression zone and, consequently, to a decrease of the lever arm and of the moment capacity. An

approach including such effect can be carried out by including a factor ηε in the calculation of mR,red.

A similar approach has already been previously proposed by Lips (2012) to calculate the load-rotation

relationship of slabs with large amounts of transverse reinforcement.

6.3.3 Calculation of the refined failure criterion for isolated footings

The calculation of the refined failure criterion presented in Chapter 5 (Simões et al., 2018) can also be

applied in order to study the punching strength of isolated reinforced concrete footings. The basis of

the mechanical model are recalled in the following (Figure 6.13; Simões et al., 2018):

• Primary tangential flexural cracks develop on the tension side within a radius rχr. The spacing

between such cracks is considered to be equal to s f ;
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Potential extension of the mechanical model to footings

• The CSC is a primary tangential flexural crack that develops from the tension to the compression

side (Muttoni, 2008). Two regions with different phenomenological behaviour develop along it

(Muttoni et al., 2017). A mixed-mode opening-sliding behaviour governs the response on the

tension side, whereas a shear band response takes place on the compression side;

• The displacement field along the CSC results from the vector sum of flexural and shear defor-

mations, consistently with the experimental observations of Clément (2012) for slabs and Simões

et al. (2016a, Chapter 2) for footings, as well as in agreement with previous models based on the

principles of the CSCT (Guidotti, 2010; Clément, 2012; Muttoni et al., 2017).

• A variable location of the CSC at the level of the flexural reinforcement is adopted.

Comparing to the slender slabs investigated in Chapter 5 (Simões et al., 2018), footings with a uniformly

distributed loading applied at the bottom surface differ mainly due to their low slenderness and load-

ing conditions. The influence of such differences on the calculation of the refined failure criterion is

discussed in the following.
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Figure 6.13: Punching shear of isolated footings: hypotheses of themechanicalmodel ofChapter 5 (Simões
et al., 2018) and description of potentially different phenomenological (Muttoni et al., 2017) applied to

footings.

Influence of slenderness and loading conditions on the definition of the different regions
The three regions of the slab with different behaviour defined in Chapter 5 (Simões et al., 2018) for
slender slabs are also considered to be valid in the case of footings. As shown in Figure 6.14, the

footing is divided in an inner and an outer portions, together with a wedge-shaped region. Similarly

to the case of slender slabs and in agreement with the approach of Kanellopoulos (1986) for beams in

bending, the wedge-shaped region is considered to accommodate the radial displacements associated

with the flexural deformations below the neutral axis (according to the axis convention of Figure 6.14).

Influence of the slenderness and loading conditions on the shape of the CSC
The geometry of the CSC of footings will be considered as defined in Chapter 5 (Simões et al., 2018)
for slender slabs, i.e. by adopting a third-degree polynomial degree parabola (without second order

term) together with the three following conditions (see Figure 6.14): (i) the CSC passes by the root

of the column and (ii) joins the level of the flexural reinforcement at r0; (iii) the tangent to the CSC

at the level of the flexural reinforcement passes by the centre of rotation associated with the flexural
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deformations (hypothesis established on the basis of the experimental observations of Einpaul (2016)

and Einpaul et al. (2017) in slender slabs). This geometry was defined based on the analysis of the

cracking development of punching tests of slender slabs (Chapter 5; Simões et al., 2018) but is considered
in a first attempt to suitably describe the geometry of theCSCof footings aswell. In addition, the shapes

of the CSC obtained with such approach agree fairly well with the shapes of the failure surfaces of

footings experimentally observed in Chapter 2 (Simões et al., 2016a) and theoretically calculated based

on limit analysis in Chapter 3 (Simões et al., 2016b).
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Figure 6.15: Punching shear resistance VR as a function of r0 in the case of slender slabs.

Even if the slenderness and loading conditions are considered not to influence the geometry of the

CSC, they may influence the governing shape of the CSC by modifying the radial coordinate of the

CSC at the level of the flexural reinforcement (r0).

Based on the analysis of experimental results, a verification on the basis of a nominal shear stress was

proposed to determine the location of the CSC at the level of the flexural reinforcement in slender
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slabs (Chapter 5; Simões et al., 2018). Therefore, although the CSC could theoretically develop between

rc + 0.75 · d and the calculated value of r0 (function of the nominal shear stress τl ; defining the region

where inclined-flexural cracks develop and may progress towards the compression side, Figure 6.15),

the shape of the CSC governing the punching strength was always assumed to be located at r0. This is

theoretically justified by the fact that the punching strength reduces with decreasing the secant inclina-

tion of the CSC (larger value of r0; see V as a function of r0 in Figure 6.15), while the acting shear force

in the case investigated in Chapter 5 (Simões et al., 2018) remains constant between the support and the

load introduction. For these reasons, in Chapter 5 (Simões et al., 2016b), the governing shape of the CSC

corresponds to the crack reaching the flexural reinforcement at the value of r0. In the case of footings

subjected to an uniformly distributed loading applied at the bottom surface, even if a flatter secant

inclination of the CSC (larger value of r0) may lead to a lower effective punching strength (VR), it does

not necessarily lead to a lower total punching shear capacity (QR), refer to Figure 6.16. With increasing

values of r0, the amount of load acting inside the CSC and being equilibrated by direct support action

increases. It thus results that the location of the CSC at the level of the flexural reinforcement r0 has

to be found by minimization of the total punching shear strength. This difference with respect to the

case of slender slabs previously dealt in Chapter 5 (Simões et al., 2016b) is a consequence of the different
loading conditions.

Even if the location of r0 is determined by minimizing the total punching shear capacity, the extent of

the region in which primary flexural cracks develop and, consequently, where the CSC may form has

to be defined. An expression to calculate the location of the failure surface at the level of the flexural

reinforcement (r0,p) has been proposed in Chapter 3 (Eqs. (3.19) and (3.20); Simões et al., 2016b) on the

basis of the application of the upper bound theorem of limit analysis for footings without transverse

reinforcement subjected to a uniform loading. As a first estimate, it will be considered in the following
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6. A discussion on the extension of the mechanical model to prestressed slabs and footings

that the CSC at the level of the flexural reinforcement may vary between the edge of the column and

the location of the failure surface calculated based on the application of limit analysis (rc ≤ r0 ≤ r0,p).

Consistently, it is thus considered that primary flexural cracks develop within a radius corresponding

to the furthest possible location of the CSC at the level of the flexural reinforcement (rχr = r0,p with r0,p
calculated with Eq. (6.17)), refer to Figures 6.13 and 6.16.

In summary, the shape of the CSC in footings will be estimated in the following based on Eq. (5.2))

where the value of r0 results from theminimization of the total punching shear strength (rc ≤ r0 ≤ r0,p).

Consequently, it is considered that primary flexural cracks develop within the region where the critical

shear crack may form (rχr = r0,p).

Influence of the slenderness and loading conditions on the kinematics and displacement field
In the following, it will be considered that the kinematics of the CSC is equivalent in both slabs and

footings, i.e. composed by a rotation and a shear deformation (Figure 5.12), even if their relative contri-

butions to the displacement field along the CSC may differ in both cases (Simões et al., 2016a; Muttoni

et al., 2017). The contribution of the flexural deformations to the displacement field along the critical

shear crack is a function of the centre of rotation (rCR, zCR) and of the rotation developing at the CSC

(ψcsc). The assumptions adopted in the case of slender slabs are also considered in the case of footings

to determine both the centre of rotation (located at the edge of the column and at the depth of the neu-

tral axis) and the rotation concentrated in the critical shear crack (total rotation equally divided in the

number of primary tangential crack developing within rχr). With respect to the shear deformation, it

is characterized by the shear displacement δs and the minimum angle γ0 occurring between the CSC

and the vector associated with the shear deformation. With respect to the later parameter, similarly to

the case of slender slabs, it is again assumed equal to γ0 = 27◦ ≤ 90◦ − β(0), where β(0) refers to the

tangent inclination of the CSC at z = 0 (steepest region of the CSC). The limit value of γ0 represents

the case of a shear deformation corresponding to a vertical translation of the outer portion of the foot-

ing. It is important to note that, although this limitation is hardly governing in slender slabs, it may be

governing in the case of footings due to the low value of r0 (steep inclination of the CSC).

In summary, as the same kinematics and assumptions are adopted for both slender slabs and foot-

ings, the displacement field along the CSC in the latter case can also be calculated on the basis of the

equations presented in Section 5.4.4.

Influence of the slenderness and loading conditions on the internal stresses along the CSC
The fundamental material laws do not depend on the slenderness and loading conditions of the mem-

ber. The internal stresses developing in the region with localized cracking are therefore given by Eqs.

(5.22) and (5.23). In the region with smeared cracking, the internal stresses are obtained by means of

Eqs. (5.35) and (5.36). With respect to the dowel action, it is calculated according to Eq. (5.45). Finally,

also the transition between localized and smeared cracking regimes is considered as defined for slen-

der slabs (Eq. (5.21)). Although the internal stresses are calculated on the basis of the same equations

for slender slabs and footings, their value may differ as a consequence of the different shape of the CSC

(different secant inclination) and displacement field along it (different relative contributions of flexural

and shear deformations).

Calculation of the refined failure criterion and punching shear strength
Analogously to the procedure followed in slender slabs without and with in-plane forces (Muttoni,

2008; Clément et al., 2014; Muttoni et al., 2017; Simões et al., 2018), the punching shear strength and

its associated deformation capacity are calculated by intersecting the load-rotation relationship and
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the refined failure criterion. The load-rotation relationship (QLR − ψ) of isolated reinforced concrete

footings is calculated here as explained in Section 6.3.2 (Eqs. (6.18) and (6.22)).

The refined failure criterion is obtained calculating the total punching shear strength as a function of

the rotation. The effective punching strength Vc associated with a given value of the rotation and of

the shear deformation is calculated as described in Section 5.4.6, i.e. by summing the contribution

of localized and smeared cracking (integration of internal stresses) as well as the contribution of the

dowel action of the flexural reinforcement. The total punching strength is obtained adding the load

equilibrated by direct support (uniformly distributed load inside r0):

Qc =

localized cracking
smeared cracking

dowel action︷︸︸︷
Vc +

load equilibrated
by direct support︷ ︸︸ ︷
Vc · r20

r2s − r20
= Vc · r2s

r2s − r20
(6.24)

with Vc calculated according to Eq. (5.46). A similar procedure to the one followed for slabs (and

described in Section 5.10.4) may be adopted to calculate the refined failure criterion and the punching

strength. As previously discussed, the only difference refers to the determination of the value r0 by

minimization of the total punching shear strength. Thus, for a given rotation, the value of the total

punching shear strength is minimized by varying the value of r0 between rc and r0,p.
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formation capacity of footings without transverse reinforcement subjected to a uniform soil pressure.

A possible numerical procedure to calculate the total punching shear strength of a footing is shown in

Figure 6.17 (analogous to the one presented in Section 5.10.4). In the numerical procedure presented

in Figure 6.17, both the load-rotation relationship and the failure criterion are first calculated in a wide

range of rotations, followed by the calculation of their intersection. Another numerical procedure could

consist on determining iteratively the value of the rotation at failure (calculating the value of the applied

load -based on the load-rotation relationship- and of the maximum shear strength -failure criterion-

for a given rotation until reaching an equal value).
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6.3.4 Validation and comparison against experimental results

A comparison against experimental results is presented in this section in order to verify the consis-

tency of the extension of the mechanical model to footings without transverse reinforcement subjected

to a uniform loading. The database of reinforced concrete footings without transverse reinforcement

presented in Chapter 4 (Muttoni et al., 2017) with a total of 34 specimens is considered for that purpose

(refer to Table 4.2 for details). The experimental-to-calculated punching strength ratios are shown as a

function of the main geometrical and mechanical properties in Figure 6.18, where a fine agreement be-

tween experimental and theoretical resultsmay be observed (average of 0.95 and coefficient of variation

equal to 9.0%).
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Figure 6.18: Ratio of experimental-to-calculated punching resistance applying the refined mechanical
model of Chapter 5 (Simões et al., 2016b) extended to footings as a function of: (a) effective depth; (b)
flexural reinforcement ratio; (c) concrete compressive strength; (d) side length of the footing-to-effective
depth ratio; (e) column radius-to-effective depth ratio slabs (equivalent radius of a circular column with
equal perimeter for square columns); (f) aggregate size. Database including 34 footings without trans-

verse reinforcement subjected to a uniform loading (see Table 4.2 for details; Muttoni et al., 2017).

The average value of the experimental-to-calculated strength ratios is slightly below one, indicating

an overestimate of the predicted punching strength. This result can be justified by different factors.

Firstly, some of the assumptions of the extended model may require further theoretical work and ex-

perimental validation to be applied to footings, such as for example the geometry of the CSC, the region

where tangential cracking is considered to develop or still the adopted crack spacing. Other possible

factors may include the consideration of square footings loaded with point loads applied in a limited

number of locations (whose distance may become significantly large in some cases) as axisymmetric

specimens with a uniformly distributed loading. Finally, also the transformation of a real case to an

180



Potential extension of the mechanical model to footings

axisymmetric problemmay influence the obtained results. Thus, further work is needed to understand

if the rather low average value of the experimental-to-calculated punching strength ratios is a conse-

quence of limitations of the model or if it is a consequence of the extrapolation of an actual footing to

an axisymmetric specimens. On the other hand, it is worth to mention that the rather low coefficient

of variation obtained in the comparison against the database of experimental tests shows the model

accuracy to correctly predict the influence of the main geometrical and mechanical properties.
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Figure 6.19: Comparison of calculated punching resistance applying the refined mechanical model of
Chapter 5 (Simões et al., 2016b) (extended to footings) with different series of experimental tests: (a) ef-
fective depth with B/d = 3.0 (Hegger et al., 2009; Siburg and Hegger, 2014); (b) effective depth with
B/d = 4.5 (Hegger et al., 2009; Siburg and Hegger, 2014); (c) flexural reinforcement ratio (Dieterle and
Rostásy, 1987); (d) concrete compressive strength with B/d = 3.0 (Hegger et al., 2009; Siburg and Hegger,
2014); (e) side length of the column-to-effective depth ratio (Simões et al., 2016a); (f) side length of the

footing-to-effective depth ratio (Simões et al., 2016a).

The theoretical results are also compared against selected series of tests in Figure 6.19, where it is shown

that the influence of the main parameters governing the punching strength of footings is captured in

a systematic manner by the model. Figure 6.19 also shows the contributions of the different shear-

transfer actions. The relative contribution of the region with localized cracking seems to be slightly

smaller in footings than in slender slabs (compare relative contribution of localized cracking in Figures

5.19 and 6.19). This result may be justified based on the: (i) different loading conditions that lead

to a not negligible amount of load equilibrated by direct support in the case of footings; (ii) smaller
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rotations at failure of footings compared to slabs, thus leading to larger extents of the region with

smeared cracking in the former case; (iii) low slenderness of footings with respect to the slabs, which

leads to a more favourable shape of the CSC in the former case (due to the low value of r0). These

are also the reasons why the relative contribution of localized cracking to the total punching strength

reduces for decreasing the slenderness of the footing (Figure 6.19(f)). With this respect, it is interesting

to observe that the refined mechanical model consistently captures the increase of the total punching

shear strength with decreasing the span-to-effective depth ratio of the footings (Figure 6.19(f)), which

corresponds to a trend experimentally observed and reported by, for example, Hegger et al. (2006, 2009),
Urban et al. (2013), Siburg and Hegger (2014), and Simões et al. (2016b).

As shown in Figures 6.19(a) and (b), a fine agreement is also found between the results of the mechan-

ical model and the experimental results of Hegger et al. (2009) and Siburg and Hegger (2014) in the

series where the effective depth of the footings is varied, corroborating the experimental observations

of Dieterle andRostásy (1987) and Siburg andHegger (2014)with respect to the existence of a size-effect

in the punching strength of footings.

Figure 6.19(d) additionally shows that the influence of the concrete compressive strength is well cap-

tured by the mechanical model. It is interesting to mention that the influence of the concrete com-

pressive strength in footings seems to be slightly larger than the one obtained in slender slabs in the

investigated case (compare Figure 5.19(b) to Figure 6.19(d)), specially in the range of concrete compres-

sive strengths lower than approximately 40 MPa. According to the mechanical model, in this range of

concrete compressive strengths, the influence of this parameter in the case footings seems to be con-

sistently described by a square root, while in the case of slender slabs seems to be rather correlated to

the cubic root. This result in agreement with the experimental observations of Hallgren et al. (1998),
Hegger et al. (2009), and Bonić et al. (2017), who suggested that the influence of the concrete compres-

sive strength on the punching strength may be larger in footings than in slender slabs. Finally, Figures

6.19(e) and (f) show that the extendedmechanical model captures consistently the experimental trends

observed in Chapter 2 (Simões et al., 2016a), corresponding to an increase of the total punching strength

with the decrease of the span-to-effective depth ratio and the increase of the column size.

The comparison of the theoretical and experimental results presented in this section shows that the

theoretical principles of the CSCT can be successfully applied to investigate the punching strength of

footings provided that an adequate shape of the CSC is adopted. However, it remains also clear that the

extension of the mechanical model here presented requires further theoretical work and experimental

validation.
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6.4 Conclusions

This chapter discusses the extension of themechanicalmodel presented inChapter 5 (Simões et al., 2018)
to prestressed slabs and to reinforced concrete footings without transverse reinforcement.

With respect to the extension of the mechanical model to the case of prestressed slabs, the main con-

clusions are presented below:

1. The mechanical model accounts for the influence of in-plane stresses on the calculation of the

depth of the neutral axis and of the nominal shear stress leading flexural cracks to become inclined

flexural-shear cracks thus governing the shape of the critical shear crack (CSC). These parameters

influence the shape of theCSCand the displacement field along it. Consequently, the introduction

of in-plane stresses plays a role on the development of internal stresses along the CSC;

2. The results of the extendedmechanicalmodel show a satisfactory agreementwith the experimen-

tal results of prestressed slabs of Clément et al. (2014). According to the results of the mechanical

model, the increase of the punching strength with increasing in-plane compressive stresses is a

result of the decrease of the crack opening along the CSC. This leads to an increase of the ex-

tent of the CSC contribution under smeared cracking conditions (increasing the contribution of

this region), while the contribution of the region with localized cracking remains approximately

constant (smaller extent of this region compensated by smaller crack opening leading to the de-

velopment of higher internal stresses);

3. The preliminary results suggest that the theoretical principles of the CSC, which form the basis

of the refined mechanical model, can be successfully applied to perform a refined calculation of

the punching shear strength and deformation capacity of prestressed slab-column connections;

4. Even if the preliminary results seem to be physically consistent, an extensive validation of the

mechanical model to deal with the case of prestressed slabs is still required;

5. The results of the refined mechanical model confirm the ideas of Clément (2012) and Clément

et al. (2014), who suggested that the crack opening of the CSC decreases for increasing in-plane

compressive stresses.

Regarding the extension of themechanical model presented in Chapter 5 (Simões et al., 2018) to footings

without transverse reinforcement subjected to a uniformly distributed loading, the following conclu-

sions can be drawn:

1. The refined mechanical model presented Chapter 5 (Simões et al., 2018) may be applied to inves-

tigate the punching strength and associated state of deformations at failure of footings provided

that an adequate shape of the CSC is adopted;

2. The calculation of the load-rotation relationship slabs proposed byMuttoni (2008)may be adapted

to the case of footings subjected to a uniformly distributed loading considering an appropriate

sector of the footing and a tailored moment-curvature relationship;

3. The mechanical model shows a fine agreement when compared to a database and selected series

of experimental tests, being able to capture consistently the role of themain parameters governing

the punching strength of footings;

4. The agreement between theoretical and experimental results shows that the theoretical principles

of the CSCT (on which the model is based) are valid to investigate the punching strength and the

associated deformation capacity of reinforced concrete footings. However, some aspects of this

extension of the theory still deserve some future work.
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6.6 Notation

Latin characters
Lower Case
a shear span

b0,r0,exp perimeter of the section located at r0,exp from the axis of the column

b0 length of control perimeter located at d/2 from the column edge

c side length of a square column

d effective depth (distance from the centroid of the flexural reinforcement to the out-

ermost compressed fiber)

dg maximum aggregate size

dg0 reference aggregate size

dϑ angle of slab sector (also angle of shear band sector)

fc concrete compressive strength measured in cylinders

fcp plastic concrete compressive strength

fct concrete tensile strength

fy yielding strength of reinforcement

h height of reinforced concrete section

m moment

mcr cracking moment per unit width

mp external moment per unit width

mr radial moment per unit width

mR moment capacity per unit width

mR,red reduced moment capacity per unit width

mt tangential moment per unit width

np in-plane force per unit width

q uniformly distributed load

r, z radial and vertical coordinates

rCR, zCR radial and vertical coordinates of the centre of rotation

rc radius of a circular column

rcr radius of cracked region

rm radial location where the external moment is applied

rq radial location of the resultant of vertical applied load

rq,0 radial location of the resultant of the vertical load applied in the case of vertical

yield line developing at the edge of the column

rs radius of isolated axisymmetric member

ry radius of the region in which reinforcement is yielding

r0 radial distance between the axis of the column and the critical shear crack at the

level of the flexural reinforcement

r0,p radial distance between the axis of the column and the failure surface at the level

of the flexural reinforcement calculated by applying the upper bound theorem of

limit analysis

r0,exp radial distance between the axis of the column and the critical shear crack at the

level of the flexural reinforcement experimentally measured

r1 radius of the region in which cracking is stabilized

rχr radial distance with non-negligible radial deformation measured from the axis of

the column

s f distance between primary flexural cracks

w crack opening

w0 initial crack opening

x depth of neutral axis

xel depth of the compression zone assuming an linear-elastic behaviour of both con-

crete and reinforcement

xpl depth of the plastic compression zone

zc location of the diagonal compression strut at the column edge
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Upper Case

B side length of a square slab

Ec, Es modulus of elasticity of concrete and reinforcement, respectively

EI0 uncracked stiffness of reinforced concrete section

EI1 cracked stiffness of reinforced concrete section

Q total applied load

Qc total punching strength associated with a given rotation and shear deformation

Qf c total punching strength associated with a given rotation (failure criterion)

Qflex total flexural strength of an actual isolated footing

Qflex,axis total flexural strength of an axisymmetric isolated footing

QLR total punching force associated with given rotation (load-rotation relationship)

QR total punching shear strength

QR,test experimental total punching shear strength

QR,calc calculated total punching shear strength

V punching shear force

Vc strength associated with a given rotation and shear deformation

Vf c punching strength associated with a given rotation (failure criterion)

Vflex flexural strength of an isolated specimen

VLR punching force associated with given rotation (load-rotation relationship)

VR punching shear strength

VR,test experimental punching shear strength

Greek characters
Lower Case
β tangent angle of the critical shear crack

βp secant angle of the failure surface calculated by applying the upper bound theorem

of limit analysis

γ0 angle between critical shear crack and vector of displacement due to shear defor-

mation at z = 0
γs angle between critical shear crack and vector of displacement due to shear defor-

mation

δs sliding due to shear deformation

ηε reduction factor accounting for the presence of transverse strains

η f c reduction factor accounting for the brittleness of concrete in compression

ξ reduction factor accounting for the reduced stiffness of orthogonal reinforcement

comparing to the stiffness of reinforcement axisymmetrically

ρ flexural reinforcement ratio

τl shear stresses causing a flexural crack to become an inclined flexural crack govern-

ing the shape of the critical shear crack

τl,σ shear stresses causing a flexural crack to become an inclined flexural crack govern-

ing the shape of the critical shear crack accounting for an in-plane stress σ

τl,σ,test experimentally calculated shear stresses causing a flexural crack to become an in-

clined flexural crack governing the shape of the critical shear crack accounting for

an in-plane stress σ

σp in-plane stress

σ1 principal tensile stress

χr radial curvature

χt tangential curvature

χcr curvature associated with cracking

χ1 curvature associated with stabilized cracking

χy curvature associated with yielding of the reinforcement

χTS reduction of curvature associated with tension-stiffening effect due to reinforce-

ment bond

ψ rotation of the slab

ψ′ corrected rotation accounting for the influence of in-plane stresses
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ψcsc rotation of the slab at the critical shear crack

ψR rotation of the slab at failure

Upper Case

Δ crack sliding

ΔχN variation of curvature due to in-plane stresses

Acronyms
CSCT Critical Shear Crack Theory

LVDT Linear Variable Differential Transformer

CSC Critical Shear Crack

CR centre of rotation
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Chapter 7

Conclusions and Outlook

7.1 Introduction

This thesis deals with punching shear failures of reinforced concrete members without transverse re-

inforcement subjected to a concentric and monotonic loading. In addition to Chapters 1 (Introduction)

and 7 (Conclusions and Future Research), this document is composed of five chapters. The first four

chapters correspond to four journal articles dealing with different issues related to the topic of the

present document. The sixth chapter presents an additional work which was not included in none of

the journal articles (previous chapters).

In an attempt to better understand the differences between the punching shear behaviour of slender and

squat members, an experimental programme comprising a total of five compact full-scale reinforced

concrete footings was carried out in the framework of this thesis. The experimental results of this series

of tests were published in a journal article (Simões et al., 2016a) together with three additional tests

performed in IBETON/EPFL as part of a private project funded by Peikko. The investigated variables

included the column size, the side length of the footing (both influencing the span-to-effective depth

ratio), the influence of transverse reinforcement composed of double-headed studs and the potential

influence of top horizontal reinforcement. Beyond the results of the experimental programme, the

second chapter of this thesis presents also an interpretation of the kinematics of the tested footings

based onmeasurements recorded in the shear-critical region. The experimental results show that shear

deformations significantly influence the state of deformation of the shear-critical region of footings

at failure. This result emphasizes the need to consider these deformations in a theory consistently

describing the phenomenon involved in a punching failure.

The third chapter, corresponding to the second published journal article (Simões et al., 2016b), presents
a theoretical work consisting on the investigation of the strength of compact reinforced concrete foot-

ings without transverse reinforcement based on the application of the upper bound theorem of limit

analysis. Although the application of such theory to brittle failures may be arguable (Bažant and Cao,

1987), its application for failures triggered by yielding of the flexural reinforcement or crushing of

concrete has been shown to be suitable (Nielsen and Hoang, 2011). As the experimental evidences

presented in the second chapter of this document suggest that punching shear failures of compact re-

inforced concrete footings may be governed by crushing of the diagonal concrete struts, limit analysis

was used to investigate the different potentially governing failure mechanisms and associated regimes.

Actually, regardless of some debatable assumptions associated to the application of limit analysis, the

work presented in the third chapter of this document allows to explain some experimental observations

from the theoretical point of view. A comparison of the theoretical results against experimental results

from the literature indicates that strain- and size-effects have to be accounted in the definition of the

plastic concrete compressive strength in order to correctly predict the punching strength of compact

191



7. Conclusions and Outlook

footings. This result accentuates the need for a mechanical theory to consistently deal with punching

failures of both compact and slender reinforced concrete members, as the punching strength appears

to be a function of the same parameters in both cases (influenced by strain- and size-effects).

The fourth chapter, corresponding to the third published journal article (Muttoni et al., 2017), presents
a review and discussion of the theoretical principles of the Critical Shear Crack Theory (CSCT) for

punching shear failures of members without transverse reinforcement. This chapter shows that the

punching failures of slender and squat members are dealt in a consistent manner by the CSCT, mainly

because the mentioned theory accounts for both flexural and shear deformations in the kinematics at

failure. The application of the principles of this theory to perform a refined calculation of the failure

criterion for punching shear failures is discussed and presented based on previous works on the topic

(Guidotti, 2010; Simões et al., 2016b), eventually justifying the use of a simplified and single failure

criterion. In addition, an analytical derivation of closed-form expressions for punching shear design of

members without transverse reinforcement is presented based on a newly proposed failure criterion

(proposed by Muttoni and Fernández Ruiz (2017) and mechanically justified in this chapter) and a

simplified non-linear load-rotation relationship (earlier developed byMuttoni (2008)). A comparison of

the different possible approaches of CSCT against experimental results of both slender (slabs) and squat

(footings) members without transverse reinforcement is also presented, showing good agreement.

The fifth chapter, corresponding to the fourth published journal article (Simões et al., 2018), presents a
complete validation of the analytical failure criteria of the CSCT for punching shear failures of slender

slabs without transverse reinforcement. A refined mechanical model is developed on the basis of the

theoretical principles of the CSCT (reviewed and discussed in fourth chapter) and supported on re-

cent experimental findings available in the scientific literature (reviewed in the first part of the journal

article). The refined mechanical model shows very good agreement with the experimental results by

comparison with a database of experimental tests and selected series of tests. Eventually, the refined

mechanical model allows a theoretical validation of the analytical failure criteria of the CSCT as well

as of its main assumptions.

Finally, the sixth chapter discusses the extension of the refined mechanical model for punching shear

failures of prestressed slabs and isolated reinforced concrete footings. It is shown that the extended

mechanicalmodel is able to explain theoretically the experimentally observed trends. Furthermore, the

consistent agreement obtained in the preliminary comparisons of the theoretical and the experimental

results shows that the theoretical principles of the CSCT (based on which the model was developed)

are also valid to deal with the punching shear failures of these members. Further work remains nev-

ertheless to be performed in the future to fully validate the proposals of extension of the mechanical

model for theses cases.

In summary, the work presented in this document includes both experimental and theoretical contri-

butions for reinforced concrete isolated footings. While the experimental work consists of a series of

tests, the theoretical work includes, not only the analysis of compact footings applying the kinematical

theorem of limit analysis (third chapter), but also the discussion on how and why CSCT also applies

for squat members (fourth and sixth chapters). With respect to slender members, the contributions are

only theoretical. Firstly, a review of the principles of CSCT for punching shear failures is provided,

clarifying from the mechanical point of view how it can be used to perform a refined calculation of

the failure criterion (fourth chapter). Subsequently, a refined calculation of the failure criterion is pre-

sented based on the principles of CSCT and supported on experimental measurements available in the

scientific literature (fifth chapter). Additional theoretical work also included the development and vali-
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dation of closed-form expressions of the CSCT for punching shear design of slabs and footings without

transverse reinforcement (fourth chapter).

The following two sections present a summary of the main conclusions of this thesis and a list of po-

tentially interesting topics for future research.

7.2 Conclusions

Considering that the five main chapters deal with different issues within the topic of research of this

thesis, this section is divided by chapters. The main conclusions of each chapter are separately synthe-

sized in the following.

Experimental programme on the punching behaviour and strength of footings

The results of an experimental campaign of full-scale reinforced concrete footings (0.550 m height)

subjected to an uniform soil pressurewere presented in the second chapter of this thesis (refer to Simões

et al. (2016a)). The main conclusions are listed below:

• The punching strength of reinforced concrete footings without transverse reinforcement and un-

der uniform soil pressure increases with the decrease of the span-to-effective depth ratio. Still

with respect to the members without transverse reinforcement, also the inclination of the fail-

ure surface experimentally observed seems to become steeper with the decrease of the span-to-

effective depth ratio. These experimental evidences are consistent with those previously pre-

sented by Hegger et al. (2009) and Siburg and Hegger (2014);

• Detailed measurements performed in the shear-critical region suggest that concrete crushing of

the diagonal strut carrying shear is the phenomenon triggering the punching failure of compact

reinforced concrete footings without transverse reinforcement. The experimental observations

are in agreement with the numerical results obtained by Hallgren and Bjerke (2002), who have

also suggested the crushing of the diagonal concrete strut as the phenomenon leading to the

punching failure of compact footings (after redistribution of internal forces);

• The experimental measurements reveal that, although the flexural deformations seem to be im-

portant also in the case of compact footings, important shear deformations take place and influ-

ence the state of deformations of the shear-critical region;

• The comparison of the experimental results of two identical footings where only the top rein-

forcement was varied (refer to specimens PS13 -with top reinforcement- and PS14 -without top

reinforcement) suggests that a very compact reinforced concrete footing under uniform soil pres-

sure may have a higher punching shear resistance if top horizontal reinforcement is used. This

result requires further experimental evidence to be confirmed, as only one typology of footing

was tested for comparison. It is not clear whether the increase of 8% of the normalized punching

shear resistance was due to the confinement given by this reinforcement to the diagonal compres-

sion strut carrying shear, due to dowel action of this reinforcement or if it is only a result of scatter

intrinsically associated to punching shear tests;

• The experimental results suggest that a transverse reinforcement system composed of vertical

double-headed studs is an effective system to increase the punching shear strength and deforma-

tion capacity of compact reinforced concrete footings. Nevertheless, its efficiency appears to be

influenced by the span-to-effective depth of the member, with an efficiency decay observed with
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the decrease of the span-to-effective depth ratio. These results are in agreement with the exper-

imental observations previously reported by Hegger et al. (2009) and Siburg and Hegger (2014),

who have observed a decrease of the efficiency of stirrups as transverse reinforcement system

with decreasing shear slenderness;

• The experimentally measured load-rotation relationships of the specimens with transverse re-

inforcement showed a significant plateau before failure (increasing rotation without increase of

shear forces). In addition, the plateau occurred at shear forces remarkably lower than those calcu-

lated assuming a pure flexural failure (applying yield-line theory (Johansen, 1962)). This consists

on an experimental evidence that a flexural-shear regime seems to occur at high shear forces in

the case of compact reinforced concrete footings. Similar observations were previously reported

by, for example, Lips (2012) and Lips et al. (2012) for the case of slender slabs with large amounts

of transverse reinforcement.

Application of the upper bound theorem of limit analysis to calculate the strength

of reinforced concrete footings without transverse reinforcement

TheChapter 3 of this thesis presents a theoretical approach based on the application of the upper bound

theorem of limit analysis to calculate the strength and the governing failure mechanisms of reinforced

concrete footings without transverse reinforcement (refer to Simões et al. (2016b)). The principal con-

clusions presented in this chapter are listed in the following:

• Pure flexural failures of compact reinforced concrete footings occur only for low amounts of the

bottom mechanical reinforcement ratio. On the other hand, pure punching shear failures take

place for large amounts of this parameter. A continuous transition between pure flexural and

punching shear failures occurs for intermediate values of the bottom mechanical reinforcement

ratio, resulting into a pronounced flexural-shear regime. The significance of this regime was

shown to increase with decreasing span-to-effective depth ratio;

• The lower strength obtained for the flexural-shear regime when compared to a pure flexural fail-

ure can be explained by the presence of an inclined concrete strut with a significant width in

the edge of the column, which reduces the bending lever arm and, consequently, the moment

capacity;

• The failure mechanism representing the punching shear failure corresponds either to a verti-

cal translation of the outer portion of the slab (as originally assumed by Braestrup et al. (1976)
for punching shear failures of slabs) or to a clockwise rotation (rotation opposite to the one ex-

pected for a flexural failure) with an instantaneous centre of rotation at the height of the bottom

flexural reinforcement (thus not activating it). The latter failure mechanism is governing in the

case of more compact footings without top reinforcement, while the former is governing all the

remaining cases (footings with moderate slenderness or footings with sufficient amount of top

reinforcement to avoid the latter mechanism);

• The difference between the two potentially governing failure mechanisms associated to punch-

ing shear failures explains the theoretical positive effect of introducing top reinforcement. In

the cases where the governing failure mechanism includes a clockwise rotation, the introduction

of top reinforcement theoretically increases the punching strength (as this reinforcement is also

activated). In terms of failure mechanisms, the transition from a mechanism characterized by

clockwise rotation to a mechanism described by vertical translation of the outer portion of the

footing occurs with the increase of the amount of top reinforcement;
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• The potential increase of the punching strength with the introduction of top reinforcement in the

case of very compact footings may be explained from a physical perspective by the confinement

given by top reinforcement to the diagonal concrete strut (Guidotti et al., 2011). The experimental

results presented in this thesis (refer to specimens PS13 and PS14 in Chapter 2) have shown an

increase of the punching strength with the introduction of top reinforcement, which is in agree-

ment with the theoretical results obtained in this chapter. The increase of punching strength was

nevertheless very limited (≈8% of the normalized resistance) and was only verified for a given

case. Further experimental research is needed to confirm experimentally that top reinforcement

may increase the punching strength in the case of very compact footings without transverse re-

inforcement;

• According to the theoretical results, the inclination of the failure surface of footings subjected

to a uniform soil pressure (in the regime of punching failures) is mostly a function of the span-

to-effective depth ratio. This theoretical result is consistent with the experimental observations

made by Hegger et al. (2009) and Siburg and Hegger (2014) and with the experimental results

reported in this thesis (refer to Chapter 2);

• Fair agreement was found between theoretical and experimental results of Hallgren et al. (1998)
and Dieterle and Rostásy (1987) for reasonable values of the reduction factor accounting for the

influence of the strain- and size-effect. Constant values have been adopted for this reduction

factor to compare the theoretical and the experimental results. Nevertheless, the comparisons

have shown that this reduction factor cannot be taken as a constant, as it is rather a function of

different geometrical and mechanical properties. As a result, a rational approach to estimate this

factor is required.

Review of the theoretical principles of the Critical Shear Crack Theory for punching

shear failures of members without transverse reinforcement and development of

closed-form design expressions

The theoretical principles of the CSCT for punching shear failures are reviewed in the Chapter 4 of this

thesis. In addition, closed-form design expressions based on the CSCT are also analytically derived.

The main conclusions of the work presented in this chapter (Muttoni et al., 2017)are listed below:

• The mechanical model of the CSCT for punching shear failures considers that strains localize at

a crack with a flexural origin (the so-called critical shear crack) at failure. The kinematics of the

critical shear crack (CSC) includes a rotation (associated to flexural deformations) and a shear

deformation. The internal stresses developing along the CSC may be calculated on the basis of

the displacements resulting from the adopted kinematics. The distribution of internal stresses

calculated using suitable fundamental material laws forms an inclined concrete strut;

• According to the mechanical model of the CSCT, the punching strength, obtained by integration

of the internal stresses, is a function of the crack opening and crack roughness. A decrease of

the punching strength occurs with an increase of the crack opening and a decrease of the crack

roughness;

• The slenderness of the slabs not only influences the relative contribution to the crack opening at

failure of the rotation and of the shear deformation, but also influences the shape of the CSC.

Accounting for this, the mechanical model of the CSCT is applicable for both slender and squat

members;
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• A simplified failure criterion with a power-law function including an upper limit representing a

maximum achievable punching strength (as recently proposed by Muttoni and Fernández Ruiz

(2017)) seems to suitably address the different failure modes that can occur in slender and squat

members;

• Closed-form design expressions can be analytically derived based on the mechanical model of

the CSCT by combining the power-law failure criterion (Muttoni and Fernández Ruiz, 2017) and

a simplified load-rotation relationship (Muttoni, 2008). The proposed expressions allow a clear

identification of the role of the parameters governing the punching strength. In addition, the

simplicity of the derived expressions may help improving the easiness of use of the CSCT in

practice;

• The analytical derivation of closed-form design expressions based on a mechanical model allows

the inclusion of additional effects influencing the punching strengthwith a rational basis. This has

been shown for compressive membrane action, whose influence can be considered in the closed-

form design expression by deriving it adopting a simplified load-rotation relationship properly

(Einpaul et al., 2015, 2016; Muttoni and Fernández Ruiz, 2017) accounting for this effect;

• The derived closed-form design expressions have shown fairly good agreement with the exper-

imental results for both slender slabs and compact footings. The comparison with individual

series of tests has also been shown that the derived expressions consistently capture the influence

of the main geometrical and mechanical parameters.

Validation of the Critical Shear Crack Theory for punching failures of members with-

out transverse reinforcement based on a refined mechanical model

A refined mechanical model for punching shear failures of slender slabs without transverse reinforce-

ment is presented in the Chapter 5. The model (which can be seen as an improvement of the mechanical

models of Guidotti (2010) and Clément (2012)) is developed on the basis of the theoretical principles

of the Critical Shear Crack Theory and is supported on recent experimental findings. The main con-

clusions of the work presented in this chapter include:

• The results of themechanical modes show a very good accuracy with the experimental results. In

addition, also the influence of all parameters significantly influencing the punching shear strength

of slender slabs are consistently captured with the presented model;

• A decrease of the punching shear strength is observed with increasing rotation. This is justified

by the decay of the contribution of the shear-transfer actions associated to larger crack openings:

aggregate interlock stresses decrease, concrete softens and dowel action reduces due to concrete

spalling or yielding of the bars;

• The results of the refined mechanical model concentrate in a narrow band if the normalized

punching shear strength is depicted as a function of the normalized rotation of the slab. This

indicates that a single analytical failure criterion can be used for design and assessment without

lack of accuracy. In this sense, the analytical hyperbolic (Muttoni, 2008) and power-law (Muttoni

and Fernández Ruiz, 2017; Muttoni et al., 2017) failure criteria of the Critical Shear Crack Theory

can be successfully used for those purposes;

• The results of the mechanical model show that the opening of the critical shear crack at failure

(accounting for both rotation and shear deformation) are correlated to the product of the slab

rotation and effective depth. In addition, a linear relationship between both parameters appears to
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be a reasonable approximation, whichmechanically justifies the simplified assumption originally

considered byMuttoni (2008) of a crack opening proportional to themultiplication of the rotation

by the effective depth (w ∝ ψ · d);
• A size-effect law with a slope of approximately -1/3 in a double-logarithmic scale is predicted

by the refined mechanical model, which is in agreement with the theoretical works of Fernández

Ruiz and Muttoni (2017).

A discussion on the extension of the refined mechanical model for punching shear

failures of prestressed slabs and footings without transverse reinforcement

A discussion on the possible extension of the mechanical model of Chapter 5 for prestressed slabs is

presented in Chapter 6. The punching strength and associated deformation capacity is computed by

intersecting the load-rotation relationship (calculated as proposed by Clément et al. (2014)) with the

failure criterion. The refined calculation of the failure criterion is adapted from Chapter 5 in order to

include the influence of in-plane stresses in the definition of the shape of the CSC and on the displace-

ment field occurring along it. The main conclusions are listed below:

• A satisfactory agreement is found in the preliminary comparison of the results of the extended

model against the experimental results of Clément et al. (2014);

• According to the refined mechanical model, the increase of the punching strength for increasing

in-plane compressive stresses is justified by the decrease of the crack opening along theCSC (lead-

ing to larger extents of the region with smearing cracking, as well as to higher internal stresses

developing in both regions of localized and smeared cracking). This result is in agreement with

the results of previous models developed consistently with the principles of the CSCT (Clément,

2012; Clément et al., 2014);

• The extension of the model for prestressed slabs requires nevertheless further theoretical valida-

tion (at the level of the hypotheses) and an extensive experimental validation (comparison with

databases of experimental results).

A possible extension of themodel for the cases of isolated reinforced concrete footings is also discussed

in Chapter 6. Again, deformations and load-carrying capacities at failure are calculated by intersecting

the load-rotation relationship and the calculated failure criterion. For that purpose, the load-rotation

relationship proposed byMuttoni (2008) for slender slabs is adapted for footings considering a suitable

geometry of the failure surface (function of the slenderness as theoretically observed in Chapter 3) and
sectional response of the member (accounting for the reduced moment capacity, in accordance to the

theoretical results of Chapter 3). The refined calculation of the failure criterion as presented in Chapter
5 is adapted by considering a variable location of the CSC at the level of the flexural reinforcement,

whose value is determined by minimization of the total punching shear strength. The main results are

presented in the following:

• A reasonable agreement is found from the comparison of the calculated and experimentally mea-

sured load-rotation relationships of the specimens presented in Chapter 2. Further experimental

validation is nevertheless still required;

• The extended model shows a good accuracy in terms of coefficient of variation when compared

to a database of experimental results and selected series of tests. The average of the measured-to-

calculated punching strength is slightly lower than the unit, thus suggesting that the model may

possible overestimate the punching strength of footings. These results indicate that the model
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is able to correctly predict the influence of the different geometrical and mechanical parameters

governing the punching strength (justifying the rather low value of the coefficient of variation),

but not exactly the measured strength (slight overestimation). Further work is thus required in

order to improve the extension of the mechanical model presented in Chapter 6 for footings;

• Even if some additional work of validation and improvement may still be required, the extended

model seems to be able to explain from the theoretical point of view some of the experimental

trends reported in the scientific literature (as the increasing influence of concrete compressive

strength in the punching strength with the decrease of the slenderness of the member).

Considering the satisfactory agreement found in the preliminary comparisons of the theoretical and ex-

perimental results for the cases of prestressed slabs and footings, the theoretical principles of the CSCT

(forming the basis of the mechanical model) are shown to be also valid to deal with punching failures

of such members. Further theoretical and experimental validation of the extension of the mechanical

model for those cases remains still to be performed in the future to confirm the results presented in

Chapter 6.

7.3 Outlook

Some questions remain open with respect to the punching shear behaviour and strength of reinforced

concrete members. Further experimental, numerical and theoretical work is still required to approach

a consensus in this topic. Some possible ideas for future research are listed below:

• With respect to experimental works:

– Additional experimental programmes with detailed measurements (by using newly avail-

able measuring techniques) of the shear-critical region are needed to better understand the

state of deformations of this region (cracking development and associated kinematics, as for

instance performed by Clément (2012), Einpaul (2016), and Einpaul et al. (2017)). These mea-

surements could play an important role in the validation of the results of any mechanical or

numerical model by means of other parameters than the punching and deformation capac-

ities (e.g. cracking development, internal crack widths, kinematics of the cracks developing

in the shear-critical region).

• With respect to numerical works based on non-linear finite element methods:

– The use of non-linear finite elementmethods constitutes an opportunity to better understand

the state of strains and stresses in the shear-critical region. Refined numerical modelling of

this region can be performed using advanced finite elements combined with sophisticated

concrete constitutive laws. Such models not only allow the calculation of the punching be-

haviour and strength, but also enable a better understanding of the phenomena involved

in these failures. Furthermore, the numerical models may also be used to validate some

hypotheses which may be required to develop simple mechanical models;

• With respect to the mechanical model presented in this thesis:

– The fundamental material laws used for the regions along the critical shear crack with local-

ized and smeared cracking need further experimental validation (fundamentalmaterial laws

and potential transition between differen regimes). Additional experimental and theoretical

works on the fundamentals of the shear-transfer in concrete are of interest. Also additional

experimental programmes including information with respect to the internal cracking de-

velopment are of interest in order to refine the assumptions of the mechanical model (e.g.

crack spacing, geometry and kinematics of the critical shear crack);

198



Outlook

– Analyze analogies and convergence with the mechanical models of Swedish School (Kin-

nunen and Nylander, 1960; Broms, 1990; Hallgren, 1996; Broms, 2005, 2016);

– The application of themechanicalmodel presented in this thesis to prestressed slabs requires

further theoretical work and experimental validation;

– The extension of the mechanical model for isolated reinforced concrete footings requires

additional work. The proposed load-rotation relationship of Muttoni (2008) adapted for iso-

lated footings discussed in this thesis requires further validation. Also at the level of the

refined calculation of the failure criterion, it is necessary to understandwhether the assump-

tions related to, for example, tangential crack spacing, radial extent of the region with tan-

gential cracks and shape of the critical shear crack adopted for the case of footings are valid

or need to be improved. A full validation of the extended mechanical model for footings is

required;

– The mechanical model can be further extended to deal with punching failures of reinforced

concrete members with transverse reinforcement. This would allow to investigate on the

governing failure modes (crushing of concrete struts, failure within or outside the shear-

reinforced region) as a function of the different geometrical and mechanical properties. A

mechanical model for members with transverse reinforcement would also allow to validate

some of the assumptions of the simplified failure criterion of Critical Shear Crack Theory for

punching failures of members with transverse reinforcement. The case of squat members

with transverse reinforcement could be investigated aswell, in order to better understand the

activation of the transverse reinforcement in cases where flexural deformations are limited;

– It may be of interest to extended the mechanical model presented in this document to inves-

tigate the influence of long-term effects or imposed deformations.

• With respect to the Critical Shear Crack Theory for punching shear failures:

– The consistency of the failure criteria of the CSCT for punching shear failures of footings

without transverse reinforcement may be investigated based once the extended mechanical

model for footings is fully validated;

– An additional work after a complete validation of the extended mechanical model for pre-

stressed slabsmay be the derivation of an analytical failure criterion, which not only accounts

for the influence of in-plane stresses, but also enables the derivation of closed-form expres-

sions for the punching shear design of prestressed slabs (the correction of the hyperbolic

failure criterion of the CSCT proposed by Clément et al. (2014) does not allow the derivation

of closed-form solutions);

– Discussion of the assumptions of theCSCT for punching shear design ofmemberswith trans-

verse reinforcement and derivation of closed-form solutions for those cases.
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