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Préface 

 

Les dalles de roulement en béton armé ou précontraint sont des éléments très importants 
et très sollicités des ponts routiers, mais malgré cela plusieurs aspects importants liés à 
leur calcul, leur dimensionnement et leur vérification restent relativement peu connus. 
En effet, l’essentiel de la recherche effectuée jusqu’à présent sur les dalles de roulement 
ne concerne que la flexion, en sorte qu’aussi bien le dimensionnement que la 
vérification sont effectués sans tenir compte de l’effet de l’effort tranchant. Ce dernier 
est pourtant très important, compte tenu du fait que l’action du trafic routier sur la dalle 
est essentiellement introduite sous forme de charges ponctuelles très intenses (réparties 
sur des surfaces de contact relativement petites entre pneus et revêtement). 

 

La flexion de la dalle, qui résulte généralement d’un calcul élastique pour le 
dimensionnement et d’un calcul plastique avec mécanismes pour la vérification, est 
habituellement traitée indépendamment de l’effort tranchant.  Pour ce faire, un 
comportement ductile est admis. En réalité, le comportement réel est assez mal connu et 
des doutes subsistent quant à l’effet de l’effort tranchant sur la ductilité du système. En 
outre, les travaux connus se limitent à des essais sur des dalles de taille réduite, en sorte 
que la pertinence des modèles pour la vérification de la résistance à l’effort tranchant 
n’a jamais été validée expérimentalement sur des dalles de roulement de grandeur 
réelle. 

 

La recherche effectuée par M. Vaz Rodrigues représente une contribution importante 
dans ce domaine encore peu exploré. La partie expérimentale, effectuée sur des bandes 
de dalles et des porte-à-faux de ponts a donné des résultats très intéressants et dans une 
certaine mesure surprenants. En effet, la rupture produite par l’effort tranchant a presque 
toujours été déterminante. Les travaux expérimentaux et théoriques de cette thèse seront 
suivis du développement d’une méthode simplifiée permettant d’analyser efficacement 
les cas pratiques et d’une étude paramétrique sur l’influence du système statique de la 
dalle et de sa configuration sur la capacité portante. 

 

Je tiens ici encore à remercier l’Office Fédéral des Routes et la Fondation Portugaise 
pour la Science et Technologie (FCT) qui ont soutenu ce projet de recherche ainsi que le 
« Groupe de Travail Recherche en matière de ponts » de l’avoir suivi avec des 
discussions et des remarques constructives.  

 

         

Lausanne, février 2007     Prof. Dr Aurelio Muttoni 
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Summary 

Reinforced concrete bridge deck slabs without shear reinforcement can be subjected to 
concentrated or distributed loads of important magnitude. Under these loads their 
structural response is not always ductile. In particular under concentrated loads their 
deformation capacity can be limited by shear or punching shear failures, which prevent 
them from reaching the ultimate load predicted by pure flexural analysis. This problem 
has been studied in this research by means of an important experimental program and 
theoretical modeling. 

 

The limited ductility of bridge decks was investigated by means of full scale tests on 
bridge deck cantilevers under groups of concentrated loads. Six large scale laboratory 
tests were performed on two bridge deck cantilevers with a span of 2.8 m and a length 
of 10.0 m. All slabs failed in a brittle manner, in shear or punching shear. The 
theoretical flexural failure load estimated using the yield-line method was never 
attained. 

 

Despite the brittle failures, the results of tests on cantilevers have shown that some 
amount of yielding can occur before the shear failure and therefore reduce the shear 
strength. This effect was quantified on eleven full scale tests on slab strips without shear 
reinforcement with a length of 8.4 m. The results clearly show that the increase of 
plastic strains in the flexural reinforcement leads to a reduction of the shear strength. 
The measured rotation capacity of the plastic hinge was thus limited by a shear failure. 

 

A particular problem of bridge deck slabs is the introduction of concentrated loads 
applied by wheels with pneumatic pressure. Punching shear with these loads is usually 
treated in a manner similar to punching by a column. A punching shear test was 
performed with a concentrated load simulating a vehicle wheel with pneumatic pressure 
to investigate the differences. It appears that punching shear with a wheel with 
pneumatic pressure is less critical because curvatures tend to be distributed over the 
surface of the applied load rather than concentrated near the edges of the column. 

 

In order to investigate the experimental results on slab strips without shear 
reinforcement, a mechanical model is proposed to predict the shear strength and rotation 
capacity of plastic hinges. The shear strength is formulated as a function of the opening 
of the shear crack and of the strength of the concrete compression zone. The results of 
the mechanical model are in good agreement with the measured values, both for the 
shear strength and for the shear carried across the shear crack. Based on the mechanical 
model, a simplified equation is proposed. The model can also be used to predict the 
shear capacity of yield-lines. 

 

A non linear finite element model was implemented during this work and used to 
correctly predict the measured rotations and load-displacements curves of the tested 
cantilevers and other full scale tests performed by other researchers. The measured 
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failure loads are accurately estimated by using the results of the non-linear model and 
the one-way shear and punching shear criteria proposed by Prof. A. Muttoni (Muttoni 
2003).  

 

Keywords: Reinforced concrete, ductility, slabs without shear reinforcement, shear and 
punching shear strengths, yield-line, concentrated loads, wheel loads with pneumatic 
pressure, plastic hinge, mechanical model, aggregate interlock, non-linear finite element 
analysis, shear flow.  



 vii

Résumé 

Les dalles des ponts en béton armé sans armature d’effort tranchant peuvent être 
sollicitées par des charges importantes, concentrées ou uniformément réparties. Le 
comportement de la structure sous ces charges n’est pas toujours ductile. En particulier, 
la capacité de déformation sous charges concentrées peut être limitée par une rupture à 
l’effort tranchant ou par poinçonnement, sans que la charge de rupture par flexion ne 
soit atteinte. La recherche présentée aborde cette problématique par un programme 
expérimental important et par une approche théorique. 

 

Une série d’essais à la rupture, effectuée sur des porte-à-faux de ponts de grande échelle 
soumis à des groupes de charges concentrées a permis de mieux comprendre le 
comportement réel et d’évaluer la capacité de déformation des dalles de ponts. Six 
essais ont été réalisés sur deux porte-à-faux d’une portée libre de 2.8 m et d’une 
longueur totale de 10.0 m. Le comportement observé a été très fragile avec une rupture 
par poinçonnement ou par effort tranchant. La charge de rupture par flexion, estimée par 
la méthode des lignes de rupture, n’a jamais été atteinte. 

 

Les essais sur porte-à-faux de ponts ont montré que les armatures de flexion peuvent 
atteindre la limite d’écoulement avant la rupture par effort tranchant. La plastification 
des armatures de flexion peut alors réduire la résistance à l’effort tranchant. Cet effet a 
été quantifié par onze essais à la rupture effectués sur des poutres sans étriers d’une 
longueur totale de 8.4 m. Les résultats montrent que la plastification de l’armature de 
flexion mène à une réduction de la résistance à l’effort tranchant. Ces résultats peuvent 
aussi être décrits comme une limitation de la capacité de rotation des rotules plastiques 
provoquée par la rupture à l’effort tranchant. 

 

Un problème particulier aux dalles des ponts est l’introduction des charges concentrées 
par les pneus des véhicules. Ce cas est aujourd’hui traité de façon similaire au 
poinçonnement d’une dalle par une colonne. Les différences entre les deux cas ont été 
investiguées par un essai de poinçonnement d’une dalle soumise à une charge simulant 
un pneu. Il ressort que le poinçonnement par une charge de roue est moins critique, car 
les déformations de flexion ont tendance à se répartir plutôt qu’à se concentrer près des 
bords de la colonne. 

 

Pour l’analyse des résultats expérimentaux sur des poutres sans étriers, un modèle 
mécanique est proposé pour calculer la résistance à l’effort tranchant et la capacité de 
rotation des rotules plastiques des poutres sans étriers. La résistance à l’effort tranchant 
est une fonction de l’ouverture de la fissure critique et de la résistance de la zone 
comprimée. Les résultats obtenus avec le modèle mécanique sont en bon accord avec les 
valeurs mesurées, ceci tant pour la résistance à l’effort tranchant et que pour l’effort 
tranchant transmis au travers de la fissure critique. Sur la base des résultats obtenus avec 
le modèle mécanique, une équation simplifiée est proposée. Le modèle peut aussi être 
utilisé pour estimer la résistance à l’effort tranchant des lignes de rupture. 
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Un modèle non linéaire aux éléments finis a été implémenté durant ce travail. Le 
modèle non linéaire prédit correctement les rotations et les flèches mesurées lors des 
essais effectués sur des porte-à-faux dans le cadre de ce travail et lors d’essais à 
l’échelle 1:1 réalisés par d’autres chercheurs. Les charges de rupture sont calculées 
d’après les résultats du modèle non linéaire et les critères de rupture au poinçonnement  
et à l’effort tranchant proposés par le Prof. A. Muttoni (Muttoni 2003). Les charges de 
rupture mesurées lors des essais sont ainsi estimées avec une bonne précision. 

 

Mots-clés: Béton armé, ductilité, dalles sans armature d’effort tranchant, résistance à 
l’effort tranchant, résistance au poinçonnement, charges concentrées, rotule plastique, 
modèle mécanique, critère de rupture, effet d’engrènement, analyse non linéaire, flux 
d’effort tranchant. 
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Resumo 

As lajes de pontes em betão armado sem armaduras de esforço transverso (estribos) 
podem ser solicitadas por cargas elevadas, concentradas ou uniformemente repartidas. 
Sob estas cargas, a ductilidade da estrutura não está sempre garantida. Em particular, a 
capacidade de deformação das lajes sem estribos pode ser limitada por uma rotura por 
esforço transverso ou punçoamento, sem que a carga de rotura por flexão seja 
alcançada. O presente estudo aborda esta problemática na sua vertente experimental 
através de um elevado número de ensaios de grandes dimensões, e na sua vertente 
teórica através da modelação física e numérica. 

 

Foram efectuados vários ensaios à rotura sobre lajes de pontes de grandes dimensões 
sujeitas a grupos de cargas concentradas. Estes ensaios permitiram uma caracterização 
do comportamento real das lajes e a avaliação da sua capacidade de deformação. Esta 
série de ensaios consistiu em seis testes efectuados sobre duas consolas com um vão 
livre de 2.8 m e um comprimento total de 10.0 m. Observou-se sempre um modo de 
rotura frágil por punçoamento ou esforço transverso. A carga de rotura por flexão, 
estimada pelo método das linhas de rotura, nunca foi alcançada. 

 

Os ensaios sobre as lajes de pontes mostraram que a cedência das armaduras de flexão 
pode ocorrer antes da rotura por esforço transverso ou punçoamento, sem que no 
entanto a carga de rotura por flexão seja alcançada. De modo a poder quantificar a 
influência que a cedência das armaduras de flexão tem sobre a resistência ao esforço 
transverso, efectuaram-se onze ensaios à rotura sobre vigas de betão armado sem 
estribos, com um comprimento total de 8.4 m. Os resultados mostram que a cedência 
das armaduras reduz a resistência ao esforço transverso (até 50% de redução). Os 
resultados observados podem também ser descritos como uma limitação da capacidade 
de rotação das rótulas plásticas devido a uma rotura por esforço transverso. 

 

Um problema particular das lajes de pontes é a aplicação de cargas concentradas por 
pneus. Este caso é actualmente, na prática corrente, tratado de maneira similar ao 
punçoamento de uma laje apoiada em coluna de betão. As diferenças entre os dois casos 
(punçoamento com pneu e com coluna) foram analisadas num ensaio de punçoamento 
de uma laje solicitada por uma carga concentrada simulando um pneu. Concluiu-se que 
o punçoamento causado por um pneu é um fenómeno que apresenta maior ductilidade 
do que o punçoamento causado por uma coluna. A explicação para este facto é a 
seguinte: as deformações de flexão têm tendência a distribuir-se na zona sob o pneu, em 
vez de se concentrarem na região da laje junto aos bordos da coluna. 

 

Neste trabalho é proposto um modelo mecânico para o cálculo da resistência ao esforço 
transverso e da capacidade de rotação das rótulas plásticas em vigas sem estribos. A 
resistência ao esforço transverso é definida como uma função da abertura da fissura 
crítica e da resistência da zona comprimida. Os resultados obtidos com o modelo 
mecânico coincidem bem com os valores medidos, quer para a resistência ao esforço 
transverso, quer para o esforço transverso transmitido através da fissura crítica. Uma 
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equação simplificada é proposta com base nos resultados do modelo mecânico. O 
modelo pode também ser usado para determinar a resistência ao esforço transverso das 
linhas de rotura em lajes de betão. 

 

Durante este trabalho foi ainda desenvolvido um modelo não linear de elementos 
finitos. Este modelo foi usado para calcular as rotações e os deslocamentos medidos 
durante os ensaios de consolas efectuados no âmbito deste trabalho e de outros ensaios à 
escala 1:1 efectuados por outros investigadores. As cargas de rotura são calculadas 
usando os resultados do modelo não linear e os critérios de rotura ao punçoamento e 
esforço transverso propostos pelo Prof. A. Muttoni (Muttoni 2003). As cargas de rotura 
medidas nos ensaios são assim correctamente estimadas, havendo pouca dispersão entre 
os valores medidos e calculados. 

 

Palavras chave: Betão armado, ductilidade, lajes sem estribos, resistência ao esforço 
transverso, resistência ao punçoamento, cargas concentradas, rótula plástica, modelo 
mecânico, critério de rotura, efeito de inter-bloqueamento dos inertes, análise não linear, 
fluxo de esforço transverso. 
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Zusammenfassung 

Brückenfahrbahnplatten aus Stahlbeton oder Spannbeton ohne Schubbewehrung können 
durch Punkt- oder verteilte Lasten von grosser Intensität belastet werden. Unter diesen 
Lasten ist das Tragwerksverhalten nicht immer duktil. Insbesondere unter Punktlasten 
kann ihr Verformungsvermögen durch Schub- oder Durchstanzbrüchen begrenzt 
werden, was sie davon abhält, die nach reiner Biegelehre vorhergesagte Bruchlast zu 
erreichen. Dieses Problem wird in dieser Forschungsarbeit mittels eines umfangreichen 
Versuchsprogramms und theoretischer Modellierung untersucht. 

 

Die begrenzte Duktilität von Brückenfahrbahnplatten wurde anhand von Versuchen im 
Massstab 1:1 an Kragarmplatten unter zwei Gruppen von Punktlasten getestet. Sechs 
Laborversuche im Massstab 1:1 wurden an zwei Platten mit Spannweite von 2.8 m und 
Länge von 10.0 m durchgeführt. Alle Platten versagten spröde, auf Schub oder 
Durchstanzen. Die theoretische Biegebruchlast nach Fliesslinientheorie wurde nie 
erreicht. 

 

Trotz der spröden Natur der Brüche haben die Ergebnisse der Versuche an den 
Kragarmen gezeigt, dass Fliessen zu einem gewissen Masse vor dem Schubbruch 
auftreten kann und daher die Schubtragfähigkeit reduziert. Dieser Effekt wurde bei elf 
Plattenstreifen ohne Schubbewehrung mit einer Länge von 8.4 m quantifiziert. Die 
Ergebnisse zeigen klar, dass eine Zunahme der plastischen Dehnungen in der 
Biegebewehrung zu einer Abminderung der Schubtragfähigkeit führt. Die gemessene 
Rotationskapazität des plastischen Gelenks war daher beschränkt durch einen 
Schubbruch. 

 

Ein besonderes Problem von Brückenfahrbahnplatten ist die Belastung durch 
konzentrierte Lasten mittels Reifen mit pneumatischem Druck. Durchstanzen durch eine 
solche Last wird generell auf ähnliche Weise behandelt wie Durchstanzen durch eine 
Stütze. Ein Durchstanzversuch wurde mit einer Last, die einen Fahrzeugreifen mit 
pneumatischem Druck simuliert, durchgeführt, um die Unterschiede zu untersuchen. Es 
zeigt sich, dass Durchstanzen mit einer Reife mit pneumatischem Druck weniger 
kritisch ist, weil die Krümmung sich über die Lastfläche verteilt, und sich nicht an den 
Stützenrändern konzentriert. 

 

Ein mechanisches Modell wird vorgeschlagen, um die Schubtragfähigkeit und die 
Rotationskapazität von Fliessgelenken vorherzusagen. Die Schubtragfähigkeit wird in 
Abhängigkeit von der Schubrissöffnung und der Festigkeit der Betondruckzone 
formuliert. Die Ergebnisse des mechanischen Modells sind in guter Übereinstimmung 
mit den gemessenen Werten, jeweils für die Schubtragfähigkeit und für den Teil des 
Schubs, der über den Schubriss hinweg übertragen wird. Basierend auf dem 
mechanischen Modell wird eine vereinfachte Gleichung vorgeschlagen. Das Modell 
kann auch zur Vorhersage des Schubtragvermögens von Fliesslinien verwendet werden. 
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Ein nichtlineares Finite-Elemente-Modell wurde im Rahmen dieser Arbeit entwickelt 
und benutzt, um mit vernünftiger Übereinstimmung die gemessenen Verdrehungen und 
Last-Verschiebungskurven der getesteten Kragarme und die von Versuchen anderer 
Forscher im Massstab 1:1 vorherzusagen. Die gemessenen Bruchlasten werden bei 
Benutzung der Ergebnisse des nichtlinearen Modells und des Schub-
und Durchstanzkriteriums, welches von Prof. A. Muttoni vorgeschlagt wurde (Muttoni 
2003), akkurat abgeschätzt.  

 
Schlüsselwörter: Stahlbeton, Duktilität, Platten ohne Schubbewehrung, Schub- und 
Durchstanztragfähigkeit, Fliesslinie, Punktlasten, Reifenlasten mit pneumatischem 
Druck, plastisches Gelenk, mechanisches Modell, Rissuferverzahnung, nichtlineare 
Finite-Elemente-Berechnung, Schubfluss 
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1. Introduction 

1.1 Problem statement 

A proper understanding of the structural behavior should translate into correct design, as 
postulated Emil Mörsch already in 1922 (Mörsch 1922): 

“Only an exact knowledge of the structural materials and their behavior up to failure in 
the individual structural members enables the engineer involved with reinforced 
concrete design to adapt the conventional calculations methods correctly for the 
particular problem, and accept the responsibility of designing and executing complex 
reinforced concrete structures, which fulfill the required safety regulations in all parts 
without being uneconomic”. 

This idea should also apply to the design of reinforced concrete slabs. 

Reinforced concrete slabs without shear reinforcement can fail in shear. Figure 1.1 
shows reinforced concrete slabs without shear reinforcement that are subjected to 
various loadings. The first example shows a bridge deck slab subjected to the action of 
four concentrated loads. These concentrated loads represent the footprints of a heavy 
truck. The second example shows a flat slab supported by columns. In this case the 
concentrated loads are the permanently applied reactions of the columns. The third case 
is a cut-and-cover tunnel subjected to a line load. In each case, it is important to know 
the type of behavior the structure will exhibit (ductile, brittle) and at what load it will 
fail.  

cut-and-cover tunnel

 

flat slabsbridge deck slab

 
Figure 1.1: Slabs without shear reinforcement 

The failure modes of reinforced concrete slabs can be categorized as follows: 

• Flexural failure: This failure mode is associated with a ductile behavior of slabs 
with moderate reinforcement ratios subjected to uniformly distributed loads. Shear 
stresses in the slab are usually low and the structure can freely undergo plastic 
strains without a limitation of its capacity. 

• Punching shear failure: This failure mode is associated with the local introduction 
of concentrated loads such as columns or wheel loads. It is brittle and therefore 
undesirable. 

• One-way shear failure. This failure mode is associated with line loads and linear 
supports with distributed loads. It is also brittle and undesirable.  

The actual behavior of slabs is more complex however, because of the two following 
aspects: 

• A shear or punching shear failures may occur either before or after the yielding of 
flexural reinforcement. In the latter case, this means that a brittle failure type occurs 
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during the process of yield line formation. The interaction between shear strength 
and yielding should thus be considered. 

• The flow of shear forces in bridge decks is different from either punching shear or 
one-way shear. Hybrid situations between punching shear and one-way shear 
failures are commonly found in practical cases (fig. 1.2). 

A possible failure type of a bridge deck under concentrated loads is illustrated in 
figure 1.2. It can be observed that the mode of failure that occurred is somewhere 
between one-way shear and punching shear (two-way shear). In this case, yielding was 
reached only just before failure. This shows that the actual behavior may include 
yielding of flexural reinforcement and intermediate failure types between one-way and 
two-way shear.  

 
Figure 1.2: Shear failure of full scale bridge deck under concentrated loads (Miller et al. 

1994) 

This example introduces the main research field of this dissertation. From a conceptual 
standpoint, it lies at the intersection of three failure types: flexural, punching and one-
way shear, as shown in figure 1.3. 

Flexural failure One-way shear failure

Punching shear failure

 

 

 
Figure 1.3: Scope of the present research 
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1.2 Aims 

The main objectives of this dissertation are: 

• To gain a better understanding of the various failure types governing the behavior 
of concrete bridge decks. 

• To provide experimental evidence on the subject. 

• To develop a simple and accurate method to assess the load capacity of bridge 
decks without shear reinforcement. 

• To develop a mechanical model able to predict the one-way shear strength after 
yielding of the flexural reinforcement.  

The subject of shear and punching shear strength is an ongoing topic of interest at the 
Structural concrete laboratory of the EPFL and the present work is based on some 
aspects previously developed (Muttoni 2003, Guandalini 2005). 

1.3 Structure of dissertation 

This dissertation is organized as follows: 

Chapter 2 describes the mechanical behavior up to failure in shear, punching shear and 
bending. One-way and punching shear models (Muttoni 2003) are presented in detail. A 
review of previous experimental works on the subject is done, both regarding the effect 
of yielding on one-way shear and regarding the behavior of bridge decks under 
concentrated loads. The available methods for calculating the theoretical flexural failure 
load of bridge deck slabs without shear reinforcement are presented, with an emphasis 
on cantilever slabs. 

Chapter 3 outlines the experimental campaign performed during this dissertation and 
analyses its results. The full test reports are included in the appendices A and B to the 
dissertation. The first part of the campaign deals with the shear strength of bridge deck 
slabs. The second part deals with the shear strength of beams undergoing plastic strains.  

Chapter 4 investigates the shear strength of slab strips (beams) without shear 
reinforcement in the presence of yielding of the longitudinal reinforcement. A 
mechanical model is developed relating the shear strength to the rotation capacity of the 
critical section. The predictions of the model are compared with the experimental 
results. 

Chapter 5 investigates the punching shear strength of slabs subjected to concentrated 
loads. A non-linear model is implemented for estimating the rotations and deflections of 
reinforced concrete slabs. Its results, in combination with the failure criteria presented in 
(Muttoni 2003), allow to determine the shear strength of bridge deck slabs. The results 
from this approach are analyzed and compared to those of the experimental campaign 
detailed in chapter 3. 

Chapter 6 draws conclusions from the present work. 

 



 



2. Literature review 

The desired mode of failure for all structures, and more specifically for bridge deck 
slabs is a ductile failure mode, allowing large deformations and a significant 
redistribution of inner forces within the structure before collapse. A ductile behavior can 
usually be expected from a properly designed structure, in which yielding of the 
reinforcing steel occurs before crushing of concrete. This mode of failure is 
unfortunately not always guaranteed, as the structure may fail in shear or punching 
shear before reaching its theoretical flexural strength. 

It has been observed that deck cantilevers slabs without shear reinforcement subjected 
to a concentrated load can fail in shear. This is an undesirable and brittle failure mode, 
and it prevents the structure from deforming and reaching higher load levels. It is 
therefore important to investigate and understand the nature of shear failures in deck 
slabs, which are typically not provided with shear reinforcement. 

This chapter reviews contributions on the shear and punching shear strengths of 
reinforced concrete bridge deck slabs. The various load carrying mechanisms are 
analyzed both for one-way and punching shear. Contributions pertaining to flexural 
failure modes are also reviewed. 

2.1 One-way and two-way shear 

In the technical and scientific literature relative to shear and punching shear, these two 
modes of failure are sometimes referred to as “one-way” and “two-way” shear. This is 
somewhat of a misnomer as shear, as a mechanical quantity, is inherently unidirectional 
(it can be represented as a vector). Indeed, at any location shear equilibrium is ensured 
by two components (typically following the canonical axes: vx and vy). It results that 
there is only one direction for the principal shear, and not two as for moments, which 
are a tensorial quantity of a higher level, and have at each location two principal 
directions and two principal moments. Shear is thus exclusively carried in the direction 
of the principal shear, with no shear being transferred perpendicularly to it. Two-way 
shear is in that sense a physical impossibility. 

one-way shear

two-way shear

 
Figure 2.1: Shear flow in a slab : zones of one-way and two-way shear 

In fact, “one-way” and “two-way shear” can be better understood by considering the 
representation of figure 2.1, which shows the flow of shear forces in a cantilever slab 
subjected to one concentrated load. Zones in which one-way shear is acting are the areas 
of the plot where the principal shear lines run parallel to one another. This is mostly the 
case close to the fixed end. Zones in which two-way shear is acting are those in which 
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the principal shear lines are not running in parallel, as for instance around the point of 
introduction of the concentrated load. 

2.2 One-way shear failure 

One-way shear failures are generally associated with distributed or line loads and linear 
supports such as walls or the webs of a bridge girder. In the case shown in figure 2.2, 
the line load applied at the tip of the cantilever is carried by shear forces to the support 
along lines running perpendicular to the support (parallel shear flow). A slab without 
shear reinforcement should be checked against one-way shear failure if this type of flow 
of inner forces is present. This failure mode is generally brittle and can occur without 
any indication of an impending collapse. 

 
Figure 2.2: Schematic representation of one-way shear failure and associated flow of forces 

One-way shear failure models are used to predict the shear failure load of reinforced 
concrete slabs and beams without shear reinforcement. There has been a great amount 
of contributions in this field; CEB Bulletin 180 (CEB 1987) summarizes a series of 
contributions based on the theory of plasticity, fracture mechanics, empirical 
considerations and numerical simulations. 

2.2.1 Kani’s approach 

Kani proposed a rational formulation based on a two regime law, the Kani’s shear 
valley (Kani 1964 and Kani et al. 1979): 

1.0

0

short beams slender beams

ru

rumin.
capacity of remaining arch

capacity of concrete teeth

full flexural capacity

a d

a d min

a d TR

 
Figure 2.3: Kani’s valley of shear failure (adapted from Kani et al. 1979) 

Depending on the span-to-depth ratio (a/d), the shear capacity is governed either by the 
capacity of the “remaining arch” or the capacity of the “concrete teeth”. The shear 
strength is expressed as VR = ru · My / a, where My is the yielding moment, ru is the 
reduction factor and a the shear span. According to this model, the reduction of the 
flexural capacity is more pronounced for larger depths and increases with the 
reinforcement ratio. 
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2.2.2 Mechanical behavior up to failure 

Several rational models include in their formulation a description of the various load 
carrying mechanisms and their relationship to the failure load (Fenwick, Paulay 1968). 
These mechanisms can be represented by strut and tie models (Muttoni, Schwartz 
1991). The actual load carrying mechanism depends on the location and the opening of 
cracks. For a beam with bending cracks, the possible mechanisms include cantilever 
action, aggregate interlock action and dowel action (fig. 2.4).  

 
compression
tension

 
Figure 2.4: Mechanisms of shear transfer without shear reinforcement (Muttoni, Schwartz 

1991): Cantilever  action, aggregate interlock action and dowel action 

In reality, the effects of dowel action, aggregate interlock and cantilever action coexist. 
When a reinforced concrete beam is loaded to failure, the contribution of the various 
load carrying mechanisms does not remain constant. Rather, their relative importance 
depends on the crack pattern and the load level. Figure 2.5 shows the various possible 
strut and tie models considering the presence of the actual flexural cracks for the slab 
strip SR3 tested in the framework of this dissertation (see chapter 3). The shape of the 
bending moment diagram is indicated (fig. 2.5a). These various strut and tie models 
were discussed by (Guandalini 2005). At the point of zero moment, shear is carried at 
all load levels by means of a vertical tension tie, entirely relying on the tensile strength 
of concrete. Before cracking, the state of stresses can be adequately described by using 
the elasticity theory. After the formation of the first crack under the applied load Qcr, 
this is no longer possible. Figure 2.5b) shows a possible strut and tie model for a higher 
load level (0.67·QR). This model assumes that it is not possible to carry a tensile force 
across a crack. At level of the bottom tie, the shear force is thus carried by the 
reinforcement through dowel action (fig. 2.4).  

 

compression
tension

bending moment diagram

0.67·QR

1.0· QR

1.0· QR

yielding of tensile reinforcement

yielding of tensile reinforcement

Q
a)

b)

c)

d)

 
Figure 2.5: Evolution of the load carrying mechanisms up to failure 
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At 1.0·QR (fig. 2.5c), it can be observed that flexural cracks have propagated not only 
vertically but also horizontally. This limits the efficiency of the load transfer system 
depicted in figure 2.5b). A new stress field must therefore develop, compatible with the 
existing cracks, as shown in figure 2.5c). It consists of an inclined strut from the point 
of application of the load to the point of zero moment. It can be observed that the 
compression strut is in part crossed by the shear crack. (Muttoni 1990, Muttoni, 
Schwartz 1991) showed that, when a strut is crossed by cracks, only a limited amount of 
compression can be transmitted. This causes the strut to shift towards the top edge of 
the beam (figure 2.5d). To ensure equilibrium, two additional ties are necessary to 
equilibrate the deviated strut. These ties will cause the decompression of the top fiber, 
as shown by experimental observations (Muttoni, Thürlimann 1986). Collapse of the 
slab strip occurs when the tensile strength of concrete is reached on the tension tie near 
the concrete surface. 

In last two load stages (figs. 2.5c and d), the same shear force is carried. Only the 
vertical deflection under the point of application of the load increases, which causes the 
shear crack to propagate toward the point of introduction of the load. 

This example clearly shows that the behavior is strongly affected by the location of the 
critical crack relative to the position of the compression strut. Aggregate interlock also 
plays an important role since it controls the amount of shear force transmitted across the 
shear crack. The shear strength of reinforced concrete beams thus depends on the 
following parameters: 

• Concrete compressive and tensile strengths 

• Openings of the critical shear crack 

• Maximum diameter and strength of the aggregates 

2.2.3 Failure criterion (Muttoni 2003) 

Muttoni proposed a rational model for the shear strength of beams without shear 
reinforcement (Muttoni 2003). The nominal opening of the cracks in the critical region 
needs to be known. To that end, the model estimates this opening based on the 
following hypotheses: 

• The critical zone is located at a cross section located at a distance of 0.5·d from the 
point of introduction of the load and at 0.6·d from the extreme compression fiber.  

• The crack opening in the critical region is proportional to the product of the 
section’s strains ε by the effective depth d. 

Accordingly to these hypotheses and assuming that plane sections remain plane, it 
follows: 

( )
20.6   ,      1 1

3
s c

s c s

E EM d x x d
d E d x d x E E

ε ρ
ρ ρ

⎛ ⎞⋅⋅ −
= ⋅ = ⋅ ⋅ ⋅ + −⎜ ⎟⎜ ⎟⋅ ⋅ ⋅ − − ⋅⎝ ⎠

 (2.1) 

Where x is the depth of the compression zone and M is the bending moment at the 
critical cross-section. 

On the basis of the systematic analysis of 253 shear tests, the one-way shear strength of 
members without shear reinforcement can be expressed by the following equation: 
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0.9 2.3
cR

R
dg

V
b d d k

ττ
ε

= =
⋅ + ⋅ ⋅ ⋅

  (2.2) 

With ε · d · kdg in [mm]. The parameter kdg = 48 /  (Dmax + 16) includes the influence of 
the maximum aggregate size Dmax [mm]. Shear tests on beams without shear 
reinforcement under concentrated loads are represented in figure 2.6, along with the 
predictions of this model. The resisting shear force is VR, the effective depth is d, the 
width of the beam is b and the concrete compressive strength is fc.. The nominal shear 
strength of concrete is cc f⋅= 3.0τ , with fc in [MPa]. 

As shown in figure 2.6, equation 2.2  predicts well the measured shear strength. 
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Figure 2.6: Test results from 253 shear tests without shear reinforcement and prediction of 

equation 2.2 (Muttoni 2003) 

It should be noted that the tested beams with low reinforcement ratios, large effective 
depths (up to 3.0 m) and small diameter aggregates have exhibited very low shear 
strengths. 

Design equation 

As indicated by equation 2.2, the shear strength directly depends on the strains ε 
calculated at the critical cross-section (eq. 2.1). The strains are calculated according to 
the properties of the cross-section and the acting moment and axial force. As 
equation 2.2 is too complex for practical applications, a simplified version is included in 
the Swiss concrete structures code SIA 262 (SIA 2003b). The derivation of the 
simplified equation is given in SIA D 0182 (SIA 2003c) and Muttoni 2003.  

Equation (2.2) can however be applied in design, by introducing the characteristic value 
of the concrete compressive strength (fck) and the partial safety factor for concrete γc.  

, 0.3  ,       0.2       ( 1.5)
1.0 2.5

Rd ct cd
Rd cd ck ck c

dg c

V
f f

b d d k
ττ τ γ

ε γ
= = = ⋅ = ⋅ =

⋅ + ⋅ ⋅ ⋅
 (2.3) 

The coefficients on the denominator have been adapted to the design values. The ratio 
VR,min / VRd,ct is 1.25, where VR,min is the measured shear strength that has probability of 
95% of being exceeded. 
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The section strains ε at the critical cross section can be expressed as a function of the 
strains in the tensile flexural reinforcement εs and of the depth x of the compression 
zone. Assuming that x ≅ 0.32·d, the following simplified expression is obtained: 

0.6 0.41s s
d x

d x
ε ε ε⋅ −

= ⋅ ≅ ⋅
−

  (2.4) 

Furthermore, by assuming that the strains in the tensile reinforcement εs increase 
linearly with the acting design moment md and that the yielding of the tensile flexural 
reinforcement occurs when mRd is reached, the following expression is obtained: 

0.41 0.0009   ,     with    500 /1.15 435 MPasd d d
sd

s Rd Rd

f m m f
E m m

ε = ⋅ ⋅ ≅ ⋅ = =  (2.5)  

Introducing equation (2.5) into equation (2.3) leads to: 

,   ,      with  2.2
1

Rd ct cd d
Rd v

v Rd

V mk
b d k d m

ττ = = = ⋅
⋅ + ⋅

 (2.6) 

The acting design bending moment md and the resisting bending moment mRd should be 
calculated at the critical cross section. 

For a reinforcement with fsd > 435 MPa or an aggregate with a maximum diameter 
Dmax < 32 mm, the shear strength predicted by equation 2.6 is to be multiplied 
respectively by fsd / 435 or 48 / (Dmax + 16). For light-weight concrete, the critical crack 
will cross the aggregates because of their low strength. In his case, a value of Dmax = 0 
should be used. 

The hypothesis of a linear relationship between the strains in the tensile reinforcement εs 
and the acting bending moment (leading to eq. 2.6) supposes a linear elastic behavior of 
the reinforcement. If the tensile reinforcement undergoes plastic strains, this assumption 
is no longer valid. The effect of the yielding of reinforcement should be accounted when 
the formation of plastic hinges is considered in the design. In this case, the value of the 
coefficient kv should be increased. According to SIA 262 (SIA 2003b), a value of kv = 3 
should be considered after yielding of the tensile reinforcement. 

Many tests show that curtailment of the reinforcement inside the critical region leads to 
a concentration of cracks that induce a reduction of the shear strength. This effect can be 
considered by increasing kv (eq. 2.6) by 50% if the curtailment of the tensile flexural 
reinforcement lies at a distance ≤ d from the control cross section. 

Equation 2.5 implicitly assumes that the strains ε are considered along the direction of 
the flexural reinforcement. In reinforced concrete slabs, it often occurs that the direction 
of the principal shear force does not coincide with direction of the flexural 
reinforcement (Marti 2003). If the reinforcement lies parallel to the x and y axes, the 
angle between the direction of the principal shear force and the reinforcement is: 

1tan y

x

v
v

ϕ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
  (2.7) 
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The strains along the direction of the principal shear force can be calculated by 
multiplying kv (eq. 2.6) by the following factor: 

4 4

1
sin cosϕ ϕ+

  (2.8) 

As shown in figure 2.7, this factor has a maximum value of 2 when the direction of the 
principal shear force defines an angle of 45° with the direction of the reinforcement. 
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Figure 2.7: Amplification factor for the section strains when the direction of the principal 

shear force does not coincides with the direction of the reinforcement 

2.3 Punching shear failure 

A punching shear failure is generally associated with the introduction of concentrated 
loads or punctual supports such as columns. A schematic representation of a 
symmetrical punching shear failure is shown in fig. 2.8. In this case, the shear forces are 
introduced in the central support along lines that radiate from the center of a circular 
column. The failure occurs as the column penetrates across the concrete slab, creating a 
truncated cone. This failure mode has a nature similar to that of one-way shear, i.e., it is 
generally brittle and it occurs without signs that the collapse of the slab is impending. 

 
Figure 2.8: Schematic representation of symmetrical punching shear failure and associated 

force flow 

Punching shear failures have in fact always been a major concern in the design of 
reinforced concrete flat slabs supported by columns (fig. 2.9).  
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Figure 2.9: Full scale test of slab over columns, 1908,  R. Maillart (Maillart 1926) 

One of the first mechanical models was proposed by (Kinnunen, Nylander 1960). (FIB 
2001), (Guandalini 2005) give an overview of some of the most important contributions 
on this subject. 

2.3.1 Mechanical behavior up to failure 

The description of the mechanical behavior up to failure has been described by 
(Muttoni, Schwartz 1991) and (Guandalini 2005).  

An understanding of the mechanics of punching shear can be gained from the 
systematic observation of cracking and of the evolution of deformations in punching 
shear tests. A major limitation of such observations is that the inner cracks across the 
slab are invisible. On the contrary, tests on slab strips under one-way shear allow 
observing the formation of cracks and the development of web deformations up to the 
shear failure (fig. 2.5).  

 

Flexural cracks Shear crack prior to failure

Propagation of shear 
crack at failure

Zones of transfer
by radial compression

V
  

crV =  Rcr VVV ⋅≤≤ 9.0 RVV =

A A
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Figure 2.10: Evolution of crack pattern at the top surface (adapted from Guandalini 2005) 

In an initial linear elastic phase, the slab deforms elastically until the formation of the 
first flexural cracks. These cracks appear at low load levels on the top face near the 
projection of the perimeter of the column (fig. 2.10, at V = Vcr). The radial cracking 
moment is reached at those locations. After the first cracking, redistribution of stresses 
between radial and tangential directions starts. The next cracks are essentially due to the 
tangential moments. Therefore, these cracks are oriented along lines radiating from the 
center of the column and dividing the slab into sectors (fig. 2.10, at Vcr ≤ V ≤ 0.9·VR). 
Other cracks in tangential direction form at a larger distance from the column (fig. 2.10, 
at Vcr ≤ V ≤ 0.9·VR). Inclined cone-shape internal cracks form from the tangential cracks 
produced by radial bending moments. These inclined cracks tend to propagate toward 
the column edges (fig. 2.10, cross section A - A). After a certain load level and up to 
failure, no new cracks can be observed, but only an increase of the width of the existing 
cracks. Failure occurs in a very brittle manner, without significant deformations in case 
of normally reinforced slabs. The cone-shaped crack between the slab and the punching 
shear cone suddenly opens and its propagation leads to the collapse. The presence of an 
important amount of bottom flexural reinforcement can help to suspend the slab after 
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failure and prevent it from entirely collapsing. The top flexural reinforcement is not 
effective because it is wrenched from the concrete surface after the punching shear 
failure. 

The analysis of the concrete radial strains at the bottom surface near the column leads to 
an interesting observation. The compressive strains initially increase up to a load level 
of V = 0.8 to 0.9 · VR. Above this load level, the compression strains tend to decrease, 
and in some cases even tensile strains are measured. 

(Muttoni, Schwartz 1991) give an interpretation for this phenomenon based on a stress 
field (fig. 2.11). The tensile stresses on the bottom surface are necessary to equilibrate 
the deviated compression strut, in a manner similar to the behavior of slab strips without 
shear reinforcement under one-way shear. 

 
V < VR V= VR

Shear crack

tensile stresses
may appear at the bottom surface

compression
tension

 
Figure 2.11: Flow of inner forces prior to punching shear failure (adapted from Muttoni, 

Schwartz 1991 and Guandalini 2005) 

2.3.2 Failure criterion (Muttoni 2003) 

Muttoni proposed a rotation-based model for the symmetric punching of reinforced 
concrete slabs without shear reinforcement (Muttoni 2003). In a manner similar to slab 
strips under one-way shear, the shear strength is negatively affected by the propagation 
of flexural cracks (Muttoni 1990 and Muttoni, Schwartz 1991). The punching shear 
strength is therefore calculated as a function of the deformations in the critical region. It 
is observed that the deformations of the slab concentrate in the zone near the column 
edge. The rotation θ of the slab is therefore chosen as the controlling parameter. 
According to (Muttoni, Schwartz 1991) the width of the critical crack is strongly 
correlated with θ · d (fig. 2.12). The shear strength can be expressed as a function of 
θ · d, as indicated by the equation 2.9: 

0.4 0.125
cR

R
dg

V
u d d k

ττ
θ

= =
⋅ + ⋅ ⋅ ⋅

  (2.9) 

With θ · d · kdg in [mm]. The parameter kdg = 48 /  (Dmax + 16) includes the influence of 
the maximum aggregate size Dmax [mm]. Punching shear tests on slabs without shear 
reinforcement are shown in figure 2.14, along with the predictions of the model. The 
resisting punching shear force is VR, the effective depth is d, the length of the control 
perimeter is u (see fig. 2.13), and the concrete compressive strength is fc.. The nominal 
shear strength of concrete is cc f⋅= 3.0τ , with fc in [MPa]. 
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Figure 2.12: Deformations in the zone close to the column and estimate of the width of the 
critical crack 

The control perimeter u is located at 0.5 · d from the edge of the support (fig. 2.13), 
according to the Swiss concrete code SIA 262 (SIA 2003b) 
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Figure 2.13: Definition of control perimeter for circular and square columns 
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Figure 2.14: Comparaison of eq. 2.9 (continuous line) with punching shear tests (Muttoni 

2003) 

It can be observed that very few punching shear tests are available for large values of 
θ · d · kdg. Indeed, even slabs with low reinforcement ratios will eventually fail in 
punching shear after a pronounced yielding of the flexural reinforcement. (Guandalini 
2005) studied the effect of yielding of flexural reinforcement in the symmetric punching 
shear strength of slabs without shear reinforcement. He performed several punching 
shear tests with low reinforcement ratios and concluded that the punching criterion 
proposed by (Muttoni 2003) remains valid for punching shear failure after yielding of 
the flexural reinforcement.  

2.4 Experimental studies 

The review of experimental work will focus on the following tests: 

• Slab strips without shear reinforcement under one-way shear, failing in shear after 
yielding of the flexural reinforcement.  

• Bridge deck slabs without shear reinforcement under concentrated loads (or similar 
structures). A larger emphasis is given to full scale structures to limit size effects. 
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2.4.1 Shear strength after yielding of reinforced concrete slab strips 

As already mentioned the shear and punching shear failure criteria can be viewed as 
ductility criteria. Ductility of reinforced concrete slabs was discussed by (Meyboom 
2002). He identified and characterized three zones with a distinct behavior regarding 
ductility: 

• Brittle zones. The strength of the slab is dependent on the concrete tensile strength. 
Zones without shear reinforcement are considered as brittle zones. 

• Softening zones. The strength of the slab is dependent on the behavior of concrete 
in compression. Such zones typically include over-reinforced concrete sections. 

• Hardening zones. The strength of the slab is controlled by the properties of the 
reinforcement. Such zones include all regions where flexural reinforcement yields 
before the crushing of concrete. 

These three categories illustrate well that various ductility limitations can coexist in a 
given reinforced concrete slab. The slab strips tested in the framework of this 
dissertation (see chapter 3), that failed in shear after yielding of flexural reinforcement, 
can be included between the first and third categories.  

A very reduced number of slabs strips without shear reinforcement that failed in shear 
after yielding was found in the literature: 

(Jaeger, Marti 2005) performed eight tests on slab strips without shear reinforcement. 
All specimens without transverse reinforcement underwent a brittle shear failure. Most 
of the specimens without shear reinforcement failed in shear without yielding of the 
flexural reinforcement. Test A5V1, shown in fig. 2.15, failed in shear after yielding of 
the flexural reinforcement. The length of the cantilever is a = 0.64 m, the top 
reinforcement ratio is ρ = 1.06%, the maximum aggregate size Dmax = 16 mm and the 
concrete compressive strength fc = 56.7 MPa. 
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a) Shear failure of test A5V1 b) Load-displacement curve 

Figure 2.15: Test A5V1: shear failure after yielding of flexural reinforcement, adapted from 
(Jaeger, Marti 2005) 

Other tests show that the ductility of the plastic hinge strongly depends on the properties 
of the reinforcement. (Alvarez et al. 2000) tested three statically indeterminate slab 
strips without shear reinforcement and with low reinforcement ratios. Test ZP2 shows 
that the properties of the reinforcement play a crucial role in the deformation capacity of 
plastic hinges (fig. 2.16). 
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Figure 2.16: Test ZP2: limitation of rotation capacity due to bar fracture, adapted from 
(Alvarez et al. 2000) 

2.4.2 Bridge deck slabs without shear reinforcement  

The behavior of bridge deck slabs under concentrated loads is more complex. Several 
load-carrying mechanisms can develop and coexist, depending on the loading and the 
geometry of the structure. Two-way shear can become prevalent over one-way shear, 
but with a flow of inner forces quite different from that of symmetric punching shear. 
Depending on the loading conditions and the geometry of the structure, yielding of 
flexural reinforcement can occur before shear or punching shear failure. The following 
experimental work is related to the shear strength of bridge decks under concentrated 
loads. 

(Miller et al. 1994) performed a destructive test on a 38-year-old decommissioned 
concrete slab bridge under two concentrated loads (fig. 2.17). The skew bridge had a 
total length of 31.6 m. The abutments and pier line were skewed at 30° to the roadway. 
The slab was loaded with two 1.525 x 0.690 m loading blocks simulating the front 
tandem axle load of a HS20-44 truck (the front tandem has a 144 kN axle load). The 
bridge failed in shear at Q = 3200 kN, which corresponds to the action of 22 HS20-44 
trucks. The theoretical flexural failure load was not reached. Yield was reached only 
just before failure.  
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100
0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80

 [kN]Q

 [mm]w

144 kN

3200 kN

 

Q/ 2

Q/ 2
w

x

y

9.7 m 12.2 m 9.7 m

11.13 m

= 0.438 mh60°

( front tandem axle load )144 kN

HS20-44 truck

b) Dimensions, loading patterns and HS20-44 truck

c) View of bridge slab
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Figure 2.17: Full scale testing of bridge slab, adapted from (Miller et al. 1994) 

The following papers focus on the analysis of test results: (Aktan et al. 1992 and 
Shahrooz et al. 1994).  

(Ibell et al. 1999) performed a series of full scale tests on a concrete beam-and-slab 
bridge deck under concentrated loads. The specimens without stirrups failed in shear 
with no or limited yielding of the longitudinal reinforcement. It can be observed that for 
the test shown in fig. 2.18 the shear crack crossed the beam and developed into the slab. 
No shear reinforcement was present in the slab. 

 
Figure 2.18: Shear failure of full scale beam-and-slab bridge (first test, LLRNS slab, adapted 

from (Ibell et al. 1999) [mm] 

(Lu 2003) performed a series of nine tests on reduced scale cantilevers (fig. 2.19). The 
tested cantilevers had a relatively small thickness of h = 50 mm to 60 mm. Nevertheless, 
the behavior of cantilevers under concentrated loads is well represented. The 
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predominant failure mode is shear. The flexural transverse reinforcement varies from 
0.15% to 1.0%. The cantilevers were tested under one or two concentrated loads 
introduced by means of square loading pads width a side length of 76 mm.  

Load [kN]

Deflection  [mm]

30

25

20

15

10

5

0
0 10 20 30 40 50

 
a) G1S1, Load-deflection diagram. The shear failure 

occurred after yielding of flexural reinforcement. b) G1S1, shear failure at the free edge.  

  

 
c) G2S3, shear failure on cantilever with edge beam. 

The shear crack did not cross the edge beam. d) G2S1, shear crack at the side face. 

  

 
e) G2S1, propagation of the shear crack to the 

opposite face. f) G3S1, full length hinge. 

Figure 2.19: Behavior of reduced scale cantilevers under concentrated loads, adapted from 
(Lu 2003) 

Cantilever G1S1 was tested under one concentrated load applied near the free edge. The 
bending reinforcement ratio was low (0.15%). This cantilever underwent significant 
ductile deformation before failing in shear (fig. 2.19a). The failure seems to have 
propagated from the shear cracks in longitudinal direction (fig. 2.19b). Cantilever G2S3, 
with an edge beam, was tested under a single concentrated load near the free edge (fig. 
2.19c). The failure mode was punching shear, but the punching shear crack did not cross 
the edge beam. The edge beam had a width of 60 mm and an overall depth of 150 mm. 
Cantilever G2S1 illustrates well the behavior of cantilevers without edge beam 
subjected to concentrated loads (figs. 2.19d and 2.19e). The shear crack propagates 
across the thickness to reach the surface opposite to the load introduction. The behavior 
is brittle (figs. 2.19d and 2.19e). Similar to cantilever G1S1, but subjected to two 
concentrated loads applied along a line perpendicular to the fixed end, cantilever G3S1 
developed a full length hinge (fig. 2.19f). 

(Vaz Rodrigues 2002) tested a 1/3 scale model of two cantilevers under concentrated 
loads applied at the edge. One of the cantilevers has a large edge beam (0.4 x 0.12 m). 
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The reinforcement ratio was ρ = 1% for the transversal top reinforcement over the 
clamped edge, where the thickness of the slab was h = 0.14 m. The slab thickness at the 
free edge was h = 0.11 m. The failure mode was a punching shear edge failure, at the 
free edge without the edge beam (fig. 2.20). The failure load was Q = 190 kN, which 
corresponds to approximately 75% of the yield line prediction (Qflex = 263 kN).  
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Figure 2.20: Punching shear edge failure of reduced scale cantilever (Vaz Rodrigues 2002) 

(Jorgenson, Larson 1976) tested a full scale bridge deck slab subjected to a line load. 
The line load was applied perpendicularly to the traffic lanes, in the mid-span of a 
bridge deck slab with a span of 7.6 m between piers and a slab thickness of 0.29 m (fig. 
2.21a and b). The theoretical flexural failure load was reached (fig. 2.21c).  
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Figure 2.21: Flexural failure of bridge deck under line load (adapted from Jorgenson, Larson 

1976) 

An extensive review of the available experimental data related to the load capacity of 
highway bridges is available in (Burdette, Goodpasture 1988). 

2.5 Flexural failure 

The flexural strength can be estimated using classical methods derived from the theory 
of plasticity. Lower bound methods, such as the discontinuity line analysis or the theory 
of elasticity lead to lower bound (conservative) estimates of the failure load. Upper 
bound methods, such as the yield line method, lead to upper bound (unconservative) 
estimates of the flexural failure load. 

Methods based on the theory of plasticity are well adapted for the design of structures 
that satisfy the requirements of that theory, namely that all sections of the structure 
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exhibit a ductile behavior. A sufficient ductility is necessary to allow redistributions of 
inner forces to take place, so that the theoretical ultimate flexural load of statically 
undetermined structures can be reached. 

This section presents a brief description of applicable methods for the calculation of the 
flexural strength of flat slabs. In particular, applications to cantilever slabs under 
concentrated loads are highlighted. 

2.5.1 Lower bound methods 

A moment field is considered a lower bound if is in equilibrium (eq. 2.10) and if the 
moments at all points of the structure are smaller than the corresponding yielding 
moments. The load corresponding to that moment field is always smaller or equal than 
the actual failure load. 

2 22
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While the moments in a slab are represented as a tensor and have two principal 
directions and moments, the shear forces can be represented as a vector with a single 
principal direction and principal shear force. The magnitude and direction of the 
principal shear force is defined as (Marti 1990) : 
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There is thus no transmission of shear perpendicularly to the direction of the principal 
shear force.  

Elastic analysis 

A particular lower bound is given by the theory of elasticity (Timoshenko, Woinowsky-
Krieger 1959). The elastic analysis of thin isotropic slabs is based on the Lagrange 
equation, a fourth order bi-harmonic differential equation (eq. 2.13): 
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The plate rigidity is B = E · h3 / 12 · (1 – ν2).  

The use elastic analysis, which assumes the material to remain linear, elastic and 
uncracked is well adapted to checking the behavior of the structure at service load, 
because the amount of cracking and yielding is limited. As these effects become more 
important, the elastic solution starts to diverge from the actual distribution of inner 
forces, since no account is made for the non linear behavior of the structure.  

The elastic analysis of bridge decks is widespread nowadays by the generalized use 
linear elastic finite element programs. Any arbitrary geometry and loading can be 
considered and the inner forces calculated. Nevertheless, finite element analyses can be 
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time consuming, especially in the conception phase, and prone to errors. Simple 
equations that allow for hand calculations remain therefore very useful in conception 
and control of the finite element results. 

Bridge deck cantilevers are rather sensitive part of the bridge deck, because they must 
resist simultaneously to high moments and shear forces induced by loads acting on the 
cantilevers. The next couple of references are devoted to the elastic methods used in the 
estimation of the hogging (negative) moment in cantilever slabs. 

 (Jaramillo 1950) gave the exact elastic solution for an infinitely long (in the 
longitudinal direction) cantilever plate with a constant thickness and subjected to a 
concentrated load at any arbitrary position. The bi-harmonic equation (eq. 2.13) was 
solved and the deflection function was represented by a Fourier integral with eight 
unknowns that can be calculated by introducing the boundary conditions. Although this 
is the most rigorous solution, it is not suitable for hand calculations. A computer 
program to calculate the exact solution is given in (Lu 2003). (Reismann, Cheng 1970) 
studied the effect of an edge beam with bending and torsional stiffness on the behavior 
of the cantilever. The exact solution was derived for a cantilever with a constant 
thickness and an applied concentrated load on top of the edge beam. The solution is not 
applicable to point loads applied to the slab itself. 

(Pucher 1964) developed influence surfaces of moments and shear forces for plates with 
various boundary conditions. (Homberg, Ropers 1965 and Homberg 1968) extended 
these influence surfaces to plates with variables thickness (linear and parabolic) and 
multiple spans, including cantilevers (fig. 2.22). These charts provide practical design 
tools for the design of plates subjected to concentrated loads. 

 
Figure 2.22: Influence surface of variable depth cantilever (Homberg 1968) 

(Sawko, Mills 1971) proposed a simplified equation that gives an approximate solution 
for calculating the transversal hogging (negative) moment at the root of a uniformly 
thick cantilever slab subjected to a concentrated load applied at any location (eq. 2.14). 
(Bakht, Holland 1976 and Jaeger, Bakht 1979) modified this equation to calculate the 
hogging moment at points others than the cantilever root. 
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′ ⋅
 (2.14) 

 

 
Figure 2.23: Approximate solution for hogging moment at cantilever root (Sawko, Mills 1971) 

The width of the cantilever is a, the transverse distance from the load to the cantilever 
root is ξ, the longitudinal distance from the load to the point of interest is y and A’ is an 
empirically derived coefficient obtained from finite element analysis. 

(Bakht 1981) presented a simplified semi-graphical method for determining transversal 
moments in edge stiffened cantilever slabs with linearly varying thickness. This author 
used the grillage analogy method. A method for determining maximum moments in the 
edge beam is also proposed.  

If, as it is in reality, the cantilever is not fully fixed, but rather elastically restrained by 
the rest of the deck slab and the webs, the maximum negative moment decreases. 
(Dilger et al. 1990) analyzed the restraining effect of the web and internal deck panels 
on the hogging transversal moments at the root of the cantilever deck slab. He stated 
that the assumption of full fixity may lead to a strong overestimation of the acting 
moments (fig. 2.24).  

 
Figure 2.24: Effect of restraining internal deck panels on the maximum hogging moment at the 

clamped edge of the cantilever (Dilger et al. 1990) 

(Mufti et al. 1993) develop a simplified method for analyzing hogging moments in 
internal deck slab panels of slab-on-girders bridges due to single concentrated loads on 
the deck slab overhangs. The proposed design charts are derived after finite element 
analysis.  

Strip method, advanced strip method and discontinuity line method 

If torsional moments are neglected (mxy = 0), the basic equilibrium equation (eq. 2.10) 
can still be used to design reinforced concrete slabs, which are then able to carry loads 
only in the orthogonal directions. This hypothesis serves as the basis to the simple strip 
method of design, proposed by (Hillerborg 1974). The applied load is equilibrated with 
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a system of strips that carry loads in bending only. The dimensions of each strip and the 
portion of the load it carries are chosen by the designer, who is responsible that the 
system remains in equilibrium. The slab is designed using a grillage of strips that are 
separated by static discontinuities. The moment fields that are close to elastic solutions 
are more adequate to ensure serviceability requirements. This method is mostly 
applicable to slabs supported on linear supports. The advanced strip method (Hillerborg 
1982) focuses on the design of more complex slabs, which are partly supported on 
columns, present re-entrant corners or other point supports or with concentrated loads. 

The discontinuity line method (Morley 1986) proposes a particular form of a lower 
bound solution based on torsionless grillages of closely spaced orthogonal beams. The 
solution is based on a particular form of discontinuity in the moment fields along the 
lines of load transfer. The resulting moment patterns are suitable for use with 
concentrated loads or column reactions.  

(Lu 2003) applied the discontinuity line method to cantilevers under concentrated loads. 
This author proposes discontinuity line patterns for uniformly thick cantilevers under a 
concentrated load, edge-stiffened cantilevers under a concentrated load and uniformly 
thick cantilevers under twin loads (fig. 2.25).  
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Figure 2.25: Discontinuity line patterns for uniformly thick cantilevers, adapted from (Lu 

2003) 

The basic principle of the discontinuity line method is illustrated in figure 2.25a). The 
concentrated load Q is applied at the free edge of the cantilever. A moment field is in 
equilibrium with the concentrated load. The transverse hogging yielding moment per 
unit length of the slab is mt’, the longitudinal hogging yielding moment per unit length 
of the slab is m ’ and the longitudinal sagging yielding moment per unit length of the 

slab is m . It should be noted that values of mt’, m ’ and m  are all positive (moment 
capacities). There are discontinuities in the moment field across lines OB and OC. A 
load of Q/2 is carried along each of these lines. The free body diagram at point A is 
indicated in fig. 2.25b). The equilibrium of moments along the x and the y axis yields 
the lower bound estimate of the flexural strength Q and the angle of the discontinuity 
lines θ. 

( ) ( )' ' ' '2  ,   tant t tQ m m m m m mθ= ⋅ ⋅ + = +  (2.15) 
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The same procedure can be applied to calculate the lower bound estimate of systems 
with multiple discontinuity line patterns (fig. 2.25c) or several applied loads (fig. 
2.25d). This approach seems promising, but the results reported by Lu indicate that the 
lower bound estimates of the ultimate load only equal 30% of the actual flexural failure 
load. Equation 2.15 can be compared with the exact solution (eq. 2.20) for an isotropic 
and uniformly thick cantilever loaded with a concentrated load at the free edge. For this 
case, eq. 2.15 gives a lower bound estimate that equals 55% of the theoretical flexural 
failure load (eq. 2.20). 

2.5.2 Yield line method 

Upper bound solutions can be calculated using the yield line theory. The yield line 
theory was simplified by (Johansen 1962), by restricting the collapse mechanisms to 
circular, linear and spiral yield lines. He further assumed that close to failure the slab 
behaves as a system of rigid panels, with the bending curvature concentrated at the yield 
lines. This assumption correctly describes the actual behavior of slabs failing in 
bending. The calculation of the upper bound is based on a kinematically admissible 
displacement field that defines a collapse mechanism. The upper bound load can be 
calculated using either virtual works or equilibrium methods. 

When applying virtual works, the internal work dissipated along the yield lines is set 
equal to the work done by the applied forces: 

nu nQ w m dsθ⋅ = ⋅∑ ∑∫   (2.16) 

Where θn is the yield line rotation and mun the yielding moment along the yield line. The 
stepped yield line criterion was proposed by Johansen to calculate the capacity of the 
slab along the yield line. This criterion is derived from equilibrium considerations of 
moments along the yield line (fig.2.26a). The resistance of the slab along the yield line 
is: 

( )2 2cos sin   ,    sin cosnu xu yu tnu yu xum m m m m mφ φ φ φ= ⋅ + ⋅ = − ⋅  (2.17) 

The applied loads will create bending and torsional moments along the yield line of: 
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Combining equations 2.17 and 2.18 gives the normal yield criterion for slabs: 

( ) ( ) 2
xu x yu y xym m m m m− ⋅ − ≥   (2.19) 

This yield criterion can be represented in terms of a failure surface. The failure surface 
is represented for an isotropic slab of different amount of reinforcement at top and 
bottom (fig. 2.26b). The failure surface is defined by two cones, with the axis in the 
direction AC. The common base of the two cones lies in a plane that passes through BD 
and is perpendicular to the plane defined by mxy = 0. 
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Figure 2.26: Johansen’s normal yield criterion 

The normal yield criterion is derived only from bending considerations. (Nielsen 1964) 
and (Marti, Kong 1987) have shown that the normal yield criterion can lead to an 
overestimation of the flexural strength of the slab, when the principal moment directions 
deviate considerably from the directions of the reinforcement. The error increases with 
increasing amounts of reinforcement. 

An extensive library of yield line mechanisms is given in (Johansen 1972), including 
two yield line mechanisms for isotropic cantilevers under concentrated loads at arbitrary 
positions. (Lu 2003) analyzed other yield line mechanisms for uniform thick cantilevers 
with isotropic reinforcement under a concentrated load. Actual bridge deck cantilevers 
can be more complex than isotropic slabs: they are usually orthotropic in both 
reinforcement layers, present discontinuities in the reinforcement, have a variable 
thickness and can be loaded with multiple point loads and/or with uniformly distributed 
loads. The application of yield line theory to this type of structures requires the use of 
computer programs (Middleton 1993).  

2.5.3 Exact solutions for flexural failure 

(Nielsen 1964) and (Marti 2003) discussed the exact solution for an infinitely long, 
isotropic and uniformly thick cantilever subjected to a concentrated load at the free edge 
(fig. 2.27). The cantilever plate has a transversal width of a. The slab is isotropic with 
equal top and bottom reinforcement. Therefore the yielding moment is mu , for both 
positive and negative curvatures, and in all directions. Figure 2.27a) shows the 
trajectories of principal shear force corresponding to the moment field of the lower 
bound solution. In region ADCE, the moment field is defined by mx = my = 0 and mxy = 
mu. There is no shear within this region, but a shear force is transmitted along the edge 
AD, V = -mu.. In region ABC, the moment field is defined using radial coordinates as mr 

= -mφ = mu. The shear field has principal directions along the r axis and the magnitude 
of the principal shear force inside this region is vtot = 2·mu /r. The shear flow trajectories 
are represented with a variable thickness, proportional to the magnitude of the principal 
shear force (fig. 2.27a). The thicker lines near the applied load indicate large shear 
forces. The total shear force carried across region ABC is π · mu. Vertical equilibrium at 
point A gives the following lower bound: 

( )2 uQ mπ= + ⋅   (2.20) 
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Figure 2.27: Exact solution for a  cantilever slab under concentrated load Q at free edge 

The analysis of the yield line mechanism is considered in figure 2.27b). For a unit 
vertical displacement under the load Q, the energy dissipation is π · mu for region AEC 
and 2 · mu for lines BE and CD. The upper bound failure load is Q = (2 + π) · mu.  

Because both lower and upper bound values are the same, the theoretical flexural failure 
load is Q = (2 + π) · mu. 

 

 



3. Summary of experimental results 

3.1 Introduction 

This chapter describes the main results gained from the experimental campaign carried 
out in the framework of this dissertation. The first part of the experimental program 
consisted of six tests performed on two large scale bridge deck cantilevers. The 
specimens were subjected to various configurations of concentrated forces simulating 
traffic loads. For all tests, the observed failure mode was shear. 

The second part of the experimental program consisted of shear tests on twelve slab 
strips, with the aim to investigate the influence of plastic hinge rotation on the shear 
strength. The test results show that the shear strength decreases with increasing plastic 
hinge rotation. In addition, a punching shear test with a flat jack simulating the action of 
a pneumatic tire was performed. The aim of this test was to compare the case of a 
punching shear failure induced by uniformly distributed pressure with the classical case 
of punching shear induced by a concrete column. 

Detailed test results are available in appendices A and B to this dissertation. 

3.2 Tests on large scale RC bridge cantilevers (appendix A) 

The tested cantilevers are almost full scale specimens that represent the actual behavior 
of typical and large bridge cantilevers in Switzerland (fig. 3.1a). With a transverse span 
of 2.78 m and a total length of 10 m, each of the two tested cantilevers was tested three 
times, with various loading conditions, as shown in figures 3.1b) and 3.2. For slab DR1, 
the transversal reinforcement of the top layer at the fixed end consisted of 16 mm 
diameter bars at 75 mm spacing (reinforcement ratio ρ = 0.79%). For slab DR2, the 
transversal reinforcement of the top layer at the fixed end consisted of 14 mm diameter 
bars at 75 mm spacing (reinforcement ratio ρ = 0.6%). No shear reinforcement was 
provided.  
 

  

   

a) Bridge girder with 
cantilever 

b) Large scale model under 
loading patterns 

c) Test DR1-a, under four 
concentrated loads 

Figure 3.1: Test concept and load arrangement 

Figure 3.2 shows the reinforcement layout and the dimensions of the cantilevers, along 
with the position of the concentrated loads simulating vehicle wheels. The specimens 
were conceived as a large scale model (3/4) of a large bridge cantilever (span 3.7 m, 
thickness varying from 250 to 500 mm). All dimensions, including the layout of the 
twin axle loads and the size of the load introduction plates were consequently scaled by 
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3/4. The bottom reinforcement consists of 12 mm diameter bars at 150 mm spacing in 
both directions for all slabs. The top longitudinal reinforcement consists of 12 mm 
diameter bars at 150 mm. The concrete cover is 30 mm. The reinforcement steel used at 
the transversal direction at the top layer is hot rolled, with a yield strength of 515 MPa. 
Ordinary concrete was used in both slabs with average measured values at the time of 
testing of compressive strength of fc = 40 MPa and Young’s modulus of Ec = 36·103 
MPa. Maximum aggregate size is 16 mm. 

The applied loads for the test DR1-a are the twin axle loads prescribed by Eurocode 1 
(Eurocode 1 2003) with all dimensions reduced by 3/4. Subsequent tests were 
performed using only one or two concentrated load to better focus on shear and 
punching shear failure modes, as shown in figure 3.2 and summarized in table 3.1. The 
concentrated loads were applied on the top of the slab using steel plates with 
dimensions 300 x 300 x 30 mm. The fixed end support was clamped by means of a 
vertical prestressing (7 MN total force). The concentrated loads were applied through 
holes (Ø 130 mm) in the slab, which allowed to pull directly from the strong floor. 
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Figure 3.2: Slab dimensions, reinforcement layout and applied loads. Dimensions in mm. 

3.2.1 Results 

Table 3.1: Results of experiments on cantilevers 

Test Number of 
wheel loads 

Failure Load 
QR QFlex QR/QFlex Failure location Mode of 

failure 
  kN kN - - - 

DR1-a 4 1397 1600 0.87 Cantilever edge Shear 
DR1-b 2 1025 1320 0.78 Fixed end Shear 
DR1-c 1 910 1190 0.77 Fixed end Shear 
DR2-a 2 961 1500 0.64 Fixed end Shear 
DR2-b 2 857 1060 0.81 Fixed end Shear 
DR2-c 1 719 960 0.75 Fixed end Shear 

 
QFlex : Theoretical flexural failure load 
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The results of the 6 tests are summarized in table 3.1. The failure mode for the 
cantilever under four concentrated loads (DR1-a) was a brittle shear failure at the two 
loads closest to the free edge (fig. 3.7b and 3.3a). For the other tests, the cantilever also 
failed in shear, however always between the location of the applied loads and the fixed 
end of the cantilever (fig. 3.3b and c).  

The flexural ultimate load was estimated for each test based on the yield-line method 
(fig. 3.4). This load was never reached in any of the six tests. The failure load in test 
DR1-a, with four concentrated loads, is closest to the theoretical yield-line value 
(QR/QFlex = 0.87, tab. 3.1). In this case, plastic strains were present both in the top 
transversal reinforcement at the fixed end and in the bottom longitudinal reinforcement 
underneath the edge loads. The lowest QR/QFlex ratio was obtained for test DR2-a, 
subjected to two concentrated loads.  
 

  
a) DR1-a b) DR1-b b) DR1-c 

Figure 3.3: Shear failures for slab DR1  
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 Figure 3.4: Yield-line mechanisms and yield-line failure load for slab DR1 (QFlex) 

The behavior under service loads was investigated in test DR1-a, under a load of 
approximately Q = 410 kN and for a limited number of cycles (one hundred cycles). 
The deflections increased with the number of cycles and tended to stabilize after one 
hundred cycles (fig. 3.5). This tendency is in agreement with the model proposed by 
(Muttoni, Fernández Ruiz 2006). 
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Figure 3.5: Evolution of deflections with the number of  cycles for test DR1-a 

The load-deflection curves for the six tests are shown in figure 3.6. The deflection w 
was measured at the tip of the cantilever, as indicated in figure 3.2. 
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Figure 3.6: Total load – deflection curves for the six tests 
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 seen from below after cutting of the slab. 

Figure 3.7: Crack pattern for test DR1-a 

For tests DR1-b and DR1-c (fig. 3.3), the shear crack was clearly visible after failure on 
the side face of the cantilever and the crack continues inside of the slab. After failure, 
the slab was cut and the geometry of the critical shear crack was mapped. The location 
of the shear cracks is shown in figure 3.8 along with the crack pattern on top and bottom 
surfaces. 
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Figure 3.8:  Crack pattern on the top and bottom surfaces for tests DR1-a and DR1-b 

For test DR1-a, a large shear crack was observed in the region between the fixed end 
and the applied loads. Since no failure occurred in this region, this suggests that a 
process of development of the shear crack was under way in this region and that 
redistributions of the shear flow may have occurred. In order to better follow the 
development of the shear crack, measurements of the local variation in thickness of the 
slab, indicative of the vertical shear crack openings within the slab, were performed for 
slab DR2 (fig. 3.9). 
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Figure 3.9: Measurements of the variation of slab thickness (test DR2-a) 

These measurements confirm that the formation of the critical shear crack is a process 
that starts at a load level significantly lower than the failure load. For test DR2-a, the 
shear crack started to grow after Q = 660 kN, whereas the failure took place at 
Q = 961 kN. The presence of the shear crack probably affected the flow of shear forces, 
so that redistributions may have occurred after the initiation of the crack. 

More detailed results are available in the complete test report, in appendix A. 
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3.3 Tests on RC slab strips without shear reinforcement (appendix B) 

A series of eleven slab strips have been tested to investigate the influence of yielding of 
flexural reinforcement on the shear strength. 

3.3.1 Layout of experiments 

The tested beams had a constant rectangular section of 0.45 m x 0.25 m and a total 
length of 8.4 m, as shown in figure 3.10. The top and bottom longitudinal reinforcement 
consisted of four bars of 16 mm diameter, constant along the beam’s length. The 
reinforcement ratio is 0.79% for both bottom and top bars for all tested beams. The 
beams were simply supported, with a span of 6.0 m. Two loads, Q at mid-span, and 
α · Q at the tip of the cantilever were applied by two independent hydraulic jacks. The 
load introduction at mid-span (Q) was made by means of a steel plate of 0.1 m x 0.25 x 
0.03 m. No shear reinforcement was placed in the measurement zone, but outside of this 
region stirrups were provided to prevent a shear failure. The ratio α of the two applied 
loads was varied between the eleven beams but kept constant during each test, allowing 
the investigation of various shear forces and shear spans a1 and a2 (fig. 3.10).  
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Figure 3.10: Slab strip dimensions, loads, shear spans ai and rotation θ 

For slab strips SR2 to SR9, the reinforcement steel used was cold worked with a 
proportional limit at 0.2% of 515 MPa and a tensile failure strain of 14%. For slab strips 
SR10 to SR12, the reinforcement steel used was hot rolled with yield strength of 
525 MPa. 
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3.3.2 Results  

The main results are given in table 3.2 and figures 3.11 and 3.12 for all slab strips. 
Table 3.2: Main results for all tested slab strips 
 

Essai Q1,CR Q2,CR w1,CR MR VR τR fc τc τR / τc θR a a/d 
[kN] [kN] [mm] [kN·m] [kN] [MPa] [MPa] [MPa]  [mrad] [m]  

Type of 
failure Position 

SR2 124.1 62.4 19.21 -112.8 -91.8 0.897 43.11 1.970 0.456 3.2 1.46 3.56 V B 
SR3 130.0 27.6 69.52-73.32 161.1 -75.9 0.742 50.62 2.134 0.348 30.1 2.25 5.50 V Q 
SR4 115.2 0.0 110.43 169.9 -59.3 0.580 47.55 2.069 0.280 40.0 2.90 7.09 V Q 
SR5 96.1 -18.7 195.95 163.1 -43.5 0.425 47.64 2.071 0.205 68.1 3.59 8.77 M Q 
SR6 148.0 85.6 56.47 124.2 -104.2 1.019 52.71 2.178 0.468 18.6 1.38 3.37 V Q 
SR7 139.9 71.3 176.43 -128.4 -102.6 1.004 49.11 2.102 0.477 8.6 1.48 3.61 V B 
SR8 107.5 -11.0 133.11 170.8 -51.8 0.506 49.16 2.103 0.241 47.2 3.25 7.96 V Q 
SR9 126.5 43.8 92.07 138.9 -79.5 0.778 52.82 2.180 0.357 29.7 1.90 4.65 V Q 

SR10 101.3 -6.8 140.90 157.7 -50.1 0.490 42.41 1.954 0.251 76.3 3.12 7.62  Q 
SR11 130.6 45.1 25.44 -78.7 -89.3 0.873 42.91 1.965 0.444 3.6 1.10 2.68 V B 
SR12 131.5 26.9 148.23 163.9 -76.4 0.747 43.51 1.979 0.378 > 55.8 2.27 5.56  Q 

VR: shear force in the failure section; δR: mid-span deflection at failure; θR: rotation in the failure region, integrated along a length of 
1.96·d; Position: failure location (B: near intermediate support, Q: near applied load at the mid-span) 

Beams SR2, SR6, SR7 and SR11 failed in shear, before or at the onset of yielding. 
Beams SR3, SR9, SR4 and SR8 also failed in shear, but after the formation of the 
plastic hinge, located below the load Q. Beam SR5 failed in bending with fracture of the 
flexural reinforcement in tension. The beams with hot rolled reinforcement underwent 
larger rotations than those with cold formed steel, when in presence of plastic strains 
(fig. 3.12). For beams with cold worked reinforcement (SR2 to SR9), the ratio 
VR / (b · d · 0.3 · fc

0.5) decreases with increasing rotation θ. Figure 3.11 shows the crack 
pattern after failure for all slab strips. The slab strips are ordered from the lowest to the 
largest shear strength, for each type of reinforcement. A clear type of failure was not 
observable for SR10 and SR12, which exhibited yielding of the longitudinal 
reinforcement. A very large hinge rotation was measured for these two beams 
(fig. 3.12). For slab strips SR9, SR10 and SR12, the force dropped after failure to about 
80% of the failure load and the test was stopped because the crack openings reached 
several centimeters or the rotations were very large (θ > 50 mrad, 2.9°). 
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Figure 3.11: Failure type and crack pattern for all slab strips (increasing shear strengths 
inside each reinforcement type) 

The complete test report in appendix B gives detailed description of the test results, 
including the relative displacements at the shear crack. 
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Figure 3.12:  Normalized shear stress versus rotation for all tested specimens 

3.3.3 Analysis of strain fields 

The moment-curvature relationships of reinforced concrete cross sections can be easily 
derived for typical non-prestressed or prestressed cross-sections. The response of a 
reinforced concrete member can then be calculated by integrating the curvatures along 
the length of the member. The deflections due to the internal shear forces are usually 
neglected for slender elements. 

In the case of reinforced concrete slab strips without shear reinforcement, a shear crack 
may form and increase the deflections. Figure 3.13 shows schematically three possible 
types of cracks and the corresponding evolution of the shear strains (γ) and vertical 
strains (εz). The average strains in each cross section are indicated along the represented 
length of the member. A pure flexural crack (fig. 3.13a) does not cause any shear or 
vertical strains. The inclined straight shear crack (fig 3.13b) whose opening is governed 
by a rotation around point d causes the shear and vertical strains to increase. A bilinear 
shear crack is illustrated in figure 3.13c). In this case, the shear strains are concentrated 
above the horizontal part of the crack. The relative displacements between the lips of 
the inclined part of the crack are vertical. 

γγ γ

εz εz εz

d

 
a) Flexural crack b) Straight shear crack c) Bilinear shear crack 

Figure 3.13: Shear strains (γ) and vertical strains (εz) for three types of cracks 

As the opening of the shear crack increases until failure, the shear strains (γ = V / (G·B) 
in equation 3.1) increase and the contribution of this term might become relevant. The 
general virtual work equation that considers the contribution of the shear force for beam 
elements is: 

∫ ∫ ⋅+⋅=⋅ dx
EI
MMdx

GB
VVδ1   (3.1) 



Chapter 3 

 36

where EI is the flexural stiffness and GB is the shear stiffness.  

This reduction of the shear stiffness is not only important for calculating the deflections 
of slab strips with shear cracks, but it also could play a role in the investigation of 
redistributions in the flow of shear forces in slabs that may occur after cracking.  

The objectives of this subsection are: 

• To quantify the reduction of shear stiffness for slab strips that fail in shear 

• To understand the role of yielding of flexural reinforcement on the reduction of the 
shear stiffness 

Figure 3.14a) shows a typical cross-section of a reinforced concrete slab strip without 
shear reinforcement. The shear force is carried along the x axis, from section  to 
section . It always acts simultaneously with a bending moment, which is variable 
along the length . Flexural and shear cracks appear under increasing loads. Failure can 
occur by the propagation of a diagonal shear crack. The following contributions to the 
deformations can be identified: curvatures (χ), shear strains (γxy) and vertical strains (εz). 
The physical interpretation of these contributions is given in figure 3.14b). 

χ γ ε zxz

Curvature Shear strain Vertical strain

MV
xM

V
x

x

z

'

21

x

shear crack

V  (     < 0 )

 
a) Slab strip and notations b) Modes contributing to the deformations 
Figure 3.14: Slab without shear reinforcement under one-way shear 

It is possible to identify the individual contributions from these three modes on the basis 
of measurements of the web strains performed on the slab strips without shear 
reinforcement. Figure 3.15 shows a detail of a slab strip, with the measuring grid and 
the shear crack. The relative displacements between the points of the grid have been 
measured during the test. From these values, the absolute displacements can be 
reconstructed at each vertex of the grid, as explained in chapter 4 of appendix B to this 
dissertation. Strains can be calculated from the displacements of the grid vertexes using 
triangular and quadrilateral elements (Hughes 1987). The equations of the displacement 
fields (eqs. 3.2 and 3.3) and the strain fields (eqs. 3.4 and 3.5) are given in figure 3.15. 
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Figure 3.15: Slab strips, elements and definition of average strains [mm] 

Averages values of curvatures, shear strains and vertical strains can be calculated by 
integrating the strain fields (eqs. 3.6, 3.7 and 3.8). As the zone in which the critical 
shear crack develops is rather well delimited, the domain of integration is a rectangle, 
with a length dint ⋅≈ 5.1 and depth ddint ≈  centered on the critical crack. The integrals 
are numerically evaluated for triangular and quadrilateral elements (fig. 3.16c). 
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Figure 3.16: Integration of strain fields for slab strip SR4 

Fig. 3.16a) shows the strain fields for the shear strains γxy and vertical strains εz in the 
vicinity of the critical shear crack for quadrilateral elements, in which strains vary 
linearly. Fig. 3.16b) shows the vertically averaged values of the same strains along the x 
axis. Figure 3.16c) shows various representations of the strains integrated over the 
entire domain for increasing load levels. Note that the relationship between shear strains 
and curvature is not linear. It can also be observed that results for quadrilateral and 
triangular elements are very similar. This observation is also valid for the other slab 
strips. The strain distributions along the x axis are integrated to calculate the average 
strains within the domain of integration. The average shear strains and the average 
vertical strains significantly increase after yielding for slab strip SR4. 

Figure 3.17 shows additional representations of these results: figure 3.17a) shows the 
relationship between the nominal shear stress τ = V /  (b · d) normalized by the nominal 
shear strength τc = 0.3·(fc)0.5 and the average shear strains within the integration domain; 
figure 3.17b) shows the relationship between the flexural moment M normalized by the 
flexural yielding moment My of the slab strips and the average curvatures within the 
integration domain. The shear force V and the flexural moment M are calculated at the 
center of the integration domain (at x =  / 2). The inner forces are always well known 
because the slab strips are statically determined. 
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Figure 3.17: Normalized diagrams for shear force-shear strain and moment-curvature for all 
tested slab strips 

It can be observed that: 

• Slab strips SR2, SR6, SR9 and SR11 failed without yielding of the flexural 
reinforcement. The other slabs failed after yielding of the reinforcement. 

• Shear strains significantly increase after yielding of the longitudinal reinforcement. 
This corresponds to an important reduction of the shear stiffness. 

• Beams that failed in shear without yielding of the reinforcement did not exhibit a 
significant loss in shear stiffness. 

• The shear stiffness is less affected by the cracking of the section than the flexural 
stiffness. 

The average shear strain within the integration domain therefore essentially depends on 
the intensity of the nominal shear stresses and on the intensity of the average bending 
curvatures. 

3.4 Punching shear test with simulation of vehicle wheel (appendix A) 

Punching shear of deck slabs is different from the classical case of punching of a flat 
slab by a column. One of the main differences is that the load is not introduced by a 
very stiff element (a concrete column or the head plate of a steel column), but rather by 
a pneumatic wheel load. It was thus decided to take the opportunity of a research work 
under way at the Structural concrete laboratory at the time of the present research to 
conduct a limited study of that specific behavior. To that end, a punching shear test with 
distributed support reactions simulating the effect of a vehicle wheel was carried out. 

The dimensions, reinforcement layout and concrete properties are similar to that of the 
test PG-10 (Guandalini, Muttoni 2004). The slab was square with 3.0 x 3.0 m and a 
thickness of 0.25 m. The top reinforcement consisted of orthogonally disposed bars of 
∅ 10 mm spaced at 115 mm. The effective depth of the top layer was d = 210 mm. The 
reinforcement ratio of the top layer was ρ = 0.33%. The concrete compressive strength 
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at the time of testing was fc = 35 MPa (fc = 28.5 MPa for the reference slab PG-10). The 
concrete tensile strength was fct = 2.2 MPa for both tests. The Young’s modulus of 
concrete was Ec = 31.8 GPa (Ec = 29.5 GPa for slab PG-10). The maximum size of the 
aggregate was dg = 16 mm for both slabs. The reinforcement was hot rolled with 
yielding strength fsy = 570 MPa and a tensile strength fsu = 650 MPa for both slabs.  

The loads were introduced at eight locations around the perimeter of the slabs (two for 
each side) for both tests. Instead of a stiff loading plate (260 x 260 mm) for the 
reference slab, the central support of test PR1 consisted of a circular flat jack consisting 
of a flexible copper sheet envelope filled with water, with nominal diameter ∅ = 446 
mm. This allows the contact pressure between the slab and the jack to be approximately 
uniform. The water volume was kept constant during the test. The effective contact 
surface can be derived from the measured water pressure and the support force V. The 
effective contact diameter increased from ∅ = 445 mm at the beginning of the test to 
∅ = 472 mm at failure. 

The diameter of the flat jack was selected to be representative of a vehicle wheel. 
According to the Eurocode 1 (Eurocode 1 2003) the concentrated load of a vehicle is 
represented by a square surface of 400 x 400 mm (0.16 m2). The diameter selected for 
the circular flat jack corresponds to a nominal surface of 0.156 m2.  

Figure 3.18 shows the relationships between the normalized shear stress (τ/ τc) and 
θ·d·kdg for tests PG-10 and PR1. The punching shear failure criterion proposed by 
(Muttoni 2003) is also represented. 
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Figure 3.18: Comparison of punching shear tests with failure criterion (Muttoni 2003), 

considering the total rotation θ 

Slab PR1 failed at a VR = 600 kN and θ = 44.9 mrad. Slab PG-10 failed at VR = 540 kN 
and θ = 21.7 mrad. It can be observed that slab PR1 had a more ductile behavior than 
slab PG-10. The punching shear cone and the flexural cracks are shown is figure 3.19.  
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a) Punching shear with stiff load introduction plate 260 x 260 mm (Guandalini, Muttoni 2004)

 

 
b) Punching shear with flat jack ∅ 446 mm, uniform pressure  

Figure 3.19: Comparison of punching shear cracks 

One of the reasons for the large rotations of slab PR1 is the significant opening of the 
flexural cracks directly above the flat jack. Permanent plastic deformations are clearly 
visible in this area after cutting of the slab (fig. 3.19b). These cracks are not in the 
critical region, i.e. their openings and the rotations they cause are not the direct cause of 
the punching shear failure. Therefore, the contribution of these cracks to the rotation θ 
should be discarded.  

In both tests PR1 and PG-10 the rotations measured along the N-S axis where larger 
than the rotations measured along the W-E axis. This can be explained because of the 
difference between the effective depths in both directions. Please note that the average 
rotation between both directions is represented in fig. 3.18, for both slabs. In the case of 
test PR1, an important part of the rotations along the N-S is concentrated in the flexural 
crack that developed along the W-E direction (fig. 3.20). Directly above the support, the 
measured crack width near failure is approximately of u = 10 mm. The rotation θflex 
associated with this crack opening is: 

1 1 10 25 mrad
2 2 0.21 0.012flex

u
d x

θ = ⋅ = ⋅ =
− −

 (3.2) 

Where x is the estimated depth of the compression zone, calculated at yielding of the 
bending reinforcement. The influence of that rotation on the abscissa of figure 3.18 is 
θflex · d · kdg = 7.9. 

. 

E

N S

W

u = 10 mm

 
Figure 3.20: Major flexural cracks after failure of slab PR1 

In the case of slab PG-10, the crack pattern was similar. The maximum crack width near 
failure over the concrete column is estimated from measurements by surface-mounted 
extensometers to u = 3.5 mm. As in the other case, this component of the rotation 
associated with these cracks should not be considered. For slab PG-10, this component 
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is θflex = 9 mrad (θflex · d · kdg = 2.8). Figure 3.21 compares the failure criterion with the 
rotation at failure in the critical region (θ  -  θflex ) instead of the total rotation θ. 
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Figure 3.21: Comparison of punching shear tests with failure criteria (Muttoni 2003), 

considering the rotation in the critical region (θ-θflex ) 

It can be concluded that the criterion proposed by (Muttoni 2003) correctly predicts the 
load and deformation of test PR1, if only the rotation in the critical region is considered. 
In case PG-10, because the non critical component of the rotation (θflex) is small, either 
(θflex) or (θ  -  θflex) values give correct results. 

The differences between tests PR1 and PG-10 can be explained by the following 
factors:  

• Axial stiffness of the support: a uniform pressure distribution (slab PR1) seems to 
delay the progression of the critical shear crack into the compression zone. 
Punching shear with a vehicle wheel thus seems to be a more ductile phenomenon 
than punching shear with a concrete column. 

• Shape of the support: shapes with sharp corners induce strong stress concentrations 
and localization of curvatures in the corners of the support. This leads to a less 
ductile behavior. 

3.5 Conclusions 

This chapter describes the main results obtained from the experimental campaign: 

Conclusions from the tests on bridge cantilevers: 

• Punching shear failure was the governing failure mode for all tested bridge 
cantilevers. 

• The ultimate flexural load predicted by the yield-line method was not reached for 
any of the six tests (QR / QFlex = 0.64 – 0.87).  

• The measured shear failure load decreases with the reinforcement ratio, for tests 
performed under the same number of loads. 

• The measurements made of the slab thickness in the zone of shear failure indicate 
possible redistributions of the internal shear flow, with the progressive formation of 
shear cracks until equilibrium is no longer possible. 
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• The deflections, strains and crack openings tend to increase in the first hundred 
cycles under service load. 

 

Conclusions of tests on slab strips without shear reinforcement: 

• The rotation capacity of slab strips with cold worked reinforcement is governed by 
shear failure or flexural failure. 

• The rotation capacity of slab strips with cold worked reinforcement decreases with 
increasing shear force. 

• Slab strips with cold worked reinforcement exhibit less ductility after yielding of 
the longitudinal reinforcement than slab strips with hot rolled reinforcement. 

Conclusions of the punching shear test with vehicle wheel: 

• The stiffness and shape of the support influence the rotation capacity of reinforced 
concrete slabs without shear reinforcement. 

• The punching shear criterion proposed by (Muttoni 2003) correctly predicts the 
load and deformation of test PR1, if only the rotation in the shear critical region is 
considered. 

Detailed information is available in the complete test reports in appendices A and B of 
this dissertation. 



 



4. Mechanical model for the shear failure of plastic hinges 

4.1 Problem statement 

Figure 4.1 shows the schematic behavior of ordinary reinforce concrete slabs without 
shear reinforcement. The theoretical flexural failure (QFlex) load can be estimated using 
upper bound solutions such as an adequate configuration of yield-lines (Johansen 1972) 
and lower bound solutions such as moment fields or linear or non-linear finite element 
solutions. For statically indeterminate structures, the load continues to increase after the 
first yielding, and a certain rotation capacity is required. Bridge deck slabs or cut-and-
cover tunnels are examples of such structures. Ductility of reinforced concrete structures 
is a major concern in structural engineering. A certain amount of rotation capacity is 
usually required to activate the ultimate strength of a statically indeterminate structure. 
The rotation capacity of the yielded regions may be limited by the bending failure 
modes (CEB 1998) or by a shear failure. 

Q Flex

Q Flex

yielding of steel

shear failure

deformation

Load

statically indeterminate structure

statically determinate structure

bridge deck slab

cut-and-cover tunnel

 
a) Shear failure after yielding b) Statically indeterminate structures 

without shear reinforcement 
Figure 4.1: Behavior of reinforced concrete slabs 

The shear strength of beams without shear reinforcement has been described as a 
function of the ratio a/d between the shear span a and the effective depth d of beams 
without shear reinforcement (Kani 1964, Kani et al. 1979). Figure 4.2a) shows the 
valley of shear failure. The test series on slender beams (section 3.3) is in good 
agreement with the predictions of Kani’s theory (fig. 4.2b). The differences in the 
region of (a/d) > (a/d)TR can be explained by the hardening behavior of the flexural 
reinforcement. 

The region of interest of the present study is located at values of a/d higher than (a/d)TR. 
It is shown that a shear failure of the plastic hinge can occur in this region, for a given 
plastic hinge rotation. In other words the maximal allowable rotation depends on the 
intensity of the shear force in the plastic hinge.  

A mechanical model is proposed in this chapter to predict the shear strength as a 
function of the plastic hinge rotation. The shear force V will be assumed to be internally 
equilibrated by a shear force carried across the shear crack (Vagg), and a shear force 
carried by the compression chord (Vcomp).  
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Figure 4.2: Valley of shear failure 

4.2 Post-yield behavior of the tension tie 

The location of cracks and their openings at the level of tensile longitudinal 
reinforcement plays a major role in the behavior of the plastic hinge and in the 
formation of shear cracks. A bond model describing the post-yielding behavior of 
reinforcement is necessary to calculate the strain profile in the reinforcement.  

A model that includes the pre- and post-yield behavior of concrete is proposed by 
(Fernández Ruiz et al. 2006). This model is used to calculate the actual strain profile in 
the tensile reinforcement, after the measurements on the concrete surface, at the tensile 
reinforcement level, on the test series of appendix B. Figure 4.3a) shows the bilinear 
law for modeling the stress-strain relationship of the reinforcement and the rigid-plastic 
bond-slip law for concrete (fig. 4.3b). Fernández Ruiz introduced a bond coefficient Kb 
to account for the effect of the longitudinal strain state of the bar (εs) on the local 
response of bond, so that bond stresses are expressed as ( ) ( ) ( ), s b sKτ δ ε τ δ ε= ⋅ . 

τ [MPa]s
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a) Stress-strain relationship for cold worked 

reinforcement 
b) Rigid-plastic bond-slip law and bond 

coefficient Kb 
Figure 4.3: Model for reinforcement and bond 

Figure 4.4 shows the position of the cracks at failure for slab strip SR4 with cold 
worked reinforcement. The calculated distribution of the reinforcement strains εs and 
reinforcement stresses σs is also indicated, along with the crack openings w. The 
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performed measurements are represented in the figure as average strains (“measured 
strains at the concrete surface”). Each step in this diagram corresponds to a 
measurement between the points fixed to the concrete surface. The actual distribution of 
strains in the reinforcement is not constant, because of the cracks and bond between 
reinforcement and concrete. The strain profile in the reinforcement is calculated by 
imposing equality between the calculated crack openings and the measured crack 
openings, for each measurement zone along the tension tie. This corresponds to solving 
a set of non linear equations. The calculated crack openings, for a given crack, 
correspond to the integral of the strain profile between the points with lowest strain, at 
left and right of the peak (points a and b for the largest crack in fig. 4.4). This 
corresponds to neglecting the contribution of concrete in tension. The measured crack 
opening is estimated from the strain measurements, also neglecting concrete in tension. 
The set of non-linear equations can be solved numerically, which gives the calculated 
strain profile indicated in fig. 4.4. Since no measurements are available at failure (QR ), 
the measurements were linearly extrapolated from the known values of the vertical 
deflection below the load Q1. 

The maximal opening of cracks is approximately located below the load (2.5 mm). As 
the rotation increases to failure, the crack openings tend to increase near the critical 
shear crack (1.5 mm at failure). This might be explained because close to failure the 
shear force is carried by an inclined strut and thus the stresses in the reinforcement in 
the region of the critical shear crack increases.  
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Figure 4.4: Behavior of tension tie along plastic hinge length (slab strip SR4) 

The analysis of test SR4 shows that yielding of reinforcement occurs from the point of 
application of the load to approximately 1.5·d from the load. The internal lever arm 
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calculated from the bending moment and the reinforcement stresses is also shown, 
(z = M / (As ·σs)). In the yielded regions, the position of the internal lever arm coincides 
with the position of the inclined theoretical strut.  

The deformations are distributed among many cracks rather than localized in a single 
crack. This evidence is confirmed by the analysis of the average curvatures within the 
plastic hinge, for other slab strips with yielding of flexural reinforcement (fig. 4.5). It 
should be noted that for slabs strips with hot rolled reinforcement the critical crack 
tends to form below the applied load rather than at a distance from the load Q1, as it 
occurs for slab strips with cold worked reinforcement. 
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Figure 4.5: Distribution of average curvatures along the length of the plastic hinge and 

location of the critical shear crack for cold worked and hot rolled reinforcement 

4.3 Aggregate interlock action 

From the analysis of the kinematics of a shear crack, the vector representing the relative 
displacement between the lips of a crack can be identified (figs. 4.6b and c). Shear 
transfer across an open crack with a crack width u requires a slip v between the lips. 
This is necessary to activate contact between the aggregates protruding from the crack 
surface (fig. 4.6a). 
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b) Experimental evidence of crack 
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Figure 4.6: Aggregate interlock action 

The action of aggregate interlock across cracks has been recognized as an important 
mode of shear transfer across cracks (Fenwick, Paulay 1968). Hamadi and Regan  
performed an important experimental work on interface shear and developed a tooth 
model that consider the interface shear (Hamadi, Regan 1980). Reineck proposed a 
mechanical model based on a truss model with concrete tensile struts that also considers 
friction at the interface (Reineck 1991). This model includes constitutive relationships 
for friction in the cracks and dowel action. The model matches with the test results as 
well as with those of empirical formulas. 

Walraven developed a mathematical model that allows the calculation of the crack 
interface shear and normal stresses from the crack width and crack slip (Walraven 1980, 
Walraven 1981). The model is based on the behavior at the particle level, considering 
the deformation of the hardened cement matrix and frictional forces between the 
aggregate particles and the matrix during sliding. The structure of the crack surface is 
established from a statistical analysis. The results of the mathematical model are in 
agreement with numerous tests. The shear and normal stresses at the crack interface can 
be explicitly calculated through the numerical evaluation of a number of integrals. A 
routine was implemented in this dissertation to compute the shear and normal stresses 
using Walraven’s model. An example of such computations is shown in fig. 4.7, for a 
concrete with compressive strength fc = 40 MPa, maximum aggregate size Dmax = 16 
mm, coefficient of friction between aggregates and matrix μ = 0.4 and relative aggregate 
volume fraction pk = 0.75. 
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Figure 4.7: Shear and normal stresses across crack calculated from the crack width (u) and 

crack slip (v), after the model proposed by (Walraven 1980) 
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Measurements of the web displacements were systematically made on the surface of the 
web of the slab strips (appendix B). From the performed measurements it is possible to 
calculate the relative displacements between the two lips of the crack. The relative 
displacements are calculated at points along the length of the critical shear crack. The 
critical shear crack is the crack where failure occurs. Figure 4.8 shows the relative 
displacements for slab strip SR4. The normal directions to the crack are also 
represented. In a first stage, the relative displacements tend to be perpendicular to 
direction of the crack (up to about fifty percent of the measured rotation at failure). In a 
second stage, near failure, the tangential relative displacements increase. This point is 
progressively moving towards the load introduction plate. The web displacements have 
been extrapolated to failure from the measurements of the last load step prior to failure 
and the continuously measured deflections. At failure, the rotation point is located 
approximately at the top edge of the crack.  

From the measured relative displacements, it is possible to calculate the crack openings 
u and crack slide v along the length of the shear crack. This is done by projection of the 
relative displacements in directions tangential and normal to the shear crack. 

p= 6p= 6

0.9 mm

Q

Slab Strip SR4

0.73 · θR

0.47 · θR

Failureapproximate location of 
center of rotation at failure (extrapolated)

 
Figure 4.8: Relative displacement between the lips of the critical shear crack [mm] 

Additional tests on ∅ 50 mm cylinders were performed to better understand the 
relationship between the relative displacements and stresses across the critical shear 
crack. Nine ∅ 50 mm cylinders were drilled from non damaged zones of the slab strips. 
The specimens were broken into two parts with three point bending. The relative 
displacements u’ and v’ were measured using the test set-up shown in figure 4.9b). The 
test begins with the two lips of the crack completely in contact. A small opening u’ is 
then imposed. The value of v’ is adjusted until contact is reached and the two values are 
recorded. The average angle of the crack α was used to calculate the relative 
displacements at crack, u and v (fig. 4.9a). This was made by applying a rotation 
transformation to the measured displacements u’ and v’. The measured relationships 
between u and v are valid when the two lips of the crack are in contact. It can be seen 
that there is no contact between the crack lips, for high values the crack opening u. In 
this region the transmission of force across the crack is limited or not possible. The 
measured average relative displacements are in good agreement with the measured 
relative displacements by (Muttoni, Thürlimann 1986), using a concrete with a 
compressive strength of about 30 MPa and with the same aggregate size (16 mm). 
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a) Relative displacements at crack b) Test set-up and measured displacements

Figure 4.9: Tests on ∅ 50 mm drilled cylinders 

Figure 4.10a) shows the measured relative displacements at the crack that provoked the 
failure for all the eleven slab strips. The average measured values with the drilled 
∅ 50 mm cylinders are also represented, along with the extreme values, median and 
second and fourth quartiles. This line will be referred to as the average contact line. It 
can be seen that most of the points are located in the region where there is no contact 
between the two lips, or very close to the contact line.  

The model proposed by Walraven is used to estimate the stresses transferred across the 
crack. A friction coefficient of μ = 0.4 is used, as recommended by (Walraven 1981). 
The ratio between the volume of aggregate and the volume of concrete is pk = 0.75. 

Figure 4.10b) shows the intensity of calculated tangential τ and normal stresses σ for all 
points along the critical cracks of all slab strips. The diameter of the represented circles 
is proportional to the square root of the sum of squares of τ and σ. The predictions of 
the model agree very well with the performed measurements on drilled cylinders. For 
points near the contact line, the stresses tend to increase. The stress increase is more 
significant for points below the contact line. The largest circle corresponds to the 
compressive stresses σ = 4.18 MPa and tangential stresses τ = 4.79 MPa. 
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Figure 4.10: Relative displacements and stresses across the critical shear crack 
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Figure 4.11: Distribution of tangential and normal stresses along the critical shear crack 
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Figure 4.11 shows the distribution of τ and σ along the shear crack for slab strip SR4. 
The vertical component of the stresses is calculated and multiplied by the width of the 
slab strip to obtain the transmitted shear force per unit length the crack (V’ in 
fig. 4.12a). The shear force transmitted across the crack (Vagg) is calculated by 
integration along the length of the crack. It can be observed that the shear force is 
concentrated in the more or less vertical part of the shear crack. The percentage of the 
shear force transferred across the crack is indicated for different hinge rotations. The 
amount of shear transferred across the crack decreases with increasing hinge rotation, 
for slab strip SR4. This tendency is confirmed by the other slab strips that failed in shear 
(fig. 4.12b). 
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Figure 4.12: Shear force transmitted across shear crack 

4.4 Compression zone action 

The depth of the compression chord x in a zone without shear cracks can be calculated 
by simple bending analysis. The analysis is performed using the compressive stress-
strain relationship for concrete according to (Thorenfeldt et al. 1987). The complete 
calculated diagram is compared to the measured values in figure 4.13a). The 
compressive stress-strain relationship for concrete according to (Popovics 1970) is also 
indicated. The behavior of concrete in tension, including tension stiffening, is 
considered according to (Prakhya, Morley 1990, fig. 4.13b). The behavior of concrete in 
tension is linear until the tensile strength is reached. The behavior of cold worked 
reinforcement in tension and compression is considered according to (Cosenza et al. 
1993). The complete calculated diagram is compared to the measured values in figure 
4.14, for both cold worked and hot rolled reinforcement types. 

There is a very good agreement between the stress-strain relationships proposed by 
(Cosenza et al. 1993) and the tensile tests for cold worked and hot rolled reinforcement 
type (fig. 4.14).  
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a) Concrete in compression b) Concrete in tension with tension stiffening 
Figure 4.13: Modelling of concrete in compression and tension 
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Figure 4.14: Comparison between tests and analytical stress-strain relationships 

The moment-curvature diagram of the overall section for slab strips is indicated in 
figure 4.15. It can be observed that the moment increases after yielding (εs = εsy) until 
the fracture of the reinforcement (εs = εsu). This corresponds to the strain hardening of 
reinforcement. The depth of the compression chord decreases in an initial stage after 
yielding, to stabilize at constant values until failure of the tensile reinforcement 
(x = 0.05 m). The analysis confirms the obtained results for slab strip SR5, which failed 
with the fracture of the reinforcement in tension. Figure 4.17 shows the internal axial 
forces at yielding and at fracture of tensile reinforcement.  

The reinforcement in the compression zone plays an important role in ensuring the 
rotation capacity of the cross-section subjected to bending. At yielding of the tensile 
reinforcement, concrete carries 80% of the compressive forces (fig. 4.17a). The 
remainder is carried by reinforcement in compression. At fracture of tensile 
reinforcement, concrete carries 45% and the reinforcement 55% of the compression 
force (fig. 4.17b). 
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Figure 4.15: Moment-curvature diagram and evolution of depth of compression chord 

A comparative analysis of the same cross-section is made with smaller amounts of 
reinforcement in the compression chord (fig. 4.16). For compression reinforcement 
ratios that are less than about 0.5 · ρ, the rotation capacity is limited by the failure of 
concrete in compression. In this case, the failure strain of the tensile reinforcement (εsu) 
is not reached and the moment decreases. 



Mechanical model for the shear failure of plastic hinges 

 55

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

50

100

150

200

χ  [rad/m]

 [kN·m]M

ρ ' = 0.2·ρ
ρ ' = 0.5·ρ

ρ ' = 0.7·ρ

ρ ' = 0ε = ε sys

ε = ε sus

failure of concrete 
in compression

 
Figure 4.16: Limitation of the rotation capacity due to the failure of concrete in compression 
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Figure 4.17: Internal forces after bending analysis, at yielding and fracture of reinforcement 

The shear force transferred by the compression chord (Vcomp) is estimated for the tested 
slab strips. A simplified structural model is assumed (fig. 4.18a). The chord is assumed 
to behave as a clamped beam (with full fixity) at both edges, under constant 
compression axial force. The considered structural model is considered only valid near 
failure. The length of the chord c is measured according to figure 4.18b) and is 
indicated in figure 4.18d) for each slab strip. The depth of the compression chord 
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(x = 55 mm) is estimated from bending analysis of the section. This value is assumed to 
be equal for all slab strips in which reinforcement yielded. The compression force 
(Nc = - 426 kN = fsy  ·As) is calculated at yielding of the longitudinal tensile 
reinforcement. The contribution of concrete in tension is neglected.  

The calculated moment-curvature relationship of the compression chord is indicated in 
figure 4.18c). For positive curvatures, the section fails by crushing of concrete. For 
negative curvatures the compression reinforcement yields and the behavior is more 
ductile. The shear force transferred by the compression chord is calculated by imposing 
the measured displacement δ (fig. 4.18d) at the edge of the chord (fig. 4.18a). A 
simplified moment-curvature diagram (fig. 4.18c) is used for the calculation of the 
member response. The curvatures are integrated to obtain the shear force carried by the 
compression chord under the imposed displacement (fig. 4.18e). 
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Figure 4.18: Estimation of the shear force carried by the compression chord at failure 

Only the slab strips that failed in shear with plastic strains are considered. For slab strips 
SR6, SR9 and SR12, the length of the compression chord (fig. 4.18b) was not clearly 
defined. The simplified analysis shows that the percentage of shear force in the 
compression chord increases with the hinge rotation (fig. 4.19). The same analysis was 
performed using 0.9 · c and 1.1 · c for the length of the compression chords. The 

calculated values are not significantly affected by small variations of c. 
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Figure 4.19: Evolution of shear force in the compression chord with increasing hinge rotation 

4.5 Dowel action 

Figure 4.20 illustrates the crack pattern of slab strip SR3 prior to failure. It can be 
observed that a horizontal crack forms near the tensile reinforcement. The crack is 
located above the tensile reinforcement. Similar cracks were observed for slab strips 
that failed in shear with plastic strains. A crack opening of 3 mm was measured prior to 
failure for slab strip SR3 (figure 4.20). The measured crack openings strongly limit the 
transmission of vertical forces across the tensile reinforcement. Dowel action can thus 
be neglected. It should also be noted that when the shear failure occurs without plastic 
strains in the tensile reinforcement this hypothesis is not necessarily valid.  

+68.49 mm/m

Q Slab Strip SR3

horizontal crack 
with opening of 3 mm  

Figure 4.20: Horizontal crack along tensile flexural reinforcement 

4.6 Model for the internal shear distribution 

A mechanical model is derived to estimate the internal distribution of the shear force at 
failure. The shear force V is assumed to be internally equilibrated by: 

• A shear force carried across the shear crack (Vagg) 

• A shear force carried by the compression chord (Vcomp) 

• A shear force carried by dowel action (Vdow) 

The model is used to estimate the internal distribution of the shear force at failure, 
neglecting the contribution of dowel action. 
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A schematic view of the plastic hinge is illustrated in figure 4.21. Only half of the 
plastic hinge is represented. The plastic hinge is subjected to shear force V and a 
rotation θ.  
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Figure 4.21: Calculation of internal distribution of the shear force 

The rotation θ affects the internal distribution of the forces (figs. 4.12b and 4.19). The 
following assumptions are made: 

• The half plastic hinge is assumed to have a length of p. The rotation θ is measured 

between ξ = 0 and ξ = p. 

• The depth of the compression zone x is calculated from bending analysis, admitting 
constant curvatures inside the plastic hinge χ = θ / p. Concrete in compression is 
modeled according to (Thorenfeldt et al. 1987, fig. 4.13a). Concrete in tension and 
tension stiffing is modeled according to (Prakhya, Morley 1990, fig. 4.13b). 
Reinforcement in tension and compression is modeled according to (Cosenza et al. 
1993) for cold worked and hot rolled reinforcement (fig. 4.14). 

• The total elongation of the tension tie, from ξ = 0 and ξ = p and at tensile 
reinforcement level, is assumed to be Δu  = θ · (d - x).  

• The elongation of the tension tie Δu is assumed to be equally distributed among the 
crack openings w. The measured distribution of the crack openings inside the 
plastic hinge is nearly uniform at failure (fig. 4.4). The contribution of concrete in 
tension is neglected. A similar hypothesis is assumed by (Bachmann 1967). 

• The cracks are assumed equally spaced. The crack spacing is assumed to be 
s = 3 / 16 · (1 - ρ’) / ρ’ · ∅ , with ρ’ = 5 · ρ · (d / h). These expressions are derived 
from a simplified analysis of the tension tie (Muttoni, Burdet 2004). 

• A discrete shear crack is considered to calculate the contribution of shear 
transmitted by aggregate interlock. The center of rotation of the shear crack is at 
point c, located at ξ = c and at a distance of x from top of the slab strip. The 
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relative displacements along the length of the crack are calculated by imposing the 
crack opening w at the lower edge of the crack. 

• The model proposed by (Walraven 1981) is used to calculate the distribution of 
normal and tangential stresses along the shear crack. The component of the shear 
force transmitted across the shear crack Vagg is calculated by integration of the 
stresses along the shear crack. The integration is performed from point c to the 
lower edge of the shear crack. The remainder shear force is assumed to be entirely 
carried by the compression chord (Vc = V - Vagg ). 

• The results of the model depend on: the length of the compression chord c, the 

length of half of the plastic hinge p and the shape of the crack. These parameters 

where calculated by means of a calibration with the test data. Values of c = 0.5 · d 

and p = 1.5 · d are used. A power law is used to model the shape of the crack  
(ζ = η c). A similar power law is described in (CEB 1997) to considerer the discrete 
shear crack for slender beams without plastic strains. Figure 4.22 shows the 
comparison between the theoretical and real shapes of the discrete shear crack, and 
the lengths p and c, after calibration. It can be observed that the calibrated shape 
of the crack is rather close to the shape of shear cracks of tests SR3, 8 and 4, that 
correspond to considerable yielding of the reinforcement. Furthermore the half 
length of the plastic hinge ( p) is close to the measured yielded length (fig. 4.4).  

The results of calculated shear force transmitted across the shear crack (Vagg) are 
compared to the test results in figure 4.23.  

d

x

c = 0.5·d

p = 1.5·d

ζ

η
ζ η= 2

Tests SR3,8,4

 
Figure 4.22: Comparison between calibrated and observed crack shapes (c = 2) 
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Figure 4.23: Model predictions for the shear force transferred across the shear crack 
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Figure 4.24: Sensitivity analysis on the form of the critical shear crack 

A sensitivity analysis on the parameters of the model was performed. It was found that 
the shape of the crack considerably influences the results. A straight crack 
(corresponding to a power of c = 1.0 instead of c = 2.0 in fig. 4.22) is expected not to 
carry any shear force, which is confirmed by the analysis (figs. 4.24 and 4.25). This is 
because there is no sliding but only openings between the lips of the crack. The other 
values of the model considered in figure 4.24 are d = 0.409 m, h = 0.45 m, x = 0.05 m, 

p = 1.5·d, c = 0.5·d and fc = 47 MPa. The amount of shear forces carried across the 
shear crack increases with the exponent c (fig. 4.24 and 4.25) and decreases with the 
hinge rotation. 
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Figure 4.25: Sensitivity analysis on the form of the critical shear crack (ζ = η c, c  = 0.5⋅d, 

p = 1.5⋅d) and comparison with measured values 

The case of slab strip SR12 is highlighted in figure 4.25. When compared to slab strip 
SR3, which failed under the same shear force, SR12 allowed larger hinge rotations up to 
failure (fig. 3.12). For this reason, the ratio Vagg / V is lower than for slabs strips that 
failed at equal hinge rotations. This case illustrates well the fact that the position of the 
crack relative to the theoretical compression strut plays a major role in controlling the 
shear failure (fig. 4.26).  

SR12 SR3

 
a) Crack outside theoretical strut b) Crack inside theoretical strut 

Figure 4.26: Comparison of slab strips SR12 and SR3 

4.7 Formulation of the shear failure criterion 

The considerations of the previous section allow to calculate the repartition of the shear 
forces between the compression chord and the critical shear crack. Under a constant 
applied shear force V, the repartition between the compression chord and the critical 
shear crack depends of the rotation of the plastic hinge θ. With increasing θ , more shear 
is carried by the compression zone.  

To define a shear failure criterion, the following assumption is introduced: 

The shear failure of the entire section occurs when the shear force in the compression 
chord (Vcomp) reaches its maximal allowable value (Vcomp,R) 

The resistant shear force VR is therefore the sum of the maximal allowable shear in the 
compression chord Vcomp,R and the shear force carried across the shear crack Vagg : 

aggRcompR VVV += ,   (4.1) 
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The shear force carried across the shear crack Vagg decreases with increasing rotation θ. 
The calculation procedure for Vagg is explained in the previous section. Figure 4.27 
schematically shows the behavior of four plastic hinges with different intensities of the 
applied shear force (V).  

The shear failure occurs for three cases when the loading curves reach the shear failure 
criterion. For the case with the lowest shear force there is no shear failure because 
V < Vcomp,R. In the cases where the shear failure occurs, the shear force in the 
compression chord reaches at failure the maximal allowable shear in the compression 
chord (Vcomp,R). The model gives a rational explanation for the reduction of the resistant 
shear force with increasing hinge rotation. The reduction of the shear capacity is related 
to the reduction of the shear forces carried across the critical crack by aggregate 
interlocking. 

 

V

θ

VR

Vcomp, R

Vagg

shear failure criterion

shear failure

shear failure

shear failure

No shear failure

 
Figure 4.27: Shear failure criterion 

Figure 4.28 shows the crack pattern after failure of three tested slab strips. All slab 
strips failed in shear after yielding of the flexural reinforcement at different levels of 
hinge rotation. The presence of a crack at the top of the compression chord is clearly 
visible after failure. The decompression of the top compressed fiber was visible in the 
strain measurements prior to failure. 

Slab strip SR4 Slab strip SR3 Slab strip SR8  
Figure 4.28: Crack in the top of the compression chord after failure 

The decompression of the top compression fiber was observed in other tests (Muttoni, 
Thürlimann 1986). The explanation for this fact is given in this figure 4.29b) with a 
stress field (Muttoni, Schwartz 1991). The propagation of the shear crack into the 
compression zone causes the compression strut to deviate. The tension tie in the top 
fiber is necessary to equilibrate the stress field.  
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a) Structural idealization b) Stress field (Muttoni, Schwartz 1991) 

Figure 4.29: Strength of compression chord 

The compression chord is idealized as an axially compressed beam clamped at both 
edges (figure 4.29a). The following assumption is made for the calculation of the 
maximal allowable shear in the compression chord (Vcomp,R) : 

• The maximal allowable shear in the compression chord is reached when the axial 
stresses in the compression chord reach the tensile strength of concrete at point a 
(fig. 4.29a). 

Based on the previous assumption, the following expression is derived for the maximal 
allowable shear force in the compression chord : 

2

, 3
s s

comp R ct
c

AxV f b
b x

σ ⋅⎛ ⎞= ⋅ + ⋅⎜ ⎟⋅ ⋅⎝ ⎠
  (4.2) 

A linear elastic behavior of the compression chord is assumed until just before failure. 
This assumption might not be verified, depending on the amount, strength and position 
of compression reinforcement (fig. 4.18). Nevertheless, eq. 4.2 gives adequate results 
and a non linear calculation of the compression chord does not appear to be necessary. 
This simplification of the compression chord provides a clear physical interpretation of 
the mechanics involved but the compatibility with the displacement field of the hinge is 
not necessarily guaranteed. 

The length of the compression chord is assumed to be c = 0.5 · d, according to 
figure 4.22. The compression force is assumed Nc = σs · As, where As is the area of 
tensile reinforcement. This corresponds to neglecting the contribution of concrete in 
tension. The compression force Nc  is assumed to act at the middle of the compression 
chord. 

The height of the compression chord x is calculated from bending analysis assuming an 
average curvature χ = θ / p.  

4.8 Comparison with the test data 

The model predictions for the shear force carried by aggregate interlock Vagg are 
compared to the test data (appendix B) in figure 4.23. The model correctly reproduces 
the tendency of the internal distribution of shear forces. 

The model predictions for the shear strength are shown in figure 4.30. The following 
observations can be made: 

• The model accurately predicts the shear strength of the slab strips that failed after 
yielding of the reinforcement.  
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• For slab strip SR12 the position and form of the shear crack considerably deviates 
from the form and location assumed in the model.  
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Figure 4.30: Comparison between calculated and measured shear strength 

4.9 Parametric analysis 

A parametric study was performed to evaluate the influence of the following 
parameters: 

• The effective depth of the slab (d = 0.2 .. 0.45.. 0.8 .. 1.2 m). 

• The tensile reinforcement ratio (ρ = As / (b · d)  = 0.4 .. 0.75 .. 1.0 .. 1.5 % ). 

• The maximum size of the aggregate (kdg = 8 .. 16 .. 32 mm). 

The reinforcement ratio in the compression chord is considered equal to the 
reinforcement ratio in tension. This is assumed in order to avoid the failure of concrete 
after yielding of the reinforcement (fig. 4.16). The same parametric analysis was made 
with lower (and more common) values of the compression reinforcement. The results do 
not significantly change for beams which are not controlled by failure of concrete in 
compression. 

Other properties are considered as constant values: fc = 47 MPa, fct = 3 MPa, Ec = 30000 
MPa, fsy = 530 MPa and fsu = 600 MPa, εsu = 5%, Es = 205000 MPa, cold worked 
reinforcement is considered and ∅ = 16 mm. 
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Figure 4.31: Parametric analysis 

It can be seen from the parametric analysis that: 

• The mechanical model correctly reproduces the tendency of size effect. An increase 
in the effective depth of the slab strips induces a reduction in the calculated shear 
strength. 

• An increase in the maximum size of the aggregate induces an increase in the shear 
strength. 

• An increase in the ratio of flexural tensile reinforcement increases the shear 
strength. This is explained because the depth of the compression chord increases. 
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• For beams of depth h = 0.2 m and size of the aggregate dg = 8 mm, the model 
predicts a small increase in the shear strength with increasing rotations. This effect 
is unrealistic and can be explained because the depth of the compression chord 
increases after the crushing of concrete. 

4.10 Simplified equation 

A simplified equation was derived to estimate the shear strength of members with usual 
reinforcement ratios. The results of the parametric analysis (retaining only the points 
with ρ = 0.75%) are used to fit a simplified equation: 

1
1.7 0.07

R

c dgd k
τ
τ θ

=
+ ⋅ ⋅ ⋅

  (4.3) 

The variables of equation 4.3 are defined as follows: 

• τR = VR / (b · d) is the nominal shear strength 

• τc = 0.3 · ( fc )0.5 is the nominal shear strength of concrete, with fc  in MPa 

• kdg = 48 / (16 + ddg), with ddg  in [mm] 

• d is effective depth, in [m] 

• θ  is the hinge rotation (fig. 4.32) in [mrad] 
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Figure 4.32: Comparison of simplified equation with model and test results 

Figure 4.32 compares the predictions of the simplified model with the test results and 
the full mechanical model. 

The characteristic value of all the slab strips that failed in shear can also be determined. 
This value can be used as a first estimate of the shear strength in the presence of 
yielding. By assuming that the distribution is normal (fig. 4.33) the shear strength that 
has a probability of 95% of being exceeded is / 0.20R cτ τ = .  
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Figure 4.33: Characteristic shear strength of all beams that failed in shear with plastic strains 

4.11 Conclusions 

The following conclusions can be made: 

• The acting shear force is essentially resisted by the compression chord and by 
aggregate interlock. 

• The reduction of the shear strength with increasing hinge rotation is explained by 
the reduction of aggregate interlock action. 

• The strength of the compression chord plays a crucial role in triggering the shear 
failure. This fact is integrated in the proposed mechanical model by means of a 
physical formulation of the strength of the compression chord. 

• The measured distribution of the shear force, as well as the measured shear 
strengths can be adequately predicted by the proposed mechanical model. A 
simplified equation is proposed, derived from the results of the mechanical model. 

 



 



5. Shear assessment of bridge deck slabs under concentrated loads 

5.1 Introduction 

Reinforced concrete bridge deck slabs without shear reinforcement tend to fail in shear 
when subjected to groups of concentrated loads. This is confirmed by the following 
experimental evidence on large scale bridge decks without shear reinforcement: 

• (Miller et al. 1994) performed one destructive test on a 38-year-old 
decommissioned concrete slab bridge under two concentrated loads. The failure 
mode was shear. The theoretical flexural failure load was not reached. 

• (Vaz Rodrigues 2006) performed six large scale tests on two bridge deck 
cantilevers under groups of concentrated loads. All the cantilevers failed in shear 
and the theoretical flexural failure load was not reached. (see test report in appendix 
A of this dissertation). 

•  (Lu 2003) performed a series of nine tests on reduced scale cantilevers. The 
predominant failure mode was shear. 

The shear assessment of reinforced concrete bridge decks will be performed using the 
punching shear and one-way shear criteria proposed by Muttoni (Muttoni 2003), 
explained in detail in chapter 2. 

The punching shear criterion is applied to zones where the flow of shear forces is 
strongly two dimensional. This occurs near the applied concentrated loads. In order to 
apply the punching shear criterion to the case of a non symmetrical situation, further 
assumptions need to be made to compute the length of the critical perimeter u and the 
rotation angle θ. These assumptions are described in the next section. 

In addition, an evaluation of the one-way shear criterion can be performed in the regions 
of unidirectional flow of forces, such as the region near the clamped edge of cantilevers. 
Some additional assumptions are made in section 5.3 in order to apply the one-way 
shear criterion to reinforced concrete slabs with variable depth. 

5.2 Further assumptions to calculate the punching shear capacity 

The application of the failure criterion to reinforced concrete slabs under concentrated 
loads requires the following considerations: 

• Definition of the control perimeter: The control perimeter lies at a distance of d / 2 
of the edge of the loaded area. The length of the control perimeter u should take 
into account the distribution of transverse shear forces. The length of the control 
perimeter u is estimated from the following equation (see also fig. 5.1): 

max,el

Qu
v

=   (5.1) 

Where Q is the total applied load (uniformly distributed over the loaded surface) and 
vmax,el is the maximum principal shear force, calculated for all cross sections lying at 
d / 2 of the edge of the loaded surface. According to eq. 5.1, if the slab’s effective depth 
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is constant along the control perimeter, the punching shear failure occurs when the 
maximal elastic nominal shear stress ( τ = max,elv  / d) reaches the shear strength given by 
the punching shear failure criterion (eq. 2.9). This choice of u is therefore based on the 
elastic distribution of the principal shear forces, and not on purely geometric 
considerations. It should be noted that the definition of the length of the control 
perimeter u is not strictly necessary, because the maximal elastic nominal shear stress is 
compared to the shear strength to account for failure. Nevertheless, the concept of the 
control perimeter is currently used in engineering practice and this is why this concept 
was kept. The linear model used to calculate the distribution of the principal shear force 
is described in section 5.5. 

u
Q

vmax, el.
=

d /2

vmax, el.

loaded surface 
Qwith total load

vmax, el.= vx
2 vy

2
+max

 
Figure 5.1: Definition of the length of the control perimeter u in case of single applied 

concentrated load 

• Definition of the rotation θ: In the case of symmetric punching shear the rotation is 
clearly defined (fig. 2.14). In the case of slabs under concentrated loads, the 
rotation θ  is considered as the difference between the rotations of the slab at two 
points. The first point is located at the centroid of the applied load. The second 
point is chosen so that the maximal relative rotation is obtained. The rotations are 
calculated along the direction defined by the two points. The definition of the 
precise location of the points will be illustrated with the available test data. The 
rotation θ  is calculated from the results of the non linear analysis, explained in the 
section 5.6. 

5.3 Further assumptions to calculate the one-way shear capacity 

According to eq. 2.2, the computation of the shear strength at a point of the slab requires 
the knowledge of the section strains ε, calculated from eq. 2.1. The further assumptions 
are made to estimate the one-way shear strength of reinforced concrete slabs: 

• The control sections lie at a distance of d / 2 of the edge of the load introduction 
area. 

• The principal shear force (eq. 2.12) is considered to verify the shear failure. The 
bending moment in the direction of the principal shear force (mφ) is used to 
calculate the longitudinal strains (ε, equation 2.1). 

• The effect of the inclined compressed chord is considered by reducing the principal 
shear force of mφ / z · tanδ as indicated by eq. 5.2. The corrected value of the 
principal shear force (vtot′) is compared to the shear strength (eq. 2.2) to account for 
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failure. The angle of the inclined compressed chord with the horizontal plane is δ. 
The angle δ  is measured in the direction of the principal shear force. 

tantot totv v mϕ δ′ = − ⋅   (5.2) 

A different criterion should be used when the moment in the direction of the principal 
shear force exceeds the yielding moment in the same direction. In this case the shear 
strength is given by the eq. 4.3. 

5.4 Representation of the flow of transverse shear forces 

A useful representation of the shear flow will be used in this dissertation. The direction 
and magnitude of the principal shear forces can be represented in one diagram to 
provide an immediate insight of the flow of the inner forces. The thickness of the shear 
flow trajectories is made to be proportional to the magnitude of the principal shear force 
(eq. 2.12). 

This representation is illustrated after two closed-form limit analysis solutions given by 
(Nielsen 1964) and discussed by (Marti 1990). The first example considers a corner 
supported square slab that is subjected to uniformly distributed load. In this case the 
moment and shear fields are defined as: 
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Where m0 = q·  2 / 8. According to equation 5.4 the shear flow trajectories radiate from 
the center of the slab (fig. 5.2). It can also be observed that the magnitude of the 
principal shear force linearly increases with the distance from the center of the slab, as 
indicates the varying thickness of the shear flow trajectories. This representation shows 
that the loads are radially transferred to the edges of the slab along which they are 
carried (indicated by arrows running parallel to the edge) before being introduced into 
the corner supports. 

y

x

y

x

 

 
a) Corner-supported square slab subjected to 

uniformly distributed load (q) 
b) Corner-supported square slab subjected to 

uniformly distributed line loads (q) along 
opposite edges  

Figure 5.2: Representation of the magnitude and direction of principal shear forces 
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The second case considers a corner supported square slab that is subjected to uniformly 
distributed line loads along opposite edges. In this case the moment and shear fields are 
defined as: 
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Where m0 = q·  2 / 8. One-half of the line load is directly carried to the closest support 
along the edge of the slab. The other half is transmitted along hyperbolic lines crossing 
the interior of the slab before reaching the adjacent edge, along which they are 
introduced in the closest support.  

The proposed representation allows a direct visualization of the transfer of shear forces 
inside a slab, including load paths and magnitude. 

Another representation is used for the evolution of the shear force along the control 
perimeters. The magnitude of the principal shear force is represented perpendicularly to 
the control perimeter (fig. 5.1). 

5.5 Linear model for calculation of inner forces 

Linear elastic finite element analysis is performed to calculate the maximal principal 
shear force along the control perimeter. An example of such computations is indicated 
in figure 5.3, for the case of three reinforced concrete bridge deck slabs with a span of 
4.5 m, a thickness of 0.5 m at the clamped edge and 0.25 m at the free edge. The applied 
loads are the twin axle loads prescribed by the Eurocode 1 (Eurocode 1 2003) and 
SIA 261 (SIA 2003), with dimensions 2.0 x 1.2 m (between the centroids of each 
concentrated load). The load introduction plates are square with a side of 0.4 m. The 
shear flow is shown for the three cases, using the representation proposed in the last 
section. A load of Q / 4 = 150 kN is applied on each 0.4 x 0.4 m loaded surface. The 
contribution of the self-weight is not included and full fixity is imposed at the clamped 
edge. 
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a) cantilever without an edge 
beam at the free edge of the 

cantilever  

b) cantilever with a small 
edge beam of 0.6 x 0.6 m 

c) cantilever with a large edge 
beam of 0.9 x 0.3 m 

Figure 5.3: Effect of edge beam’s inertia on the elastic flow of inner forces at cantilever slabs 
under four concentrated loads (for  Q = 600 kN) 

From the analysis of the shear flow it can be seen that the stiffening effect of the edge 
beam is associated with its load carrying function. A stronger edge beam carries more 
loads parallel to the cantilever root, in the longitudinal sense, thus contributing to a 
wider diffusion of the shear forces inside the cantilever slab. This corresponds to a 
reduction of 15% of the maximal hogging moment, calculated at 0.5·d from the 
cantilever root (fig. 5.4d), if cases a) and c) are considered. The distribution of the 
principal shear force near the clamped edge (fig. 5.4a and b) is less affected by the 
dimensions of the edge beam. On the contrary the distribution of shear forces is strongly 
disturbed in the control perimeter around the concentrated loads at the free edge. The 
shear force is represented along a control perimeter that encircles the two edge loads 
(fig. 5.4c). The perimeter is located at 0.5·d from the edge of the applied loads and 
continues towards the edge of the slab to cross the edge beam.  
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Figure 5.4: Effect of edge beam’s inertia on the magnitude of principal shear force [kN/m] at 

various control perimeters and moments [kN·m/m] near the clamped edge 
(control perimeters at d / 2 from the edge of the applied loads and fixed end, and 
for Q = 600 kN) 

A stiff edge beam attracts the shear forces, causing a “stream” of shear forces of high 
magnitude to flow from the edge loads to the edge beam (fig. 5.3c). Before being 
introduced in the edge beam, the shear forces are carried across the region of the slab 
located between the edge loads and the edge beam, where the slab’s thickness is 
normally small and therefore the shear strength is rather small. This can lead to a local 
punching shear failure in this region, as shown in figure 2.19c). In this case the shear 
crack does not cross the edge beam. Despite the high shear forces in the edge beam (fig. 
5.4c), the nominal shear stresses are reduced because of the important depth of the edge 
beam. Furthermore, vertical shear reinforcement is normally present in the edge beam 
and this strongly limits the possibility of a shear failure in this member. Another effect 
to consider is the transmission of shear forces by direct support for loads near the edge 
beam (or the clamped edge). This effect locally increases the shear strength. 
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The results of the linear analysis for other cantilevers with various spans and 
thicknesses are summarized in a design chart (fig. 5.5). Several linear elastic analysis 
were performed and the obtained results used to fit the indicated curves. The maximum 
transverse hogging moment at the clamped edge (point A) is M. Two situations are 
considered: with and without a strong edge beam. The moments and shear forces are 
calculated for various thicknesses h at the cantilever clamped edge. The charts only 
include the effect of the four concentrated loads, with Q = 600 kN. The effects of the 
self-weight and uniformly distributed traffic loads are not considered. The length of the 
cantilever is a. The two exterior concentrated loads are always located at 0.5 m from the 
edge of the cantilever, the most unfavorable location for the bending moment. Full 
fixity is assumed at the clamped edge. The two regimes found in chart correspond to the 
case of two and four concentrated loads over the cantilever. The increase of the slab’s 
thickness at the fixed end of the cantilever causes the bending moment to increase. 
Inversely, the edge beam causes the maximum hogging moment to decrease. 
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Figure 5.5: Elastic analysis of maximal transverse hogging moment at the cantilever fixed 

end (point A). The action of four concentrated loads (SIA 261 and Eurocode 1) 
with Q = 600 kN  is considered at the most unfavorable position, the self-weigth 
of the slab is not considered 

5.6 Non linear model for calculation of rotations and displacements 

The deflections and rotations of the slab are computed using a non linear model of the 
slab. Only the variation of the flexural stiffness and the in-plane shear stiffness is 
considered in calculating the response of the structure. The non linear calculation can be 
seen as a procedure that consists of a series of linear elastic analysis until convergence 
is reached (fig. 5.6). At each iteration the flexural stiffness (EI*) is updated for each 
element according to the moment-curvature relationships (fig. 5.6). These relationships 
are defined as a function of the geometry, reinforcement at arbitrary orthogonal 
directions, and for positive and negative moments. Figure 5.6a) shows only the positive 
part of the diagrams. The first iteration uses the properties of uncracked concrete. The 
iterative scheme is indicated in figure 5.6c) The pre-processing of the data, the iterative 
scheme and post-processing of the results were entirely developed and implement 
during this dissertation. A different component (Ansys 2004) is used for the solver part. 
The element used is the four node element isoparametric shell181. The stress-strain 
matrix of this element is indicated in figure 5.6b).  
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Figure 5.6: Moment-curvature diagrams and iterative scheme 

At each iteration the shear modulus in the plane of the slab is reduced to 
1

8G = 2  (1+   )ν⋅E * ⋅ E *
ζη⋅

ηζ . This reduction is only applied if the moment is larger than the 
cracking moment at one of the reinforcement directions (Mη > Mη,cr or Mζ > Mζ,cr). If the 
element is not cracked then G = 2  (1+   )ν⋅E * ⋅ E *

ζηηζ The coefficient of 1/8 takes into account 
the reduction of the in-plane shear stiffness after the cracking of the section. Torsion 
tests on reinforced concrete beams show that the ratio between the uncracked and 
cracked torsional stiffness varies between 0.1 and 0.25 for usual reinforcement ratios 
(Leonhardt, Schelling 1974). A factor of 1/8 gives good agreement between the 
calculated and the measured values. The shear modulus in the ηz plane is G = 2  (1+   )ν⋅Ecη z  
and the shear modulus in the ζz plane is G = 2  (1+   )ν⋅Ecζ z . This corresponds to not 
considering a decrease in the shear stiffness in both directions. The reduction of the 
Young’s modulus Eη and Eζ can cause the stress-strain matrix to become negative 
semidefinite. To prevent this, the Poisson ratio is considered equal to zero in all the 
analysis. A sensitivity analysis shows that the Poisson ratio seems to have a very 
reduced influence on the deflections of the structure, in particular after cracking. 

The iterative procedure is stopped when the difference between the deflections at the 
same point becomes very small. The number of required iterations is generally small. 
Figure 5.7 illustrates the evolution of the deflection w with increasing iterations. The 
selected control point is the point of maximal deflection. 



Shear assessment of bridge deck slabs under concentrated loads 

 77

0 2 4 6 8 10 12 14
-5

-4

-3

-2

-1

-1.9

-3.6
-3.9 -4.1 -4.3 -4.2

-4.4 -4.5 -4.6 -4.7 -4.7 -4.7 -4.7

number of iterations

w [mm]

 
Figure 5.7: Example of converged solution 

The following material properties are considered in the moment-curvature diagrams: 

• Concrete in uniaxial compression is modeled according to (Thorenfeldt et al. 1987). 

• Concrete in uniaxial tension is considered linear until the tensile strength is reached  
(σ  = Ec · ε  for  ε  ≤  fct / Ec and σ  = 0  for  ε  > fct / Ec). 

• The stress-strain relationships for cold formed and hot rolled reinforcement are 
considered according to (Cosenza et al. 1993). 

• Tension stiffening is considered according to (Muttoni, Burdet 2004) (eq. 5.7). 
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   (5.7) 

A complete calculation of a moment-curvature diagram is shown in figure 5.8. The 
following properties are used: h = 0.38 m, b = 1 m, d = 0.342 m, d’ = 0.04 m, 
fc = 45 MPa, fct = 3.0 MPa, Ec = 30000 MPa, ρ = 0.8%, ρ ’= 0.4%, fsy = 530 MPa,  
fsu = 600 MPa, Es = 205000 MPa, εsh = 3%, εsu = 10% (reinforcement is hot rolled). 
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Figure 5.8: Moment curvature diagram and evolution of the depth of compression zone (x) 

A correct modeling of the supports is important to reproduce the actual structural 
behavior. The vertical stiffness of a simply supported region is introduced using non 
linear springs. In this case the axial stiffness of the support is equally distributed among 
the nodes inside the region of the support. The spring is non linear because it has zero 
stiffness when the slab is lifting (fig. 5.9). 

The correct introduction of loads is also important. Concentrated loads that are 
uniformly distributed over a reduced area of the slab (for example a wheel load) are 
divided into groups of statically equivalent concentrated loads. Each of these loads is 
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distributed into four statically equivalent loads that are directly applied in the nodes of 
the element. This procedure ensures that the applied loads at the nodes and the 
distributed loads on the structure are statically equivalent (fig. 5.9). 
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Figure 5.9: Modeling details and converged deformed shape ( for Q = 1600 kN), test DR1-a 

5.7 Comparison with large scale tests 

The following tests are considered: 

• One large scale punching shear test 

• One full scale test of a decommissioned slab bridge 

• Six large scale tests of bridge deck cantilevers under concentrated loads (see test 
report in appendix A). 

5.7.1 Punching shear test 

(Guandalini 2005 and Guandalini, Muttoni 2004) tested a full scale slab under a 
concentrated load. The slab is square with a side of 6.0 m and thickness of 0.5 m. The 
slab is supported by a square concrete column with a side of 0.520 m. The loads are 
introduced near the edge of the slab at eight metallic plates (fig. 5.10b). The top 
reinforcement is of ∅ 16 mm bars spaced at 0.135 m for both directions. The effective 
depth is of 0.464 m for bars along x and 0.448 m for bars along y. The central support is 
modeled using non linear springs. The vertical stiffness in compression of the concrete 
column is distributed among the nodes inside the column. The springs have zero 
stiffness in tension. 
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a) Calculated and measured load-deflection curves b) Notations and dimensions [m] 
Figure 5.10: Test PG3: calculated and measured load-deflection curves 

The calculated and measured deflections are indicated in fig. 5.10a). The deflections are 
calculated by the non linear analysis. The calculated and measured deflections are 
compared along y = 3.0 m (fig. 5.11). There is good agreement between the calculated 
and measured values. 
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Figure 5.11: Test PG3: comparison of calculated and measured deflections (along y = 3.0 m) 

The shear flow is represented in figure 5.12a) using the shear forces calculated by the 
linear analysis. After being introduced in the slab, the shear forces are carried along 
lines that radiate from the center of the column. The magnitude of the principal shear 
forces strongly increases near the column. 
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a) Shear flow (linear analysis) b) Distribution of principal shear forces along 

control perimeter 
Figure 5.12: Test PG3: transverse shear forces 

The elastic distribution of the principal shear force along the control perimeter is shown 
in figure 5.12b). The maximal principal shear force along the control perimeter is 
vtot,el = 676 kN/m, at Q = 1700 kN and considering the contribution of the self-weight. 
The force in the central column is V = Q + 450 kN. According to eq. 5.1 the length of 
the control perimeter is u = (1700 + 450) / 676 = 3.18 m. If the shear force would be 
uniformly distributed over the geometric perimeter at d / 2 = 0.228 m, the maximal 
shear force would be vtot = 2150 / 3.51 = 612 kN/m.  

Figure 5.13c) shows the lines of equal deflection. The line of zero deflection does not 
coincide with the edge of the column because the axial stiffness of the support is 
considered. Figure 5.13a) and b) show that the principal rotation is nearly axisymmetric. 
The rotation θ  is the difference between the rotation at point  and the rotation at point 

. The rotation θ  is calculated and measured along the line defined by the two points. 
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a) Lines of equal 

principal rotation [rad] b) Principal rotations c) Lines of equal deflection [m] 

Figure 5.13: Test PG3: location of points for calculation of the rotation θ  (from non linear 
analysis at Q=1700 kN) 

The response of the structure can be expressed in terms of τ/ τc (the contribution of the 
self weight, 450 kN, is added to the total applied load Q): 

450
0.3c c

Q
u d f

τ
τ

+
=

⋅ ⋅ ⋅
  (5.8) 
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 and θ · d · kdg, bearing in mind that θ is the relative rotation between points  and  
(fig. 5.13). The calculated and measured diagrams are compared in figures 5.14 and 
5.15, for two different values of u. The response in figure 5.14 is calculated using the 
length of the control perimeter of eq. 5.1, u = 3.18 m. The response in figure 5.15 is 
calculated from the geometric length of the control perimeter 
u=4⋅0.52+π⋅0.456 = 3.51 m.  The rotations corresponding to the lines marked with 
“Test” were measured with inclinometers. The average effective depth along the control 
perimeter (fig. 5.12b) is d = 0.456 m. The calculated failure load (QR) corresponds to the 
intersection of the calculated response with the punching shear failure criterion. The 
calculated failure loads are QR, calc, punch = 1648 kN and QR, calc, punch = 1697 kN, 
respectively with u = 3.18 m and u = 3.51 m. The measured failure load is 
QR,test = 1703 kN.  
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Figure 5.14: Test PG3: evaluation of punching shear criterion, considering the length of the 

control perimeter given by equation 5.1, u= V / vmax,el  = 3.18 m 
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Figure 5.15: Test PG3: evaluation of punching shear criterion, considering the geometric 

length of the control perimeter given by u = 4 ⋅ 0.52 + π ⋅ 0.456 = 3.51 m 

This case shows that equation 5.1 can be used to calculate the length of the control 
perimeter u, leading to a good estimation of the punching shear failure load.  

Despite the shear flow being strongly two dimensional, the one-way shear criterion can 
be investigated to predict the punching shear failure load, according to the additional 
assumptions made. The calculated failure load using this criterion is of about 50% of the 
actual punching shear failure load. This illustrates that the use of the one-way shear 
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criterion should be restricted to zones where the flow of forces is essentially 
unidirectional. 

5.7.2 Test of decommissioned slab bridge 

(Miller et al. 1994) conducted a destructive test on a 38-year-old deteriorated concrete 
skew slab bridge. The skew bridge had a total length of 31.6 m (fig. 5.16b). The 
abutments and pier line were skewed at 30° to the roadway. The slab was loaded with 
two 1.525 x 0.690 m loading blocks simulating the front tandem axle load of a HS20-44 
truck. The bridge failed in shear at Q = 3200 kN. The bending stiffness of the piers is 
considered in the model. The measured and calculated deflections are shown in 
figs. 5.16a) and 5.17. The model predicts a more flexible behavior at loads higher than 
Q = 2000 kN. 
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a) Calculated and measured load-deflection curves b) Notations and dimensions [m] 
Figure 5.16: Test of decommissioned slab bridge: calculated and measured load-deflection 
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Figure 5.17: Test of decommissioned slab bridge: comparison of calculated and measured 

deflections (along y = 3.355 m) 

From the analysis of the shear flow (fig. 5.18a), two zones can be identified: a zone of 
strong one-way shear, where forces flow perpendicularly to the center line of the pier; 
and a zone of two-way shear around the two concentrated loads. Therefore, the one-way 
and punching shear criteria are respectively used to calculate the failure loads. 
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Considering the punching shear criterion, the control perimeter is located around the 
two concentrated loads, at d / 2 = 0.194 m from their edge. At Q = 3197 kN, the 
maximal principal shear is vtot = 587 kN/m. The length of the control perimeter is 
therefore (eq. 5.1): 

3197 kN 5.45 m 
587 kN/m

u = =   (5.9)  

of abutmentCL of pierCL

587 kN /m

 
a) Shear flow  b) Magnitude of principal shear force 

along control perimeter, at Q = 3197 kN 
Figure 5.18: Test of decommissioned slab bridge: transverse shear forces (elastic solution) 

Figure 5.19 illustrate the locations of points between which the relative rotation is 
computed. The chosen location of point 2 approximately corresponds to the maximal 
relative rotation between the two points. 
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a) Lines of equal principal rotation [rad] b) Principal rotations 

Figure 5.19: Test of decommissioned slab bridge:  location of points for calculation of the 
rotation θ  (from non linear analysis at Q = 3197 kN) 

Figure 5.20 compares the calculated and measured shear failure loads. The predicted 
failure load is Q = 3260 kN and the measured failure load is Q = 3200 kN. 
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Figure 5.20: Test of decommissioned slab bridge: evaluation of punching shear criterion 

The one-way shear criterion is evaluated along the line at 0.5·d from the center line of 
the pier. The determining point for the one-way shear failure is located at x = 6.49 m 
and y = 5.23 m. The calculated failure load according with this criterion is 
QR,calc,shear = 3304 kN. At this load level the principal shear force equals the shear 
strength at point a in figure 5.21a).  
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a) Principal shear force and shear strength 

[kN/m] b) Bending moments [kN·m/m]  

Figure 5.21: Test of decommissioned slab bridge: evaluation of one-way shear failure 
criterion (QR,calc,shear) = 3304 kN 

The calculation procedure is described as follows: 

At Q = 3304 kN, the principal shear force at point a is vtot  = 314 kN/m and the direction 
of the principal shear force (eq. 2.12) is φ = 40° (fig. 5.18a). The bending moments are 
mx = -373 kN·m/m, my = -92 kN·m/m and mxy = -195 kN·m/m. Therefore the bending 
moment in the direction of the principal shear force is mθ = -448 kN·m/m. The principal 
reinforcement (bars along x, top layer) is as = 4014 mm2/m with an effective depth of 
d = 0.387 m. From the values of mθ , d, and as the strains ε = 0.702 mm/m are calculated 
from eq. 2.1, using the measured value of the Young’s modulus of Ec = 32 GPa and 
Es = 205 GPa. Because the direction of the principal shear force considerably deviates 
from the direction of the principal reinforcement (in this case, top bars along x), the 
strains should be multiplied by the factor given by eq. 2.8 (ε’ = 1.943· ε = 1.363 mm/m). 
Using this strain as input, the nominal shear strength τR / τc = 0.367 is calculated from 
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the shear failure criterion (eq. 2.2.), with kdg = 1.5 (Dmax = 16 mm). From this value and 
knowing that fc = 54 MPa, the calculated shear strength is vR = 314 KN/m. This value 
equals the principal shear force in the determining point. 

This solution was found using an iterative procedure, in which for each load step the 
points along the linear control perimeter are controlled for failure using the described 
procedure. The solution is found when the nominal shear stress first reaches the 
predicted shear strength by the failure criterion (fig. 5.22). 
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Figure 5.22: Test of decommissioned slab bridge: evaluation of one-way shear failure 

criterion at points along control perimeter, until failure 

5.7.3 Tests on bridge deck cantilevers 

This section compares the measured results of tests on large scale bridge deck 
cantilevers described in chapter 3 and appendix A with the calculated responses. A short 
summary of the measured results is given in table 5.1. 
Table 5.1: Overview of tests on bridge deck cantilevers 

Test Reinforcement 
ratio *) 

Location of 
loads (along y) 

Number of 
loads 

Failure Load 
(QR) Failure location Mode of 

failure 
    [kN] - - 

DR1-a Center 4 1397 Cantilever edge Shear 
DR1-b North edge 2 1025 Fixed end Shear 
DR1-c 

0.78 % 
South edge 1 910 Fixed end Shear 

DR2-a Center 2 961 Fixed end Shear 
DR2-b North edge 2 857 Fixed end Shear 
DR2-c 

0.60% 
South edge 1 719 Fixed end Shear 

*) At the top transversal reinforcement (bars along x) at the clamped edge 

The rotations (compared with the calculated responses of the slabs) were measured by 
inclinometers. It can be observed that a good agreement is obtained between the 
calculated responses (in terms of τ / τc and θ ⋅ d ⋅ kdg) for tests DR1-b (fig. 5.33), DR1-c 
(fig. 5.39), DR2-a (fig. 5.45), DR2-b (fig. 5.51) and DR2-c (fig. 5.57). 

The detailed description of the computations is only explained in detail for test DR1-a. 
For the other tests on cantilevers, the application of the calculation procedure is 
basically the same, and therefore only the resulting diagrams are shown. The results of 
all the analysis are summarized in the end of this chapter (conclusions). 
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Test DR1-a 

Test DR1-a was performed under four concentrated loads simulating twin axle loads 
(fig. 5.23b). Figure 5.23a) shows the comparison between the calculated and measured 
deflections at the tip of the cantilever. The non linear analysis predicts a more flexible 
behavior, in particular for high load levels. Prior to loading the cantilever to failure, it 
was subjected to about two hundred load cycles from Q = 0 to Q = 400 kN. This might 
have influenced the response of the structure. 
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a) Calculated and measured load-deflection curves b) Notations and dimensions [m] 
Figure 5.23: Test DR1-a: calculated and measured load-deflection curves 

The deflections are also compared along the lines at y = 5.0 m and x = 4.18 m (fig.5.24). 
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a) Along y = 5.0 m b) Along x = 4.18 m 

Figure 5.24: Test DR1-a: comparison of calculated and measured deflections 

The elastic solution of the shear flow is indicated in fig. 5.25a), for Q = 1600 kN. At 
this load level, the applied load by each wheel is 400 kN (fig. 5.23b). Therefore, the 
estimation of the length of the control perimeter 1 and 2 is performed by applying 
equation 5.1: 

2 1
400 kN 400 kN1.02 m   ,       0.69 m

391 kN/m 576 kN/m
u u= = = =  (5.10) 
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a) Shear flow 
b) Magnitude of principal shear force 
along control perimeters 1 and 2, at 

Q = 1600 kN 
Figure 5.25: Test DR1-a: transverse shear forces (elastic solution) 

The rotations of the slab are shown in figure 5.26. The difference of rotations between 
points 2  and 1  is used for control perimeter 2. The difference of rotations between 
points 3  and 2  is used for control perimeter 1. 
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a) Lines of equal principal rotation [rad] b) Principal rotations 

Figure 5.26: Test DR1-a: location of points for calculation of the rotation θ  (from non linear 
analysis at Q=1400 kN) 

Using the above calculated lengths of control perimeters and locations for calculation of 
rotations, an evaluation is made of the punching shear capacity of each perimeter 
(fig. 5.27). The failure load of each perimeter corresponds to the intersection points of 
the calculated response of the structure with the failure criterion. The perimeter with the 
lowest calculated failure load is perimeter 1, between the inner loads and the clamped 
edge (QR, calc, punch = 1118 kN for perimeter 1 and QR, calc, punch = 1362 kN for perimeter 
2). According to the computations the determining control perimeter is thus the 
perimeter 1. This contradicts the experimental evidence, because the actual failure 
occurred at perimeter 2, for the loads near the free edge, at an actual failure load of 
Qtest = 1397 kN. Nevertheless, an important shear crack was identified at control 
perimeter 1, after cutting the slab along the center line (fig. 3.8a). The presence of this 
shear crack indicates that the shear failure was impending and would have occurred 
after a small load increment. Furthermore, it indicates possible redistributions of the 
shear forces due to the progressive formation of the shear crack (as discussed in chapter 
3).  
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Figure 5.27: Test DR1-a: evaluation of punching shear criterion 

The one-way shear criterion is evaluated along the line at 0.5·d from the fixed end. The 
determining point for the one-way shear failure is located at intersection between this 
line and the center line (y = 5.0 m). The calculated failure load according with this 
criterion is QR,calc,shear = 1053 kN (fig. 5.28). The calculation procedure is basically the 
same as described for the decommissioned slab bridge, with the exception that the 
inclined compression chord carries a shear force. Therefore at the determining point vtot′ 
is equal to the shear strength vR, with vtot′ given by equation 5.2. 

The calculated failure load using the elastic distribution (fig. 5.28) equals 75% of the 
actual failure load. This ratio is rather low and can be explained because the 
redistributions due to flexural cracking are not considered in the elastic inner forces. 
The use of the non linear solution of inner forces would therefore predict a higher 
failure load.  

-331

  418.6

CL CL

vR

vtot

vtot
'

317

m x

m xy

= vRvtot
'

m φ

 
a) Principal shear force and shear strength [kN/m] b) Bending moments [kN·m/m]  
Figure 5.28: Test DR1-a: evaluation of one-way shear failure criterion (QR,calc,shear) = 1053 kN 
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Test DR1-b 

Test DR1-b was performed under two concentrated loads at the edge of the cantilever 
(fig. 5.29b). The two loads simulate half of the twin axle loads. There is an adequate 
agreement between the calculated and measured deflections (figs. 5.29a) and 5.30). The 
edge of the slab has an additional amount of flexural reinforcement (along x). The edge 
stiffening effect is visible in the calculated deflections (fig. 5.30a). 
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a) Calculated and measured load-deflection curves b) Notations and dimensions [m] 
Figure 5.29: Test DR1-b: calculated and measured load-deflection curves 
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Figure 5.30: Test DR1-b: comparison of calculated and measured deflections 
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Figure 5.31: Test DR1-b: transverse shear forces (elastic solution) 
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a) Lines of equal principal rotation [rad] b) Principal rotations 

Figure 5.32: Test DR1-b: location of points for calculation of the rotation θ  (from non linear 
analysis at Q=1025 kN) 
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Figure 5.33: Test DR1-b: evaluation of punching shear criterion 
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a) Principal shear force and shear strength [kN/m] b) Bending moments [kN·m/m]  
Figure 5.34: Test DR1-b: evaluation of one-way shear failure criterion (QR,calc,shear) = 965 kN 
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Test DR1-c 

Test DR1-c was performed under one concentrated load at the edge of the cantilever 
(fig. 5.35b). The non linear analysis predicts a slightly more flexible behavior (figs. 
5.35a) and 5.36). The edge of the slab has an additional amount of flexural 
reinforcement (along x). The edge stiffening effect is visible in the calculated and 
measured deflections (fig. 5.36a). 
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a) Calculated and measured load-deflection curves b) Notations and dimensions [m] 
Figure 5.35: Test DR1-c: calculated and measured load-deflection curves 
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Figure 5.36: Test DR1-c: comparison of calculated and measured deflections 
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along control perimeter, at Q = 1200 kN 
Figure 5.37: Test DR1-c: transverse shear forces (elastic solution) 
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a) Lines of equal principal rotation [rad] b) Principal rotations 

Figure 5.38: Test DR1-c: location of points for calculation of the rotation θ  (from non linear 
analysis at Q=910 kN) 
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Figure 5.39: Test DR1-c: evaluation of punching shear criterion 
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a) Principal shear force and shear strength [kN/m] b) Bending moments [kN·m/m]  
Figure 5.40: Test DR1-c: evaluation of one-way shear failure criterion (QR,calc,shear) = 910 kN 

 

 



Shear assessment of bridge deck slabs under concentrated loads 

 93

Test DR2-a 

Test DR2-a was performed under two concentrated loads at the center of the cantilever 
(fig. 5.41b). The two loads simulate half of the twin axle loads. The calculated and 
measured deflections are compared in figures 5.41a) and 5.42. 
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a) Calculated and measured load-deflection curves b) Notations and dimensions [m] 
Figure 5.41: Test DR2-a: calculated and measured load-deflection curves 
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Figure 5.42: Test DR2-a: comparison of calculated and measured deflections 
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Figure 5.43: Test DR2-a: transverse shear forces (elastic solution) 
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a) Lines of equal principal rotation [rad] b) Principal rotations 

Figure 5.44: Test DR2-a: location of points for calculation of the rotation θ  (from non linear 
analysis at Q=961 kN) 
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Figure 5.45: Test DR2-a: evaluation of punching shear criterion 
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a) Principal shear force and shear strength [kN/m] b) Bending moments [kN·m/m]  
Figure 5.46: Test DR2-a: evaluation of one-way shear failure criterion (QR,calc,shear) = 920 kN 
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Test DR2-b 

Test DR2-b was performed under two concentrated loads at the edge of the cantilever 
(fig. 5.47b). The calculated and measured deflections are compared in figures 5.47a) 
and 5.48. The edge of the slab has an additional amount of flexural reinforcement (along 
x). The edge stiffening effect is visible in the calculated deflections (fig. 5.48a). 
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a) Calculated and measured load-deflection curves b) Notations and dimensions [m] 
Figure 5.47: Test DR2-b: calculated and measured load-deflection curves 
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a) Along x = 4.18 m  b) Along y = 3.45 m 

Figure 5.48: Test DR2-b: comparison of calculated and measured deflections 

549 kN /m
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Figure 5.49: Test DR2-b: transverse shear forces (elastic solution) 
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a) Lines of equal principal rotation [rad] b) Principal rotations 

Figure 5.50: Test DR2-b: location of points for calculation of the rotation θ  (from non linear 
analysis at Q=857 kN) 
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Figure 5.51: Test DR2-b: evaluation of punching shear criterion 
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a) Principal shear force and shear strength [kN/m] b) Bending moments [kN·m/m]  
Figure 5.52: Test DR2-b: evaluation of one-way shear failure criterion (QR,calc,shear) = 868 kN 
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Test DR2-c 

Test DR2-c was performed under one concentrated load at the edge of the cantilever 
(fig. 5.53b). The calculated and measured deflections are compared in figures 5.53a) 
and 5.54. The edge of the slab has an additional amount of flexural reinforcement (along 
x). The edge stiffening effect is visible in the calculated deflections (fig. 5.54a). 

wQ

y

x

10.0 m

4.2 m

A A

A - A

1.4 2.8 m

 [kN]Q

 [mm]w

test
model

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

model

test

 
a) Calculated and measured load-deflection curves b) Notations and dimensions [m] 
Figure 5.53: Test DR2-c: calculated and measured load-deflection curves 
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Figure 5.54: Test DR2-c: comparison of calculated and measured deflections 
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Figure 5.55: Test DR2-c: transverse shear forces (elastic solution) 
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Figure 5.56: Test DR2-c: location of points for calculation of the rotation θ  (from non linear 
analysis at Q=719 kN) 
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Figure 5.57: Test DR2-c: evaluation of punching shear criterion 
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Figure 5.58: Test DR2-c: evaluation of one-way shear failure criterion (QR,calc,shear) = 822 kN 
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5.8 Conclusions 

Figure 5.59 compares the calculated and measured failure loads for all tests. The results 
are also indicated in table 5.2. 
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a) Punching shear criterion b) One-way shear criterion 

Figure 5.59: Comparison of calculated and measured failure loads with failure criteria 

Table 5.2: Calculated and measured failure loads 
Measured 

failure load 
Calculated failure load 

(Punching criterion)  Calculated failure load 
(One-way shear criterion) 

 

QR, test QR, calc punch QR, test  / QR,calc, punch QR, calc shear QR, test / QR,calc, shear 
Test 

[kN] [kN] [ - ] [kN] [ - ] 
DR1a 1397 1362 1.03 1053 1.33 
DR1b 1025 1046 0.98 965 1.06 
DR1c 910 860 1.06 910 1.00 
DR2a 961 1117 0.86 920 1.04 
DR2b 857 930 0.92 868 0.99 
DR2c 719 782 0.92 822 0.87 
Miller 3200 3260 0.98 3304 0.97 
PG3 1703 1648 1.03 N/A  

  Average 0.97 Average 1.04 
  Standard deviation 0.07 Standard deviation 0.14 
  Coef. variation 0.07 Coef. variation 0.14 

     

The considered perimeter in test DR1-a is the actual failure perimeter (perimeter 2). If 
perimeter 1 is used, the calculated punching shear failure load is Q = 1118 kN and the 
coefficient of variation is 0.12. If the minimum of the calculated shear and punching 
shear capacities is considered, a coefficient of variation of 0.12 is obtained. 

The following conclusions can be made: 

• A non linear model was developed to predict the response of reinforced concrete 
slabs. Only the variations of the bending stiffness and of the in-plane shear stiffness 
are considered. The model correctly predicts the measured deflections and rotations 
of the slabs. 

• The shear failure load of bridge decks is accurately predicted using the punching 
shear and one-way shear criteria proposed by (Muttoni 2003), together with the 
proposed assumptions for the length of the control perimeter and the rotation of the 
slab. 
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• The obtained results confirm that the observed failures of bridge decks are hybrid 
situations between shear and punching shear failures and therefore both approaches 
give good results for the analyzed cases. 

Under wheel loads with pneumatic pressure the component of the rotation inside the 
loaded area does not affects the punching shear strength (chapter 3). For all the 
considered tests in this chapter, the load was applied with rigid plates. Therefore, the 
applied loads were treated as in the case of rigid supports. However, in the assessment 
of actual bridge decks under wheel loads with pneumatic pressure the component of the 
rotation inside the loaded area can be deduced from the total rotation. 

The positive effect of the inclined compression chord (eq. 5.2) was clearly considered in 
the evaluation of the one-way shear capacity of the cantilevers. However, in the 
evaluation of the punching shear criterion this effect was not considered. This effect is 
expected to be small in the cantilevers under one or two concentrated loads (all except 
perimeter 1 of test DR1-a), because the hogging bending moment is small near the 
loads. In the case of perimeter 1 of DR1-a, the inclined compression chord is expected 
to have some effect because of the high hogging moment near the applied inner loads, 
mainly caused by the outer loads. Therefore a higher calculated load for this perimeter 
would be obtained if this effect is considered. 

The developed non linear model for the calculation of rotations was used to predict the 
punching shear failure load of cantilevers under concentrated loads. The proposed 
approach can also be used to estimate the punching shear capacity of flat slabs 
supported by columns. 

 



6. Conclusions 

6.1 Synthesis of contributions and conclusions 

The aim of this work is to investigate the strength and the structural behavior of 
reinforced concrete bridge deck slabs without shear reinforcement. 

Bridge deck slabs are subjected to various types of loading, mainly concentrated loads 
and distributed loads. The strength of a slab does not depends only on the type of 
applied loads but also on its geometry and dimensions, its reinforcement ratio and on 
other mechanical properties. Also, yielding of the flexural reinforcement has a 
significant influence on the shear strength of slabs without shear reinforcement. 
Depending on these parameters, three possible failure modes may develop in reinforced 
concrete deck slabs without shear reinforcement: one-way shear failure, punching shear 
(or two-way shear) failure and flexural failure.  

This work investigates the role of each failure mode in actual bridge deck slabs as well 
as their interaction. Several contributions to the current state of knowledge have been 
produced. The following points summarize these contributions, indicating their scope 
by the conceptual scheme of figure 1.3 (page 2). 

 

1. Full scale shear tests on slab strips without shear reinforcement 
The one-way shear strength of bridge deck slabs is currently estimated using models 
developed from test data on beams without shear reinforcement and in which the 
flexural reinforcement remains in the elastic domain. However, yielding of flexural 
reinforcement may occur at the ultimate limit state. 

There are only a few experimental and theoretical contributions on the influence of 
yielding of the flexural reinforcement on the one-way shear strength of reinforced 
concrete members. A test series of eleven slab strips without shear reinforcement (8.4 m 
length) was therefore performed within the scope of the present dissertation. The results 
show that the development of plastic strains in the flexural reinforcement can reduce the 
shear strength of up to 50 % in comparison with elements in which the flexural 
reinforcement remains elastic. The reduction of the shear strength increases with 
increasing plastic strains. Because plastic strains are associated with the formation of a 
plastic hinges, the observed results can also be formulated as a reduction of rotation 
capacity with increasing shear force. 

 

2. Mechanical model for the shear strength of plastic hinges 
Based on the results of the experimental campaign on slab strips, a mechanical model is 
proposed in this work to investigate the shear strength of this type of elements. The 
systematic analysis of the measured web displacements of the slab strips allows to 
determine the relative displacement between the lips of the shear critical crack. Thus, 
the shear force carried across the shear crack can be estimated using the model proposed 
by (Walraven 1980). The results clearly show that the percentage of the shear force 
carried across the shear crack decreases with increasing hinge rotation. For large hinge 



Chapter 6 

 102

rotations, the amount of shear force carried across the shear crack tends to zero, but the 
slab strips still have a remaining shear strength. This strength is attributed to the shear 
force carried by the compression zone, for which a physical model is developed with the 
aim of estimating its contribution to the shear strength. Prior to failure, the widths of 
horizontal cracks in the vicinity of the flexural reinforcement were generally large. 
Consequently, the contribution of dowel action to the shear strength can be neglected. 
This way, the shear strength is formulated as a function of the opening of the shear 
crack and of the strength of the compression zone.  

The results of the mechanical model are used to develop a simplified equation. The 
simplified equation is in good agreement with the test results and can be used as an 
extension of one-way shear models to consider the effect of yielding. 

 

3. Punching shear strength of slabs subjected to pneumatic loading and of slabs 
supported by rigid supports 

The punching shear strength of bridge deck slabs subjected to pneumatic loads is 
currently treated in the same manner as that of slabs supported by concrete columns. No 
full scale tests of slabs without shear reinforcement under concentrated loads simulating 
the state of stress created by a pneumatic load were found in the literature. In the case of 
a pneumatic load, the vertical stress distribution between the slab and the wheel tends to 
be uniform. On the contrary, in the case of punching shear with a concrete column, 
stress concentrations arise near the column edges and corners. A large scale punching 
shear test on a 3.0 x 3.0 m slab with a thickness of 0.25 m was performed to investigate 
this effect. The pneumatic load was simulated by a circular flat jack consisting of a 
copper sheet envelope filled with a constant water volume. It was possible to compare 
this test with another test of a similar slab, tested with a stiff support simulating a 
concrete column (Guandalini 2005). It was observed that, in the case of punching shear 
with pneumatic loading, cracks tends to be distributed throughout the zone where the 
load is introduced, rather than to be concentrated near the edges of the load (where the 
shear critical region is located), as is the case for punching shear with a stiff support. 
Thus, for a given crack opening in the critical shear region, larger rotations result for 
slabs subjected to pneumatic loading.  

To account for this effect in the use of the punching shear failure criterion (Muttoni 
2003), the part of the rotation associated with the flexural cracks directly above the 
wheel load should be deducted from the total rotation of the slab. As a result, it can be 
concluded that the punching shear criterion (Muttoni 2003) developed for concrete 
columns gives conservative estimates of the punching shear strength for pneumatic 
loading and thus can be used for practical purposes. 

 

4. Large scale tests on bridge deck cantilevers under concentrated loads 
An important experimental program was carried out to investigate the behavior of 
bridge deck cantilevers without shear reinforcement, loaded to failure under groups of 
concentrated loads. Six tests were performed on two cantilevers, with a span of 2.8 m, a 
total length of 10.0 m and a variable thickness ranging from 0.38 m at the fixed end to 
0.19 m at the free edge, with usual reinforcement ratios. These tests appear to be the 
first of their kind to be performed on full scale bridge deck cantilevers. 
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The experimental results show that the failure mode is always brittle, with a two-way 
shear failure. The theoretical flexural failure load, estimated by the yield line method, 
was not reached in any of the tests.  

 

5. Estimation of the shear strength of reinforced concrete slabs 
As observed in the tests performed on actual bridge cantilevers, two-way shear governs 
failure for bridge deck slabs subjected to concentrated loading. This phenomenon was 
investigated by a non linear finite element model developed for the calculation of the 
rotations and displacements up to failure of reinforced concrete slabs. The mechanical 
properties of the slab are introduced by the moment-curvature relationships at all 
locations. This way, it is possible to consider the non linear behavior of concrete (in 
tension and compression), the distribution of reinforcement and bond. The non linear 
model correctly reproduces the measured displacements and rotations of the tested 
cantilevers, as well of other full scale slabs tested to failure, including one full scale 
punching shear test (Guandalini, Muttoni 2004) and one in situ destructive test of a 
reinforced concrete bridge deck under two concentrated loads (Miller et al. 1994). 

The punching shear strength is estimated by using the punching shear failure criterion 
defined in (Muttoni 2003). To apply this model to bridge decks, two additional 
assumptions have been introduced. The first one is related with the choice of the control 
perimeter u. It is proposed that the critical perimeter is equal to u = Q / vmax,el. where 
vmax,el is the elastically calculated maximal principal shear force along the control 
perimeter, located at a distance 0.5 · d from the surface of introduction of the 
concentrated load, and Q is the applied load. The second assumption is related to the 
choice of points for computation of the rotation θ. It is proposed that the first point be 
located at the centroid of the concentrated load, and the location of the second point is 
chosen so that the maximal relative rotation results.  

The comparison of the measured and calculated failure loads shows that the non linear 
model, used together with the one-way shear and punching shear criteria proposed by 
(Muttoni 2003), can be used to predict with a good accuracy the shear strength of bridge 
deck slabs subjected to concentrated loads. 

6.2 Recommendations for future research 

The following propositions of research should be considered for future research: 

Theoretical work: 

• The test results and the theoretical work have shown that shear and punching shear 
are closely related phenomena. On this basis, it is anticipated that a unified model 
for shear and punching shear design can be developed. 

• The non linear model for the computation of the deflections and rotations needs to 
be improved. In particular, the reduction of the in-plane shear stiffness is so far 
based on empirical considerations. A more rational approach could be 
implemented, considering the top and bottom layers as membrane elements 
(Kaufmann, Marti 1998).  

• Rationally derived shear stress–shear strain relationships could be incorporated in 
the finite element code. This way, the shear failure load would be directly obtained 
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from the non linear finite element analysis and it would be possible to account for 
eventual redistributions of the shear flow due to the propagation of the shear crack. 

Experimental work: 

• More tests on bridge decks slabs with yielding of the flexural reinforcement are 
required to further verify the applicability of the simplified equation derived in 
chapter 5 to statically indeterminate structures such as slabs with yielded regions. 

• A new test series should investigate the effect of the edge beams on the shear and 
punching shear strengths of bridge deck cantilevers. 

• The shear force carried by the inclined compression chord should be investigated in 
detail by means of an experimental campaign.  

Simplified method for practical design: 

• The proposed method for estimating the punching shear strength requires the 
calculation of the rotation of the slab θ by means of a non-linear analysis. A 
simplification of this procedure is desirable, so that the rotation θ can be estimated 
without requiring a non linear calculation.  

• According to the proposed method, the length of the control perimeter needs to be 
determined by linear elastic finite element analysis. A practical rule for the 
determination of u is desirable. 
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Notation 

 
Roman capital letters  ρ geometric reinforcement ratio 
   φ polar coordinate; angle 
A point; area  ξ local coordinate axis; coordinate 
B plate rigidity; reduced area  η local coordinate axis; coordinate 
C point; constant  α ratio between forces 
D diameter of aggregates  γ partial safety factor; shear strain 
E modulus of elasticity  Δ difference 
F indicates failure  δ relative displacement; angle 
G shear modulus  ε strain 
I inertia  ζ local coordinate axis; coordinate 
M moment   θ angle 
Q concentrated load  ν Poisson’s ratio 
V shear force  σ normal stress 
   τ shear stress 
  φ angle 
Roman small letters  χ curvature 
    
a shear span; cantilever span   
b width  Subscripts 
d effective depth    
 f material strength  η local coordinate axis 
h height; slab thickness  0,1,2 particular value 
k constant  agg  aggregate interlock 
 span; length  b bond 

m unit moment  c concrete; compression 
n coordinate axis normal to yield-line  comp compression zone 
p fraction  cr cracking 
q distributed load  d design 
r reduction factor  dow Dowel effect 
s crack spacing  Flex flexion 
t coordinate axis parallel to yield-line  k characteristic value  
u crack width; length of control perimeter  max maximum 
v unit shear force; crack slide  min minimum 
w deflection; crack width  calc calculated value 
x depth of compression zone  p plastic 
x coordinate axis; coordinate  Q concentrated load 
y coordinate axis; coordinate  R strength 
z coordinate axis; coordinate  r polar coordinate 
  s steel 
  t tensile; transversal direction 
Greek letters  test measured value 
   tot principal 
μ friction coefficient  TR transition 
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ts tension stiffening 
u ultimate 
v constant 
x coordinate axis 
y yielding; coordinate axis 
ζ local coordinate axis 
θ angle 
 longitudinal direction 

  
  
Superscripts  
  
’ negative bending; alternative value; per unit length 
* secant value 

 average value 
  
  
Special symbols 
  
∅ bar diameter; column diameter 
CL center line 

  
clamped edge 

 free edge 

 simply supported edge 

 force, up 

 force, down 
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