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Foreword 

The idea of verifying reinforced concrete structures at Ultimate Limit State using partial safety 
factors has been proposed almost 100 years ago and partial factors have been defined in 
standards since the 60s of last century. These factors have been usually calibrated to achieve the 
same safety level as according to previous standards which were based on the verification with 
allowable stresses. Since several decades, it is possible to calibrate them on the basis of reliability 
analyses in a rational manner, but some open questions still remain.  

The thesis of Qianhui Yu deals with these open questions related to the calibration of partial 
factors, namely the pertinence of this approach in case of multiple failure modes (as for instance 
flexure, shear and bond failures where both concrete crushing and steel yielding can be 
involved), the approach to be followed in case of mechanical strain based models (examples of 
the shear and the punching resistance according to the Critical Shear Crack Theory) and the 
model uncertainties in the calculation of internal forces in case of very brittle 
behaviour (example of textile reinforcement consisting of carbon or glass fibres).     

The topics of this research were also inspired by the works related to the draft of the second 
generation of the European code for concrete structures and the related discussions in two 
committees at international level (CEN/TC250/CSC2/WG1/TG6 and fib TG 3.1 Reliability and 
safety evaluation: full-probabilistic and semi-probabilistic methods for existing structures). As 
a result of these discussions, some results of this research have been implemented in the latest 
draft of this code and in the new fib Model Code 2020. For these reasons also, the outcome of 
this research has a significant practical relevance. 

This thesis has been partially funded by the Swiss Federal Road Authority and by cemsuisse, 
whose support is greatly appreciated. 

 

 

Lausanne, May 2023 

Prof. Aurelio Muttoni 
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Abstract 

Every engineering calculation is an approximation of reality, with inevitable uncertainties 
involved. This fact implies that a reliability verification accounting for the uncertainties is a 
necessary step in the design and assessment of structures. Nowadays, probability-based partial 
safety factor format is widely adopted in the structural reliability verification in design codes. 
The safety format calibration is a continuing updating process with the advancements of 
knowledge in structural engineering. 

For reinforced concrete structures, open questions for the safety format calibration emerge with 
the increasing application of advanced nonlinear structural resistance analysis approaches (e.g. 
strain-based approaches and numerical methods like the NonLinear Finite Element Analysis) as 
well as the application of new materials. Aiming at meeting these new challenges, several topics 
within the partial safety factor format framework are investigated.  

In the first part of this work, the simplifications and assumptions in the classical partial safety 
factor format for the resistance of reinforced concrete structures are examined. Their suitability 
for the implicit nonlinear analysis models is investigated focusing on the influence of multiple 
failure modes. Reliability analysis case studies at different scales (cross-sectional resistance or 
load-bearing capacity of structural elements and of simple structural systems) show that the 
partial safety factors applied to material strength variables leads to a satisfactory level of 
reliability, independent of the development of different failure modes induced by material 
uncertainties.  

In the second part of this work, the characteristic of the model uncertainties of strain-based 
approaches is investigated using the punching shear resistance model based on the Critical Shear 
Crack Theory (CSCT) as an example. It is shown that the model uncertainty of global resistance 
solution of strain-based approach can be viewed as the resultant of the model uncertainties of 
the sub-models. In addition, the model uncertainty of the global resistance solution can be lower 
than those of the sub-models, depending on their sensitivity relationship. Based on these 
observations, different types of partial safety formats for strain-based approaches are compared. 
The relationship between the safety factors of the punching shear provisions in the second 
generation of Eurocode 2 for the design of new structures and the assessment of existing critical 
ones is established. 

The last part of this work deals with the partial safety factor format calibration problem for 
structures with brittle response. As an example, the partial safety format for the flexural 
resistance of Textile Reinforced Concrete (TRC) is calibrated focusing on the model 
uncertainties of action effect for brittle systems. 

Based on these works, it is concluded that a suitable probabilistic modelling of the basic 
uncertainties is fundamental for the effective calibration of the partial safety format and it should 
be based on a good understanding of the relevant load bearing mechanisms. On its basis, a 
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detailed safety format composed of calibrated partial safety factors for the dominating 
uncertainties is an effective reliability verification approach for both classical analytical design 
equations and advanced nonlinear analysis methods. 

 

Keywords: reinforced concrete structures, reliability analysis, partial safety factor format, 
exponent sensitivity analysis, nonlinear analysis, multiple failure modes, strain-based approach, 
model uncertainty quantification, Bayesian inference, brittle systems, Textile Reinforced 
Concrete. 
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Résumé 

Tout calcul en ingénierie est une approximation de la réalité et comporte des incertitudes 
inévitables. Ce constat implique qu'il est nécessaire d'effectuer une vérification de la fiabilité 
prenant en compte ces incertitudes lors du dimensionnement et de la vérification des structures. 
Actuellement, le format de sécurité probabiliste comprenant les coefficients partiels de sécurité, 
est largement utilisé dans les normes de dimensionnement lors de la vérification de la fiabilité 
des structures. La calibration de ce format de sécurité est un processus en constante évolution et 
progresse en fonction des avancées dans le domaine de l'ingénierie structurale. 

En ce qui concerne les structures en béton armé, l'utilisation croissante d’analyses non-linéaire 
avancées pour le calcul de la résistance telles que les analyses basées sur les déformations et les 
méthodes numériques comme l'analyse non-linéaire par éléments finis, ainsi que l'utilisation de 
nouveaux matériaux, suscitent des questions quant à l'adéquation du format des coefficients 
partiels de sécurité. Face à ces nouveaux défis, plusieurs sujets sont étudiés dans le cadre du 
format des coefficients partiels de sécurité. 

Dans la première partie de ce travail, les simplifications et les hypothèses du format classique 
des coefficients partiels de sécurité pour la résistance des structures en béton armé sont 
examinées. Leur adéquation aux modèles d'analyse non-linéaire implicite est étudiée en mettant 
l’accent sur l'impact des modes de ruptures multiples. Plusieurs cas d’étude portent sur l'analyse 
de fiabilité des structures à différentes échelles (résistance en section ou capacité portante 
d'éléments structurels et de systèmes structurels simples). Ils démontrent que l’application des 
coefficients partiels de sécurité aux variables de résistance des matériaux permettent d'obtenir 
un niveau de fiabilité satisfaisant, indépendamment du développement des différents modes de 
rupture induits par les incertitudes liées aux matériaux. 

Dans la deuxième partie de ce travail, les caractéristiques des incertitudes du modèle des 
approches basées sur les déformations sont examinées en utilisant comme exemple le modèle de 
résistance au poinçonnement basé sur la théorie de la fissure critique (CSCT). Il est démontré 
que l'incertitude du modèle de la résistance globale dans l’analyse basée sur les déformations 
peut être considérée comme la résultat des incertitudes du modèle des sous-modèles. De plus, il 
est également démontré que l'incertitude du modèle de la résistance globale peut être inférieure 
à celle des sous-modèles, en fonction de la sensibilité les liants. Sur la base de ces observations, 
différents types de formats partiels de sécurité pour les analyses basées sur les déformations sont 
comparés. La relation entre les facteurs de sécurité liés à la vérification du poinçonnement dans 
la deuxième génération de l'Eurocode 2 pour le dimensionnement de nouvelles structures et la 
vérification des structures critiques existantes est établie.   

La dernière partie de ce travail aborde le problème de la calibration du format des coefficients 
partiels de sécurité pour les structures présentant une réponse fragile. A titre d'exemple, le format 
partiel de sécurité pour la résistance à la flexion du béton textile (BT) est calibré en se 
concentrant sur l'incertitude du modèle des efforts internes pour les systèmes fragiles.  
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Sur la base de ces travaux, il est conclu qu'une modélisation probabiliste appropriée des 
incertitudes de base est essentielle pour une calibration efficace du format partiel de sécurité. 
Cette modélisation doit reposer sur une bonne compréhension du comportement mécanique de 
la transmission des charges. En se basant sur cette approche, l'utilisation d'un format de sécurité 
détaillé composé de facteurs de sécurité partiels calibrés pour les incertitudes prédominantes 
s’avère être une approche de vérification de la fiabilité efficace pour les équations de 
dimensionnement analytiques classiques ainsi que les méthodes d'analyse non-linéaire avancées, 
telles que les approches basées sur les déformations et l'analyse non-linéaire par éléments finis.. 

Mots-clefs : structures en béton armé, analyse de fiabilité, format des coefficients partiels de 
sécurité, analyse de sensibilité des exposants, analyse non linéaire, modes de rupture multiples, 
analyse basée sur les déformations, quantification de l'incertitude du modèle, inférence 
bayésienne, systèmes fragiles, béton textile. 
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摘要 
工程计算是对现实世界的一种近似，不可避免地会引入不确定性。因此，在结构设计和

评估中，有必要考虑不确定性开展可靠度校核。目前基于概率论的分项系数被广泛应用

于结构设计规范的结构可靠度校核条文中。伴随着工程知识技术的发展，安全系数也需

要相应地标定和更新。 

对于钢筋混凝土结构，随着非线性结构抗力分析方法（例如基于应变的抗力分析和非线

性有限元分析等数值方法）的广泛使用和新材料的应用，安全系数系统标定面临着一些

新的挑战。本项研究在分项安全系数的框架体系内研究了以下几个问题： 

本论文的第一部分，针对隐式的非线性结构分析模型中多重失效模式的影响，首先研究

了经典钢筋混凝土结构抗力分项系数标定过程中所采用的简化和假设的适用性。基于不

同尺度结构承载力（截面、构件和体系）的可靠度案例分析表明，应用于材料强度变量

的分项系数可以实现有效的可靠度校核，并且不受材料不确定性引发的多重失效模式的

影响。 

本论文的第二部分，以基于“临界斜裂缝理论（CSCT）”的冲切抗剪模型为例，研究

了基于应变的抗力分析方法的模型不确定性特点。结果表明，对此类模型，抗力解的总

模型不确定性可被视为子模型不确定性的结果；而总模型的不确定性可能小于子模型的

不确定性；他们之间的关系取决于总模型与子模型之间的敏感性关系。针对这一特点，

提出了两种适用于基于应变的抗力模型的分项系数体系。此外，本研究还阐明了第二代

欧洲混凝土结构设计规范中针对新结构设计和既有结构评估的冲切抗剪模型分项安全系

数之间的关系。 

本论文的最后一部分研究了脆性结构的安全系数标定问题。以织物增强混凝土结构

（TRC）抗弯分析的分项安全系数为例，研究了脆性结构体系的内力分析模型的不确定

性特点及其对此类结构的可靠度与安全系数的影响。 

本文研究表明，对基本不确定性（材料，几何尺寸和模型不确定性）合理概率建模是有

效标定分项系数基础，而基本不确定性的概率建模则需要基于对结构承载机制的全面认

知。在此基础上，无论对于经典的显式设计公式还是更为复杂的非线性结构抗力分析方

法而言，由施加于主导的不确定性上的分项系数组成的分项安全系数体系都是一项有效

的结构可靠度验核手段。 

关键词: 钢筋混凝土结构，可靠度分析, 分项安全系数体系, 指数敏感性分析, 非线性分

析, 多重失效模式, 基于应变的结构抗力分析, 模型不确定性量化, 贝叶斯推断, 脆性结构

体系, 织物增强混凝土. 
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Chapter 1 

Introduction 

1.1 Structural reliability and partial safety factor format 

It is pointed out in [CEB80a] that until the 19th century, all constructions were performed based 
on empirical design and safety depended on the experience and intuition of the builders. In the 
19th century, with the invention of metallic structures and the “Strength of Materials”, the 
concept of safety limit appeared in the form of allowable stress which were then considered by 
a “safety coefficient” applied to the material strength. The modern probability-based structural 
safety concept can be traced back to the 1920s. In the book “The Safety of Structures” (in 
German: Die Sicherheit der Bauwerke [May26]), Max Mayer proposed to calculate the safety 
factors for the loads, geometrical quantities and material strengths consistently with their mean 
values and standard deviations respectively and accounting for the concept of error propagation. 

Significant progress of the probabilistic-based structural safety theory and its application to 
codified design was made from the 1940s to the 1990s. Works on the relevant concepts (the 
interpretation of the probability of structural failure, categorization of uncertainties, limit states, 
action models, load combination models etc.)[CEB80a, CEB80b, CEB88, Ell78, Ell80, ISO86] 
and the reliability analysis approaches based on the First Order Reliability Method [Fre56, 
Cor69, Ros72, Has74] led to the formulation of the detailed probability-based partial safety 
factor format in modern design codes.  

The typical partial safety factor format used in structural design codes is briefly introduced in 
the following. 

The basic form of the structural reliability problem is the classical “R and E” problem [CEN02, 
Sch17], where E refers to the action effect and R refers to the corresponding structural resistance. 
Considering R and E as random variables, the probability of failure Pf  and the corresponding 

reliability index  for a given limit state are defined as: 

P( 0) fP R E    (1) 
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1( )fP    (2) 

Where P( )  is the probability function and 1( )   is the reversed cumulative distribution function 

of the standard normal distribution. 

The structural safety verification is performed by checking that the reliability index of the 
relevant limit state is not lower than the target reliability index: β ≥ βt. The target reliability index 
βt is defined based on the acceptable risk of failure of society, the economic criteria as well as 
the accumulated experience of the engineering profession form past practice [Dit96, Ell94].  For 
example, for the ultimate limit state of structures with medium consequence class with a 50 years 
reference period, a target reliability index of  βt = 3.8 is required in EN 1990 [CEN02] and fib 
Model Code 2010 [FIB13]. 

In design codes, the verification of structure reliability is further simplified by the so-called 
semi-probabilistic approach [CEN02], in which the verification of β ≥ βt is transferred into the 
verification that the design resistance Rd is no lower than the design action effect Ed:   

d dE R  (3) 

Within the FORM framework [Has74], the design values (Rd and Ed) should be based on the 
values of the basic variables at the FORM design point. The basic principle of the FORM is to 
calculate probability of failure (and the corresponding reliability index) by performing a first 
order Taylor expansion of the limit state function at the FORM design point, which is the point 
on the limit state surface (R - E = 0) closest to the mean value point in the standard normalised 
space (where the basic variables are transformed into standard normal distribution random 
variables). The FORM is based on the fact that the Joint Probability Density Function (JPDF) in 
the standardized normal space is axisymmetric and its value is rapidly decreasing with the 
increasing distance from the mean value point. A qualitative illustration of the location of the 
FORM design point is plotted in Figure 1.1 assuming that both R and E are normally distributed 
random variables. 

With the help of the FORM sensitivity factors αE and αR (refer to Figure 1.1) [Has74], the 
reliability verification can be further separated to the action effect side and the resistance side: 

E( ) = ( )dP E E     (4) 

R( ) = (- )dP R R     (5) 
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Figure 1.1: Illustration of the reliability index and the FORM design point for the limit 

state function R – E = 0 assuming independent normal distributions of R 

and E (figure adapted from EN 1990:2002 [CEN02]) 

The limit state function plotted in Figure.1.1 can be seen as the simplest form of the structural 
reliability problem. In design practice, both the resistance and the action effect involve multiple 
sources of basic uncertainties and the limit state function can have complex shape in high 
dimension space. A general summary of the basic uncertainties involved in the structural design 
problem is shown in Figure 1.2. 

 
Figure 1.2: Summary of the basic uncertainties involved in structural design  

Accounting for different sources of basic uncertainties (Figure 1.2) and using the FORM 
concept, the design action effect and design resistance can be assumed to be calculated with the 

 E
/σ

�

 R/σ�

α� β

Isolines of  JPDF

Failure zone

Limit state function R - E = 0 

Probability Density Function (PDF) of R/σ�

P
D

F
 o

f 
E/

σ E

α E β

Design point (Rd , Ed ) Mean point

β

PDF of performance function 

g = R - E E
d 
/σ

�

2D plot of the limit state 
in the standardized normal space 

Uncertainty in material properties

Model uncertainty in structural resistance

Ed=E{Fd,1 , Fd,2 ,...,ad,1 , ad,2 ,...θE,d,1 ,θE,d,2 ,...}

Limit state verification : Rd >Ed

Design value of action effect

Design value of resistance

Uncertainty in geometrical properties

Uncertainties in actions

Uncertainties in modelling actions and 

action effectis

Uncertainties in geometrical properties 

influencing actions 

θR,1 ,θR,2 ... 

Rd=R{Xd,1 , Xd,2 ,...,ad,1 , ad,2 ,...θR,d,1 ,θR,d,2 ,...} X1 ,X2 ... 

a1 ,a2 ... 

F,1 ,F2 ... 

θE,1 ,θE,2 ... 

a1 ,a2 ... 



Introduction 

4 

design values of the basic random variables (refer to Figure 1.2 for notations of basic uncertainty 
variables): 

 1 2 1 2 , 1 , 2 = , ,..., , ,... , ,...d d d d d E d E dE E F F a a    (6) 

 1 2 1 2 , 1 , 2 = , ,..., , ,... , ,...d d d d d R d R dR R X X a a    (7) 

The design values of the basic variables can be calculated with the suitably calibrated partial 
safety factors for the basic variables. Theoretically, an individual partial safety factor can be 
calibrated for each basic random variable accounting for the shape of the limit state function of 
each specific case to achieve the exactly target reliability level. This approach is however not 
applicable to daily engineering practice. Instead, usually some assumptions are made in order to 
simplify the safety format calibration for codified design. 

The first common assumption is to adopt standardized FORM sensitivity factors for the action 
effect and the resistance side respectively. For example, in EN 1990:2002 [CEN02]) , it is 

suggested that the values of E 0.7    and R 0.8   can be adopted provided that the ratio 

between the standard deviations of the action effect and the resistance is within the limit between 
0.16 and 7.6 [CEN02, Kön81]. This assumption makes it possible to calibrate the partial safety 
factors on the action side and the resistance side separately and also to calibrate the partial safety 
factors for actions regardless of the type of construction material, which significantly simplifies 
the safety format in practice. 

Another important simplification is that typically some partial safety factors for different basic 
variables are lumped together to reduce the total number of the partial safety factors in the design 
format. For example, for the design resistance, it is suggested in EN 1990:2002 [CEN02] that 
the partial safety factors for the geometrical, material and model uncertainties (denoted as Δa, 
γm and γR,d respectively) may be applied individually in the design resistance equation (see 
Figure 1.3) or they can be lumped into the partial safety factors applied to material strength 
variables directly (denoted as γM, see Figure 1.4).  

 
Figure 1.3: Format for the design resistance of structures composing of partial safety 

factors accounting for geometrical, material and model uncertainties 

individually  
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Figure 1.4: Safety format for the design resistance of structures composing of partial 

safety factors applied to material strength variables (accounting for 

geometrical, material and model uncertainties integrally) 

The partial safety factor format (with possible simplification of lumping several partial safety 
factors together) should be optimized in order to make the representative structures achieve a 
reliability index as close as possible to the target level. The choice of the safety format needs to 
account for the dominating uncertainties (which depends on the variability of basic uncertainties 
and the sensitivity of the structural resistance to them) and also the convenience of use for 
engineering practice.  

In this thesis, the scope is limited to the safety format calibration problem of the resistance side 
of reinforced concrete structures. In the following section, the new challenges in this field are 
briefly introduced.  

1.2 Reliability analysis and safety format calibration for 
the resistance of reinforced concrete structures: open 
questions 

For reinforced concrete structures, despite the wide application of the partial safety factor format 
in codified design, open questions emerge with the increasing application of advanced nonlinear 
structural resistance analysis approaches (e.g. strain-based design approaches and numerical 
methods like the NonLinear Finite Element Analysis) as well as the application of new materials.  

The first fundamental question is the influence of multiple failure modes on the reliability of 
design resistance of reinforced concrete structures. In suitably designed reinforced concrete 
structures, the concrete and steel reinforcement are supposed to sustain the compression and 
tension forces respectively in order to make full use of the advantages of both materials. From 
this perspective, reinforced concrete structures have multiple failure modes by 
design (dominated by concrete compression failure and steel yielding failure respectively). 
Based on this consideration, a widely used partial safety factor format for the resistance of 
reinforced concrete structures is composed of two partial safety factors, γC and γS, applied to the 
material strength variables for concrete and steel reinforcement respectively (this type of partial 
safety format is applied in [CEN04, FIB13,TÉC14, GB10] and other design standards inspired 
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on CEB-FIP Model Code 90 [CEB93] and previous versions [CEB64]). This pair of partial 
safety factors are usually considered suitable when the design resistance of structures is 
evaluated by analytical design equations. However, when nonlinear analysis methods are used 
and potentially multiple action effects and the corresponding failure modes are verified 
simultaneously, the effectiveness and the applicability of these partial safety factors needs to be 
further investigated [All13, Cer08, Sch11]. 

Another crucial question is the model uncertainty quantification of nonlinear structural 
resistance models [Cas18, Cer18, Eng17, Hau11, Kad15, Sch11]. With the increasing 
complexity of the structure resistance models, the complexity of the model uncertainty is also 
increased. A typical example can be found in the strain-based punching shear resistance model 
of the Critical Shear Crack Theory [Mut08], which is composed of two sub-models: the failure 
criterion model and the load-rotation relationship. The punching shear resistance is calculated 
by solving the equation set of these two sub-models. In this case, the model uncertainty can be 
represented and quantified at the sub-model level or at the global resistance solution level. 
Proper quantification of the model uncertainties and interpretation of the relationship between 
the model uncertainties of the global resistance solution and those of the sub-models is a 
fundamental question for the safety format calibration of such models. 

Last but not least, the partial safety format needs to be re-evaluated when the structural response 
is different from that of ordinary concrete structures. This is typically the case when new types 
of reinforcement materials are applied. For example, when reinforcement with brittle behaviour 
is used (e.g. Textile Reinforced Concrete with carbon or glass fabric [Val17]), the simplifications 
and assumptions in the partial safety format of reinforced concrete structures needs to be re-
evaluated regarding the change of the internal force redistribution capacity. For the design of 
ordinary concrete structures, when sufficient redistribution capacity can be assumed (e.g. for the 
flexural resistance of suitably reinforced beams), the model uncertainty in the calculation of the 
action effect in structural members has a relatively low influence on the structural reliability. 
However, since the redistribution capacity of the structure is limited when brittle reinforcement 
material is used, the action effect model uncertainty can have more significant influence and 
needs to be properly accounted for in its safety format calibration.  

1.3 Objective of the thesis 

 

Following the context described above, the general objective of this work is to re-evaluate the 
partial safety factor format framework for the design resistance of reinforced concrete structures 
considering the challenges related to nonlinear structural resistance analysis approaches (e.g. the 
strain-based approach for punching shear resistance [Mut08] and the NonLinear Finite Element 
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Analysis) as well as the application of new materials (e.g. Textile Reinforced Concrete 
[Val17])). More specifically, the objectives are the following: 

- To develop a suitable sensitivity analysis tool for the resistance of reinforced concrete 
structures that is convenient to use for the task of safety format calibration 

- To understand the similarities and differences between the explicit (e.g. classical design 
equations) and implicit nonlinear structural resistance analysis models (e.g. strain-based 
approaches and Nonlinear Finite Element Analysis in general) for concrete structures 
from the perspective of reliability analysis  

- To understand how the multiple failure modes involved in the implicit structural 
resistance models of reinforced concrete structures influence the reliability of the design 
resistance and to verify the applicability of the partial safety factor format in such cases  

- To investigate the relationship between the model uncertainties of the global resistance 
solution and the sub-models of the strain-based approaches for reinforced concrete 
structures based on relevant experimental data and to develop a suitable model 
uncertainty quantification approach for similar nonlinear analysis approaches 

- To investigate the suitable partial safety format for the strain-based punching shear 
resistance model based on the Critical Shear Crack Theory 

- To quantify the potentially increased action effect model uncertainty of reinforced 
concrete structures with brittle behaviour and to calibrate the partial safety factors for 
the flexural resistance design of Textile Reinforce Concrete structures on its basis 

1.4 Structure of the thesis 

This work is a compilation of three scientific articles. In addition to the Introduction, the four 
chapters included in the thesis are described below: 

 Chapter 2 presents an article published in the scientific journal Engineering 
Structures [Yu22]. This chapter presents a systematic investigate of the influence of the 
multiple failure modes induced by material uncertainties on the reliability of design 
resistance of reinforced concrete structures when the classical partial safety factor 
format (composed of two safety factors applied to material strength variables) is applied. 
Cases with increasing complexities in terms of the interaction between failure modes 
are investigated in order to clarify the consistency and applicability of the partial safety 
factors to such cases.  In addition, the suitability of the simplification of lumping the 
safety element for geometrical and model uncertainties into the partial safety factors for 
the material strength variables is discussed on the basis of the exponent sensitivity 
analysis of typical cases. 
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 Chapter 3 presents an article that is submitted to the scientific journal Engineering 
Structures [Yu23]. In this work, the model uncertainties of strain-based approaches for 
structural concrete are investigated using the punching shear resistance model of the 
Critical Shear Crack Theory (CSCT) as an example. The relationship between the model 
uncertainties of the sub-models and the global resistance solution in the strain-based 
approach is investigated through evaluation of the statistics of the model uncertainty 
data gathered based on relevant experimental test results. Furthermore, the model 
uncertainties of the different Levels-of-Approximation (LoAs) of the punching shear 
resistance are also quantified and compared. On the basis of the model uncertainty 
quantification result, different safety formats for the design models of strain-based 
approaches are compared, focusing particularly on the provisions for the punching shear 
design according to the new generation of Eurocode 2. 

 Chapter 4 presents an article published in the scientific journal Engineering 
Structures [Yu21]. In this work, the consistent design and safety format calibration of 
brittle reinforced concrete structure systems is investigated. The model uncertainty of 
the action effect in brittle systems of textile reinforced concrete structures is investigated 
based on test data and the result is applied to the calibration of the partial safety factors 
for the textile reinforced concrete structures subjected to flexural failure mode.   

 Chapter 5 summarizes the main conclusions of the thesis and discusses topics for future 
research. 

 Appendix A presents an example of the partial safety format calibration of the 
mechanical-based anchorage strength model of shear reinforcement in beams and slabs 
applying the methodology developed in this work. 

It should be noted that Chapter 2 to 4 include their own introduction, literature review, 
conclusions, annexes and notations as the present thesis is a compilation of journal articles 
(paper-based thesis). The full bibliography is provided at the end of the thesis. 

1.5 Scientific contribution of the thesis 

The main contributions of this thesis can be summarized as following: 

- A simple and intuitive local sensitivity analysis method (the exponent sensitivity 
analysis) is proposed to provide sensitivity information of the resistance models of 
reinforced concrete structures that can be conveniently used in the approximated 
reliability analysis with the FORM. 

- The exponent sensitivity analysis results of typical resistance models of reinforced 
concrete structures (e.g. the cross-sectional bending resistance, the in-plane shear 
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resistance of reinforced concrete panel, the coupled bending and shear resistance of 
reinforced concrete girder) are presented.  

- On the basis of the exponent sensitivity analysis result, the influence of the occurrence 
of multiple failure modes induced by material uncertainties on the reliability of the 
design resistance of reinforced concrete structures is clarified. 

- The methodology for the suitable representation and quantification of the model 
uncertainties of strain-based approaches for reinforced concrete structures is presented 
and applied to the punching shear resistance model of the Critical Shear Crack 
Theory (CSCT).  

- The relationship between the model uncertainty of the global resistance solution and 
those of the sub-models of strain-based approaches is established based on the exponent 
sensitivity analysis.  

- The suitable safety format for different Levels-of-Approximation (LoAs) of the 
punching shear resistance models of the CSCT are provided.  

- The methodology for quantification of the action effect model uncertainty of structural 
systems based on test data of structural elements is developed. The action effect model 
uncertainties of brittle reinforced concrete structural systems of Textile Reinforced 
Concrete (TRC) beams are quantified using the proposed approach.   

- Partial safety factor format for the flexural resistance design of TRC structures is 
calibrated accounting for the brittle behaviour as well as the influence of the potentially 
low thickness of TRC structural elements compared with traditional reinforced concrete 
structures.  

1.6 Limitations of the thesis 

This work is limited to the resistance side of reinforced concrete structures. The uncertainties 
and the safety factor calibration of the actions are not investigated. In addition, this work is 
limited to the Ultimate Limit State (ULS) verification of structures. 

No data is collected regarding the material strengths and the geometrical uncertainties in 
ordinary reinforced concrete structures. This work is performed based on established 
probabilistic models of these uncertainties from literature. 

The influence of the spatial variation and correlation of the basic geometrical, material and 
model uncertainties on the reliability of concrete structures is not investigated in this work. 
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Chapter 2 

Considerations on the partial safety 
factor format for reinforced concrete 
structures accounting for multiple 
failure modes 

This chapter is the post-print version of the article mentioned below, published in Engineering 
Structures Journal. The authors of the article are Qianhui Yu (PhD Candidate), Prof. Miguel 
Fernández Ruiz and Prof. Aurelio Muttoni (thesis director). The reference is the following: 

Yu Q., Fernández Ruiz M., Muttoni A., Considerations on the partial safety factor format for 
reinforced concrete structures accounting for multiple failure modes, Engineering Structures, 
Vol. 264, 114442, 2022. (DOI: https://doi.org/10.1016/j.engstruct.2022.114442) 

The work presented in this publication was performed by Qianhui Yu collaborating with Prof. 
Miguel Fernández Ruiz and under the supervision of Prof. Aurelio Muttoni, who provided 
constant and valuable feedback, proofreading and revisions of the manuscript. 

The main contributions of Qianhui Yu to this article and chapter are the followings: 

 Comprehensive literature review regarding the application of partial safety factor format 
and global safety factor format for the codified design of reinforced concrete structures. 

 Proposition of a simple and intuitive sensitivity analysis approach (exponent sensitivity 
analysis) to quantitatively represent different failure modes.  

 Reliability analysis of typical resistance models of reinforced concrete structures at 
difference scales (cross-sectional resistance or load-bearing capacity of structural 
element and simple structural systems). 

 Interpretation of the reliability analysis result for typical resistance models with a 
detailed analysis of the shape of the corresponding limit state functions and the exponent 
sensitivity analysis. 
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 Clarification of the influence of multiple failure modes induced by material uncertainties 
on the achieved reliability of design resistance for reinforced concrete structures with 
the partial safety factor format. 

 Interpretation of the influence of tail approximation in the reliability analysis of the 
resistance of reinforced concrete structures. 

 Proposition of a simple and practical test procedure for the validity of the non-
decreasing assumption of the structural resistance model and the corresponding 
applicability of the partial safety factor format. 

 Elaboration of the figures and tables included in the article. 

 Writing of the manuscript of the article. 
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Abstract 

The increasing usage of nonlinear analyses for the design of reinforced concrete structures and 
the necessity of codes of practice to provide a consistent safety format for them is one of the 
challenges that new generations of codes of practice are facing. Suitable safety formats shall 
thus account for the peculiarities of nonlinear analysis, such as the possibility of having multiple 
potential failure modes. In this work, the applicability of the classical Partial Safety Factor 
Format (PSFF) for the resistance of reinforced concrete structures (composed of two safety 

factors: C for concrete compressive strength and S for reinforcement yield strength) is 

investigated accounting for the possibility of multiple failure modes in nonlinear analysis. In 
addition, the similarities between nonlinear analysis and typical simple cases in the design of 
structural concrete are shown. Reliability analysis is performed for the design resistance of 
concrete structures according to PSFF under different design situations (cross-sectional 
resistance or load-bearing capacity of structural elements and of simple structural systems). The 
results show that the PSFF applied to material strength variables leads to a satisfactory level of 
reliability, independently of the development of different failure modes induced by material 
uncertainties in nonlinear analysis. In addition, it is also observed that the simplification of 
integrating geometrical and model uncertainties into the partial safety factors for material 
strength variables can potentially underestimate their influence on the structural reliability in 
some cases. The case studies shows that occurrence of multiple failure modes can result into 
significantly different distribution characteristics between the tail and most probable region of 
the resistance of concrete structures. Attention should also be paid to a proper tail approximation 
of the probability distribution of the resistance when calibrating safety formats for concrete 
structures. 

Keywords: reliability verification, partial safety factor format, structural concrete resistance, 
multiple failure modes, nonlinear finite element analysis  

2.1 Introduction 

Every engineering calculation is an approximation of reality, with unavoidable epistemic and 
aleatoric uncertainties. This fact implies that a reliability verification is a necessary step within 
a design or verification procedure, as provisioned in codes of practice under various formats. 
Within this context, the Partial Safety Factor Format (PSFF) is one of the most widely adopted 
approaches to ensure reliable designs, due to its robustness, simplicity and generality [Dit96].  

The PSFF results from the application of the semi-probabilistic approach, in which the reliability 
verification is simplified to verify if a structure fulfils a given set of inequalities using design 
values of the basic variables [CEN02]. The reliability requirement is accounted for in the design 
values of the basic variables by means of partial safety factors calibrated on the basis of 
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reliability analysis. A major advantage of PSFF is that it can be formulation-invariant [Dit96]. 
Different forms of PSFF are used in modern design codes for structures, which result from the 
different choices in the assumptions and simplifications adopted in the calibration procedures. 
One widely used simplification in the PSFF is to calibrate the partial factors on the resistance 
and action side separately by adopting standardized First Order Reliability Method (FORM) 
sensitivity factors [CEN04, FIB13, Kön81]. This treatment largely reduces the complexity of 
the safety format calibration and also makes it possible to use a fixed set of partial factors on the 
action side, independently of the material used for construction. It also allows to define the 
partial safety factors for materials independently of the governing loading situation. For the 
evaluation of the resistance of structures, with particular application to structural concrete, there 
are two major approaches to implement the PSFF [Ell80]: 

 Providing partial safety factors for calculating the design values of material strength 
variables. This PSFF is adopted in many design codes, such as Eurocode 2 for concrete 
construction (EN1992-1-1:2004) [CEN04], Model Code 2010 [FIB13] , the Brazilian 
standard NBR 6118:2014 [TÉC14] , the Chinese standard GB50010-2010 [GB10] and 
other design standards inspired on the CEB-FIP Model Code 90 [CEB93] and previous 
versions [CEB64] .  

 Providing tailored partial safety factors for calculating the design value of a structural 
member’s resistance for different action effects (such as axial force, bending or shear). 
This approach is for instance implemented in American standards (such as ACI 318-
19 [ACI19] and AASHTO LRFD [AAS20]), the Canadian standard CSA 
A23.3 [CSA14] and the Australian standard AS3600-2018 [Sta18]. 

The PSFF implemented on material strength variables will be the focus of this work, consistently 
with the provisions of Eurocode 2 for concrete construction (EN 1992-1-1:2004 [CEN04]). In 
this approach, the partial safety factors of concrete and reinforcement strength are calibrated 
separately, accounting for different values of material, geometrical and model uncertainties. The 

partial safety factor of concrete (C) is typically calibrated using probabilistic modelling of basic 

geometrical and model uncertainties of compression members, where the reinforcement 

uncertainties are neglected. Conversely, the partial safety factor of reinforcing steel (S) is 

typically calibrated based on data of bending of a cross section with moderate reinforcement 

ratio, which is the most common case where S applies [Eur08]. As it can be noted, no 

interactions between the two materials are explicitly accounted for in the safety format 
calibration [Eur08]. Such an approach is very simple to use and to understand by designers, but 
has received criticism particularly concerning nonlinear analysis [All13, Cas19, Cer08, Sch12]. 

Whether this classical combination of safety factors of C and S for reinforced concrete 

structures is still suitable to be extended to nonlinear analysis method has been discussed 
extensively in the development process of the 2nd generation of Eurocode for concrete 
structure [CEN23]. The main concerns with this respect deal with the potential development of 
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different failures modes, particularly when Nonlinear Finite Element Analysis (NLFEA) is 
performed[All13, Cas19, Sch12] to assess structural resistance.  

In nonlinear analyses, usually, there is no closed-form solution for the resistance as a function 
of the basic design variables and the shape of the limit state function may vary from case to 
case [Bel15, Syk18, Yu20]. Furthermore, when NLFEA is used, different types of action effects 
and failure modes are implicitly verified at the same time, leading to a complex limit state 
function. The safety format calibration procedure for this type of problem is thus not 
straightforward.  

Research efforts have been devoted in the past to the study of safety formats for NLFEA of 
concrete structures at ultimate limit state [All13, Ben12, Cas19, Cer08, Pim14, Sch11, Sch12]. 
An alternative to PSFF to account for reliability in design are approaches based on the Global 
Safety Factor Format (GSFF). For reinforced concrete structures and nonlinear analysis, 
developments have been proposed by Ben Ftima et al. [Ben12], Cervenka et al. [Cer08], Schlune 
et al. [Sch12] and Allaix et al. [All13]. In these approaches, the resistance random variable is 
approximated with a given type of probabilistic distribution (usually lognormal) and by statistics 
of resistance data of sampling points around the mean values of the basic variables. An obvious 
drawback of these methods is that the sampling points used for the distribution parameter 
estimation of the resistance variable are potentially far away from the limit state function and 
the tail distribution of the resistance variable. This can lead to poor fit of the probabilistic 
distribution of the resistance variable in the tail region [Pim14], which is a the most relevant 
region concerning structural reliability [Rac77, Sch17]. In addition, the goodness-of-fit in the 
tail region is difficult to investigate on the basis of standard tests [Dit94, Der09]. Besides the 
above-mentioned methods, other approaches to the safety format problem for NLFEA have also 
been developed. For instance, Castaldo et al. [Cas19] have proposed a method based on testing 
whether multiple failure modes exist (by checking if sets of sampling points have the same 
failure modes). In such case, it is proposed in [Cas19]  to consider an additional safety factor 
accounting for the influence of multiple failure modes.  

In this work, the applicability of PSFF to cases involving multiple failure modes is investigated. 
The manuscript presents in a detailed manner the simplifications and assumptions used in PSFF 
to consider multiple failure modes. These concepts are eventually applied to a number of case 
studies focusing on nonlinear analyses for structural concrete design. The cases are selected to 
have increasing complexity in terms of the interaction between failure modes, in an effort to 
clarify the consistency and applicability of the PSFF to such cases.  Since the issue of multiple 
failure modes is usually considered as a consequence of the combination of different material 
strengths [Cas19], this work will focus first on material uncertainties. Subsequently, the question 
of proper consideration of geometrical and model uncertainties will be addressed.    
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2.2 Partial safety factor format for structural concrete 
design 

2.2.1 Assumptions and simplifications of the PSFF formulation 

In the reliability verification of reinforced concrete structures, the limit state functions for the 
resistance to different action effects have different forms. Ideally, to achieve a uniform reliability 
level, the partial safety factors for material strengths need to be calibrated for each individual 
case according to the pertinent limit state function. A direct application of such approach, 
considering different partial safety factors for different structural verifications, may however be 
inconvenient for practice. As a consequence, some simplifications are usually assumed when 
deriving partial safety factors for the design and the verification of reinforced concrete 
structures.  

In Eurocode 2 [CEN04], the calibration of partial safety factor  for material strengths is based 

on the principles of the First Order Reliability Method (FORM) [CEN02, Has74]. Background 
to the application of this approach in Eurocode 2 [CEN04] is provided in its 
commentary [Eur08], where the following equation is introduced to calculate the partial safety 
factors for concrete and reinforcement: 

exp( 1.64 ) exp(3.04 1.64 )k
M R t R f R f

d

f
V V V V

f
        (1) 

2 2 2
modR geom fV V V V    (2) 

Where is the partial safety factor for material strength; fk and fd  are the characteristic and the 

design value of material strength, respectively; R is the standardized FORM sensitivity factor 

for resistance (typically R = 0.8 [CEN02, Kön81]; t is the target reliability (t = 3.8 for the 

ultimate limit state of structural elements with moderate consequence class with 50 years 
reference period [CEN02]; VR is the Coefficient of Variation (CoV) of the resistance random 
variable; Vmod, Vgeom and Vf are the CoV of model, geometrical and material uncertainties, 
respectively. The value of -1.64 in Eq.(1) refers to the 5% fractile of a standard normal 
distribution, resulting from the fact that the partial factor is used to calculate the design value of 
the material strength on the basis of the 5% fractile characteristic value. It should be noted that 
the formulation of Eq. (1) assumes both the resistance and the material strength follow lognormal 
distributions.  

It can be observed from Eqs. (1) and (2) that since the standardized FORM sensitivity factor (R 

= 0.8 [CEN02, Kön81]) for resistance is adopted, the target reliability index for the design 

resistance is set as Rt. Correspondingly, the failure probability for the design resistance 

(denoted as ,f RP ) can be defined as the probability of the resistance being lower than the design 
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value ( , ( 0)f R dP P R R   ) and its corresponding target value is set as , , ( )f tag R R tP     . It 

should be noted that ,f RP  is different from the failure probability of the structure (denoted as Pf), 

since Pf refers to the probability of the resistance being lower than the action effect (

( 0) fP P R E   ). The target failure probability for the structure is , ( )f tag tP    . It can be 

noted the value of , ,f tag RP  is higher than ,f tagP . In this work, the scope is limited to the resistance 

side (the limit state of 0dR R  and the corresponding reliability index of Rt). It should be 

noted that parameters on the action side (e.g. the ratio of design variable load to the total design 
load [Pac21]) can have a significant influence on the applicability and adequacy of the 

standardized sensitivity factor R. This aspect will not be explicitly addressed in this work, which 

focusses on the multiple failure modes problem on the resistance side and its reliability 
implications.  

Eqs. (1) and (2) also show that for each material, the random variables representing model and 
geometrical uncertainties are lumped with the material uncertainty into one random variable. 
This is a simplification of the resistance function whose suitability will be discussed in Section 
2.9 of this work. In addition, the partial safety factors for concrete and steel reinforcement are 
calibrated separately. This treatment can be seen as another simplification of the limit state 
function, implying that two limit state functions are verified independently: one governed by 
concrete compressive strength only and another governed by steel yield strength only. These 
two limit states will be referred to as Boundary Limit States (BLSs). Applying PSFF ensures 
that the probability of failure for each BLS (Pf,R,i) respects the target probability of failure for 
resistance (Pf,tag,R ): 

, , , ,( ) ( ) ( )      1, 2f R i i i id R t f tag RP P F P f f P i          (3) 

where Pf,R,i is the probability of failure for boundary limit state i, P(ꞏ) is the cumulative 
probability function, Fi is the failure domain of boundary limit state of material i, fi is the random 

variable of strength of material i, fid is the design value of material i, (ꞏ) is the Cumulative 

Distribution Function (CDF) of standardized normal distribution, Pf,tag,R is the target probability 
of failure for resistance, and i =1,2 refers to steel reinforcement and concrete, respectively. 

When considering the material uncertainty only (the issue of model and geometrical 
uncertainties will be discussed later in Section 2.10), the shape of the two BLSs can be plotted 
in the standard normal space as shown in Figure 2.1, where 

yfX and 
cf

X represent the yield 

strength of the reinforcement and the concrete compressive strength random variable 
transformed into the standard normal space (where both variables are transformed into standard 
normal distributed random variables). In the case that both material strengths are assumed to 
follow lognormal distribution, the transformation function are as follows:  

ln

ln

ln( )
y

y

y

y f

f
f

f
X






  (4) 
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ln
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ln( )
c

c

c

c f

f
f

f
X





  (5) 

Where
yfX and 

cf
X are the material strength random variables transformed to the standard 

normal space, fy is the reinforcement yield strength, fc is the concrete compressive strength,  ln yf

and ln cf
 are the mean values of the logarithmic material strength random variables and ln yf  and 

ln cf
  are the corresponding standard deviations.  

 
Figure 2.1: Illustration of relation between actual limit state from case study I, II and 

IV in Section 2.4-2.7 and BLSs (Xfy and Xfc are the material strength random 

variables transformed to the standard normal space). 

The actual limit state functions can be quite different from the BLSs (example of the shapes of 
actual limit state functions from case study I, II and IV in Section 2.4-2.7 are also plotted in 
Figure 2.1 for comparison). To make a connection between the actual limit state and BLSs, a 
reasonable assumption is made on the resistance function. The assumption is as follows: If some 
of the material strengths increase and the rest remains unchanged, the resistance of the structure 
will not decrease; if all the material strengths increase, the resistance will also increase (as for 
the assumption according to limit analysis [Pra51]). This assumption will be referred to as the 
non-decreasing assumption in the following. The suitability of this assumption will be discussed 
later. Based on the non-decreasing assumption of the resistance function, the sum of the two 
BLSs forms an envelope for the actual limit state, as is illustrated in Figure 2.1. An upper bound 
of the actual probability of failure can then be easily derived: 

, 1 2 1 2 1 2 , ,( ) ( ) ( ) ( ) ( ) 2f R f tag RP P F P F F P F P F P F F P          (6) 

Where F is the actual failure domain.  

For a structural resistance subjected to two independent material strength random variables, 
applying PSFF, the upper bound for the actual probability of failure corresponds to twice the 
target value, 2Pf,tag,R, which seems to be within the acceptable range for reliability verification 
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using semi-probabilistic methods [Kön81], since the reliability index would decrease from 3.04 

(= R ∙t = 0.8∙3.8, corresponding to a Pf,R = 1.2∙10-3) to 2.82 (Pf,R = 2∙ 1.2∙10-3) in the worst case.  

From another perspective, the treatment of calibrating the partial safety factors for concrete and 
steel reinforcement strength separately can also be interpreted as both concrete and steel 
reinforcement strength are assumed to be dominating and both of their FORM sensitivity 
factors [Mad86] assumed equal to one: 

,
1

c af   (7) 

,
1

y af   (8) 

Where 
,c af  and 

,y af are the FORM sensitivity factors of concrete strength and of steel 

reinforcement yield strength, respectively (in addition to the standardized FORM sensitivity 

factor for resistance (R)). It should be emphasized that 
,c af  and 

,y af are the FORM sensitivity 

factors corresponding to the limit state of 0dR R  with the target reliability index of Rt.  

From the FORM perspective, this seems a conservative assumption since the sum of squares of 

,c af  and 
,y af are higher than one. The suitability of this assumption will however be examined 

by studying the shape of the actual limit state functions in some representative cases of concrete 
structures (see case studies presented in Sections 2.4-2.7). 

From Figure 2.1, it can also be observed that by applying the PSFF, the distance from the closest 
point (the FORM design point) on the BLSs to the origin point in the standard normal space is 

limited to Rt. Since the actual limit state function is bounded by the BLSs (on the basis of the 

non-decreasing assumption), the distance from the FORM design point on the actual limit state 

function to the origin point should also not be smaller than Rt. In other words, PSFF ensures 

that the probability of failure estimated with FORM respects the target value. 

It should be noted that in the previous derivation, only two basic variables, fc and fy, are 
considered for the material uncertainties. When other material parameters are dominating (for 
instance, the concrete tensile strength or the elastic moduli), additional considerations need to 
be taken into account.   

The previous analysis shows that for a non-decreasing structural resistance, PSFF should yield 
a satisfactory reliability level with respect to material uncertainties. However, for cases where 
the non-decreasing assumption of the resistance function is invalid (as those governed by crack 
localization), the reliability verification is more complex, requiring to identify such cases by 
means of a simplified method as later discussed in Section 2.9.  

The previous considerations show that the applicability of PSFF depends on the shape of the 
limit state function, which is governed by the mechanical response of the member. In Sections 
2.4-2.7, the reliability analysis of some typical cases of reinforced concrete structural elements 
is investigated in detail. The actual limit state functions of these cases are compared with the 
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BLSs assumed by PSFF. The reliability analysis is performed for these cases to verify the result 
of the previous theoretical analysis. Before going into detail on the reliability analysis of 
concrete structures, a simple and intuitive sensitivity analysis method is introduced as a tool to 
quantitatively identify different failure modes and also to help interpreting the results of 
reliability analyses.  

2.3 Exponent sensitivity analysis 

 

Sensitivity analysis can describe how the variability of the model response is affected by the 
variability of each input variable or their combinations [Mar21]. It is a widely used tool for 
model interpretation and simplification [Ioo15]. In this section, a simple local sensitivity analysis 
method is developed for the resistance of reinforced concrete structures, in an effort to 
understand and to distinguish different failure modes. The partial derivatives of the logarithmic 
resistance to the logarithmic basic variables is used as the sensitivity factor and the finite-
difference approximation method [Sal00] is used to calculate them. This local sensitivity factor 
is referred to as the “exponent sensitivity factor” (or only “exponent”) in the rest of the work. 
The detailed procedure for derivation of the exponent sensitivity factor will be introduced and 
the motivations for using it will be explained more in detail in the following. 

Consider the resistance R as a function of basic parameters 1 2,...,( , )pf f f : 

1 2,...,( , )pR R f f f  (9) 

Components of the basic parameter vector 1 2,...,( , )pf f f  can be any model parameter, including 

material strengths, material elastic moduli and geometrical parameters. The exponent sensitivity 
factors are defined based on the power multiplicative form approximation of the resistance 
function: 

0
1 ,0

f j
n

p
j

j j

f
R R

f

 
    

 
  (10) 

Where 0R  is the resistance at a reference point 1,0 2,0,..., ,0( , )pf f f  and nfj is the exponent sensitivity 

factor for parameter fj.  

The approximation in Eq. (10) is equivalent to perform first order Taylor expansion of the 
logarithm of the resistance function in the logarithmic space of the model parameters. The 
exponent sensitivity factor nfj for each parameter fi can be easily derived by calculating the direct 
differentiation of ln( )R  over ln( )jf numerically at the reference point: 
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1,0 ,0 ,0 1,0 ,0 ,0ln( ( ,..., ,..., )) ln( ( ,..., ,..,. ))(ln( ))

(ln( ))
j p j p

fj
j

R f f e f R f f fR
n

f

 
 
 


 (11) 

Where  is a sufficiently small increment of parameter ln( )jf . 

There are several considerations for using the exponent sensitivity factors in the reliability 
analysis of concrete structures: 

According to dimensional analysis, the sum of all exponents of material strength variables and 
the elastic modulus variables should be equal to 1 (refer to Appendix 2.A for cases where the 
sum of exponents can be less than 1). The same consideration applies also to the geometrical 
variables (the sum of the exponents of the geometrical variables is equal to 2 for forces and equal 
to 3 for moments). This property can help making comparisons of the exponent sensitivity 
factors of material strength variables (and geometrical variables) between different failure 
modes.  

When only material uncertainties are accounted for and they are modelled with lognormal 
distributions, the FORM sensitivity factors can be calculated directly from the exponent 
sensitivity factors and the CoV of the basic variables at the FORM design point by Eq.(12) 
and (13). In the following case studies, the exponent sensitivity factors of material strength 
variables are calculated at the PSFF design point (fyd, fcd). Although the position to calculate the 
exponent sensitivity factors are not strictly the FORM design point, the exponents can still give 
useful information for the reliability analysis. It should be noted that the intention of the 
proposed exponent sensitivity factors is not to replace the FORM sensitivity factors, but to 
provide additional sensitivity information that has direct link to the mechanical behaviour of 
concrete structures.  

The exponent sensitivity factors provide valuable information about the mechanical behaviour 
of concrete structures, which are independent from the probabilistic models of the basic variables 
as well as from other assumptions and simplifications in the safety format calibration procedure. 
For a given resistance model, the exponent sensitivity factors for the full applicable range of the 
model are especially useful since they can be used for the safety format calibration accounting 
for different probabilistic models of the basic variables in different design situations.  

, 2 2 2 2

 
 =

c a

fc fc
f

fc fc fy fy

n V

n V n V



 (12) 

, 2 2 2 2

 
 = 

y a

fy fy
f

fc fc fy fy

n V

n V n V



 (13) 

Based on the above-mentioned considerations, the exponent sensitivity analysis is used for 
understanding and distinguishing different failure modes of concrete structures (i.e. which 
material or materials govern the resistance). In the following sections, the reliability analysis of 
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some typical concrete structure resistance cases will be studied and the exponent sensitivity 
analysis will also be performed to help interpret the results of reliability analysis.  

2.4 Case study I: System with uncoupled concrete and 
steel failure 

 

2.4.1. Definition of the case study  

In this section, a simple case is analysed illustrating a situation where the upper bound of the 
probability of failure (2Pf,tag,R  for cases with two material basic variables) is reached. The case 
considers a structure composed of three elements: a steel tie and a column bearing a rigid beam 
subjected to a concentrated load Q (see Figure 2.2, self-weight neglected). The resistance of the 
structure is represented by a resistance variable R which is equal to the concentrated load Q. 

 
Figure 2.2: (a) Column and tie system (unit of dimensions: mm); (b) concrete 

constitutive law; and (c) steel constitutive law. 

In this structure, the beam is assumed to be a non-critical element, with failures only occurring 
in the column or in the tie. In the column, the 2nd order effects are assumed to be negligible and 
the contributions of both longitudinal and confinement reinforcements are neglected. Since the 
system is statically determinate, the resistance function of the system can be directly derived, as: 

1 1

2 1 2

( , ) min( , )y c y T c C

l l
R R f f f A f A

l l l
   


 (14) 

Where R(ꞏ) is the resistance function, fy is the yield strength of steel, fc is the compressive 
concrete strength , AT is the area of the steel tie and AC is the cross-section area of the concrete 
column (refer to Figure 2.2). In the following, the cross section area of the concrete column AC 
is assumed to be constant while the area of the steel tie AT is varied. 

As previously explained, the reliability analysis presented in this section considers only material 
strength parameters as random variables in the resistance function. A lognormal distribution is 
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assumed for both materials strengths with the CoVs as follows:  Vfc = 0.15 for concrete and Vfy 

= 0.04 for steel. It should be noted that the mean values of the material variables are not specified 
so the following conclusions are independent of them. 

For each case, when applying PSFF, the design resistance and the corresponding limit state 
function for the resistance can be formulated as:  

( , ) ( , ) ( , ) ( , ) 0
s c

yk ck
R d y c yd cd y c

f f
G R R R f f R f f R f f R

 
        (15) 

Where GR is the limit state function for the design resistance; Rd is the design resistance with 
PSFF, fyk and fyd are the characteristic and design values of steel yield strength, respectively; fck 
and fcd are the characteristic and design values for concrete compressive strength, respectively; 

s is the partial factor for steel yield strength considering material uncertainty only and c is the 

partial factor for concrete compressive strength considering material uncertainty only (the 
terminology of according to EN 1990:2002 [CEN02] is adopted here, where lowercase indices 
refer to partial safety factors accounting for material uncertainties only, whereas uppercase 
indices refer to the partial safety factors accounting for the geometrical and model uncertainties 
also). 

For the values of the partial factors, considering only the material uncertainties, Eq.(1) can be 
reformulated as Eq. (16) and (17): 

exp( 1.64 )
c c cR t f fV V     (16) 

exp( 1.64 )s R t fy fyV V     (17) 

In the following, the reliability analysis for the limit state defined in Eq.(15) for each 
case will be performed with Monte Carlo simulation. 

For the purpose of performing reliability analysis, the crude Monte Carlo simulation [Mel18] 
with Latin Hypercube Sampling (LHS) method [Mck00, Ols03] is used to analyse the 
distribution of resistance R. Based on the resulting distribution from Monte Carlo analysis, the 

actual achieved probability of failure Pf,R and reliability index MC  by PSFF can be determined. 

One million  sample points are used in each Monte Carlo simulation to reduce the statistical 
uncertainty in the estimated probability of failure [Sho68].  

Besides the reliability index MC  directly derived from empirical distribution of the Monte Carlo 

simulation data, another reliability index LN  is also calculated by directly approximating the 

distribution of resistance variable R with a lognormal distribution. The distribution parameters 
are approximated with the mean and CoV of the corresponding Monte Carlo simulation data. It 

should be pointed out that LN  has the drawback of potentially neglecting tail approximation of 

the resistance distribution. The motivation for calculating the index LN  is to verify the approach 

when a lognormal distribution is used to approximate the distribution of R, which has been 
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adopted in several researches about GSFF [All13, Cas19, Cer08, Sch12]. By comparing LN  

and MC , one can examine the error generated by neglecting the tail approximation and 

determine if the approximation performed in calculating LN  is suitable.  

2.4.2. Reliability analysis result 

Monte Carlo simulations are performed for all cases and the actual achieved reliability index 

MC  and the lognormal distribution approximated reliability index LN  are given in Figure 2.3. 

It should be noted in Figure 2.3, the results are plotted with the normalized  steel tie cross section 

area variable ,TA  , which is defined by the expression , 1 2(1 / )ydT
T

C cd

fA
A l l

A f     . Comparing with 

Eq.(14), it can be observed that  ,TA   is equal to one when the steel tie and the concrete column 

fails at the same time at the PSFF design point (fyd, fcd). The limit state function for the case of 

, 1TA    is plotted in Figure 2.4. This case corresponds to the lowest achieved reliability level ( 

,min, 2.82MC I  ) of this case study.  From the limit state function plot of Figure 2.4, it can be 

directly observed that the two BLSs are both activated in this case and the achieved Pf,d is 
approximately twice the target value as previously discussed in Section 2.2.  However, from the 

MC  plot in Figure 2.3, it can be observed that as long as one of the elements is designed with 

certain strength margin, the resulting Pf,R will be less than 2Pf,tag.R and the corresponding 
reliability index will be closer to the target level.  

 
Figure 2.3:  Reliability indexachieved by PSFF for cases with different cross-section 
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Figure 2.4: Resistance function isolines, limit state function and Joint Probability 
Density Function (JPDF) plot for , 1TA    case: (a) 2D view and (b) 3D 

view. 

2.5 Case study II: bending resistance of A cross-section 
(coupled failure modes) 

In this section, a bending resistance case study is presented to further clarify the performance of 
PSFF for a limit state potentially dominated by two failure modes. The reliability analysis is 
developed for the bending resistance of a rectangular beam cross section (Figure 2.5a). The 
bending resistance is evaluated by considering a bi-linear response of concrete with strain 
limitation and neglected tensile strength, an elastic-perfectly plastic response of steel (Figure 
2.5b-c) and assuming that sections remain plane after deformation (Euler-Bernoulli hypothesis).  

 
 

Figure 2.5: (a) Cross-section (unit of dimensions: mm); (b) concrete constitutive law; 

and (c) steel constitutive law. 
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2.5.1  Definition of case study series and reliability analysis results 

A lognormal distribution is assumed for both materials strengths with the mean values and the 
CoVs as follows:  fcm = 38 MPa ;  Vfc = 0.15 for concrete and fym = 540 MPa;  Vfy = 0.04 for steel 
(resulting fcd = 24.1 MPa and fyd = 478.2 MPa according to Eq.(16) and (17). It should be noted 
that the elastic moduli of both materials are accounted for as deterministic values, with Ec = 
30000 MPa and Es = 200000 MPa. 

The width b and effective depth d of the cross section are assumed constant whereas the 

longitudinal reinforcement ratio L is varied (deterministically) between 0.16% and 4% in order 

to generate cases governed by different failure modes. 

Similar to the previous case study series, the achieved reliability index for the limit state of R -
Rd = 0 (the same formulation as in Eq.(15)) is investigated. The results of Monte Carlo analysis 
are presented in Figure 2.6(a). It can be noted that, within the range of simulation, the achieved 
reliability index is either close to or higher than the target reliability index ( ,min, 2.98MC II  ). This 

shows that PSFF yields an acceptable reliability level. By comparing also LN  with MC , it is 

observed that, in some cases, LN  is significantly higher than MC , which shows that there is a 

significant difference between the approximated lognormal distribution (used in calculating LN

) and the actual distribution of the resistance variable. For the case where LN  is higher than 

MC , the CoV of the whole sampling data is lower than that of the tail region of the distribution. 

This result shows that calibrating the partial factor by a direct approximation of the resistance 
function with a lognormal distribution using the CoV of the whole sampling data can lead to 
unsafe result. This issue will be discussed in more detail Section 2.5.4. 
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Figure 2.6: (a) Reliability index achieved by PSFF for different flexural reinforcement 

ratio L; (b) exponent sensitivity factor n of concrete compressive strength 

fc, steel yield strength fy, concrete elastic modulus Ec and steel elastic 

modulus Es; (c) comparison between square of approximated FORM 

sensitivity factor 2
fc,a and Sobol’s total index Sfc  and (d) CoV of the 

resistance variable based on Monte Carlo analysis 
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2.5.2 Exponent sensitivity analysis and failure regimes study 

To help understanding the simulation results, the exponent sensitivity factor for fc , fy , Es, and 
Ec, are calculated at the PSFF design point for each case. The results are plotted in Figure 2.6b.  

Although Es, and Ec are considered as deterministic parameters in this study, their exponent 
sensitivity factors are presented here to help understanding the different mechanical behaviour 
of different failure modes. It can be observed that there is a discontinuous point on each exponent 

curve at the reinforcement ratio L = 2.65% (corresponding to a mechanical reinforcement ratio 

0.53yd
L L

cd

f

f
    ). This shows that there is an abrupt change in the regime of the resistance 

function at this point. From a mechanical point of view, the failure mode changes at this point. 

At the PSFF design point, when L < 2.65%, both nfy and nfc are non-zero and their sum is equal 

to one, implying a suitably-reinforced behaviour governed by both material strengths (Regime 

). When L > 2.65%, nfy is reduced to zero, which implies that over-reinforced bending 

behaviour is governed only by concrete strength (Regime , where the elastic moduli have also 

an influence on the resistance, but their uncertainty is neglected here). Comparing the MC curve 

in Figure 2.6a with the exponent curves in Figure 2.6b, it can be observed that when the PSFF 

design point is governed by Regime , the achieved reliability MC is usually higher than the 

target value. This means that the PSFF gives a conservative estimate of the design resistance. 

When the PSFF design point is however governed by Regime , the achieved reliability MC is 

close to the target value.  

For comparison reason, the FORM sensitivity factor for concrete strength estimated based on 
exponent sensitivity factors (calculated with Eq. (12)) is compared with the classical global 
sensitivity measurement total Sobol’s index [Sob90] in Figure 2.6c. It can be observed that while 
Sobol’s index provides valuable information about the global sensitivity of the performance 
function, it does not reflect the shift of regime of the reliability analysis result. The latter occurs 
due to the local change of shape of the limit state function. For the purpose of identifying 
multiple failure modes and their influence on the reliability, the FORM sensitivity factor 
(estimated based on the exponent sensitivity analysis) provides thus a more straightforward 
information. The FORM sensitivity factor plot reflects the shift of regime in the achieved 

reliability index MC . In addition, the relation between the occurrence of the maximum value of 

MC  and the FORM sensitivity factor will be explained with more detail in the following. 

It is also interesting to observe from Figure 2.6d that in the over-reinforced regime (Regime ), 
the CoV of the resistance variable (VR) is lower than the CoV of  fc even though in this regime 
the resistance is dominated by concrete strength only. The result can be explained by an 
approximation of the CoV of the resistance with the help of the exponent sensitivity factors. In 
this range, since 0fyn  , the CoV of the resistance can be roughly approximated as 
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2 2 2 2
R fc fc fy fy fc fcV n V n V n V   .  Since fcn  is lower than 1 (due to the influence of nEc and nEs), it 

naturally leads to the result of R fcV V  . 

2.5.3 Analysis of selected cases 

To help understanding the two types of performance of PSFF, two representative cases are 

presented in the following, corresponding to flexural reinforcement ratios L equal to 1.8% and 

2.65%, whose results are plotted in the standard normal space in Figure 2.7 and Figure 2.8, 
respectively. It can be observed that the limit state functions are both composed of two parts for 
the two investigated cases. The first part has an inclined slope, which corresponds to Regime  
(suitably-reinforced bending governed by both material strengths) while the second part is 
perpendicular to the Xfc axis, which corresponds to Regime  (over-reinforced bending 
governed by concrete strength only). The most important conclusions are presented below: 

 

 In the case L=1.8% shown in Figure 2.7, the PSFF design point (Xfyd , Xfcd ) = (-Rt , -

Rt) is coincident with the FORM design point, which leads to the result that both fc,a 

and fy,a are equal to 
2

2
. In this case, the maximum reliability level is achieved, which 

is the 2 R t   

 In the case L=2.65% shown in Figure 2.8, the PSFF design point corresponds to the 

intersection point between the two regimes on the limit state function. For this case, the 
achieved reliability index is close to the target one. This is justified because (i) the 
horizontal branch of the limit sate function (Regime ) is coincident with the BLS 
dominated by concrete strength; (ii) the FORM design point locates on the horizontal 
branch and the distance between the origin point (0, 0) and the FORM design point is 

exactly Rt; and (iii) the probability mass within the Regime  failure domain is much 

smaller than the corresponding for Regime  (see volume below the joint probability 
density function (JPDF) in Figure 2.8b).  
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Figure 2.7: Resistance function isolines, limit state function and JPDF plot for L=1.8% 

(L=0.36)  case: (a) 2D view and (b) 3D view 

 
Figure 2.8: Resistance function isolines, limit state function and JPDF plot for 

L=2.65% (L=0.53) case: (a) 2D view and (b) 3D view 

2.5.4 Discussion on proper tail approximation 

In the GSFF from literature, a lognormal distribution is often used to approximate the 
distribution of the resistance variable and the distribution parameters (mean value and CoV) are 
usually estimated with a few sampling points near the origin point in the standard normal space 
of basic variables. To evaluate the efficiency of such approximation, the assumed lognormal 
distribution is compared with the actual distribution from the Monte Carlo simulation. The 

Monte Carlo simulation data for the L=2.65% case is investigated in detail.   

The Probability Density Function (PDF) plots of both the approximated lognormal distribution 
and the simulated empirical distribution are shown in Figure 2.9a. The quantile-quantile plot (Q-
Q plot) of ln(R/Rm) (where Rm is the mean value of the simulated data) is also presented in Figure 
2.9b. The comparison shows that there is a significant difference between these two distributions 
in the tail region.  
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This difference is to a large extent motivated by the fact that there are two potential governing 
regimes ( and ), which can be neatly observed in the Q-Q plot in Figure 2.9b (the governing 
failure mode changes from Regime  to Regime  as R increases). This fact is also shown in 
Figure 2.9c, showing that the closest point on the resistance isoline to the origin point in the 
standard normal space locates in Regime  for low values of R while it locates in Regime  
for higher values of R.  

This result shows the necessity for a proper tail approximation. The approximated lognormal 
distribution used in GSFF neglects the actual distribution in the tail region and leads to unsafe 

estimates of the reliability level for this case. This is shown in Figure 2.9b, where the -Rt  

quantile value of the actual distribution is lower than that of the approximated lognormal 
distribution. Interestingly, it can be noted that since the PSFF directly evaluates the design 
resistance with a point on the limit state function, it shall yield a relatively good tail 
approximation result. This confirms the pertinence of the PSFF approach with this respect. 
Specific methods to achieve proper tail approximation in the safety format calibration of 
reinforced concrete structures have also been proposed by other researchers (for instance in 
Foster et al. [Fos16]). 

 
Figure 2.9: Distribution plot of ln(R/Rm): (a) Probability density function (PDF) plot 

and (b) Q-Q plot of approximated lognormal distribution and the actual 

distribution and (c) resistance isoline plot of  L=2.65% case. 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

5

10

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

ln (R/Rm)

-5

0

5
mostly governed by 1mostly governed by 2

- α� βt = -3.04

Approximated lognormal distribution

Actual distribution 

according to Monte Carlo 

simulation

(a)

(b)

P
D

F
N

o
rm

al
 q

u
an

ti
le

-6 -4 -2 0 2
 X fy

-6

-4

-2

0

2

4

 X
fc

(c)

4

Resistance isolines

1

2

Limit b
etween

 failure modes

Rd

Rm
= 1

1.23

Rd

Rm
= 1

1.15



Partial safety factor format accounting for multiple failure modes 

32 

2.6 Case study III: shear resistance of reinforced concrete 
panels 

In this section, to investigate different shapes of limit state functions, a case study on the shear 
resistance of reinforced concrete panels is presented (see Figure 2.10(a)). Compared to the 
bending resistance, the shear resistance involves damage of the concrete compressive strength 
due to cracking (compression softening [Vec86]). It is thus useful to have a clear view on the 
shape of the limit state function for this type of mechanical model.  

2.6.1 Definition of case study series and reliability analysis results 

The reliability analysis is performed for a reinforced concrete panel subjected to pure shear with 
plane stress behaviour. The shear resistance is evaluated with Elastic-Plastic Stress Field method 
(EPSF [Fer07]) where the reinforcement in the panel is considered as smeared and is modelled 
by a uniaxial response with an elastic-perfectly plastic law (refer to Appendix 2.A and Figure 
2.15 for details).  The material model for concrete corresponds to a coupled damage elasto-
plastic model where the plastic behaviour follows a Mohr-Coulumb yield surface with a tension 
cut-off and an associative flow rule (refer to Appendix 2.A and Figure 2.15 for details).  

To obtain different regimes with different failure modes, the vertical reinforcement ratio z  is 

varied between 0.1% and 1.5% whereas the horizontal reinforcement ratio x  is kept constant 

as 1%. A lognormal distribution is assumed for both materials strengths with the mean values 
and the CoVs as follows:  fcm = 28 MPa ;  Vfc = 0.15 for concrete and fym = 585 MPa;  Vfy = 0.04 

for steel (resulting fcd = 17.7 MPa and fyd = 518.0 MPa according to Eq. (16) and (17))).  The 
elastic moduli of both materials are accounted for as deterministic values, with Ec = 

30000 MPa and Es = 200000 MPa. Similar to the previous case study, the actual achieved 

reliability index MC  and the lognormal distribution approximated reliability index LN  are 

calculated for the limit state of R - Rd = 0 (the same formulation as in Eq.(15)) for each z  - x   

combination, where in this case study, R represents the resistance to shear. The results are plotted 
in Figure 2.10b. Similar to the case of bending, it can be observed that PSFF leads to reliability 
levels close to or higher than the target one ( ,min, 2.94MC III  ). 



Case study III: shear resistance of reinforced concrete panels 

33 

 
Figure 2.10: (a) Isolated shear panel; (b) reliability index achieved by PSFF for different 

vertical reinforcement ratios z; and (c) exponent sensitivity factors n of 

concrete compressive strength fc, steel yield strength of reinforcement fy 

(nfy_z and nfy_x are the exponent sensitivity factors for vertical and horizontal 

reinforcements respectively) , concrete elastic modulus Ec and steel elastic 

modulus Es. 

2.6.2 Exponent sensitivity analysis and failure regime study 

The exponent sensitivity factors are calculated and plotted in Figure 2.10c. It should be noted 
that, although the strength of vertical and horizontal reinforcements are assumed to be 
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represented by one random variable fy, their exponent sensitivity factors are calculated separately 
(denoted as nfy_z and nfy_x respectively).  Several failure regimes are observed to be governing 
(see Figure 2.10c): 

 Regime ① a and b, when the shear resistance is governed by simultaneous yielding of 

the vertical reinforcement and crushing of the concrete (for Regime ①a: 0.42%z   

and Regime ① b:  0.9% 0.97%z  ) 

 Regime ②, governed only by yielding of both reinforcements (for 0.42% 0.9%z  ) 

 Regime ③, governed by concrete crushing only (for 0.97% z ) 

Accounting for these three regimes, the limit state functions have relatively more complex 
shapes than the bending case, but the shear resistance is non-decreasing with the material 
strengths (sufficient transverse reinforcement is assumed for crack control) and consequently, 
PSFF yields close to the target or conservative reliability levels. The shapes of the limit state 

function for two representative cases ( 0.4%z   and 0.9%z  ) are plotted in Figure 2.11. 

 
Figure 2.11: Resistance function isolines, limit state function and JPDF plot for (a) 

z=0.4% and (b)  z=0.9% case (2D view) 

In addition, it can be noted that the influence of the principal tensile strains on the concrete 

compressive strength introduces a dependency of Regimes ① and ③ on the elastic moduli of 

the materials (see Figure 2.10). In these cases, the sum of the exponents on material strength 
parameters are significantly lower than one (an associated consequence of this phenomenon will 
be discussed more in detail in Section 2.10).  

For the purpose of simplicity, the horizontal and vertical reinforcements are modelled as the 
same type of material and are represented by one random variable fy in this case. In practice, 
different types of materials are potentially used for these reinforcements and their material 
strengths should be modelled as independent random variables. To help understand the influence 
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of increasing number of independent material strength variables, the exponent sensitivity factors 
on the yielding strength of horizontal reinforcement (nfy_x) and vertical reinforcement (nfy_z) are 
calculated separately and are plotted separately in Figure 2.10. It can be observed that in the 
investigated case, in the range where both reinforcement strengths are dominating the resistance 

(Regime ②), nfy_x = nfy_z = 0.5. Assuming that the yield strengths of the horizontal and vertical 

reinforcements are represented by two independent lognormal random variables with the same 
CoV, then it can be established that the FORM sensitivity factors for both yield strengths are 

equal to 
2

2
. The values are lower than the assumed one in the PSFF (

,
1

y af  ). This result 

shows that in these cases, when the number of independent material strength variables increases, 
PSFF still yields conservative result.  

2.7 Case study IV: Girder investigated With Nonlinear 
finite element analysis 

In the previous case study, the effect of presence of different failure modes has been investigated 
for a small structural component where the acting internal forces are directly imposed or can be 
determined by equilibrium considerations. In this section, a more complex case is studied, in 
which Nonlinear Finite Element Analysis (NLFEA) is used to evaluate the load-bearing capacity 
of a girder which is potentially subjected to both bending and shear failure modes. The 
applicability of PSFF to such case is further investigated on the basis of reliability analysis. The 
investigated example shown in Figure 2.12 is inspired by an experiment presented 
in [Rup13] (test SR38), where the shear and longitudinal reinforcement ratios are adjusted to 
study the effect of multiple failure modes. 

The NLFEA programme JCONC [Fer07] based on the EPSF method developed at the Structural 
Concrete Laboratory of EPFL is used to perform structural analysis. The applicability of this 
approach to describe the behaviour of the test series in [Rup13] has been validated in other 
works [Mut15, Rup13]. In the numerical simulation, all applied loads are assumed to increase 
monotonically and proportionally with the load factor Q (refer to Figure 2.12). The load factor 
at the ultimate level Q = R is used to represent the load carrying capacity of the girder. 

A lognormal distribution is assumed for both material strengths with the mean values and the 
CoVs as follows:  fcm = 38 MPa ;  Vfc = 0.15 for concrete and fym = 585 MPa;  Vfy = 0.04 for steel 

(resulting fcd = 24.1 MPa and fyd = 518.0 MPa according to Eq. (16) and(17))). The elastic 
moduli of both materials are accounted for as deterministic values, with Ec = 30000 MPa 

and Es = 200000 MPa. Similar to the previous case studies, the achieved reliability index for the 
limit state of R - Rd = 0 (the same formulation as in Eq.(15)) is investigated.  
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Figure 2.12: Geometry and reinforcement layout of girder (Unit of dimensions: mm) 

2.7.1 Reliability analysis  

Since the computational cost of NLFEA is significantly higher than that of simple nonlinear 
analysis methods in the previous cases, it is highly time-consuming to use crude Monte Carlo 
simulation to perform reliability analysis. In addition, another difficulty in the reliability analysis 
with NLFEA is that there are usually numerical errors involved, and this can reduce the accuracy 
of the local sensitivity analysis for the resistance [Eng93, Liu91, Sch11, Soa02]. For this reason, 
classical reliability methods which rely on the local gradient of the resistance function like 
FORM are not directly applicable to NLFEA. To overcome these difficulties, the Importance 
Sampling (IS) method [Mel18] combined with Response Surface Method (RSM) [Raj93] is used 
to perform reliability analysis (Refer to Appendix 2.B for details).  
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Table 2.1: Estimation of exponent sensitivity factors in each sub-region 

 Sub-region ① Sub-region② Sub-region ③ 

Range of (Xfy, Xfc) [-Rt,0] x [0 Rt] [-Rt,0] x [-Rt,0]  [0 Rt] x [-Rt,0]  

nfc 0.05 0.09 0.17 

nfy 0.92 0.84 0.71 

 

Based on the RSM analysis, the exponent sensitivity factors for the material strength variables 
in different sub-regions in the corresponding standardized normal space are provided in Table 
2.1 (Refer to Figure 2.13 for the range of different sub-regions). It can be observed that the sum 

of nfc and nfy in sub-region ③ is significantly lower than one. This result is consistent with the 

observation from Case Studies II and III that when the resistance is sensitive to the strain state, 
the exponent sensitivity factors of the elastic moduli are higher than zero and thus the sum of nfc 
and nfy are lower than one.  

According to the IS reliability analysis, the achieved reliability level is IS = 3.83 (corresponding 

to a failure probability of Pf,R = 6.32∙10-5) and the CoV of the evaluated probability of failure is 

CoVPf =7.61%.  The achieved reliability level is higher than the target level (Rt = 3.04), which 

shows that PSFF yields conservative result in this case. The isolines of the resistance function 
are shown in Figure 2.13b (the isoline plot is based on the response surface fitted using addition 
sampling points for visualization purpose only). Two main regimes can be observed in the 
resistance function, suggesting two types of failure modes. This is confirmed by the stress field 
plot of the sampling point (Xfy , Xfc) = (0 , Xfcd) and (Xfy , Xfc) = (Xfyd, 0)  plotted in Figure 2.13c 
and d where it can be observed that different failure modes occurred at these two points:  

 At the sampling point (Xfy , Xfc) = (0 , Xfcd)  (Figure 2.13c), failure occurs with concrete 
crushing of the web (refer to the black colour of the concrete elements) and yielding of 
the shear reinforcement (refer to the brown colour of the reinforcement elements). 

 At the sampling point (Xfy , Xfc) = (Xfyd, 0) (Figure 2.13d), failure occurs with concrete 
crushing of the web and yielding of both shear and longitudinal reinforcements. 



Partial safety factor format accounting for multiple failure modes 

38 

 
Figure 2.13: (a) Division of sub-regions and the corresponding sampling points; 

(b)Resistance function isolines, limit state function and JPDF plot for the 

girder case (2D view) (c) The stress filed plot of the girder near failure at 

sampling point (0 , Xfcd)  and (d) sampling point (Xfyd , 0). 

The reliability analysis result shows that with different failure modes, the PSFF still yields a 
conservative reliability level. This case confirms that the conclusions of Section 2.2 are also 
applicable to NLFEA methods. 

2.8 Conclusions from case studies 

The investigated case studies clearly show that the nature of different failure modes leads to an 
abrupt change of the sensitivity of the load bearing capacity to the strength variables. This means 
that in the design of reinforced concrete structures, since steel and concrete strengths have 
significantly different variabilities, the variability of the resistance variable is strongly 
influenced by the failure modes. The analytical and numerical studies shown above also show 
that PSFF provides a satisfactory solution to the multiple failure modes problem. By adopting 
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conservative FORM sensitivity factors for material strength variables (
, ,

1
c a y af f   ), PSFF 

verifies in an efficient manner the most unfavourable failure modes on the limit state function, 
provided that the non-decreasing assumption is valid.  

2.9 Test of the non-decreasing assumption 

Since structural concrete is composed of materials which are not perfectly ductile (limited 
deformation capacity of concrete and reinforcement steel, potential sliding of cracks without 
sufficient aggregate interlocking), the non-decreasing assumption of the load-carrying capacity 
is not always valid for practical structures. To reduce the influence of this phenomenon or even 
to prevent the decreasing cases, design standards typically define provisions like minimum 
reinforcement ratios, maximum height of the compression zone due to bending and detailing 
rules defining maximum reinforcement spacings and appropriate reinforcement anchorages.  In 
design practice, a preliminary check of the non-decreasing assumption can be performed with 
low computation cost. For the case with two material variables fc and fy, the load-carrying 
capacity can be evaluated at three sampling points; R(fcd, fyd), R(fcd, fym) and R(fcm, fyd).  If the 
condition of R(fcd, fyd) ≤ R(fcd, fym) and R(fcd, fyd)≤ R(fcm, fyd) are both fulfilled, then it shows that 
in the region that is most critical for the reliability analysis,  based on the outcomes of the 
selected sampling points, the non-decreasing assumption is not violated. In this case, the PSFF 
can still be considered as applicable within the framework of semi-probabilistic method. In 
essence, this is a simplified sensitivity analysis of the resistance function in the relevant region 
for reliability analysis. For the cases where the non-decreasing assumption is invalid (for 
instance such a case can be found in [Cas19]), more refined reliability verification 
methods [Mel18] than the semi-probabilistic method can be more suitable. 

2.10 Discussion on other basic uncertainties 

The various case studies in Sections 2.4 – 2.7 show that the sensitivity of resistance (intended as 
cross-sectional resistance or load-carrying capacity of a structural member) to material strength 
variables varies significantly amongst different action effects and failure modes. In Section 2.2, 
it has been shown that in the formulation of PSFF proposed in Eurocode 2 [CEN04], since for 
reinforced concrete structures, only two partial safety factors are applied on the resistance side, 
the geometrical uncertainties and the model uncertainties are actually lumped with the material 
uncertainties. This simplification can be arguable for some cases. Assuming that all the basic 
uncertainties follow lognormal distributions and their exponent sensitivity factors are known, 
then the CoV of the resistance variable can be calculated as following: 
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2 2 2 2 2
mod , , , ,R geom i geom i f j f jV V n V n V     (18) 

Where ngeom and nf refer to the exponent sensitivity factors on geometrical and material 
uncertainty variables, respectively. The sum over indices i and j indicates that there can be 
multiple random variables representing each type of basic uncertainty. It should be noted that 
only one model uncertainty variable is accounted for in Eq.(18), but in some cases there might 
be more than one model uncertainty variable (for instance in the punching shear resistance model 
based on Critical Shear Crack Theory [Mut08], potentially there are two model uncertainty 
variables for the failure criterion model and the load rotation model respectively ).  

Comparing Eq.(2) with Eq.(18), it can be observed that in the PSFF, the calculation of VR is 
actually simplified with the assumption that the exponent sensitivity factors for all the basic 
uncertainties are equal to one. To help verifying this assumption, using the case study II as an 
example, the exponent sensitivity factors on the geometrical variables are plotted in Figure 2.14. 
With respect to the uncertainty of the reinforcement area As, it has to be noted that for the regime 
with reinforcement yielding, it is implicitly considered in the yield strength uncertainty, since 
according to EN 10080 [EN105], the latter is measured on the basis of the nominal reinforcement 
area. It can be observed in Figure 2.14 that the exponents on some geometrical variables (e.g. 
the flexural depth d) are significantly higher than one, so that the assumption used in Eq. (2) can 
underestimate the influence of geometrical uncertainties on the variability of the resistance. In 
addition, comparing the exponent sensitivity factors in Figure 2.14 with those in Figure 2.6, it 
can be observed that the exponent the effective depth d is also significantly higher those on the 
material variables, especially in the over-reinforced range. In addition, as shown in [Mut23a], 
the CoV of the model uncertainty is higher than the CoV of the yield strength and for thin 
members, the same applies also for the CoV of the effective depth. These observations raise the 
question about whether material uncertainties are still dominating in such cases and if it is still 
suitable to lump the geometrical and model uncertainties with material uncertainties in a single 
partial safety factor. Further detailed research needs to be performed to investigate this problem, 
especially for the safety format calibration of NLFEA method of concrete structures. It is also 
worth noting that EN 1990:2002 [CEN02] has addressed this problem by requiring that when 
the geometrical uncertainty is significant for the reliability of the structure, the design value of 
the geometrical variable ( refer to Equation 6.5 of EN 1990:2002 [CEN02]) should be directly 
used in the limit state verification.  
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Figure 2.14: Exponent sensitivity factor n of the cross-sectional flexural depth d, the 

cross-sectional width b and the steel reinforcement area As for Case 

Study II 

2.11 Conclusions 

The basic assumptions, simplifications and applicability conditions of the Partial Safety Factor 
Format (PSFF) on material strengths for the resistance of concrete structures are investigated in 
the work with both theoretical considerations and numerical case studies. Some considerations 
are also provided with respect to effects of the geometrical and model uncertainties. The main 
conclusions are summarized below: 

 It is shown that, for the investigated cases, the PSFF on material strength yields 
satisfactory reliability levels both for cases subjected to single or to multiple failure 
modes induced by material uncertainties as long as the non-decreasing assumption of 
the resistance function is valid (the load-carrying capacity is not reduced by an increase 
of a material strength).  

 The investigation of the sensitivity of the different variables on the load-carrying 
capacity expressed in terms of exponent sensitivity factors is a powerful tool to detect 
different failure modes. Exponent sensitivity factor analysis of the full applicable range 
of a given resistance model reflects the mechanical characteristics of the model. The 
result can be conveniently combined with different probabilistic modelling of the basic 
variables for different design situations, allowing to estimate useful indexes (e.g. the 
First Order Reliability Method (FORM) sensitivity factors and the coefficient of 
variation of the resistance variable) for calibrating the corresponding safety format.  

 Adopting conservative FORM sensitivity factors for material strength variables in the 
PSFF calibration is necessary because they may vary significantly for different failure 
modes. This treatment can be conservative for some cases, but has the advantages of 
being simple to use in design practice and being applicable to a wide range of cases.  
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 The simplification of integrating the safety elements for geometrical and model 
uncertainties into the partial safety factors for material strengths can underestimate the 
influence of geometrical and model uncertainties in some cases. With this respect, 
further research needs to be performed to study the proper treatment of geometrical and 
model uncertainties, particularly in the safety format for NLFEA. 

 Good tail approximation is instrumental for the effectiveness of safety formats. 
Approximating the distribution of resistance variable with a single lognormal 
distribution based on crude Monte Carlo simulation result risks of losing information 
about the tail distribution and can potentially lead to unsafe results.  
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Appendix 2.A: Principles of the EPSF method 

In the Elastic Plastic Stress Field (EPSF) method, the equivalent plastic compressive strength 

cpf  is defined accounting for a concrete brittleness factor cc  and a transverse strain factor  , 

according to Eq.(19). The brittleness factor cc  follows the relation proposed by 

Muttoni [Mut90] given by Eq.(20). The damage due to cracking is considered by applying a 

transverse strain factor  , which is evaluated as a function of the principal tensile strain 

following the relation proposed by Vecchio and Collins [Vec86], given in Eq. (21).The elastic 
modulus of concrete Ec is considered independent of its transverse strain state as proposed in 
Vecchio et al.[Vec94]. It shall be noted that the method considers the principal stress direction 
to be parallel to the principal strain direction (refer to Figure 15). Based on the EPSF method, 
the equilibrium conditions and the compatible conditions for the shear panel problem are given 
in Eq. (22)-(27). 

cp cc cf f   (19) 

1

330
1cc

cf


 
  
 

 (20) 

1,

1
min(1, )

0.8 170 c
 



 (21) 
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cot 0x sx      (22) 

tan 0z sz      (23) 

,2 (tan cot ) 0c       (24) 

, ,22

, ,2

tan c x c

c z c

 


 





 (25) 

,1 , , ,2c c x c z c       (26) 

, ,s x c x    and , ,s z c z   (27) 

where ,1c and ,2c are the principal strains of concrete;  is the shear stress; x  and z  are the 

horizontal and the vertical reinforcement ratio; sx and sz  are the stress in the horizontal and the 

vertical reinforcement;   is the angle between the second principle strain of concrete and the 

horizontal direction; ,c x  and ,c z are the horizontal and the vertical strain of concrete and ,s x  

and ,s z are the strains of the horizontal and vertical reinforcements. 

It should be noted that in this case, due to the form of concrete brittleness factor  cc (which has 

an exponent of 1/3 on the concrete compressive strength variable), the sum of exponent 
sensitivity factors for material strength variables are lower than one when concrete strength is 
higher than 30 MPa. For further details about the influence of this factor on the safety format of 
concrete structures, please refer to [Moc20]. 

 
Figure 2.15: (a) Isolated shear panel; (b) Steel constitutive law; (c) Mohr’s circle and 

principle strains; (d) concrete yield surface and associative flow rule and 

(e) concrete constitutive law. 
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Appendix 2.B: Reliability analysis with response surface 
method of case study IV  

In this Appendix, the detailed reliability analysis for Case Study IV is presented.  

The basic concept of the Importance Sampling (IS) method is to use an Importance Sampling 
Probability Density Function (ISPDF) instead of the original Joint Probability Density Function 
(JPSF) of the basic variables to draw sampling points in the Monte Carlo simulation in order to 
achieve low variance in the estimated probability of failure with a relatively small sample size. 
The IS method is one type of variance reduction technique in the reliability analysis method with 
Monte Carlo simulation [Mel18]. The key issue of the IS method is to find suitable 
ISPDF [Mel18]. An efficient ISPDF is proposed in [Mel18]: 

,( ) ( )d FORMh X X X   (28) 

Where X is the vector of the random variables in the standardised normal space and X = (Xfy, 

Xfc), h(X) is the ISPDF, ()  is the original JPDF of X and Xd,FORM is the estimated FORM design 

point. 

The ISPDF in Eq.(28) is generated by moving the sampling centre to the estimated most probable 
failure point (FORM design point) on the limit state function. It can be observed that to 
implement this method, a rough estimation of the FORM design point is still needed. For this 
purpose, the Response Surface Method (RSM) is used.  

The basic concept of the RSM is to use a small number of  sampling points to make a closed-
form approximation of the resistance function as a basis for reliability analysis [Raj93]. The 
Design of Experiment (DOE) technique [Mon17] can be used to select sampling points for 
effectively constructing the response surface and multivariate linear regression method can be 
used to fit the response surface [Mon17]. In the RSM, by taking sampling points in a relatively 
large range in the space of basic variables, the influence of the numerical error in NLFEA can 
be mitigated. The closed-form response surface function can then be used to estimate the FORM 
design point with classical HL-RF method [Liu91].   

In Case Study IV, a linear polynomial function without interaction in the standardized normal 
space of the basic variables is used for the response surface, as is given in the following equation: 

0 1 2c yR f fN a a X a X     (29) 

Where NR is the logarithm of the resistance R: NR = ln(R); a0, a1 and a2 are the coefficients to be 
fitted with the data of the sampling points. 

From the case studies in this work, it can be observed that different failure modes usually occur 
with extreme combinations of material strengths. For example, the failure mode of the sampling 
point with low fc value and high fy value tends to be different from that with high fc value and 
low fy value. To account for this phenomenon, the response surface is fitted in sub-regions. The 
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division of the sub-regions for this case study is shown in Figure 2.13a. This treatment aims at 
increasing the precision of the response surface fitting with a small computation cost. The 
resistance function is fitted in each sub-region, which result in three response surface functions. 
The resistance in the whole space is then defined as the minimum resistance among the three 
fitted response surface functions: 

,1 ,2 ,3min( , , )R R R RN N N N  (30) 

Where NR,1 ,NR,2, and NR,3 are the response surface function in sub-region ①, ② and ③.  

This treatment aims as mimicking the mechanical behaviour that the dominating failure mode 
of a structure is the one that results in the lowest loading bearing capacity.  

 It should be noted that it is also possible to use polynomial functions of higher order or other 
type of functions for the RSM. In this case, the linear model without interaction is selected 
because the model coefficients a1 and a2 can be directly related to the exponent sensitivity factors 
nfc and nfy defined in Section 2.3, which directly reflect the differences between failure modes.  

The three-level factorial design method [Mon17] is used to select the RSM sampling points in 
each sub-region, as is shown in Figure 2.13a. In total, 21 sampling points are taken to fit the 
response surface. Based on the NLFEA results of the sample points, multilinear regression 
method is applied to estimate the model coefficients. The resulting coefficients and the 

corresponding p-values in t-test  [Mon17]  are listed in Table 2.2. The aim of performing t-

test [Mon17] is to test if the error level is sufficiently low. If the t-test failure, it suggests either 
the numerical error of the NLFEA method is too high or the response surface function is not 
suitable for the given problem. In this case, all the p-values of the t-test are lower than 5%, and 
the response surface fitting result is considered as acceptable. 

Table 2.2: Estimations of the response surface coefficients and the corresponding p-

values of each sub-region of Case study IV 

Sub-regions Sub-region ① Sub-region ② Sub-region ③ 

(Xfy, Xfc) [-Rt,0] x [0 Rt] [-Rt,0] x [-Rt,0]  [0 Rt] x [-Rt,0]  

Coefficients a0 a1 a2 a0 a1 a2 a0 a1 a2 

Estimation  -0.24 0.008 0.037 -0.25 0.014 0.034 -0.22 0.025 0.028 

p-value 2e-14 9e-8 8e-12 2e-9 2e-4 1e-6 2e-7 3e-4 2e-4 

 

Based on the fitted response surface, the FORM reliability analysis is performed and the FORM 
design point is estimated. The estimated FORM design point is calculated as Xd,FORM  = (-3.45, -
1.42) in the standardized normal space. 
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Then, IS reliability analysis is performed using the ISPDF. For the IS analysis, 1000 sampling 
points are used. It should be noted that in this case, a relatively large number of sampling points 
with the NLFEA evaluations is taken to reduce the statistical uncertainty. According to the IS 

reliability analysis, the achieved reliability level is IS = 3.83 (corresponding to a failure 

probability of Pf,R = 6.32∙10-5) and the CoV of the evaluated probability of failure is CoVPf 

=7.61%. It should be noted that the CoV of 7.61% corresponds to the CoV of the failure 
probability for the nonlinear finite element model itself. Considering the magnitude of the 
probability of failure (6.32∙10-5), this level of CoV is considered as acceptable. In this case, 
since the finite element model is relatively small, it is possible to use a large sample (with 1000 
sampling points) to perform the IS analysis. However, when such an approach is not applicable, 
other methods (e.g. Adaptive Kriging Monte Carlo Simulation method [Ech11]) may be used to 
perform reliability analysis with reasonable computational time. 
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NOTATION 

Latin upper case letters 
A cross-section area of a structural component 
AC cross-section area of the concrete column 
AT cross-section area of the steel tie 

AT, normalized cross-section area of the steel tie 

ˆ
fP

COV  coefficient of variation of the estimator ,
ˆ

f RP  

E elastic modulus of a material 
Fi failure domain of boundary limit state of material i 
GR(ꞏ) limit state function for the design resistance 
I[GR(ꞏ)] indicator function of GR(ꞏ) 
NR logarithm of the resistance R 
P(ꞏ) probability function 
Pf probability of failure of the structure 
Pf,R probability of failure for the design resistance 
Pf,tag target probability of failure of the structure 
Pf,tag,R target probability of failure for the design resistance 

,
ˆ

f RP  estimator for probability of failure for the design resistance 

Q load factor 
R(ꞏ) resistance function 
R0 resistance at a reference point 1,0 2,0,..., ,0( , )pf f f  

Rd PSFF design value of resistance 
Rm mean value of the Monte Carlo simulated data of resistance 
V a random variable following the importance sampling probability density 

function 
VR Coefficient of Variation (CoV) of resistance random variable 
Vmod CoV of the model uncertainty variable 
Vgeom   CoV of the geometrical uncertainty variable 
Vf CoV of the material uncertainty variable 
Vfc CoV of concrete compressive strength random variable 
Vfy CoV of steel yield strength random variable 
X vector of basic random variables in the standardised normal space 
Xfc concrete compressive strength random variable transformed to the standard 

normal space 
Xfcd design value of concrete compressive strength in the standard normal space 
Xfy steel yield strength random variable transformed to the standard normal 

space 
Xfyd design value of steel yield strength in the standard normal space 
Xd,FORM estimated FORM design point in the standard normal space 
Latin lower case letters 
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a0, a1 and a2 coefficients of the response surface function 
b width of a cross section 
d flexural depth of a cross section 
fc concrete compressive strength 
fcd design value of concrete compressive strength 
fcm mean value of concrete compressive strength 

cpf  equivalent plastic compressive strength of concrete 

fi random variable of strength of material i 
fj parameter j in the resistance function 
fk characteristic value of material strength variable 
fd design value of material strength variable 
fy steel reinforcement yield strength 
fyd design value of steel reinforcement yield strength 
fym mean value of steel reinforcement yield strength 
h height of a cross section 
h(ꞏ) the importance sampling probability density function 
l span of a structural component 
nAs exponent sensitivity factor for reinforcement area 
nEc exponent sensitivity factor for concrete elastic modulus 
nEs exponent sensitivity factor for steel elastic modulus 
nd exponent sensitivity factor for cross-section flexural depth 
nfc exponent sensitivity factor for concrete compressive strength 
nfj exponent sensitivity factor for parameter fj 
nfy,(nfy_x, nfy_z) exponent sensitivity factor for steel yield strength (the indices of x and z 

refer to the vertical and horizontal directions respectively) 
nIS sample size of IS method 
nMC sample size of Monte Carlo simulation 
Greek upper case letters 

  a sufficiently small increment of parameter ln( )jf  

(ꞏ) cumulative distribution function of standardized normal distribution 

Greek lower case letters 

,c af  FORM sensitivity factor of concrete strength 

,y af  FORM sensitivity factor of steel reinforcement yield strength 

R the standardized FORM sensitivity factor for resistance 

IS achieved reliability index evaluated with Importance Sampling method 

LN achieved reliability index evaluated with lognormal distribution 
approximation 

MC achieved reliability index evaluated with Monte Carlo simulation 

t target reliability index 

c partial factor for concrete compressive strength considering material 
uncertainty only 
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s partial factor for steel yield strength considering material uncertainty only 

M partial factors applied to material strength variables (accounting for all 
basic uncertainties) 

m partial factors applied to material strength variables (accounting for 
material uncertainties only) 

,1c  first principal strain of reinforced concrete shear panel 

,2c  second principal strain of reinforced concrete shear panel 

x and z  horizontal and vertical strain of shear panel 

  transverse strain factor of shear panel 

cc  concrete brittleness factor   

  angle between the second principle strain and the horizontal direction of 
shear panel 

ln cf
  mean value of the logarithmic concrete compressive strength 

ln yf  mean value of the logarithmic steel yield strength 

L flexural reinforcement ratio of a cross section 

x  horizontal reinforcement ratio of shear panel 

z  vertical reinforcement ratio of shear panel 

,2c  second principle stress of concrete in the shear panel 

ln cf
  standard deviation of the logarithmic concrete compressive strength 

ln yf  standard deviation of the logarithmic steel yield strength 

sx and sz  stress in the horizontal and the vertical reinforcement of shear panel 

  shear stress of shear panel 
( )   joint probability density function 

L mechanical flexural reinforcement ratio of a cross section 
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Chapter 3 

Model uncertainties and partial 
safety factors of strain-based 
approaches for structural concrete: 
example of punching shear 

This chapter is the preprint version of the article mentioned below, submitted to Engineering 
Structures Journal. The authors of the article are Qianhui Yu (PhD Candidate), João T. Simões 
and Prof. Aurelio Muttoni (thesis director). The provisional reference is the following: 

Yu Q., Simões J. T., Muttoni A., Model uncertainties and partial safety factors of strain-based 
approaches for structural concrete: example of punching shear, Engineering 
Structures (submitted March 2023) 

The work presents in this publication was performed by Qianhui Yu collaborating with João T. 
Simões and under the supervision of Prof. Aurelio Muttoni, who provided constant and valuable 
feedbacks, proofreading and revisions of the manuscript. 

The main contributions of Qianhui Yu to this article and chapter are the followings: 

 Comprehensive literature review regarding the model uncertainty quantification and 
safety format calibration for nonlinear analysis models of concrete structures. 

 Proposition of the model uncertainty quantification framework for strain-based 
approaches. 

 Database collection of punching shear test data. 

 Model uncertainty quantification of the Critical Shear Crack Theory (CSCT) punching 
shear resistance model with Bayesian inference. 

 Proposition of the methodology of accounting for the measurement error in the model 
uncertainty quantification. 
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 Interpretation of the relationship of the model uncertainties of sub-models and global 
resistance solutions of the CSCT punching shear resistance models. 

 Comparison between the model uncertainties of different Levels-of-Approximation 
(LoAs) of the CSCT punching shear resistance model of fib Model Code 2010. 

 Proposition the suitable safety format for different LoAs punching shear resistance 
model. 

 Elaboration of the figures and tables included in the article. 

 Writing of the manuscript of the article. 
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Abstract 

The development of mechanical models relating the state of strains and the resistance of 
reinforced concrete structures has become a trend in the last decades. These types of models are 
referred to as strain-based approaches. Since strain-based approaches usually involve multiple 
sub-models and take implicit forms, their model uncertainties tend to be more complex than 
those of the explicit design equations commonly used in design codes. The characteristics of the 
model uncertainties of strain-based approaches is investigated using the Critical Shear Crack 
Theory (CSCT) for the punching shear resistance of structural concrete members as example. 
Both by performing theoretical parametric analyses and by evaluating relevant experimental 
data, it is shown that the model uncertainty of global resistance solution of strain-based approach 
can be viewed as resultant of the model uncertainties of the sub-models. In addition, it is also 
shown that the model uncertainty of the global resistance solution can be lower than those of the 
sub-models, depending on their sensitivity relationship. The model uncertainties of different 
Levels-of-Approximation (LoA) of the CSCT for punching are also compared. The LoA 
approach intends to provide consistent and progressively refined model for different design tasks 
in practice. The model uncertainty quantification result confirms that the model uncertainty of 
higher LoA of CSCT has lower variability and also less conservative bias than lower LoA. 
Finally, based on the obtained model uncertainties, different types of partial safety formats for 
strain-based approaches are compared and discussed. Using the CSCT punching shear model as 
an example, it is shown that the partial safety factors applied to the sub-models are more suitable 
for higher LoAs since they can effectively account for the change of model uncertainty 
associated to the change of failure mode. Based on the assumptions described in this work, the 
relationship between the safety factors of the punching shear provisions in the second generation 
of Eurocode 2 for the design of new structures and the assessment of existing critical ones is 
established. 

Keywords: model uncertainty, strain-based approaches, structural concrete, punching shear, 
partial safety factors  

3.1 Introduction 

In modern design codes for concrete structures (e.g.,[ACI19, CEN02, Fos16, Sta18], the 
reliability verification is usually performed through calibrated safety formats accounting for the 
inevitable uncertainties involved in design and construction practice. For the resistance of 
concrete structures at ultimate limit state, material, geometrical and model uncertainties are 
normally accounted for in the safety format [Ell80, Eur08, Fos16, JCS01]. The probabilistic 
modelling of the basic uncertainties is usually performed based on experience, engineering 
judgement and available objective data for the relevant parameters [Ell80, JCS01]. The 
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quantification of the uncertainties related to the resistance models is nonetheless becoming 
increasingly challenging due to models’ rising complexity. Their quantification and probabilistic 
description are however instrumental to ensure a proper reliability verification in design practice. 

Resistance models in structural concrete were commonly explicit functions of the basic design 
variables in the past. Yet, the development of well-established sound mechanical models relating 
the state of strains and the resistance has been a trend observed in the last decades. These types 
of structural resistance models are referred to as strain-based resistance models or strain-based 
approaches in the following. In the area of structural concrete, an example of such models is the 
Critical Shear Crack Theory (CSCT) [Mut08] (Figure 3.1) for the punching shear, where the 
resistance of a slab-column connection is not only a function of the geometrical and material 
parameters of the member, but also of the slab rotation (assumed to be correlated to the opening 
of the critical shear crack which affects the capacity of the slab to transfer the shear forces to the 
column). Other examples of strain-based approaches are the Modified Compression Field 
Theory (MCFT) used to assess the shear resistance of structural concrete [Ben06, Vec86] 
(Figure 3.2) or, in a more general framework, the Non-Linear Finite Element Analyses (NLFEA) 
accounting for compatibility and equilibrium conditions together with failure criteria for 
materials which are strain state dependent (this is for instance the case of the Elastic Plastic 
Stress Field (EPSF) method [Mut90]). 

 
Figure 3.1: Illustration of (a) a slab-column connection and (b) model of the CSCT for 

punching shear (refer to Notation section for details) 

Since strain-based approaches usually involve multiple sub-models and take implicit forms, the 
evaluation of the model uncertainties can be conducted at the level of the global resistance 
solution or of the sub-models considered separately. In this work, using the CSCT for punching 
shear resistance as an example, the suitable quantification method and the relationship between 
the model uncertainties of the global resistance solution and those of the sub-models are 
investigated. The relevance of investigating the CSCT for the punching shear resistance is 
justified by the fact that it has been adopted for the provisions related to punching shear design 
in the fib Model Code 2010 [FIB13] and in the second generation of Eurocode for concrete 
structures [CEN23] (strain-based approach in the annex for the assessment of existing 
structures).  
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Figure 3.2: Illustration of the analysis of a shear panel with MCFT (a) a reinforced 

concrete panel subjected to shear force; (b) the strain state of concrete; (c) 

strain compatibility expressed with Mohr’s stress circle  (d) concrete 

constitutive law; (e) steel constitutive law and (f) equilibrium expressed 

with Mohr’s stress circles (refer to Notation section for details) 

3.1.1 The Critical Shear Crack Theory for punching shear: main 
idea 

The main idea of the CSCT for punching shear is that the development of a so-called critical 
shear crack near to the support governs the shear transferring capacity of the slab-column 
connection (see [Mut08] for further details). The resistance is thus a function of the location, 
shape and kinematics (function of bending and shear deformations) of this critical shear crack 
[Gui10, Mut91, Sim18]. A refined model [Sim18] based on the principles of the CSCT [Mut17] 
has shown that for slender slabs, as proposed by Muttoni in 2008 [Mut08]: (1) a failure criterion 
can be established as a function of the normalized critical shear crack opening and (2) the critical 

shear crack opening at failure can be correlated to the rotation of the slab  shown in Figure 

3.1(a). Therefore, as shown in Figure 3.1(b), the punching shear resistance and the strain state 

at failure (represented by the slab rotation ) can be calculated by intersecting the load-strain 

relationship (where the strain refers in this specific case to the slab rotation ; this relationship 

representing the response of the slab-column connection) and the failure criterion (this function 
represents the punching resistance associated to a given crack opening, associated to the rotation 

). The failure criterion and the load-strain relationship are represented from a mathematical 

point-of-view by two independent functions respectively. For this reason, it can be seen as the 
simplest form of strain-based structural resistance models. This type of strain-based structural 
resistance model is in fact an intermediate step between explicit analytical structural resistance 
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models (where the resistance is calculated with a closed-form equation on the basis of the 
geometrical and mechanical material values) and more complex implicit structural resistance 
models (such as the NLFEA). 

Investigating the model uncertainties of simple strain-based resistance models can help 
understanding the relationship between model uncertainties of simple explicit analytical and 
complex implicit numerical structural resistance models.  

3.1.2 Quantification of model uncertainty for structural concrete 
resistance analysis 

Promoted by the implementation of reliability theory in design codes, the quantification of the 
model uncertainty of structural resistance models used for concrete structures is a topic that has 
attracted wide attention of researchers in recent years. Such quantification is usually performed 
by comparing the calculated resistances to the experimental results included in databases 
assembling relevant experimental tests performed under controlled conditions [JCS01, Tae93]. 
Numerous researchers have already performed this work considering the resistance models in 
the form of analytical design equations included in current design codes [Now03, , Syk13, 
Syk18, Bel15, Fos15, Fos16, Hal19, Hol16, Ola20, Ste16]. The quantification of the model 
uncertainty related to Non-Linear Finite Element Analyses (NLFEA) for concrete structures 
(which are sometimes referred to as global resistance models [Cas19, Eng17, FIB13, Sch12]) 
has also been extensively investigated [Cas18, Cer18, Eng17, Hau11, Kad15, Sch12]. Engen et 
al. [Eng17] and Castaldo et al. [Cas18] evaluated the resistance model uncertainty considering 
different modelling hypotheses to perform NLFEA (influence of the choice of material 
constitutive laws, finite element type, convergence criterion). Cervenka [Cer18] quantified the 
model uncertainty related to NLFEA applied to different types of internal forces (bending, shear, 
and punching shear). Haukaas and Gardoni [Hau11] proposed the Bayesian finite element 
method, which attempts to account for the model uncertainty as it originates from different sub-
models (e.g. constitutive laws, equilibrium and strain compatibility conditions) in a finite 
element solution. 

As observed for instance by Haukaas and Gardoni [Hau11], NLFEA are implicitly composed of 
different sub-models involving multiple calibrated parameters. This complex nature makes it 
difficult to quantify the model uncertainties related to NLFEA, which partially justifies the 
absence of consensus on their treatment. In this context, investigating the model uncertainties of 
simple strain-based approaches, which represent an intermediate step between explicit analytical 
closed-form design formulae and complex implicit resistance models, can be a first interesting 
step. 

As with the NLFEA, also in the simple strain-based approaches, the global resistance model is 
composed of different sub-models (e.g. the failure criterion model and the load-rotation model 
in the CSCT for punching shear described above). Therefore, it is possible to quantify the model 
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uncertainty at both the sub-model level and at the global resistance level. For example, in 
reference [Mut08], for the strain-based punching shear resistance model of the CSCT, the model 
uncertainty data shows that the variability (represented here by the Coefficient of Variation 
(CoV)) of the global model uncertainty is lower than that of the failure criterion model. Reasons 
behind this phenomenon and its implications for the safety format calibration of strain-based 
approaches will be investigated in this paper. 

3.1.3 The model uncertainties of the Levels-of-Approximation (LoA) 
approach 

To allow the application of sophisticated resistance models in daily design practice, an approach 
by Levels-of-Approximation (LoA) [Mut12, Mut12a] can be explicitly or implicitly adopted. 
This approach is a codified design strategy that aims at providing consistently and progressively 
refined design methods that can be flexibly used for different tasks such as preliminary design, 
detailed design of new structures and assessment of existing ones [Mut12, Mut12a]. The LoA 
approach has been adopted in the Swiss Code for structural concrete [Mut03, SIA13](since 
2003) and in the fib Model Code 2010 [FIB13, Mut13]. The LoA approach was intended to be 
used together with physically sound design models rather than with empirical formulae. When 
lower LoAs are used, the mechanical parameters in the design model can be assessed in a simple 
(yet conservative) manner. When more accuracy is required, higher order LoAs can be used with 
refined calculations of the mechanical parameters [Mut12a]. Four LoAs can be applied for 
punching shear according to the fib Model Code 2010 [FIB13, Mut12a] (provisions based on the 
CSCT [Mut08] as previously introduced), corresponding to the calculation of the slab rotation 
based on: simple design equations (LoA I and LoA II); involving linear elastic analysis (LoA 
III) or eventually nonlinear analysis to calculate the expected strain (LoA IV). With respect to 
the model uncertainties related to the different LoAs, it is important to say that: (a) a higher LoA 
is expected to have a lower level of model uncertainty and (b) a lower LoA is likely to have a 
certain conservative bias in order to yield safe design results despite the higher model 
uncertainty. 

In this work, the model uncertainty of LoA II (normally used for the design of new structures) 
and LoA IV (often applied in the assessment of critical existing structures) of the CSCT for 
punching shear will be investigated. The relationship between the model uncertainty of the 
corresponding sub-models (failure criterion and load-rotation relationship) and that of the global 
resistance model, as well as the relationship between the model uncertainties related to the 
different LoAs, are investigated not only from a theoretical point of view, but also by quantifying 
the corresponding uncertainties based on an evaluation of experimental data applying the 
Bayesian inference method. 
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3.1.4 Organisation of the document 

In Section 3.2, a theoretical approach based on exponent sensitivity factors [Yu22] (resulting 
from the assumption that the models can be approximated by a power-multiplicative form) is 
introduced to investigate the sensitivity of the global resistance solution to governing parameters 
of the sub-models. With the help of the exponent sensitivity factors [Yu22], and the assumption 
that the global resistance solution model uncertainty originates from the independent model 
uncertainties of the sub-models (the assumption will be later validated with experimental data), 
the theoretical relationship between the model uncertainties of the global resistance model and 
those of the sub-models is derived in a general format for strain-based approaches. The result is 
applied in Section 3.3 to the practical case of CSCT for punching shear based on a parametric 
study of the corresponding exponent sensitivity factors. In Section 3.4, the theoretical derivation 
and the results obtained with the parametric study are then verified by the quantification of the 
model uncertainties using a set of experimental data of punching shear tests. The results of the 
model uncertainties obtained for the database of experimental tests are discussed in Section 3.5. 
Eventually, Section 3.6 presents a discussion on the different safety formats required for strain-
based approaches focusing particularly on the provisions for punching shear design according 
to the new generation of Eurocode 2 [CEN23]. 

It is worth mentioning that although applied to the case of punching shear, the methodology 
followed in this paper to quantify the model uncertainty can also be applied to other strain-based 
approaches likewise. 

3.2 Theoretical analysis on the relationship of models’ 
uncertainties of strain-based approaches 

As previously introduced, a strain-based approach is a structural resistance model that is a 

function of both basic design variables 1 2( , ,... )b Nx x xx (e.g., material and geometrical variables) 

and, at least, a strain state variable  . The resistance of a strain-based approach can be expressed 

in a general form as: 
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(1) 

Where RFC is the resistance according to the failure criterion function ( )FCF  ; ( , )FC b x x  is the 

vector of all input variables of the failure criterion function; FC  is the model uncertainty random 

variable of the failure criterion function; ( )F   is the load-strain function; ( , )b R x x  is the 

vector of all input variables of the load-strain function; R is the load level and   is the model 
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uncertainty random variable of the load-strain function. The actual resistance (Rsolu) according 
to a strain-based approach is achieved when the load level (R) is equal to the resistance according 
to the failure criterion (RFC). When the model uncertainty variables are considered to be in 
multiplication form [JCS01] to the corresponding functions, Eq.(1)  can be further simplified, 

with ( )FCF 


 and ( )F 


 representing the failure criterion function and the load-strain function 

excluding the model uncertainty variables. 

Alternatively, the solution of a strain-based approach can also be expressed directly as follows 
(considering the global model uncertainty to be in a multiplicative form): 

( , ) ( )solu solu b solu solu b soluR F F   x x


 (2) 

Where soluR  is the resistance solution (calculated by solving the equation set of Eq. (1)), ( )soluF   

is the resistance solution function, which usually has an implicit form; solu is the model 

uncertainty of the resistance solution as a whole and ( )soluF 


 is the function excluding the model 

uncertainty variable. 

It should be noted that Eq. (2), with a global model uncertainty solu , represents the solution of 

the equation set of Eq. (1) where the model uncertainties of the two sub-models are accounted 
for separately (illustrated in Figure 3.3). It is assumed that the model uncertainty of the resistance 
solution originates from the uncertainties related to the sub-models. The suitability of this 
assumption will be further discussed later based on experimental data. In Figure 3.3, the 
uncertainty of other related failure mode is also illustrated. For example, in the case of punching 
shear, its load-rotation relationship is related to the flexural behaviour of the structure. When the 
flexural resistance is reached, the load-rotation relationship will have a plateau due to the 
formation of a flexural mechanism (assuming a perfectly plastic behaviour) [Mut08]. The 
influence of other failure modes on the model uncertainty of the strain-based solution (as for 
instance the flexural failure mode in Figure 3.3) will also be discussed in this paper.    

  
Figure 3.3: Illustration of the different model uncertainties of a strain-based approach  

For the theoretical derivation, the failure criterion and the load-strain functions are approximated 
by a power-multiplicative form of the variables:  

 Uncertainty of failure criterion model F
FC

 Uncertainty of load-rotation model F
ε

ɛ

F

 Uncertainty of resistance solution R
solu

 Uncertainty of other failure modes 

(flexural failure mode in the case of punching)

R
solu
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(3) 

Where FCC , ,FC in and ,FCn   are the approximated coefficients of the failure criterion equation, and  

C , ,in and ,Rn  are those of the load-strain equation.  

The power-multiplicative form approximation is equivalent of performing a first order Taylor 
expansion of the two functions after transferring all the variables into the logarithmic space. This 
transformation is valid assuming that all the variables in Eq. (1) are positive scalar values. 

In the following, all the exponent factors ( ,FC in , ,FCn  , ,in and ,Rn ) will be referred to as 

exponent sensitivity factors, which can be estimated by calculating a numerical derivative of the 
variable of interest in the logarithmic space [Yu22]. 

On the basis of the multiplicative form approximation of the sub-models, it is then possible to 
derive the explicit form of the resistance solution: 
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The model uncertainty of the resistance solution can then be derived as: 

,

, , , ,

1

1 1 
FC

R FC R FC

n

n n n n
solu FC



   
      

(5) 

From Eq. (5) it can be observed that: 

 the sensitivity of the global model uncertainty to the sub-model uncertainties depends 
on the exponent sensitivity factors, which, as a matter of fact, reflects the shape of the 
sub-models’ functions. 

 the global model uncertainty can be lower than the model uncertainty of both sub-

models, depending on the values of ,Rn  (the exponent on the load variable in the load-

strain relationship) and ,FCn   (the exponent on the strain variable in the failure criterion). 

This fact is important for the safety format calibration problem of strain-based solutions. 

In the following sections, the relationship between the global model and the sub-models’ 
uncertainties will be further investigated for the example described above. 
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3.3 Application of the theorical analysis to the case of 
punching shear according to CSCT 

In this section, the resistance model of the CSCT for punching shear of reinforced concrete slabs 
without shear reinforcement without unbalanced moment (axisymmetric slab-column 
connection) as proposed by Muttoni [Mut08] will be investigated. 

The basic form (without partial safety factors) of the failure criterion of the CSCT [Mut08] is: 

0.5

0

3 / 4
( , ) [( , ), ]

1 15
FC FC FC FC FC b FC c FC

g g

V F F b d f
d

d d

   


      





x x  (6) 

Where FCV  is punching resistance calculated with the failure criterion model ( )FCF  , ( , )FC b x x

,   is the slab rotation outside the column region and b0.5 is the perimeter of the critical section 

located d/2 from the column face. 

With respect to the load-rotation relationship, as previously introduced, four different LoA can 
be used. In the following, only the LoA II (normally used for the design of new structures) and 
the LoA IV (often used in the assessment of critical existing structures) load-rotation 
relationships are investigated. The two LoAs share the same failure criterion (Eq. (6)), but differ 

in the calculation of the rotation . 

3.3.1 LoA II load-rotation relationship 

The LoA II load-rotation relationship [Mut08] is given by: 
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(8) 

Where , ( )LR IIF   is the LoA II load-rotation function, V is the punching shear load level, flexV  is 

the load associated to the flexural resistance of the slab (yielding to a flexural mechanism 

[Mut08]) and Rm  is the flexural resistance per unit width of the slab. 

The punching shear resistance ( ,solu IIV ) is reached when the punching shear load (V ) is equal to 

the resistance according to the failure criterion ( FCV ): ,solu II FCV V V  . According to the 

theoretical derivation in Section 3.2, the model uncertainty variables for the LoA II model have 
the following relationship: 
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of the model uncertainties of the failure criterion and load-rotation relationship on the resistance 
solution, respectively.  

By comparing Eq. (6) and Eq.(7) to Eq.(3), it can be observed that for the LoA II, in the power 
multiplicative form approximation of the punching shear resistance model: 

- The exponent sensitivity factor associated with the load variable in the load-strain 

function is equal to , , 1.5R IIn   (the subscript II refers to LoA II) when V < Vflex and tends 

to ∞ for V = Vflex. 

- The exponent sensitivity factor associated with the strain variable in the failure criterion 

,FCn   differs from case to case. 

In order to get the range of  ,FCn   for representative cases, a parametric study is performed. The 

ranges of the basic design variables used in it are listed in Table 3.1 (only cases where V<Vflex 
are investigated).  

Table 3.1: Design information of geometrical and material variables for parametric 

study of slab-column connections 

Basic variables  Values 

fy  538 MPa 

fc 33.6 MPa 

Es  200 000 MPa 

Ec  30 000 MPa 

d  varied between 150 and 350 mm 

h 1.2∙d 

c two cases investigated: c = 1.5∙d and 3∙d 

rs rs = 25∙0.22∙h 

 varied between 0.5% and 1.5% 

dg  16 mm 

 

The normalized failure criterion and load-rotation curves for the cases listed in Table 3.1 are 
plotted in Figure 3.5. The value of the exponent factor of the strain variable in the failure criterion 

equation ( ,FCn  ) is calculated for each case at the LoA II resistance solution point. The results 

are plotted in Figure 3.5(a), where, for clarity of illustration, ,FCn    is plotted (as ,FCn   has a 

negative value, corresponding to a decrease of the resistance for increasing values of the strain 
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variable). The resulting exponent factor of the load variable in the load-rotation relationship 

, ,R IIn  is constant and equal to 1.5 as it can be observed from Eq.(7) (plotted in Figure 3.5 (b)). 

Consecutively, the values of parameters describing the influence of the failure criterion ( ,FC IIn

) and of the load-rotation relationship ( ,LR IIn ) sub-models’ uncertainties on the resistance 

solution are also calculated and plotted in Figure 3.5(c) and (d) (refer to Eq.(9) for definitions). 

It can be observed that, for the investigated cases, the value of - ,FCn   changes within a relatively 

modest range (from 0.38 to 0.74). Consequently, the values of the exponents ,FC IIn  and  ,LR IIn  

are also relatively stable for the investigated cases.  

 
Figure 3.4: Normalized failure criterion and LoA II load-rotation relationships obtained 

with the parametric study (refer to Table 3.1 for details)  

If both FC  and ,LR II are assumed to be lognormally distributed (to be verified with experimental 

data), the relationship between the Coefficient of Variation (CoV) of the global model 
uncertainty and the sub-models’ uncertainties can be approximated as follows (based on Eq. 
(9)): 

2 2 2 2
, ,, ,solu II FC LR IIFC II LR IICoV CoV CoVn n      (10) 

Based on the range of values of ,FC IIn  (0.47 to 0.64) and - ,LR IIn (0.24 to 0.35), it can be inferred 

that the CoV of the resistance solution (CoVsolu,II) is lower than the maximum of the CoV of the 
sub-models. This result is consistent with the data reported in [Mut08] and already introduced 
in Section 3.1.2.  
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Figure 3.5:  (a) values of  ,FCn   ; (c) , ,R IIn  ; (c) ,FC IIn  and (d) ,LR IIn  obtained 

with LoA II plotted as a function of the ratio Vsolu,II/Vflex 

3.3.2 LoA IV load-rotation relationship 

Alternatively, the load-rotation relationship can be evaluated with the LoA IV, which considers 
explicitly the influence of concrete cracking, steel yielding and tension-stiffening on the flexural 
behaviour of the structure. The LoA IV load-rotation relationship usually takes an implicit form, 
which can be represented by the following function: 

, , , , , ,( , ) [( , ), ] ( , )LR IV LR IV LR IV b LR IV LR IV b LR IVF F V F V      x x x


 (11) 

In this paper, the analytical nonlinear load-rotation relationship presented in [Mut08] 
considering the quadrilinear moment-curvature relationship for the reinforced concrete cross 
section is adopted (refer to Appendix 1 of [Mut08] for the full calculation procedure according 
to LoA IV).  

Since the load-rotation relationship takes an implicit form in the LoA IV, the exponent 
sensitivity factor referring to the influence of the load variable in the load-rotation relationship 

, ,R IVn (the subscript IV refers to the LoA IV) also differs from case to case. Similar to the 

estimation of the exponents in Section 3.3.1, a parametric study is performed to investigate the 
ranges of values in which the exponent factors vary (again, only cases where V<Vflex are 
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investigated). The normalized failure criterion and load-rotation curves for the parametric study 
are plotted in Figure 3.6.  

 
Figure 3.6: Normalized failure criterion and LoA IV load-rotation relationship obtained 

for the parametric study 

The values of ,FCn   and , ,R IVn  for each case are calculated at the LoA IV resistance solution 

point (see results in Figure 3.7(a) and (b)). The values of 
, , ,

,
1

1 R IV FC
FC IV n n
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 are also calculated and plotted in Figure 3.7 (c) and (d). The following 

phenomena can be observed: 

 A regime change can be observed in the values of , ,R IVn , which is the result of the 

change of the flexural behaviour of the slab from fully cracked with the reinforcement 
in the elastic regime to partial yielding of the flexural reinforcement.  

 The values of , ,R IVn  vary within a much larger range (1.1-6.7) than in LoA II. 

Consequently, ,FC IVn and ,LR IVn  also vary within significantly larger ranges (0.19-

0.71 and 0.12-0.38, respectively). It can also be observed that when the regime change 
occurs with the increasing punching-to-flexural resistance ratio Vsolu,IV/Vflex, the values 

,FC IVn and ,LR IVn  decrease significantly. As a result, it can be anticipated that the 

model uncertainty of the resistance solution should have decreasing CoV with 
increasing Vsolu,IV/Vflex,. In other words, the model uncertainty of the resistance solution 
should be heteroscedastic.   
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Figure 3.7:  (a) values of  ,FCn  , (b) , ,R IVn  , (c) ,FC IVn  and (d) ,LR IVn  obtained for 

LoA IV as a function of the ratio Vsolu,IV/Vflex 

The results of the theoretical derivation above presented are verified in the following sections 
by quantifying the model uncertainty as a random variable based on a collected database of 
experimental tests. 

3.4 Model uncertainty quantification of CSCT for 
punching shear 

3.4.1  General considerations 

The quantification of the model uncertainty of the CSCT for punching shear is performed on the 
basis of the Bayesian inference framework (refer to Annex 3.A for details). For that purpose, a 
database [Clé12, Dra16, Ein16, Gua09, Gui10, Hal96, Kin60, Lip12, Fer10, Tas11, Tol88] of 
55 tests on the punching shear resistance of slender flat slabs is collected. Only tests of 
axisymmetric slabs without shear reinforcement, subjected to a centred monotonic loading are 
selected. Also, in order to investigate the model uncertainty of the load-rotation relationship, 
only tests with explicitly reported data of the rotation at failure are selected (refer to Annex 3.B 
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for the details on the test database). It should be noted that the quantification of model 
uncertainties relies on test data from test reports. With this respect, it has to be considered that 
the reported test data are inevitably influenced by errors associated with measurement devices 
and measurement procedures involved in tests [Ell80, Fos16, Gar02]. In this work, the influence 
of measurement errors in the test data is considered following the method proposed by Gardoni 
et al. in [Gar02] (refer to Annex 3.A.2 and 3.A.3 for details on the treatment of measurement 
errors). In the following, the model uncertainties of the sub-models of the CSCT (failure criterion 
and load-rotation relationship), as well as of the global strain-based resistance model are 
quantified.  

3.4.2 Quantification of model uncertainties following LoA II 

In this section, the model uncertainties of the LoA II of the CSCT punching shear resistance 
model are investigated.  

For the failure criterion, the observation of the model uncertainty (denoted as FC ) for a given 

result from the collected test database is given by: 

, ,

( ) ( , )
FC test FC test

FC

FC FC FC b test

V V

F F



 

x x
   

(12) 

Where ,FC testV  is the failure load of the test, FCx  are the corresponding input variables and test  

is the rotation at maximum load of the test ( FC is illustrated in Figure 3.8(a)).  

The Quantile-Quantile plot (Q-Q plot) of the logarithmic FC  data from the assembled punching 

shear tests database is shown in Figure 3.8 (b). 

Similarly, for the load-rotation relationship, the observation of the model uncertainty variable 

(denoted as ,LR II ) is given by: 

,

, , ,( ) ( , )
test test

LR II

LR II LR II b solu testF F V

 
  

x x
   

(13) 

The definition of ,LR II  is also illustrated in Figure 3.8 (a) and the Q-Q plot of the logarithmic 

,LR II  data from the assembled punching shear test database is plotted in Figure 3.8 (c). 

Finally, for the global solution model, the observation of the model uncertainty, denoted as ,solu II

, is calculated as follows: 

,
,

, ( )
solu test

solu II

solu II b

V

F
 

x
  

(14) 
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The definition of ,solu II  is also illustrated in Figure 3.8 (a) and the Q-Q plot of the logarithm of 

the ,solu II  data from the assembled punching shear test database is plotted in Figure 3.8 (d). 

 
Figure 3.8:  (a) Definition of the model uncertainties of the sub-models (b) Quantile-

Quantile plot and statistics (mean value and CoV) of data of the model 

uncertainty of the failure criterion, (c) LoA II load-rotation model and (d) 

of resistance solution   

The correlation matrix of the model uncertainty data from the failure criterion sub-model, the 
load-rotation relationship sub-model, and the global resistance model are provided in Table 3.2. 
It can be observed that the correlation coefficient (calculated as the ratio between their 
covariance and the product of their standard deviations) between the failure criterion sub-model 
and the load-rotation sub-model is relatively small (0.25). This result shows that the 
independency assumption about these two variables is acceptable for these models.  
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Table 3.2: Correlation matrix of the model uncertainty data of failure criterion model, 

load strain model and global resistance solution of CSCT 

 
FC  ,LR II  ,solu II  

FC  1   

,LR II  0.25 1  

,solu II  0.68 -0.50 1 

 

3.4.3 Bayesian inference of the model uncertainty distributions 
parameters 

Based on the model uncertainty data presented above and applying the Bayesian inference 
method [Box92] (refer to Annex 3.A.1 for details), posterior distributions and point estimates 
can be calculated for the model uncertainty distribution parameters. The isolines of the resultant 
posterior distributions and point estimates of the distribution parameters are plotted in 

Figure 3.9(a). It should be noted that the Bayesian inference is performed for the mean (  ) and 

standard deviation (  ) of the logarithm of the model uncertainty variables ( ln( ) )(refer to 

Annex 3.A.1 for details), but for clarity of illustration, the approximated mean value (  ) and 

the coefficient of variation ( CoV


) of the original model uncertainty variable  are presented. 

The relationship between the distribution parameters in the original space (   and CoV


) and 

in the logarithmic space (   and  ) is approximated as exp( )    and CoV 


. It can 

also be noticed that the value of CoV


 differs slightly from the reported CoV in Figure 3.8. This 

is because the value in Figure 3.8 is the sample CoV, but the value CoV


 in Figure 3.9 is based 

on the posterior estimation of  .  

Furthermore, through probabilistic modelling of the measurement errors (refer to Annex 3.A.2 
and 3.A.3 for details), posterior distributions and point estimates of the model uncertainty 
parameters considering the influence of measurement errors can also be calculated. The resultant 
posterior distributions and point estimates of the three model uncertainty variables after 
accounting for the influence of measurement errors are plotted in Figure 3.9(b). It can be 
observed that measurement errors have a significant influence on the standard deviation of the 
model uncertainty variables. 
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Figure 3.9: Posterior distributions of model uncertainty distribution parameters of LoA 

II (a)with and (b)without measurement errors 

It can be observed from Figure 3.9 that the CoV of the model uncertainty of the global resistance 
solution (pink) is significantly lower than those of the sub-models (blue and red), which is 
consistent with the theoretical derivation of Section 3.3. Attention should be paid to this aspect 
in the calibration of the codified safety format of strain-based approaches.  
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3.4.4 Quantification of model uncertainties following LoA IV  

The procedure outlined in the previous section is applied in this section for the LoA IV, notably 
to calculate the model uncertainty of the load-rotation relationship sub-model and of the global 
resistance solution. It should be noted that the model uncertainty of the failure criterion sub-
model remains the same for LoA II and LoA IV since the same failure criterion is used.  

The Q-Q plot of the ,LR IV and ,solu IV  data from the assembled punching shear test database is 

plotted in Figure 3.10. 

 
 

Figure 3.10:  (a) Definition of the model uncertainties of sub-model and global solution 

(b) of LoA IV load-rotation relationship sub-model and (c) of global 

resistance solution   
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Figure 3.11: Posterior distributions of model uncertainty distribution parameters of LoA 

IV (a) with and (b) without measurement errors  

Based on the model uncertainty data, following the Bayesian inference method [Box92](refer to 
Annex 3.A.1 for details), the point estimates of the model uncertainty distribution parameters of 
the three models can be calculated. Their posterior distributions and point estimates are plotted 
in Figure 3.11. It can be observed that the measurement errors have a more significant influence 
on the distribution parameters of the load-rotation relationship model uncertainty of LoA IV 
than that of LoA II. This result suggests that the influence of other sources of uncertainty (as the 
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measurement errors) becomes more influential in more refined approaches, which indicates that 
the application of models with increased complexity and level of detail requires a critical 
evaluation of additional sources of uncertainties.  

3.5 Discussions on the model uncertainties of LoA II and 
LoA IV 

3.5.1 Comparison between the model uncertainties obtained for LoA 
II and LoA IV 

Comparing the Q-Q plots of the model uncertainty data of the LoA II (Figure 3.8) and LoA IV 
(Figure 3.10) load-rotation sub-models, it can be observed that, as expected, the LoA IV load-
rotation model uncertainty data has a smaller CoV (19.9 %) than LoA II (24.3%). Furthermore, 
it can be observed that the LoA II load-rotation sub-model has a significant conservative bias 
(mean value equal to 0.83, corresponding to an overestimation of the rotation at the resistance 
point), while the corresponding LoA IV sub-model has a smaller unconservative bias (mean 
value 1.06). These results are consistent with the principles of an approach based on LoAs 
introduced in Section 3.1.3. 

From the quantile-quantile plots of LoA II and LoA IV load-rotation model uncertainties (Figure 
3.8 and Figure 3.10), it can also be observed that the LoA IV data show a good fit to a lognormal 
distribution, while LoA II data have relatively larger deviations in the tail region. This is also 
consistent with the fact that the formula of the LoA II load-rotation relationship has been derived 
analytically by simplification of the general formula of the mechanically based LoA IV load-
rotation relationship [Mut08], but not explicitly accounting for the two regimes described above 
(elastic and elastic/partial yielding of reinforcement). It is reasonable to assume that the model 
uncertainty of the LoA II load-rotation sub-model results from both the innate LoA IV load-
rotation model uncertainty and the additional epistemic uncertainty introduced by the 
simplification process. This assumption is further supported by the correlation between the LoA 
II and LoA IV load-rotation model uncertainty data (with a correlation coefficient of 0.71), as 
plotted in Figure 3.12, where the cases with the flexural reinforcement remaining fully elastic 
according to LoA IV are represented by blue dots and those with the flexural reinforcement 
partially yielding are represented by red dots.  
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Figure 3.12: Relationship between the LoA II and LoA IV load-rotation model 

uncertainty data  

3.5.2 Relationship between model uncertainty of sub-models and 
global resistance solution 

The global resistance model uncertainty data is plotted in Figure 3.13 as a function of the 
punching-to-flexural resistance ratio Vsolu/Vflex for both the LoAII and the LoAIV. Also, the 
estimated CoVs of the global resistance model uncertainty solution based on the relationship

2 2 2 2
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 
 (refer to Figure 3.9(a) and 3.11(a) for values of FCCoV


and 

LRCoV


) are also calculated and plotted in Figure 3.13. It can be observed that the moving CoV 

of the model uncertainty data (calculated with 15 neighbour data points) of both LoA II and LoA 
IV shows a descending trend. It is interesting to note that for LoA IV, the estimated CoVsolu,IV 
has a descending trend following well the test data. This is a resultant of the decreasing values 

of ,FC IVn  and ,LR IVn with the regime change of the LoA IV load-rotation relationship (see 

Figure 3.7). From another perspective, the decrease of the moving CoV of the resistance solution 
model uncertainty originates from the fact that with the increase of the ratio of Vsolu/Vflex, the 
behaviour is increasingly dominated by the flexural behaviour of the structure (as the amount of 
flexural reinforcement yielded is increasing, resulting into a softer secant of the load-rotation 
relationship at the resistance point), which tends to have lower model uncertainty than a 
punching failure occurring in a regime where most of the flexural reinforcement is responding 
in the elastic regime.  

On the other hand, for LoA II, the estimated CoVsolu,II has a relatively constant value since the 
approximated LoA II load-rotation relationship does not differentiate the different regimes in 
the flexural response, resulting in a larger deviation of the CoVsolu,II from the moving CoV of the 
test data. This result shows that lower LoAs also tend to have higher statistical uncertainty 
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resulting from the simplifications and approximations made in the model (additional epistemic 
uncertainties). It can also be observed that if the model uncertainty is directly approximated by 
a random variable at the solution level, potentially higher statistic uncertainty will be introduced, 
since the heteroscedastic nature of the model uncertainty of the resistance solution is ignored. 
From this perspective, it is more appropriate to quantify the model uncertainties at the sub-model 
level (especially for higher LoAs), when sufficient data is available.  

 
Figure 3.13: Moving average and moving CoV of (a) LoA II and (b) LoA IV resistance 

solution model uncertainty data  

3.6 Discussion on the partial safety factors for strain-based 
approaches 
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are compared. 
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On the one hand, Safety Format A uses several partial safety factors (see Figure 3.14(a)): one 

partial factor FC  applied to the failure criterion sub-model, another partial factor def  applied 

to load-rotation sub-model (assuming that model uncertainties are dominating) and the two 
partial safety factors to material strength variables used in design codes such as 

Eurocode [CEN23] and fib Model Code 2010 [FIB13] ( C  for concrete compressive strength 

and  S  for steel yielding strength) which apply implicitly to the load-rotation relationship 

(reducing the flexural resistance Vflex). The design values of the failure criterion, the rotation and 
the punching resistance become:  

, ,

,

, , ,

1
( , )

( , )

FC d FC b d d
FC

d def b d

solu d A FC d

R F

F R

R R R




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 

 
  
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

x

x




 

(15) 

On the other hand, safety format B includes the application of a single partial factor V  to the 

resistance solution (in addition to the two partial safety factors S  and C  which are commonly 

used for the flexural failure mode):  

, , ,

1
( )solu d B solu b d

V

R F


 x


 
(16) 

The effect of applying the partial factors individually to the sub-models (Safety Format A) is 
illustrated in Figure 3.14 (a) for the LoA IV. It can be observed that when the partial safety 
factors are applied to the sub-models, they have a nonlinear effect on the resistance solution. 
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Figure 3.14:  (a) Illustration of the effect of the partial factors of sub-models to the design 

resistance solution for the cases with fyk = 500 MPa (fym = 538 MPa), fck = 

30 MPa (fcm = 33.6 MPa), d = 150 mm, h  = 200 mm, c =450 mm, rs = 
1100mm and dg = 16mm and (b) the equivalent partial safety factor ,V IV  

of Safety format B for constant partial safety factors FC  and def  of 

Safety format A for the LoA IV approach of CSCT 
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By equalling the design resistance obtained with the two safety formats ( , , , ,solu d A solu d BR R ), the 

following relationship between the partial safety factors associated to the two formats can be 
analytically established as follows:  

,

, , , ,

1

1 1
FC

R FC R FC

n

n n n n
V FC def



     


   
(19) 

On the basis of the values of the exponent sensitivity factors from the parametric analysis (refer 

to Figure 3.5 and Figure 3.7), it can be inferred that a given pair of partial safety factors FC  and 

def corresponds to a range of values for V due to the variation of the exponents sensitivity 

factors (nε,R and nFC,ε) for the different cases. For the LoA IV, an illustration of the resulting 

values of ,V IV  for fixed values of FC = 1.62  and def =1.33 is plotted in Figure 3.14(b) (the 

choices of these values will be explained in Section 3.6.2). The effect of the partial safety factors 

C  and S  (for the flexural failure mode) on the punching shear resistance is also plotted (the 

factors nfc and nfy represent their corresponding exponent sensitivity factors in the punching 
resistance solution function). The following observations can be made from Figure 3.14: 

- to achieve the same design resistance, the values of the partial safety factor ,V IV  applied 

to the resistance solution can take a lower value than the partial safety factors 
individually applied to the sub-models;  

- the partial safety factor ,V IV  presents three regimes corresponding to the three regimes 

at failure considered in the load-rotation relationship (punching with reinforcement 
remaining elastic, punching with reinforcement partially yielding and flexural failure); 

- the partial safety factors C  and S  have a nonnegligible influence on the punching 

shear resistance in the regime of punching shear failure with the flexural reinforcement 
partially yielding. 

The results in Figure 3.14 show that Safety Format A applied to the LoA IV can effectively 
account for the change of model uncertainties associated to the different punching shear failure 
regimes. Due to this reason, Safety Format A is more suitable in higher LoA, where the load-
rotation relationship and the failure criterion sub-models are treated as two independent 
functions and where the different regimes at failure are explicitly accounted for (through the 
load-rotation relationship).  
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Following the same procedure, for the LoA II, an illustration of the resulting values of ,V II  for 

fixed values of FC  and def  is plotted in Figure 3.15. It can be observed that, unlike the case of 

the LoA IV, the value ,V II  varies in a much smaller range (although a decreasing value of ,V II  

can be observed for increasing values of the rotation). This results from the fact that the different 
punching shear failure regimes are not explicitly accounted for and are not differentiated in the 
load-rotation relationship (due to the simplification made in the load-rotation relationship of 
LoA II as discussed in Section 3.3.1). This result suggests that for LoA II, both safety formats 
A and B are suitable. However, it should be noted that since the model uncertainty of the load-

rotation relationship is higher for LoA II, the partial safety factors FC  and def should also be 

higher than those for LoA IV. 

 
Figure 3.15:  (a)Illustration of the effect of the partial factors on sub-models to the design 

resistance solution (same geometrical and material parameters as in the 
LoA IV cases are used) and (b) the equivalent partial safety factor ,V II  of 
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Safety format B for fixed partial safety factors FC  and def  of Safety 

format A for the LoA II approach of CSCT 

3.6.2 Relationship between partial safety factors adopted for the 
punching shear provisions in the second generation of 
Eurocode 2 

In the new generation of the European standard for concrete structures (Eurocode 2 [CEN23]), 
a closed-form design expression is provided for the punching shear design (Clause 8.4 of 
prEN1992-1-1:2023 [CEN23], typically to be used for designing new structures). As discussed 
in reference [Mut23a], this design expression is analytically derived based on a power-
multiplicative form approximation of the failure criterion and the LoA II load-rotation 

relationship (which corresponds to constant values of ,FCn   and ,Rn ). The validity of the 

approximated closed-form design expression (as well as the values of the exponents ,FCn   and 

,Rn  adopted in it) is confirmed by the relatively low level of model uncertainty associated with 

it (refer to [Mut23b] for details). For this closed-form design expression, only the safety format 
B can be adopted (as no distinction can be made between load-rotation and failure criterion sub-

models). The calibration of the partial safety factor V  required in Safety Format B for such 

design expression is presented in reference [Mut23]. It accounts not only for the model 
uncertainty, but also for the material and geometrical uncertainties involved in the design model 

(refer to [Mut23] for the calibration details), a value of 1.40V   is proposed [Mut23b]. 

Alternative to the closed-form design expression in Clause 8, in Annex I of FprEN1992-1-
1:2023 [CEN23] (assessment of critical existing structures), the application of the strain-based 
punching shear resistance model is also provided. In this case, the Safety Format A is adopted 
and the following design formula is used: 
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(20) 

It should be noted that different LoAs of the load-rotation relationship are allowed to be used in 
Eq.(20). Theoretically, the partial safety factors should be calibrated individually accounting for 
their respective model uncertainties. However, in order to provide a relatively simple safety 
format that is convenient in practice, the partial safety factors are not differentiated for the 
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different LoAs of load-rotation relationships used in Eq.(20) and, to be on the conservative side, 
the model uncertainties of lower LoA are adopted in the calibration of the partial safety factors. 

With the relationship between safety factors presented in Eq. (19), the value of FC  can be 

calculated based on the values of V  and def . Consistent with the functions adopted in the 

derivation of closed-form design expression of Clause 8.4 of FprEN 1992-1-1:2023 [CEN23, 

Mut17, Mut23b], ,

2
3FCn     and ,

3
2Rn   are adopted (such values also agree with the result of the 

parametric study of Section 3.3.1) and Eq.(19) relating the different partial safety factor 
becomes: 

2

2/3
V

FC
def





  

(21) 

Using Eq.(21), the relationship between FC  and 𝛾௏ for different values of def  is plotted in 

Figure 3.16. It can also be observed that in most of the cases, the value of FC  is higher than the 

value of 𝛾௏. 

 
Figure 3.16: Relationship between the partial safety factor applied to resistance solution 

V (Safety Format B) and the partial safety factors applied to the sub-

models FC  and def  (Safety Format A) adopting the exponent factors 
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It is further assumed that the global resistance solution of strain-based model in Eq.(20) has the 
same level of model uncertainty as the closed-form expression. This assumption should be 
conservative for LoA II and LoA IV since in principle they should have lower level of model 
uncertainties than the closed-form expression. Following this assumption, the partial safety 
factor applied to the global resistance solution (Safety Format B) of the strain-based model can 

be conservatively taken the same as the one for the closed-form design expression as 1.40V  . 

Consider in addition that def = 1.33 [Mut08, Fer08], the value of FC  can be calculated as 
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2/3
1.62V
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(22) 

This set of partial safety factors is adopted in Annex I of FprEN1992-1-1:2023 [CEN23], leading 
the failure criterion to be written in a general format as: 
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(23) 

It should be emphasized that the relationship of the partial safety factors in Eq.(23) is derived 
based on the conservative assumption that the model uncertainties of the global resistance 
solution of higher LoAs are the same as that of the closed-form design expression. Theoretically, 
more refined calibration of the partial safety factors for higher LoAs can be performed by 
accounting for their corresponding model uncertainties. The format of Eq.(23) is adopted in 
Annex I [CEN23] as a conservative and consistent solution for engineering practice and, in 
addition, it also includes the relationship between the different partial safety factors of different 
safety formats for the strain-based approaches. 

3.7 Conclusions 

The model uncertainties of the sub-models and of the global solution of strain based-approaches, 
their relationship and their impact on the suitable safety format to be adopted in design 
provisions are investigated in this work. 

A general theoretical approach to investigate the above-mentioned issues is first introduced, 
showing that: 

 By approximating the sub-models of a strain-based approach in a power-multiplicative 
form, it is possible to easily establish the relationship between the model uncertainty of 
the global solution and those of the sub-models of strain-based approaches. 

 The model uncertainty of the global solution can be viewed as a resultant of the model 
uncertainty of the sub-models. The influence of the sub-models on the uncertainty of 
global solution depends however on their sensitivity relationship (represented by the 
exponent sensitivity factors). With this respect, it is shown that the global model 
uncertainty can be lower than the sub-models’ uncertainties, which is a relevant point to 
be accounted for in the safety format calibration of strain-based approaches. 

The theoretical approach introduced in this work is thereafter applied to the strain-based 
approach of the Critical Shear Crack Theory (CSCT) for punching of reinforced concrete slabs 
as an example (applying the approach by Levels-of-Approximation, LoA). In addition, the 
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model uncertainties of the sub-models and of the global solution are also quantified by means 
of a parametric analysis and experimental data. The main conclusions resulting from this work 
are: 

 The model uncertainty quantification confirms that the global solution uncertainty can 
be significantly lower than those of the sub-models. 

 By analysing two levels of approximation (namely LoA II and LoA IV according to fib 
MC 2010), it is shown that the model uncertainty decreases with the increase of the LoA 
(consistently with the main principles of such an approach). Furthermore, the model 
uncertainty of lower LoAs can be considered as a resultant of the uncertainty of higher 
LoAs and the additional epistemic model uncertainty introduced in the simplification 
procedure adopted for the derivation of the lower LoA formulae. 

 For higher LoAs, an approach based on the application of partial safety factors to the 
sub-models appears to be more suitable than an approach relying on the application of 
a single global partial safety factor to the resistance solution, since they can effectively 
account for the change of model uncertainty associated to the change of the failure mode. 
Particular attention needs to be paid to the nonlinear relationship between the partial 
safety factors applied to the sub-models and the resulting design resistance for strain-
based approaches. 

 It is shown that, if constant partial safety factors are adopted for the sub-models, the 
resulting global partial safety factor can vary depending on the material and geometrical 
parameters as well as on the resulting failure modes. For the investigated case, the global 
partial safety factor for punching according to the LoA IV varies between 1.48 and 1.00. 

Based on some assumptions described in this work, the relationship between the safety factors 
of the punching shear provisions in the second generation of Eurocode 2 for the design of new 
structures (Clause 8.4) and the assessment of existing critical ones (Annex I) is established, 
justifying the safety format adopted for the latter. 

Annex 3.A Model uncertainty quantification accounting for 
measurement error 

3.A.1  Model uncertainty quantification using Bayesian method 

For the purpose of model uncertainty quantification, the Bayesian method for statistical 
inference of random variables is first briefly summarized.  

A general form of the models of interests is considered: 
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( , ) ( , ) ( ) ( ) exp( )F F F F F            x x x x
 

 (24) 

Where F is the output variable of a given model (e.g., the punching strength FCV  in the failure 

criterion model of Eq.(6), the rotation angle   in the load-rotation model of Eq. (7) and (11) 

and the punching resistance soluV  in the global solution models), x is the vector of all input 

variables of the model, including the basic variables and also the strain or load state variables; 
  is the model uncertainty random variable and  is the vector of distribution parameters of 
.  

Assuming that the model uncertainty variable follows a lognormal distribution (which is 
consistent with the assumption adopted in literature [JCS01]) and it is in a multiplicative form 
with the deterministic mechanical model [JCS01], Equation (24) is further extended, where 

( , )     are mean value and standard deviation of the logarithmic model uncertainty 

variable  , ( )F 


 is the deterministic mechanical model,  exp( )  is the natural exponential 

function,  v is a standard normal distributed variable with zero mean and unit variance. The term 

exp( )    in this equation is equivalent to the model uncertainty random variable  . 

To quantify the model uncertainty, the distribution parameters ( , )    need to be estimated 

based on data observed from relevant experiments. In this paper, Bayesian approach will be used 
for this purpose. 

In Bayesian approach, the updating rule is used to make inference of the parameters  :  

( ) ( ) ( )f L p     (25) 

Where f() is the posterior distribution of the parameters accounting for the updated state of 

knowledge, L() is the likelihood function representing the objective information contained in 

a set of observed data related to  , p() is the prior distribution reflecting the a-prior knowledge 

about   and  is the normalising factor, 1[ ( ) ( ) ]L p d     . The likelihood function is 

proportional to the conditioned probability of the occurrence of the observed data for given value 
of  .  

In Bayesian framework, the choice of the prior distribution of the parameters can be based on 
prior knowledge of the parameters. When there is no prior information available the 
noninformative prior should be used [Box92]. 

The likelihood function is the conditional distribution function describing the likelihood of 
occurrence of observations for given values of  . For the model uncertainty variable, the 

observation values can be collected from a database of relevant test results.  For a given test 
result, the observed model uncertainty value can be calculated as: 
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Where j  is observed model uncertainty value of the jth test, jF is the observed value of F in jth 

test, jx  is the vector of input variables of the jth test, ( )jF x


 is the calculated value based on the 

model and Nt is the total number of tests in the database.   

Since   is assumed to follow a lognormal distribution with the parameters  and  , based on 

the test database, the likelihood function can then be formulated as: 
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(27) 

Where ln( )  is the natural based logarithmic function and ( )  is the standard normal probability 

density function.  

Based on the likelihood function in Eq. (27) and the noninformative prior distribution function, 
theoretically the posterior distribution of  is available and point estimates of   can be made 

by calculating the posterior mean values. In addition, the covariance matrix of   can also be 

calculated to evaluate the confidence level in the point estimates. In this paper, to calculate these 
statistics, the Hamiltonian Monte Carlo simulation method [Nea96] is employed, details of this 
method can be consulted elsewhere [Nea96, Nea11].  

3.A.2 Treatment of measurement error in the Bayesian inference 

In Section 3.A.1, the general Bayesian inference procedure for the model uncertainty 
quantification problem is explained. In this section the quantification method is further advanced 
by proper treatment of the influence of measurement error in the test data. The method used in 
the paper is based on the method proposed by Gardoni et al. in [Gar02]. 

The quantification of model uncertainties relies on test data from test reports. It has to be 
considered that the reported test results are influenced by the error due to measurement devices 
and measurement procedures involved in tests [Ell80, Fos16, Gar02]. 

In order to take the influence of measurement errors into consideration, first they are modelled 

as random variables. Denote ix  as the true value for the ith input variable and ˆix  as the measured 

value of the corresponding variable. Assume that the measurement error related to the variable 

is represented by a random variable xie  and the true value ix  can be represented as the measured 

value ˆix multiplied by the measurement error variable xie : 

ˆi i xix x e   (28) 

Accounting for the measurement error terms, Eq.(24) becomes: 
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1 1ˆ ˆ( ) [( ,..., )]x N xNF F F x e x e      x
 

 (29) 

On the basis of Eq. (29), to achieve feasible form of the likelihood function, similar to the 
approach used in Section 3.2, the multiplicative approximation form of the mechanical model 

( )F 


 is used. The multiplicative approximation form of ( )F 


 is 

1 1
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(30) 

Where C and in are the approximated first order coefficients of the model. It should be noted 

that the values of C and in  vary from test to test. 

Then Eq. (29) can be reformulated as: 
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(31) 

In the previous derivation, only the measurement errors of the input variables are accounted for. 
To be consistent, the measurement error of the output variable F is also considered. Similar to 
the input variables, the measurement error of the output variable is modelled as a random 

variable Fe  and it is considered that the measured value F̂  can be represented by the actual 

value of F multiplied by the measurement error variable: ˆ
FF F e  . Based on this assumption, 

the following relationship can be derived: 
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Define 
ˆ

ˆ
ˆ( )

F

F
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  as the measured model uncertainty variable, based on Eq. (32), it can be derived 

as: 
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Further assume that all the measurement error terms follow independent lognormal distributions 

(with known distribution parameters), then it can be observed that ̂ is a lognormally distributed 

random variable, with the following distribution parameters: 
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Using the test database, a set of observations values of  ̂  can be calculated. The likelihood 

function for the model uncertainty variable can be then formulated as: 
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(36) 

It should be noted that the values of the exponents in  vary from test to test. Using the likelihood 

function of Eq.(36), the posterior distributions of the model uncertainty distribution parameters 
can be calculated and the corresponding point estimates (posterior means) can be made by 
Hamiltonian Monte Carlo simulation method [Nea96].  

3.A.3. Probabilistic models for measurement errors 

The probabilistic modelling of the measurement error terms involved in the CSCT punching 
shear resistance function is explained in this annex. In this paper, the measurement errors of the 
geometrical variables, material strength variables, the load and rotation variables are accounted 
for. In particular, for the measurement error of the effective depth variable d and the slab rotation 

variable , the database is divided into different groups depending on the quality of 

measurement in tests. For the effective depth, in most of recent tests, it has been measured on 
saw-cuts after testing. For this type of test data, a relatively low variability of the measurement 
error is assumed (Standard deviation= 2 mm) [Mut23]. On the other hand, in the tests without 
measurement of saw-cuts showing the cross-section after tests, a higher variability is assumed 
(Standard deviation = 4 mm). For the slab rotation data, in some tests, it is directly measured by 
inclinometer instrumented on the slabs; in the other tests, it is calculated based on measurement 
of the displacement of the tested slabs. For the tests with direct measurement of rotation data, a 
relatively low variability is assumed (CoV=5%), while for the tests with indirect derived rotation 
data, a higher variability is assumed (CoV = 10%).  

All the measurement error variables are assumed to follow lognormal distribution and their 
assumed CoV values are adapted from [Mut23] and listed in Table 3.3. The mean values 
correspond to the average of the measured values given in the test reports or to the nominal 
values 
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Table 3.3: Measurement error for different experimental variables  

Parameter CoV 

Effective depth d Nominal value or measured before casting 4/d  (d in [mm]) 

Measured on saw-cuts after testing 2/d 

Column size c  1% 

Maximum aggregate size dg 10% 

Radius of the point of contraflexure rs 5% 

Compressive concrete strength fc (measured on control specimens) 5.8% 

Yield strength of flexural reinforcement fy (measured on control specimens) 2% 

Punching shear resistance (measured in the laboratory) 3% 

Rotation  at failure  Measured with inclinometers 5% 

 Calculated on the basis of deflections 10% 
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Annex 3.B Tests used in the database 

Table 3.4: Information of the assembled punching shear test database  

Reference Specimen Vtest [kN] test [×10-3] Vsolu,II 
Vtest/ 
Vsolu,II 

Vsolu,IV 
Vtest/ 
Vsolu,IV 

Kinnunen & Nylander 
[Kin60] 
 

IA15a-5 254.8 12.0 237.0 1.08 254.6 1.00 

IA15a-6 274.4 15.1 238.6 1.15 257.2 1.07 

IA15c-11 333.2 10.3 288.9 1.15 310.0 1.07 

IA15c-12 331.2 9.2 288.6 1.15 309.9 1.07 

IA30a-24 429.2 14.6 400.0 1.07 423.6 1.01 

IA30a-25 407.7 13.0 377.8 1.08 400.0 1.02 

IA30c-30 490 12.4 433.3 1.13 457.8 1.07 

IA30c-31 539 14.3 429.6 1.25 453.2 1.19 

IA30e-34 331.2 23.0 321.0 1.03 325.6 1.02 

IA30e-35 331.2 20.4 317.8 1.04 324.6 1.02 

Guandalini et al. 
[Gua09] 

PG-1 1023 8.9 837.3 1.22 861.4 1.19 

PG-3 2153 8.4 1699.6 1.27 2023.0 1.06 

PG-6 238 11.7 229.1 1.04 244.4 0.97 

PG-7 241 22.3 195.5 1.23 212.8 1.13 

PG-10 540 22.3 451.0 1.20 505.3 1.07 

Guidotti  
[Gui10] 

PG11 763 10.3 669.3 1.14 757.0 1.01 

PG19 860 10.5 736.1 1.17 829.3 1.04 

PG20 1094 7.1 977.4 1.12 1036.1 1.06 

PG23 839 10.0 770.1 1.09 846.6 0.99 

PG24 1102 8.6 948.3 1.16 999.8 1.10 

PG25 935 12.4 655.3 1.43 754.3 1.24 

PG26 1175 8.5 853.1 1.38 889.3 1.32 

PG27 900 12.1 704.2 1.28 793.9 1.13 

PG28 1098 7.8 927.8 1.18 975.7 1.13 

PG29 854 10.6 781.7 1.09 858.8 0.99 

PG30 1049 7.5 963.6 1.09 1012.6 1.04 

Einpaul et al. 
[Ein16] 

PE10 530 6.5 498.3 1.06 573.1 0.92 

PE11 712 10.1 587.5 1.21 673.7 1.06 

PE9 935 13.8 784.7 1.19 889.9 1.05 

PE12 1206 29.4 989.8 1.22 1092.2 1.10 

PE6 656 4.5 634.3 1.03 662.6 0.99 

PE7 871 6.7 769.4 1.13 809.5 1.08 

PE8 1091 8.7 986.6 1.11 1035.0 1.05 

PE5 1477 12.7 1286.8 1.15 1311.9 1.13 

PE3 961 10.0 800.1 1.20 858.3 1.12 

PE4 985 5.3 1029.4 0.96 1005.7 0.98 

Tassinari  PT22 989 15.6 776.7 1.27 887.4 1.11 
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[Tas11] PT31 1433 10.6 1129.6 1.27 1215.8 1.18 

Clément 
[Clé12] 

PF21 1838 5.2 1540.8 1.19 1632.7 1.13 

PF22 2007 3.8 1965.7 1.02 1931.4 1.04 

PF23 2685 8.3 2008.3 1.34 2088.1 1.29 

Lips  et al. 
[Lip12]  

PL1 682 6.0 636.2 1.07 665.0 1.03 

PL3 1324 13.2 1196.5 1.11 1216.7 1.09 

PL4 1625 6.5 1483.6 1.10 1476.6 1.10 

PL5 2491 4.7 2588.5 0.96 2466.6 1.01 

Tolf  
[Tol88] 

S2.1 603 8.5 646.0 0.93 692.6 0.87 

S2.2 600 10.7 629.1 0.95 672.6 0.89 

S2.3 489 17.8 471.3 1.04 529.8 0.92 

S2.4 444 15.8 455.4 0.97 512.7 0.87 

Hallgren  
[Hal96]  

HSC0 965 14.1 888.7 1.09 1025.9 0.94 

HSC1 1021 13.2 888.4 1.15 1026.7 0.99 

HSC2 889 10.9 838.5 1.06 966.7 0.92 

Fernández Ruiz et al.  
[Fer10] 

PV1 974 7.6 
914.1 

1.07 932.8 1.05 

Drakatos et al. 
[Dra16] 

PD7 983 20.0 843.0 1.17 944.1 1.04 

PD9 1040 11.3 1036.9 1.00 1058.0 0.98 

Average - - - - 1.13 - 1.05 

CoV - - - - 9.4% - 8.8% 
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Notation 

Latin upper case letters 

FCC  the approximated intercept coefficient of the failure criteria equation 

C  the approximated intercept coefficient of the load-strain equation  

CoV coefficient of variation of a random variable 

CoV


 The estimated coefficient of variation of the model uncertainty variable   

5%CoV


 the estimate of the 5% quantile of the posterior distribution of CoV


 

95%CoV


 the estimate of the 95% quantile of the posterior distribution of CoV


 

Es the elastic modulus of steel reinforcement 

F̂  the measured value of the output variable F in a model 

( )F 


 the deterministic part of a model 

, ( )LR IIF   the LoA II load-rotation function (accounting for model uncertainty variable) 

, ( )LR IIF 


 the deterministic LoA II load-rotation function 

, ( )LR IVF   the LoA IV load-rotation function (accounting for model uncertainty variable) 

, ( )LR IVF 


 the deterministic LoA IV load-rotation function 

( )FCF   the failure criterion function (accounting for model uncertainty variable) 

( )FCF 


 the deterministic failure criterion function 

( )soluF   the resistance solution function of strain-based approach 

, ( )solu IIF 


 the deterministic resistance solution function for LoA II 

, ( )solu IVF 


 the deterministic resistance solution function for LoA IV 

( )F   the load-strain function (accounting for model uncertainty variable)   

( )F 


 the deterministic load-strain function 

( )L   the likelihood function 

R the load level for a structural element 
RFC the strength of a structural element according to the failure criterion model 
RFC,d  the design failure criterion function 
Rsolu  the resistance solution of a structural element 
Rsolu,d the design resistance of a structural element according to a given safety format  
V the punching shear load level 
VFC the punching strength calculated with failure criterion model 
VFC,test the punching shear strength corresponding to a given rotation level observed 

in an experimental test 
Vflex the punching shear load associated with flexural resistance of the slab 
Vsolu,II the punching shear resistance calculated with the LoA II 



Model uncertainties and partial safety factors of strain-based approaches 

92 

Vsolu,IV the punching shear resistance calculated with the LoA IV 
Vsolu,test the punching shear resistance observed in an experimental test 
Latin lower case letters 
b0.5 perimeter of the critical section for punching shear 
c rectangular column size 
d the distance from extreme compression fibre to the centroid of the longitudinal 

tensile reinforcement (the effective depth) 
dg the maximum diameter of the aggregate 
dg0 the reference aggregate size (dg0 = 16 mm) 
e  the measurement error vector 

Fe  the measurement error of the derived variable F in a model 

xie  the measurement error of the ith variable in a model 

exp( )  the natural exponential function   

fc the uniaxial compressive strength of concrete (cylinder) 
fck the characteristic value of the uniaxial compressive strength of concrete  
fcm The mean value of the uniaxial compressive strength of concrete  
fy the yield strength of steel reinforcement 
fyk The characteristic value of the yield strength of steel reinforcement 
fym The mean value of the yield strength of steel reinforcement 

( )f   the posterior distribution function accounting for the updated state of 
knowledge 

h  the thickness of a concrete slab 
ln( )  the natural based logarithmic function 

mR the nominal flexural resistance per unit width of the slab 
nfc the exponent sensitivity factor (referred to as exponent below) of concrete 

compressive strength variable in the resistance solution  
nfy the exponent of the steel yielding strength in the resistance solution 
nFC,i the exponent of the ith basic variable in the failure criteria  

nFC, the exponent of the strain variable in the failure criteria  

ni the exponent of the ith basic variable in the load-strain function  

nR the exponent of the load variable in the load-strain function 

nR,II the exponent of the shear load for the LoA II load-strain function 

nR,IV the exponent of the shear load for the LoA IV load-strain function 

nFC,II the exponent of the failure criterion model uncertainty in the LoA II resistance 
solution 

nFC,IV the exponent of the failure criterion model uncertainty in the LoA IV resistance 
solution 

nLR,II the exponent of the load-rotation model uncertainty in the LoA II resistance 
solution 
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nLR,II the exponent of the load-rotation model uncertainty in the LoA IV resistance 
solution 

( )p   the prior distribution function 

rc the radius of the column 
rq the radius of the load introduction at the perimeter 
rs the radius of isolated slab element 

x  vector of all input variables of a model 

x̂  vector of the measured input variables of a model  

bx  vector of basic variables for a structural element 

,b dx  vector of design values of basic variables for a structural element 

FCx  vector of all input variables of the failure criterion function 

x  the vector of all input variables of the load strain function 

v a standard normal distributed variable (with zero mean and unit variance) 
Greek upper case letters 
  vector of the mean and standard deviation of the logarithmic model uncertainty 

variable   
Greek lower case letters 
  direction of the crack in a reinforced concrete panel subjected to shear  
  shear strain 

C  the partial safety factor applied to concrete compressive strength 

FC  the partial safety factor applied to the failure criterion function 

flex  the partial safety factor for the flexural resistance of a slab 

S  the partial safety factor applied to steel yield strength 

V  the partial safety factor applied to the resistance solution 

def  the partial safety factor applied to the load-rotation relationship 

  strain state variable of a structural element 

,1c  and ,2c  principle strains of concrete 

d  design value of the load strain relationship 

s  strain of steel reinforcement 

,LR II  the model uncertainty random variable of the LoA II load-rotation model 

,LR IV  the model uncertainty random variable of the LoA IV load-rotation model 

FC  the model uncertainty random variable of the failure criterion function 

  the model uncertainty random variable of the load-strain function 

. solu . the model uncertainty of the resistance solution as a whole 

,solu II  the model uncertainty of the resistance solution for LoA II 

,solu IV  the model uncertainty of the resistance solution for LoA IV 
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̂  the measured model uncertainty random variable (including measurement 
error) 

 the normalising factor for the posterior distribution function 

Fe  the mean value of ln(eF) 

xie  the mean value of ln(exi) 

  the mean value of the logarithmic model uncert s ainty variable 

̂
  the mean value of the measured logarithmic model uncertainty variable 

(including measurement error) 

5%  the estimate of the 5% quantile of the posterior distribution of   

95%  the estimate of the 95% quantile of the posterior distribution of   

  the mean value of the original model uncertainty variable exp( )    
  the reinforcement ratio   

,1c and ,2c   the principal stresses of concrete 

 stress of steel reinforcement 

Fe  the standard deviation of ln(eF) 

xie  the standard deviation of ln(exi) 

  the standard deviation of the logarithmic model uncertainty variable   

̂
  the standard deviation of the measured logarithmic model uncertainty variable 

(including measurement error) 
  shear stress applied to a shear panel 

( )   the standard normal probability density function 
  the rotation angle of a slab outside the column region in a slab column 

connection 

test  the measured rotation angle of the slab in an experimental test 
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Chapter 4 

A consistent safety format and design 
approach for brittle systems and 
application to Textile Reinforced 
Concrete structures 

This chapter is the post-print version of the article mentioned below, published in Engineering 
Structures Journal. The authors of the article are Qianhui Yu (PhD Candidate), Patrick Valeri, 
Prof. Miguel Fernández Ruiz and Prof. Aurelio Muttoni (thesis director). The reference is the 
following: 

Yu Q., Valeri, P., Fernández Ruiz M., Muttoni A., A consistent safety format and design 
approach for brittle systems and application to textile reinforced concrete structures, 
Engineering Structures, Vol. 249, 113306, 2021. 
(DOI: https://doi.org/10.1016/j.engstruct.2021.113306) 

The work presents in this publication was performed by Qianhui Yu collaborating with Patrick 
Valeri, Prof. Miguel Fernández Ruiz and under the supervision of Prof. Aurelio Muttoni who 
provided constant and valuable feedbacks, proofreading and revisions of the manuscript. 

The main contributions of Qianhui Yu to this article and chapter are the followings: 

 Post-process of the data of nine three point bending experimental test of Textile 
Reinforced Concrete (TRC) beams (measurement after saw-cut of the beam cross 
sections and Digital Image Correlation data process). 

 Modelling of the flexural response of the tested TRC beams and interpretation of the 
test results. 

 Modelling of the assembled cross-beam systems and collection of action effect model 
uncertainty data on its basis 

 Interpretation of the action effect model uncertainty data for different analysis methods. 
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 Parametric analysis and discussion for the applicability of different action effect analysis 
models for textile reinforced concrete beams. 

 Proposition of suitable action effect analysis methods for textile reinforced concrete 
beams.  

 Calibration of different partial safety formats for the flexural design for textile 
reinforced concrete structures. 

 Elaboration of the figures and tables included in the article. 

 Writing of the manuscript of the article. 
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Abstract  

Design and verification of structures in modern codes of practice account for a safety format, 
ensuring that the probability of failure does not exceed a given threshold. Although specific 
safety formats are proposed in some cases for special types of structures or analyses, most 
designs and verifications are currently performed on the basis of the Partial Safety Factor Format 
(PSFF). This format is applied to cover different materials and structural responses, allowing for 
a uniform methodology to account for reliability. Such consideration greatly simplifies the 
design process, but raises concerns on its consistency when different structural responses are 
observed. In the PSFF as considered in fib Model Code and Eurocodes, no explicit distinction is 
made on the value of the partial safety factors (for actions or materials) depending on whether a 
structural system has a brittle or a ductile response. This can be potentially inconsistent, as brittle 
systems have limited or no redistribution capacity of internal forces (which can give rise to 
premature failures if action effects are poorly estimated), while ductile systems have large 
potentials to redistribute internal forces and are thus little sensitive to this issue.  

In this work, to investigate on the suitability of PSFF for brittle structures, the most suitable 
manner to determine internal forces for brittle elements failing in bending and the corresponding 
model uncertainties of action effects are investigated in detail. The concepts are derived from a 
theoretical perspective and applied to the case of Textile Reinforced Concrete (TRC). This 
material is a promising development to reduce the carbon footprint of concrete construction and 
to build lightweight structures, but exhibits a very brittle response in bending (contrary to 
ordinary reinforced concrete with usual reinforcement ratios). In this work, by means of an 
experimental and theoretical investigation, it is shown that following a suitable approach to 
estimate internal forces for brittle systems as TRC leads to a low level of model uncertainty of 
action effects. This leads to the conclusion that, compared to standard design of ductile systems, 
no additional correction is required for safety issues. Following this outcome, the partial factors 
for TRC structures are calibrated. In addition, due to the significance of geometrical 
uncertainties, a method for designing TRC on the basis of a design value of the effective depth 
(a reduced value accounting for construction tolerances instead of its nominal dimension) is 
eventually discussed, showing that it allows for a more uniform level of safety. 

 

Keywords: safety format, brittle response, statically indeterminate system, action effect model 
uncertainty, Textile Reinforced Concrete, tests 
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4.1 Introduction 

In the last decades, Textile Reinforced Concrete (TRC) has emerged as an interesting alternative 
to reinforced concrete, allowing to reduce material consumption and the carbon footprint of 
cementitious-based materials [Gar15, He02, Val20]. This new paradigm relies on the use of a 
non-metallic fabric as reinforcement (typically made of carbon or glass), which is insensitive to 
corrosion. As a consequence, cover requirements of the reinforcement can be reduced to 
minimum static values, allowing to decrease the overall thickness of TRC elements to 10-30 
mm. In addition, since no passivation of the reinforcement is required, a low-clinker content 
cement can also be used allowing to reduce the environmental footprint of the material related 
to its CO2 emissions.  

Despite the potential of TRC, its practical use remains still limited. This is to a large extent 
explained by the lack of a consistent design framework. Conventional methods widely accepted 
for reinforced concrete are potentially not directly applicable to TRC due to its brittle nature. 
This issue is particularly instrumental in the case of statically indeterminate structures, where 
redistributions of internal forces are usually required to develop the full structural strength of 
the system. Other aspects that are critical for the application of TRC in practice are the potential 
sensitivity of thin elements to construction tolerances and its reduced resistance in case of 
fire [Col11, Ehl10, Rei08]. 

Currently, several analytical and numerical models are available to describe the response of TRC 
members with respect to its sectional behaviour. An extensive review of the state-of-the-art can 
be consulted elsewhere (see for instance [Bra06, Pel17]). These approaches refer normally to 
mean material properties and allow determining the average resistance of TRC structural 
elements (or with a bias factor which should be close to 1.0). However, their application in 
practice requires accounting for the inevitable uncertainties inherent to structural design. As a 
consequence, a suitable safety format needs to be implemented, ensuring that the probability of 
failure does not exceed an acceptable threshold. In the case of the resistance formulae, such 
format shall account for the variability of the material properties as well as uncertainties related 
to the calculation model and to construction tolerances.  

For the reliability verification of structures, the so-called Partial Safety Factor Format (PSFF) is 
adopted in many design codes (Eurocodes [CEN02, CEN04] and fib Model Code [FIB13] for 
example). In the PSFF, design values of the basic variables are defined through partial safety 
factors and limit state verifications are made with the design values of basic variables [CEN02]. 
Partial factors for different materials and actions need to be calibrated so that the reliability levels 
for representative structures in design are as close as possible to the target reliability level. With 
respect to the adoption of a suitable safety format for TRC design, several efforts have been 
performed in the past [Häu19, Jus15, Kro19, Rem18, Rem20, Wes18] to address the principles 
of structural reliability and design procedures.  
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The relationship between individual partial factors in PSFF of Eurocodes is shown in Figure 
4.1(adapted from Figure C3 in EN1990:2002 [CEN02] accounting for the new definitions in the 
draft of the second generation of prEN1990:2020 [CEN20]). It should be noted that in addition 
to the basic uncertainties listed in Figure 4.1, the partial safety factors should also account for 
approximations and uncertainties in the safety format calibration. Also, it has to be noted that 
this figure describes the classical verification method for structures, where the analysis 
(calculation of internal forces) is conducted separately from the calculation of the associated 
resistances. Within this frame, the verification is conducted at a given cross section by 
comparison of sectional internal forces and related resistances. Such procedure will be referred 
in the following as a local verification. As an alternative, the distribution of internal forces can 
be calculated considering the response and strength of the materials (following a nonlinear 
analysis). This allows one to determine directly the load-carrying capacity of the system and will 
be referred to in the following as a global verification method. In this case, the quantification of 
the model uncertainties [Eng17] can be quite different and other safety formats [CEN02, FIB13] 
can be more appropriate.  

In Eurocodes [CEN02], the partial factors of actions F  and the partial factors of material strength 

variables M are typically calibrated separately by using constant standardised First Order 

Reliability Method (FORM) sensitivity factors[CEN02, Has74, Kön81]. Taking advantage of 
this frame, in order to define a safety format for TRC structures, only the partial factors related 
to the resistance (materials) need to be recalibrated, while the partial factors for action variables 
from Eurocodes [CEN02] can theoretically be maintained.  

It is interesting to note in Figure 4.1 that the model uncertainty of action effects is accounted for 

in the partial factor for action variablesF. Such assumption, provided that a constant value of 

F is adopted, ignores differences related to material response (brittle/ductile response) and 

analysis method (linear-elastic response/consideration of redistributions).  This simplification 
can lead to unsatisfactory levels of reliability for statically indeterminate brittle structures (as 
those built with TRC).  
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Figure 4.1: Relation between individual partial factors (adapted from 

EN1990:2002 [CEN02], refer to Notation section for details) 

In this work, the action effect model uncertainty of TRC structures will be investigated on the 
basis of a statistical evaluation of the results of an experimental programme designed for this 
purpose. This investigation will focus not only on statically determinate elements, but also on 
the response of statically indeterminate structures failing in a brittle manner. The safety format 

and partial factor related to the resistance (M) for TRC structures will then be calibrated based 

on a proper probabilistic modelling of the basic variables. A suitable model to account for action 
effects on TRC structures and the corresponding model uncertainty will be presented. On its 
basis, tailored values of the partial safety factors for TRC will be derived as well as a suitable 
design approach for calculation of internal forces.  

4.2 Action effect model uncertainty in statically 
indeterminate structures 

In this section, the different influences of brittle and ductile responses on statically indeterminate 
structures are examined with respect to their mechanical consequences and the associated 
reliability considerations. 
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4.2.1 Influence of sectional behaviour on the structural response 

To illustrate the different model uncertainty of action effects of structures with different 
sectional response (brittle/ductile), the load-bearing behaviour of statically indeterminate 
structures with different materials is first investigated. As a representative example, two beams 
with identical geometry and loading conditions (see Figure 4.2a) but whose material response is 
different are examined:  

 Beam BI refers to the classical response of concrete reinforced with ordinary steel 
rebars. Its moment-curvature diagram can be approximated by a quadrilinear law 
showing a plastic plateau with large deformation capacity related to extensive yielding 
of the longitudinal reinforcement and significant ultimate strain of the reinforcement 
steel (see Figure 4.2b). This response can be considered as ductile and thus insensitive 
to imposed deformations (allowing one to calculate the structural capacity according to 
limit analysis [Nie11]).  

 Beam BII refers to a structure reinforced with a brittle reinforcement, as for TRC, whose 
failure occurs prior to any plastic plateau or to an over-reinforced structure with 
conventional steel reinforcement where the compression zone crushes before the 
reinforcement yields. The capacity to redistribute internal forces is limited to the change 
of stiffness related to the cracked response and the structure can potentially be sensitive 
to imposed deformations (limit analysis not applicable to calculate its structural 
capacity).  

In a classical design of a reinforced concrete structure, the internal forces are calculated 
assuming linear uncracked behaviour (not considering cracking nor yielding). This allows 
neglecting the influence of the reinforcement on the stiffness, so that no iteration is required in 
designing a new structure. In this case, the sections of the beam described above would be 
designed so to resist for the external action (qE) both the maximum sagging moment according 
to a linear response (MR,sag = 9/16 ꞏ qEL2/8) and the maximum hogging moment (MR,hog = - 
qEL2/8), requiring thus different amount of reinforcement at these sections, see Figure 4.2b. In 
reality, when the load is applied, different phases of response can be observed as shown in 
Figure 4.2c for the two characteristic sections (hogging and sagging region). Before cracking 
occurs, the distribution of bending moments follows that of the elastic uncracked behaviour, 
with proportional increments to the load at both control sections (maximum sagging moment 
equal to 9/16 ꞏ qL2/8 and a maximum hogging moment equal to - qL2/8). Cracking occurs first 
in the hogging region (qcr,hog in Figure 4.2c), leading to a local loss of stiffness. As a 
consequence, bending moments increase more than proportionally in the sagging region and less 
than proportionally in the hogging region.  

For a higher level of load, cracking at the sagging region also occurs (qcr,sag) and the internal 
forces redistribute thereafter according to the relative stiffness of the hogging and sagging 
regions. Since the reinforcement in the hogging region is higher due to the design procedure 
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(Figure 4.2b), its stiffness is also higher and moments increase more than proportionally in the 
hogging region (Figure 4.2c). Depending on the strength, the hogging or sagging region can first 
attain their strength. In Figure 4.2c, this case corresponds to the hogging region. Consequently, 
for beam BII, a brittle failure occurs over the intermediate support, while the sagging region 
would still have a capacity to increase the acting moment, giving rise to a load carrying capacity 
lower than the action assumed for design (qR,II ≤ qE). On the contrary, for beam BI, the response 
of the governing section is ductile, and this allows for further redistributions of internal forces, 
until both regions attain their resistance and the full structural capacity is reached [Mut90] (qR,I 
= qE), see Figure 4.2c.  

It is interesting to note thus that when brittle responses can be expected, evaluations of the 
internal forces deviating from the actual one can lead to unsafe designs. The consequences of 
this fact in terms of reliability are however not explicitly accounted for in the current Eurocodes 
safety format, as the safety element for the model uncertainty of action effects are only accounted 

for in the partial factors on actions (F), which is independent of the response of the structure 

and type of action effect analysis model. On the other side, in structures with ductile behaviour, 
the load carrying capacity corresponds exactly to the load assumed for design, despite the fact 
that the actual behaviour deviates significantly from the simplified behaviour assumed for the 
analysis (typically linear elastic behaviour). It can be concluded that for structures with ductile 
response, the model uncertainty of action effects is relatively small, whereas for brittle response, 
the model uncertainty of action effects shall be consistently accounted for in accordance with 
the type of analysis performed. This will be discussed in the following section. 
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Figure 4.2: Analysis of a statically indeterminate reinforced concrete structure 

designed according to the internal forces calculated assuming linear 

uncracked behaviour: (a) geometry and actions; (b) moment – curvature 

diagrams; and (c) moment – load diagrams 
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4.2.2 Model uncertainty of action effects in structural concrete 

The need for considering the uncertainties in calculating the internal forces in a structure, in 
addition to the uncertainties related to the actions, has been acknowledged already in the first 
attempts to quantify the partial safety factors. According to the first discussions within CEB in 
view of the preparation of the first Model Code [CEB64], the partial safety factor for actions 
was assumed to account for the uncertainties related to calculation of the internal forces in case 
of refined analyses. However, for the case of typical structural analysis or in presence of 

particular uncertainties, an additional partial factor Sd = 1.12 (1.4/1.25) increasing the value of 

the actions was defined [CEB59]. This additional factor was intended to account for the 
uncertainties in modelling the structure, for potential errors and for neglected effects [CEB64]. 

A more detailed description of the uncertainties considered with this additional partial safety 
factor, including an estimate of the coefficients of variation of the ratio between actual and 
calculated internal forces Eexp/Ecalc , has been proposed in the CEB Manuals “Structural 
Safety” [CEB74, CEB74a, CEB80]. The considered uncertainties (coefficients of variation in 
brackets) were:  

(i) effect of differences between the actual structure and the idealized system assumed in the 
analysis (see uncertainty AE1 in Figure 4.1, 8% for concrete structures and 5% for steel 
structures);  

(ii) approximations in the analysis (5%);  

(iii) influence of imperfections during execution on the internal forces (see uncertainty AE3 in 
Figure 4.1; 5% for concrete structures and 2% for steel structures);  

(iv) the effect of neglected actions at ultimate limit state (as for instance imposed deformations, 
including thermal effects and shrinkage);  

(v) the inaccuracy in determining the influence of load combinations with the chosen safety 
format of partial safety factors (for the uncertainties (iv) and (v), a coefficient of variation 
of 8% for concrete structures and of 5% for steel structures, respectively). 

In addition, also the uncertainty related to the assumed probability functions of the actions has 
been considered (with a value of the coefficient of variation between 0 and 5% depending on 
the coefficient of variation of the action). It has to be noted, that in the safety format of Figure 
4.1, this effect should be accounted for in the partial safety factor of the actions (see also change 
in the latest draft of prEN 1990:2020 [CEN20])  so that it is not considered in the following. 

The coefficient of variation of the ratio between actual and calculated action effect (Eexp/Ecalc) 
can be obtained from the square root of the sum of the squares. For concrete structures, the total 
coefficient of variation becomes VSd = 0.125= (0.082 + 0.022 + 0.052 + 0.082)0.5 whereas for steel 
structures, VSd = 0.076= (0.052 + 0.022 + 0.022 + 0.052) 0.5. In [CEB80], the partial safety factor 

Sd has been calculated based on reliability analysis assuming a probability of failure and a 
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coefficient of variation for the actions. The obtained values were approximately 1.125 for 
concrete and 1.075 for steel structures, respectively. Similar values could be obtained following 

the approach of [CEN02] by assuming lognormal distributions, a target reliability index tgt,50 = 

3.8 and a sensitivity factor for non-dominating actions (=0.4) leading to Sd 

=exp(0.4ꞏ0.70ꞏ3.8ꞏ0.125)=1.14. 

According to the knowledge of the authors, this is the most detailed description of the 

uncertainties covered by the partial factor Sd still available in the literature and the result has 

been acknowledged in different codes (current Eurocode “Basis of structural design [CEN02] 

for instance, defines values of Sd between 1.05 and 1.15, see table A1.2(B), note 4). 

Nevertheless, it has to be noted that the considerations described above reflect the state of 
knowledge and the engineering practice at that time (1960s and 1970s). They were highly 
influenced by the concern to calculate the “actual” internal forces as accurate as possible with 
the tools of that time (typically hand calculations or rudimentary computer programs), but 
surprisingly, the difference between statically determinate or indeterminate structures hasn’t 
been considered explicitly.  In addition, as shown above, for statically indeterminate structures, 
a significant uncertainty can arise from the difference between the mechanical behaviour 
assumed for the structural analysis (typically linear elastic uncracked) and the behaviour 
assumed for calculating the sectional resistance (typically cracked concrete with nonlinear 
behaviour for concrete and steel). 

4.2.3 Definition of the random variables for model uncertainties 

From the case study described above, it has been observed that the model uncertainty of action 
effects (local value of an internal force at a given cross section) will eventually influence the 
model uncertainty of the load-carrying capacity of a statically indeterminate structure.  As shown 
in the example above, in the classical design approach of structural concrete, the models used to 
determine action effects and resistance are not necessarily the same. The analysis of action effect 
is typically determined assuming a linear response and neglecting the influence of cracking 
(constant uncracked stiffness) whereas, for calculation of the resistance, cracking and the 
nonlinear response of both concrete and steel reinforcement are considered. As previously 
discussed, this does not have consequences at ultimate for ductile responses, but can have 
implications for brittle redundant systems. 

With respect to the quantification of the local resistance model uncertainty, a random variable 
can be defined by comparing the experimentally measured local resistance with the theoretical 
resistance. It shall be noted that the experimental local resistance data is usually obtained by 
experimental programmes on statically determinate structures, so that uncertainties related to the 
calculation of internal forces are not relevant. The local resistance model uncertainty is thus 
analysed through the following ratio:  
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𝜃ோ,௟௢௖௔௟ ൌ
𝑅௘௫௣
𝑅௖௔௟௖

 
(1) 

where 𝜃ோ,௟௢௖௔௟  is the random variable for the local resistance model uncertainty, Rexp is the 

experimental local resistance and Rcalc is the calculated resistance. 

For the action effect model uncertainty, the random variable 𝜃ா is defined in analogy with 

𝜃ோ,௟௢௖௔௟ as: 

𝜃ா ൌ
𝐸௘௫௣
𝐸௖௔௟௖

 
(2) 

where 𝜃ா is the random variable for action effect model uncertainty, Eexp is the experimental 

action effect and Ecalc is the calculated action effect. The definition of 𝜃ா in Eq. (2)  has however 

some inconsistencies because Eexp and Ecalc refer to the local level while the load-carrying 
capacity of a structural system (potentially redundant) is governed by its global response. Due 
to this reason, it is not appropriate in general to directly use the variable Eexp /Ecalc for a given 
cross section to quantify the action effect model uncertainty. Instead, the global resistance model 
uncertainty variable of a statically indeterminate structure can be defined as: 

𝜃௚௟௢௕௔௟ ൌ
𝑞௘௫௣
𝑞௖௔௟௖

 (3) 

where 𝜃௚௟௢௕௔௟ refers to the random variable for the global model uncertainty, qexp to the 

experimentally measured load-carrying capacity of a statically indeterminate structure in terms 
of load factor at ultimate load bearing capacity and qcalc to the calculated load-carrying capacity. 
As shown in the previous case study, the global model uncertainty contains the model 
uncertainty of action effects and the model uncertainty of local resistance. The model uncertainty 
of action effects can then be quantified by removing the model uncertainty of local resistance 
from that of global resistance.  

4.3 Experimental programme 

To investigate the flexural response of TRC structures and to provide basic test data for 
investigating the action effect model uncertainty of TRC in statically indeterminate structures, 
an experimental programme was performed. The test series consisted of nine thin slab strips 
tested under three-point bending load condition. The tests were performed at the Structural 
Concrete Laboratory of Ecole Polytechnique Fédérale de Lausanne (Switzerland) and were 
performed in seven consecutive days at an average age of 301 days (to ensure constant 
mechanical properties).  
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4.3.1 Mechanical properties of the materials 

The mortar mix described in [Val20b] was used for the experimental programme, composed of 
nearly 40 % binder and nearly 60 % aggregate (maximum aggregate size 1.6 mm). All specimens 
were cast on the same day following an identical procedure and preparation of the mix. 
Compressive tests on the mortar produced in three batches were carried out on 70 ×140 mm 
cylinders tested at the same period as the beam specimens. The mean value of the strength fc of 
14 compressive tests is given in Table 4.1. As for the elastic modulus and tensile strength of the 
mortar, values were derived on the basis of fc value according to the data of [Val20b] (results 
are provided in Table 4.1). 

Table 4.1: Mechanical properties of the mortar (mean values and coefficients of 

variation CoV) 

  Value CoV 

Elastic Modulus of mortar Ecm [GPa] 31.0 2.58%1) 

Mortar tensile strength fctm [MPa] 4.4 9.43% 1) 

Mortar compressive strength fcm [MPa] 128.5 10%  

1) Values according to [Val20b] 

The textile fabrics were carbon fibre (CF) meshes. Two types of fabrics were used (named CF01 
and CF02 in the following), both coated with epoxy and with a layer of quartz-sand applied to 
the surface, but with different net cross section area of roving (details on the geometry and main 
properties can be consulted in [Val20b]). The mechanical properties of the textile fabric are 
given in Table 4.2. Bare textile (single rovings extracted from the fabric grid) were also tested 
in tension. Consistent with what has been observed by Valeri et al.[Val20b], a straightening 
phase of the rovings was first observed, followed by a linear response characterized by the 
tangent modulus of elasticity of the filament (Etex,m) until its tensile strength (ftex,m). 

Table 4.2: Mechanical property of textile reinforcement in longitudinal direction 

(number of tests, CoV in brackets) 

Fabric   CF01 CF02(#, CoV) 

Net cross section atex [mm2] 0.85 1.70 

Nominal perimeter Utex [mm] 7 11 

Grid spacing etex [mm] 20.0 17.0 

Strength 1) ftex,m [MPa] 1833 1833 (5, 7.41%) 

Elastic modulus 1) Etex,m [GPa] 228 228 (5, 10.9%) 

1) calculated on the basis of the nominal value of the net cross section 
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4.3.2 Specimens and experimental results 

The specimens had a rectangular cross section (250mm-width and 60mm-height) with varying 
span L (refer to  Figure 4.3 and to Table 4.3). All specimens were cast following the same 
procedure and dimensions. As the tested span length was different (Table 4.3), variable overhang 
lengths resulted (Lo1 and Lo2 in Figure 4.3). These overhangs varied between 0.3m to 1.2m. Since 
the self-weight of the beams is relatively small compared to the failure load, the influence of the 
overhang length in the overall response can be considered as negligible.      

 

 
Figure 4.3: Specimens: (a) test setup; and (b) Representative cross section of the tested 

specimens (units: [mm]) 

The specimens were reinforced with the textiles CF01 or CF02, that were intentionally not kept 
with a constant cover, but only attached at their ends. This allowed the textile to vary its position 
during casting, in order to investigate the influence of construction tolerances and casting 
procedure in the structural response. After the bending tests were conducted, saw-cuts were 
performed on the specimens near the cross section failing in bending (representative cross 
section) and the exact position of the rovings were measured. The illustration of the measured 
roving positions in each cross-section is given in  Figure 4.3b. Since the effective depth was not 
constant over the beam width, the average flexural depth dave and the average flexural 

reinforcement ratios ave are defined as follows:  
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𝑑௔௩௘ ൌ  
∑ ௗ೔
೙ೝ
భ

௡ೝ
;       and        𝜌௔௩௘ ൌ

௡ೝ௔೟೐ೣ
௕ௗೌೡ೐

 (4) 

Where nr refers to the number of rovings in a cross section, di to the flexural depth of each 
roving, atex to the net cross section of a single roving and b to the cross section width. Details 
are given in Table 4.3. 

Digital Image Correlation (DIC) was performed at the sides of the specimens and used to track 
their displacement fields following the same methodology as described in [Val20b]. The results 
of DIC were checked with continuous readings obtained by means of a Linear Variable 
Displacement Transformers (LVDT) attached to the top side of the mid-span of each specimen. 

The load-deflection (F-) relationships recorded for the tests are shown in Figure 4.4 (  based 

on DIC measurements). For low levels of load, a linear response is observed until the cracking 
moment is reached. Once cracking develops, the response becomes softer, with a stiffness 
depending on the reinforcement ratio and slenderness. Failure occurred in all specimens in 
bending in a brittle manner due to rupture of reinforcement. 

 
Figure 4.4: Measured load-deflection responses of tested specimens 
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Table 4.3: Main parameters of the bending specimen and measured flexural resistance 

at maximum load 

Name L 
[m] 

Textile 
type 

Number of  
rovings nr 

atex 

[mm2] 
dmin 

[mm] 

dmax 

[mm] 

dave 

[mm] 

𝜌௔௩௘ 

[%] 

a/dave 

 

Mexp 

[kNm] 

TB1 1.2 CF02 22 1.7 42.3 50.9 46.4 0.32 12.9 2.36 

TB2 1.15 CF02 22 1.7 46.4 53.8 49.9 0.30 11.0 3.33 

TB3 1.1 CF02 22 1.7 49.0 55.0 51.4 0.29 11.0 3.64 

TB4 2.1 CF02 22 1.7 44.5 54.7 50.0 0.31 21.5 2.77 

TB5 2.2 CF02 21 1.7 44.6 52.2 47.9 0.30 23.0 2.23 

TB6 2.4 CF02 22 1.7 49.8 54.8 52.2 0.29 22.0 3.04 

TB7 2.4 CF02 21 1.7 38.0 49.0 45.3 0.27 25.0 1.99 

TB8 2 CF02 30 1.7 48.3 54.9 51.5 0.40 19.4 3.58 

TB9 0.63 CF01 39 0.85 29.9 46.3 38.3 0.35 8.2 1.63 

4.4 Bending test analysis  

The flexural response of TRC can be modelled by considering a linear response of both concrete 
and textile reinforcement and assuming that plane sections remain plane after deformation 
(Bernoulli-Navier hypothesis), see Figure 4.5a. This assumption has been extensively 
investigated and validated in previous investigations [FIB07, Haw18, Heg16, Pre19, Sch12, 
Tys09, Por16] . 
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Figure 4.5: (a) Model assumptions for flexural response; (b) material constitutive law 

of concrete and textile reinforcement and (c) calculated and experimental 

load-deflection curves 

Due to the significant variation of the roving flexural depth in some cross sections, each roving 
is modelled separately for calculation of the response. Failure occurs in all cases when the 
outermost roving reaches its tensile strength, as it fails in a brittle manner and the rest of rovings 
are not capable of withstanding their increase of force. With respect to the properties of the 
rovings within the concrete section, their strength and stiffness have to be reduced with respect 
to bare textile properties (in order to account for the delayed activation of stresses and local 
damage [Chu06, Pho73, Val20b, Vor06]). This will be performed in the following by means of 

two distinct efficiency factors [Val17, Val20a]. The first, named f, reduces the effective textile 

tensile strength with respect to the bare textile. The second, named E, reduces the effective 

modulus of elasticity of the textile.  
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The value of the efficiency factors is determined in this work by means of calibration with test 
results, in order to have an average of measured-to-calculated values equal to 1.0 both in terms 

of strength and deformation at failure. This yields the value f  = 0.91 and E = 0.79. Such an 

approach is adopted as the aim of this work is the statistical analysis of the TRC response 
(alternative approaches based on physical models to determine such efficiency factors can be 

consulted elsewhere [Val20a, Val20b].). It can be noted that the calibrated value of E  is lower 

in this case than the value of f , which is uncommon in comparison to the results from other 

researchers [Val20a, Val20b]. This fact can be partly grounded on the fact that the roving 
position was variable through the length of the specimens and thus the geometry (stiffness and 
resistance) of the governing cross section in bending is not necessarily constant through the 
length of the specimen. Also, the influence of the duration of the structural tests, different to that 
of the material characterization tests, is accounted for in these coefficients which can be relevant 
for the concrete stiffness. 

The calculated load-deflection curves (F-) are plotted in Figure 4.5c together with the measured 

results. The comparison between the tested ultimate resistance Rexp, the calculated one Rcalc and 
the corresponding maximum deformation of each beam is givens in Table 4.4.  The comparison 
shows that the CoV of the resistance (5.13%) is relatively low (lower than those reported by 
other authors [Rem18]).  

Table 4.4: Three-point bending test results 

Specimen  Rexp [kN] Rcalc [kN] Rexp/ Rcalc exp [mm] calc [mm] exp/calc

TB1 8.4 8.5 0.99 26.4 26.5 1.00 

TB2 13.2 12.2 1.08 26.3 21.9 1.20 

TB3 16.5 16.0 1.03 28.8 25.6 1.13 

TB4 5.8 5.8 1.00 76.3 77.6 0.98 

TB5 4.3 4.6 0.93 80.6 87.0 0.93 

TB6 5.6 5.1 1.10 116 88.4 1.31 

TB7 3.4 3.5 0.97 106.4 113.3 0.94 

TB8 7.4 7.7 0.96 7.4 7.7 0.96 

TB9 11.7 11.3 1.04 5.7 8.0 0.71 

Average   1.0   1.0 

COV   5.13%   17.10% 
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4.5 Response of statically indeterminate systems of TRC 
and model uncertainty of action effects  

 
As previously explained, the response of statically indeterminate systems and the corresponding 
action effect model uncertainties can be significant for the safety format calibration, particularly 
when a brittle response can be expected. This is for instance the case for TRC, whose response 
was experimentally examined in the previous Section with reference to statically determinate 
structures. In order to investigate the response of statically indeterminate TRC structures, a large 
database will be presented in this section obtained by assembling the test results on determinate 
members. This database will eventually be used to create a probabilistic model of the action 
effect model uncertainty.  

The main idea to simulate the response of statically indeterminate members based on the 
response of statically determinate ones is shown in Figure 4.6a (details for a worked example 
are provided in Appendix 4.B). As it can be seen, a redundant system is generated by assembling 
two simply supported beams connected at mid span. Such a statically indeterminate system will 
be referred to in the following as an assembled cross-beam system. Due to the symmetry 
conditions of the system, each component beam has the same load-deflection response as in a 
three-point bending test and the response of the complete system can be obtained by the 
superposition of the load-deflection relationship of the two component beams, see Figure 4.6b.  
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Figure 4.6: (a) Assembled cross-beam system test set-up; (b) load-deflection relationship of 
the cross-beam system obtained by superposition of both responses of its component beams and 

(c) considered moment-curvature (M-) relationships for different structural analysis models 

4.5.1 Action effect model uncertainty for different types of 
structural analyses 

In the following, the experimental results on the assembled cross-beam systems are compared 
to three types of structural analyses: 

 Linear Analysis assuming UnCracked stiffness (LAUC in Figure 4.6b and c). 

 Linear Analysis assuming Fully-Cracked stiffness (LAFC in Figure 4.6b and c). 

 NonLinear Analysis assuming uncracked and cracked behaviour. This analysis is 
conducted assuming a trilinear moment-curvature relationship and the actual extent of 
cracked and uncracked regions (NLA  in Figure 4.6b and c).  

In order to quantify the model uncertainty of action effects, the local resistance model 
uncertainty will be removed from the global model uncertainty. To do so, tailored values of the 

efficiency factor f  are calibrated for each individual beam, in order to match the experimental 
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resistance, see Table 4.5. The action effect model uncertainty for each analysis method can then 
be defined as:  

𝜃ா,௅஺௎஼ ൌ
𝑄௘௫௣
𝑄௅஺௎஼

 
(5) 

𝜃ா,௅஺ி஼ ൌ
𝑄௘௫௣
𝑄௅஺ி஼

 
(6) 

𝜃ா,ே௅஺ ൌ
𝑄௘௫௣
𝑄ே௅஺

 
(7) 

where Qexp refers to the experimental resistance of an assembled cross-beam system by 

superimposing the experimental response of its two component beams. The terms 𝑄௅஺௎஼ , 𝑄௅஺ி஼  

and 𝑄ே௅஺ refer to the global resistances (load-carrying capacities) of the assembled cross-beam 

system calculated with LAUC, LAFC and NLA methods respectively and 𝜃ா,௅஺௎஼, 𝜃ா,௅஺ி஼ and 

𝜃ா,ே௅஺ refer to the corresponding action effect model uncertainty variables for the three types of 

analysis. 

Table 4.5: Tailored efficiency factor f   for the basic beams 

Specimen TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 

f 0.90 0.98 0.94 0.91 0.85 1.00 0.88 0.87 0.95 

 

4.5.2 Data of action effect model uncertainty for different types of 
structural analyses  

By combining the nine bending tests of basic beams presented in Section 4.3, a total of 36 
assembled cross-beam systems can be generated. The resulting action effect model uncertainty 
data is plotted in Figure 4.8a. The assembled experimental load-deflection curves of six 
representative cases and the corresponding load-deformation curves with LAUC, LAFC and 
NLA are shown in Figure 4.7. A summary of the results of all the assembled cross-beam tests is 
also provided in Table 4.6 and plotted in Figure 4.8a. As it can be noted, both NLA and LAFC 
give very close prediction to the actual resistance, while LAUC has a relatively larger scatter, 
suggesting that the simplifications made about the uncracked stiffness of the structure 
components result in a higher model uncertainty for statically indeterminate structures. In 
addition, NLA allows reproducing the different stages of response (uncracked or partially 
cracked) in a realistic manner. 

To further increase the size of sample for action effect model uncertainty data, the number of 
components of a cross-beam system can still be increased in order to generate more 
combinations. Following the same methodology, assembled cross-beam system composed of 
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three to five components are further investigated. In total, 372 different cross-beam systems are 
generated and the resulting action effect model uncertainty data is plotted in Figure 4.8b. A 
summary of the statistics of the assemble cross-beam tests is provided in Table 4.6. It can be 
observed that, with the enlarged database, the difference between the model uncertainty data of 
the NLA, LAUC and the LAFC method is more pronounced, which confirms that the NLA and 
LAFC result in a lower level of action effect model uncertainty than the LAUC.  

 
Figure 4.7:  Representative assembled cross-beam system cases 

 

Table 4.6: Statistics of the cross-beam system tests with two components and two to 

five components 

Number of 

components 

Number of 
assembled tests 

Load effect analysis  Variable Average 
value 

CoV 

Two 36 LAUC 𝜃ா,௅஺௎஼  1.05 8.51% 

36 LAFC 𝜃ா,௅஺ி஼ 1.02 4.01% 

36 NLA 𝜃ே௅஺ 1.01 3.35% 

Two to five 372 LAUC 𝜃ா,௅஺௎஼  1.14 11.01% 

372 LAFC 𝜃ா,௅஺ி஼ 1.06 4.47% 

372 NLA 𝜃ே௅஺ 1.03 3.39% 

As shown in Figure 4.1, the action effect model uncertainty of statically indeterminate system 
results from multiple sources as: the uncertainties related to the structural modelling of action 
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effects; the uncertainties in material properties influencing action effects; and the uncertainties 
in geometrical properties influencing action effects. The result shows that NLA yields lowest 
CoV level, which signifies that NLA can significantly reduce the uncertainties related to the 
structural modelling of action effect. Comparing the tail region of NLA, LAUC and LAFC from 
the Quantile-Quantile plot [Sch17] (vertical axis referring to quantiles in a standard normal 

distribution) of 𝜃ா,ே௅஺, 𝜃ா,௅஺ி஼  and 𝜃ா,௅஺௎஼  data (see Figure 4.8a) it seems however that in the 

tail region there is no significant difference between these three distributions. This is explained 
by the fact that the tail region is composed only of results concerning two beams (specimens 6 
and 9) influencing the response of all methods to evaluate the internal forces, see 4.8c.  

 

 
Figure 4.8: Quantile-Quantile plot for action effect model uncertainty sample data of 

(a) cross-beam of two components; (b) cross-beam of two to five 

components; and (c) detail of tail region for cross-beam of two components 

4.6 Limits of applicability of linear analyses assuming 
uncracked and fully-cracked behaviour 

The analyses on statically indeterminate structures based on the assembled cross-beams are 
based on the three-point bending tests data tested within this research program. This implies that 
only a limited range of the basic design variables has been explored. In this Section, the 
applicability of LAUC and LAFC will be investigated for a wider range of design cases.  

0.7 0.8 0.9 1 1.1 1.2 1.3

-2

0

2

0.7 0.8 0.9 1 1.1 1.2 1.3

-2

0

2

Beam 6

Beam 6
 Beam 9

θ

θ

 (b) 

 1.06
 4.47%

θE,LAFC

 1.03
 3.39%

θE,NLA

  1.14
 11.01%

θE,LAUC

θE,LAUC

θE,LAFC

θE,NLA

 Mean value= 1.02

 CoV= 4.01%

θE,LAFC

 1.01
 3.36%

θE,NLA

  1.05
 8.51%

θE,LAUC

S
ta

n
d
ar

d
 N

o
rm

al
 Q

u
an

ti
le

s

θ

 (a) 

0.85 0.9 0.95 1

-2.5

-2

-1.5

-1

S
ta

n
d
ar

d
 N

o
rm

al
 Q

u
an

ti
le

s (c)



Safety format and design approach for brittle systems and application to TRC 

118 

To that aim, the same methodology of the assembled cross-beam system is used in this section. 
The basic data for the three-point bending test is in this case estimated on the basis of a non-
linear analysis (tri-linear moment-curvature relationship). This approach was previously 
observed to lead to the most realistic results, and to reproduce the various regimes of response 
(see Figure 4.7). A series of numerical assembled cross-beam system case studies are generated 
by varying the span L, the cross-section height h, and the textile reinforcement cross-section area 
Atex of the component beams. By comparing the structural analysis result (global resistance of 
the structures) from the LAUC and the LAFC with that of NLA, the limit of applicability of 
LAUC and LAFC is further examined.  

4.6.1 Range of design parameters of numerical case study 

In the numerical cases, assembled cross-beam systems with two component beams with 
rectangular cross-sections (refer to  Figure 4.6) are studied. In order to investigate the influence 
of the variation of relative stiffness between the component beams, the dimensions of the first 
component beam in the assemble cross-beam system is kept constant and the dimensions of the 
second beam are varied in the selected range. 

For all the component beams of the assembled cross-beam systems, the cross-sectional width is 
kept constant (b = 250 mm). The material parameters are also kept constant, adopting the same 
material properties as for Section 4.3. To simplify the simulation, all textile reinforcements in a 
given beam are considered to be aligned at the same depth. Three independent parameters are 
used to characterize the beams in the numerical cases: the span L, the cross-section height h, and 
the textile reinforcement cross section area Atex. The vector composed of the three design 
parameters form the design vector Xnum for a given component beam: 

𝑋௡௨௠ ൌ ሾ𝐿, ℎ,𝐴௧௘௫ሿ (8) 

For a given component beam, the other parameters are dependent on the values of its design 
vector Xnum: the cross-sectional effective depth of a given component beam (d) is assumed to be 

proportional to the height h with a constant ratio d = 0.85h and the reinforcement ratio 𝜌 is 

defined as 𝜌 ൌ
஺೟೐ೣ
௕ௗ

. 

In each numerical case, two beams are assembled. The design vector of component beam A is 

always kept constant as 𝑋௡௨௠,஺ ൌ ൣ𝐿஺, ℎ஺,𝐴௧௘௫,஺൧, with LA=1.7 m, hA = 60 mm and Atex= 66.3 

mm2  (resulting in A = 0.52%). The design vector of component beam B (denoted by 𝑋௡௨௠,஻,௜௝௞ 

with i,j,k =1-10) is varied. The design parameters of beam B are varied within the following 

range: LB,i = (1.0-4.0) m; hB,j = (30-120) mm and Atex,B,k = (23.8-142.8) mm2 , resulting in B,ijk = 

(0.09-2.24)% (i,j,k =1-10).  For each parameter, ten equally spaced values in the ranges specified 

are considered, leading to a total of 1000 cases. For example, for the case of ሾ𝑖, 𝑗, 𝑘ሿ=[1,1,10], 
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𝑋௡௨௠,஻,௜௝௞ ൌ ൣ𝐿஻,ଵ, ℎ஻,ଵ,𝐴௧௘௫,஻,ଵ଴൧, with LB,1 = 1.0 m, hB,1 = 30 mm and Atex,B,10 = 142.8 mm2 

(resulting in B = 2.24%). 

For each case, the resistance of the assembled cross-beam system analysed with LAUC and 
LAFC (refer to Appendix 4.B for the detailed analysis method) are compared with that analysed 
with NLA in order to get the corresponding action effect model uncertainty data: 

𝜃ா,௅஺௎஼,௡௨௠ ൌ
𝑄ே௅஺
𝑄௅஺௎஼

 
(9) 

𝜃ா,௅஺ி஼,௡௨௠ ൌ
𝑄ே௅஺
𝑄௅஺ி஼

 
(10) 

It should be noted that 𝜃ா,௅஺௎஼,௡௨௠ and 𝜃ா,௅஺ி஼,௡௨௠ only contains uncertainties related to the 

structural modelling of action effects and are thus different than the definition of 𝜃ா,௅஺௎஼ and 

𝜃ா,௅஺ி஼  in the previous section (Section 4.5.1 Eq. (5)-(6)). 

4.6.2 Results of the case study  

The histograms of the resulting E,LAUC,num and E,LAFC,num data for all cases are plotted in Figure 

4.9 and the statistical values are given in Table 4.7. It can be observed that, in general, the LAFC 
results in smaller scatter in the action effect model uncertainty.  

 
Figure 4.9: Histogram of the E,LAUC,num and E,LAFC,num data from the numerical 

assembled cross-beam system case study 

Table 4.7: Statistics of the numerical cross-beam system tests with two components 

Number of fictitious 
tests 

Load effect 
analysis  

Variable Average value COV 

1000 LAUC 𝜃ா,௅஺௎஼,௡௨௠  1.06 11.21% 

1000 LAFC 𝜃ா,௅஺ி஼,௡௨௠ 1.00 1.66% 

To have a better understanding of the limit of applicability of the two methods, the resulting 

E,LAUC,num and E,LAFC,num for the cases with hB= 80 mm are plotted in Figure 4.10. As it can be 

seen in this figure, E,LAUC,num has significantly higher variation than E,LAFC,num. For the cases 
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when the reinforcement ratio of both beams is similar, the LAUC method yields a E,LAUC,num 

value close to 1, but in a wide range of cases the value of E,LAUC,num deviates significantly from 

1. On the other hand, the LAFC yields in most cases E,LAFC,num  values close to 1. This confirms 

the applicability of the LAFC method in general. The result of the LAFC only deviates 
significantly from the expected value when the reinforcement ratio of Beam B is close to the 
minimum reinforcement ratio for bending. This means that a significant portion of the beam 
remains uncracked at failure and thus, the fully cracked assumption deviates from the actual 
response. For practical purposes, this situation can be avoided by requiring a reinforcement ratio 
higher than the minimum. It is also interesting to notice that in the cases where the two 

component beams have the same reinforcement ratio (B = A = 0.52%), despite the variation of 

other parameters, the result E,LAUC,num and E,LAFC,num values remain close to 1. This is because 

the ratio between the uncracked stiffness of the two beams are the same as the ratio between 
their fully cracked stiffness in these cases. 

As a conclusion from the previous considerations, it can be observed that, unlike for ordinary 
reinforced concrete structures, it is not advised to use the LAUC method to perform action effect 
analysis for TRC structures. A LAFC can, on the other hand, be applied provided that sufficient 
amount of flexural reinforcement is provided. It should also be noted that the previous comments 
focus on the cases with bending failure governed by rupture of the textile reinforcement 
(covering also cases with low levels of axial compression forces). Other failure modes (such as 
failures for very high levels of compression forces or shear) remain outside of the scope of this 
work (covered by other partial safety factors). 
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Figure 4.10: Results of 𝜃ா,௅஺௎஼,௡௨௠ and 𝜃ா,௅஺ி஼,௡௨௠ for cases with hB = 80 mm 

4.7 Safety format of TRC structures 

In this section, the reliability verification framework of Eurocodes [CEN02] is used to calibrate 
the safety format for TRC structures on the basis of probabilistic reliability theory. Similar to 
the case of reinforced concrete structures, a number of uncertainties (associated to material, 
geometry and modelling) shall be accounted for in the partial factor for TRC. In addition, due to 
the brittle behaviour of TRC structures, it is necessary to discuss if additional safety 
considerations are needed for the model uncertainty of action effects (a common situation with 
respect to design of other reinforced concrete elements failing in a brittle manner by punching 
or second-order effects). In the following, the probabilistic modelling of the basic uncertainties 
is discussed and two types of safety formats are proposed for TRC structures. The efficiency of 
the proposed safety formats for TRC structures is discussed based on the reliability analysis of 
representative cases.  
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4.7.1 Basic uncertainties in the design of TRC structures 

4.7.1.1 Material uncertainties 

Two material strength basic variables are involved in the reliability analysis problem of TRC 
structures: the tensile strength of textile reinforcement and the concrete compressive strength. 
The material strength variables are assumed to follow lognormal distribution according to the 
recommendations in [JCS01]. For the concrete compressive strength, the distribution parameters 
provided in the second generation of Eurocode prEN1992-1-1:2020 [CEN02] are used, where 
the coefficient of variation (CoV) is taken as 15.6%, which accounts for both the uncertainty in 

concrete cylinder strength and the uncertainty in the in-situ strength efficient factor is [CEN02]. 

For the distribution parameters of the textile reinforcement tensile strength, the statistics of the 
data from [Val20b]  are used, where the CoV of the tensile strength of textile reinforcement is 
taken as 15% (which accounts for the uncertainty in the single roving tensile strength based on 
test results). These distribution parameters are consistent with data from other 

researchers [Rem18]. The uncertainty in the efficiency factor f of textile reinforcement is not 

accounted for in the material uncertainty, but in the uncertainty of the resistance model 
(calibration factor). It should be emphasized that with respect to the statistical properties for the 
textile reinforcement tensile strength, they should be based on the data provided by the 
manufacturer or derived from specific tests (products can have highly variable properties). The 
probabilistic modelling of the material strength variables used in the safety format calibration in 
this work is summarized in Table 4.8. 

Table 4.8: Probabilistic modelling of basic random variables for safety format 

calibration of TRC  

Uncertainty  Variable Distribution Mean  CoV Standard deviation 

Material Textile reinforcement 
tensile strength ftex 

Lognormal 

[JCS01] 

ftex,m 15% 

[Val20b] 

- 

Concrete compressive 
strength fc 

Lognormal 

[JCS01] 

isfcm 15.6% 

[CEN02] 

- 

Geometrical Flexural depth d Normal 

[JCS01] 

dnom - 3 [mm] 

[Rem18] 

Model Resistance model 

uncertaintyR,local 

Lognormal 

[JCS01] 

1.0 10% 

[Rem18] 

0.1 
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4.7.1.2 Geometric uncertainties 

Since the case of bending is considered and the material strength of textile reinforcement is 
calculated on the basis of the nominal value of the roving area, the governing geometrical value 
is the effective geometrical depth (d). Its uncertainties are mainly related to how the 
reinforcement is fixed during casting, to the type of the member (with flanged or full cross 
section), to the casting and control procedure and to the type of reinforcement (stiff or soft). 
Statistical data of the flexural depth variable can be found in literature. According to [Rem18], 
a mean value of -0.2 mm and a standard deviation of 2.0 mm of the measured data is observed 
for the deviation (error) of the flexural depth from nominal values (d-dnom). This shows that it is 
possible to have relatively good quality control of the position of the textile reinforcement in 
TRC structures. For practical applications of TRC structures, the distribution parameters of the 
flexural depth random variable will be considered related to their quality control and allowable 
execution tolerance. Since the total thickness of TRC structures is in general much smaller than 
in ordinary concrete structures, the assumptions of execution tolerances of concrete structures 
are not considered applicable to TRC structures. Referring to the data from [Rem18] and also 
taking the efficiency of the textile reinforcement into account, a tolerance of +/- 5 mm for the 
error of effective depth (d-dnom)  will be assumed in the following. The error of effective depth 
(d-dnom) is assumed to follow a normal distribution, with a mean value of 0, and -5 mm 
corresponds to the 5% fractile. Based on the normal distribution assumption, the standard 
deviation of d-dnom can then be calculated as 5/1.645 = 3.0 mm. Since dnom is a deterministic 
value, the flexural depth variable d has the same standard deviation (3 mm) as d-dnom, see Table 
4.8. It should be noted that, with a constant value of execution tolerance for the flexural depth, 
the CoV of the flexural depth variable decreases with the increasing thickness of the structure. 
The same phenomenon has also been noticed in reinforced concrete structures in the second 
generation of Eurocode prEN1992-1-1:2020 [CEN20].  

4.7.1.3 Model uncertainties  

Two types of model uncertainties are considered for the partial factor calibration of TRC 
structures: (i) the resistance model uncertainty and (ii) the action effect model uncertainty. For 

the resistance model uncertainty variable, R,local, the model used to analyse the tests presented 

in this work showed a fairly low CoV (equal to 5.13%). Such low value results partly from the 

fact that a calibrated value of the efficiency factor f was adopted. When designing TRC 

structures, a general value of this efficiency factor shall be adopted (not calibrated based on 
tests), potentially leading to a higher value of CoV of the model uncertainty variable. Based on 
the work of other researchers[Häu19, Rem18, Rem20], a reasonable value for the CoV can be 
considered as 10%, that will also be used in the following, see Table 4.8.  

For the action effect model uncertainty, as previously explained in Figure 4.1, it is theoretically 
accounted for in the partial factors for the actions provided in Eurocodes. It shall yet be noted 
that the model uncertainty of action effects accounted for by these partial factors depend neither 
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on the material response (brittle or ductile) nor on the structural analysis methods (LAUC, 
LAFC, NLA or others). For TRC structures, it has been shown in this work that when using 
NLA or LAFC for a redundant structure, the model uncertainty of action effects is relatively low 
compared to the values reported in Section 4.2.2 and to other uncertainties reported in Table 4.8 
(maximum CoV=4.47% for the investigated cases). This is however not the case for LAUC 
(maximum CoV=11.01%). Based on this consideration, it is proposed that both NLA and LAFC 
methods can be used to calculate the action effect (internal forces) of TRC structures without 
the need to adjust the action effect model uncertainty level. LAUC cannot however be used, 
unless additional specific considerations were made on the safety factors.  

4.7.2 Safety format proposals 

Based on the characteristic of basic uncertainties involved in the resistance of TRC structures, 
two types of safety formats are proposed. 

4.7.2.1 Safety format I: partial factor 𝛄𝒕𝒆𝒙,𝑰 for the tensile strength of textile 
reinforcement and consideration of nominal dimensions 

The first proposal for the safety format is based on the use of a partial factor for the strength of 
the textile and the use of nominal values for the geometric dimensions. This approach 
corresponds thus to current design practice for conventional reinforced concrete structures, but 
providing a tailored partial safety factor for the strength of the reinforcement. 

The calculation of the value of the partial safety factor can be performed assuming that the 
resistance function R can be approximated by a lognormal distribution (detailed information 

about such an estimation is provided in Appendix 4.A).  Thus, the partial safety factor γ௧௘௫,ூ for 

calculation of the design value of the tensile strength of textile reinforcement (𝑓௧௘௫,ௗ ൌ

𝑓௧௘௫,௖௞/γ௧௘௫,ூ) can be calculated based on the approximated value of the CoV of the resistance, 

𝑉ோ: 

γ௧௘௫,ூ ൌ
𝑓௧௘௫,௖௞

𝑓௧௘௫,ௗ
ൌ exp൫αோβ௧௚௧𝑉ோ െ 1.645𝑉௙௧௘௫൯ 

(11) 

Where 𝑓௧௘௫,ௗ refers to the design value of the textile tensile strength, 𝑓௧௘௫,௖௞ to its characteristic 

(5% fractile) value, 𝛼ோ to the FORM sensitivity factor for the resistance (adopted equal to 

0.8 [CEN02] ), 𝛽௧௚௧ to the target reliability index and 𝛽௧௚௧ = 3.8 for structures with medium 

consequence class and a reference period of 50 years at the ultimate limit state [CEN02], VR to 
the CoV of the resistance variable and Vftex the CoV of the material (15% according to Table 
4.8). With respect to VR, its value can be approximately estimated (detailed information about 
such an estimation is provided in Appendix 4.A) by considering the CoVs for the material, 
geometrical and model uncertainties (refer to Table 4.8) as:  
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𝑉ோ ൎ ට𝑉ఏೃ
ଶ ൅ 𝑉௙೟೐ೣ

ଶ ൅ 𝑉ௗ
ଶ 

(12) 

The general format to calculate the design value of the resistance (Rd) can thus be established 
as: 

𝑅ௗ ൌ 𝑅ሼ
𝑓௧௘௫,௖௞

γ௧௘௫.ூ
,
𝑓௖௞
γ஼

,𝑑௡௢௠ሽ 
(13) 

Where 𝑓௖௞ refers to the characteristic compressive strength of concrete, γ஼ to its partial safety 

factor (1.5 according to Eurocode prEN1992-1-1:2020 [CEN20]) and 𝑑௡௢௠ to the nominal value 

of the geometrical dimensions. 

Detailed information about the safety format calibration method is provided in Appendix 4.A. 

As it can be noted, the estimated value of 𝑉ோ varies with the change of the nominal effective 

depth of the structure (see Table 4.8). For the investigated range of the nominal effective depth 

(15-60 mm), the estimated value of 𝑉ோ ranges between 0.19 and 0.27 (see detailed results in 

Appendix 4.A). It should be noted that according to prEN1990:2020 [CEN20], when 𝑉ோ is higher 

than 0.20, the approximated Eq.(11) is not applicable for the partial factor calibration anymore. 
In this section, however, Eq.(11) is still used to make a first approximated calculation of the 
partial safety factor. Its effectiveness will be verified by the reliability case study in Section 
4.7.3.  Considering the wide applicable range of the safety format, referring to the approximated 

estimation values of  𝑉ோ, a relatively conservative value of 𝑉ோ = 0.225 is selected in the following 

and the value of the partial factor γ௧௘௫,ூ is then calculated as:  

γ௧௘௫,ூ ൎ 1.55 (14) 

It should be noted that the partial factor for concrete compressive strength γ஼ = 1.5 from 

Eurocode prEN1992-1-1:2020 [CEN20] is also adopted in this research. The effectiveness of 
this proposal will be verified in Section 4.7.3 by calculating the actual achieved reliability level 
of representative cases.  

4.7.2.2 Safety format II: partial factor 𝛄𝒕𝒆𝒙,𝑰𝑰 for the tensile strength of textile 
reinforcement and consideration of design values for the dimensions 

As shown in previous paragraph, for thin members, the geometrical uncertainties (related to the 
effective depth) can become governing. For this reason, it makes sense to separate the 
geometrical uncertainties from material and model uncertainties as previously discussed 
by [Rem18, Rem20]. Considering the general form of the limit state function and the 
probabilistic models of the basic uncertainties (see details in Appendix 4.A), the material and 

model uncertainties will be lumped into one partial factor  γ௧௘௫,ூூ applied to the tensile strength 

of textile reinforcement. With respect to the geometrical uncertainties, they will however be 
considered apart, by means of a design value of the effective depth (this alternative possibility 
using design values of geometrical dimensions is already given by prEN1992-1-1:2020 
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[CEN20]). The partial safety factor can thus be estimated with the help of FORM sensitivity 
factors as: 

γ௧௘௫,ூூ ൌ
𝑓௧௘௫,௖௞

𝑓௧௘௫,ௗ
ൌ exp ൬ටα௙௧௘௫

ଶ ൅ αఏ
ଶට𝑉௙௧௘௫

ଶ ൅ 𝑉ఏ
ଶαோβ௧௚௧ െ 1.645𝑉௙௧௘௫൰ 

(15) 

Details on this derivation and the values for the various parameters are given in Appendix 4.A 
of this chapter. With respect to the design value of the effective depth, it is calculated by reducing 

the nominal value by a distance of ∆ௗ: 

𝑑ௗ௘௦௜௚௡ ൌ  𝑑௡௢௠ െ  ∆ௗ (16) 

whose value results (see Appendix 4.A for details): 

∆ௗൌ αௗαோβ௧௚௧𝜎ௗ (17) 

Based on the safety elements defined above, the general format to calculate the design value of 
resistance can be defined: 

𝑅ௗ ൌ 𝑅ሼ
𝑓௧௘௫,௖௞

γ௧௘௫,ூூ
,
𝑓௖,௖௞

γ஼
,𝑑ௗ௘௦௜௚௡ሽ 

(18) 

By applying this methodology, the value of the partial factor γ௧௘௫,ூூ and ∆ௗ can be derived for 

the given range of dnom, as shown in Figure 4.11 for representative cases.  

 
Figure 4.11: Estimated values as a function of nominal effective depth: (a) γ௧௘௫,ூூ; and 

(b) ∆ௗ  

It can be observed that the estimated value of γ௧௘௫,ூூ ranges between 1.13 and 1.33 and the value 

of ∆ௗ between 6.8 mm to 2.4 mm. As a reasonable and safe estimate, the following values are 

suggested:  

γ௧௘௫,ூூ ൎ 1.25 (19) 

∆ௗൎ 6 𝑚𝑚 (20) 

The effectiveness of this proposal will be verified and compared with Proposal I in Section 4.7.3 
by calculating the actual achieved reliability level of representative cases.  
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4.7.3 Comparison and verification of the two safety format 
proposals 

A series of representative cases are investigated in the following to compare the previous 
proposals. To that aim, the classical design method of verifying at sectional level is considered, 
implying that the influence of statically indeterminate structures is taken into account by the 
partial factor on actions. The geometry of the studied cross section is shown in Figure 4.12a. 
The range of the key design parameters used in this case study series is listed in Table 4.9. The 

value of cross-section height h and reinforcement ratio are varied in a deterministic manner to 

generate a series of different cases.  

 
Figure 4.12: (a) Geometry of the investigated cross section and (b) achieved reliability 

index of the invesitigated bending case with the two safety format proposals 

Table 4.9: Key design parameters for the representative cases 

Variable ftex,m [MPa] fcm [MPa] b [mm] h [mm] dnom [mm]  

Value 1800  150  250  18.75 – 75  0.8h 0.1% - 0.9% 

Variable 
type 

Random 
variable 

Random 
variable 

Deterministic Deterministic Random 
variable 

Deterministic 

 

For the reliability analysis, the basic uncertainties introduced in Section 4.7.1 (listed in Table 
4.8) are accounted for. The general form of the performance function g is defined as: 

𝑔 ൌ 𝜃ோ,௟௢௖௔௟𝑅ሺ𝑓௧௘௫ , 𝑓௖ ,𝑑ሻ െ 𝑅ௗ (21) 

Based on the safety format proposals, the design value of the resistance for the two safety formats 
can be calculated using Eq.(13) and Eq.(18)  and the reliability analysis is performed using 

FORM to calculate the actual achieved reliability 𝛽௔௖௛௜௘௩௘ௗ for the two types of safety formats 

as: 

𝑃𝑟𝑜𝑏ሺ𝑔 ൏ 0ሻ ൌ  Φሺെ𝛽௔௖௛௜௘௩௘ௗሻ (22) 

Where Prob () refers to the probability function, g to the performance function, 𝛷 to the 

cumulative probability function of standardized normal distribution and 𝛽௔௖௛௜௘௩௘ௗ refers to the 

actual achieved reliability index for a given case. The reliability analysis is performed with 
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FORM method and the achieved reliability index from the two safety proposals are plotted in 
Figure 4.12b.  

As it can be observed, the value of the achieved reliability level for Proposal I, 𝛽௔௖௛௜௘௩௘ௗ,ூ,  

ranges between 2.12 to 3.66 and the value of the value of the achieved reliability level for 

Proposal II, 𝛽௔௖௛௜௘௩௘ௗ,ூூ, ranges between 2.87 to 3.22. Comparing the achieved reliability index 

for the two proposals with the target of 𝛼ோ𝛽௧௚௧ = 3.04, it can be observed that in most of the 

range of the investigated cases, both safety formats result in acceptable levels of reliability. 
However, for Proposal I, when the effective depth is very low (smaller than 20 mm), the achieved 
reliability level is lower than the acceptable level (±0.5 target level) [Kön81]. It can also be 
observed that the maximum achieved reliability level for Proposal I is even high for large 
thicknesses, suggesting potentially uneconomic design. Proposal II yields a more uniform level 
of reliability.  

4.8 Conclusions 

This work investigates on a suitable safety format and analysis method for Textile Reinforced 
Concrete (TRC) structures. The results of an experimental programme on nine TRC slabs are 
presented and the implications of a brittle response on the reliability of a structure are discussed. 
Its main conclusions are listed below 

 Structures presenting brittle responses (implying limited or none redistribution capacity 
of internal forces) can fail for load levels below those considered for design if the 
calculation of internal forces deviates from the actual response (typically, elastic-
uncracked behaviour assumed in the calculation of internal forces). This situation does 
not occur for a ductile response and raises questions on the consideration of model 
uncertainty of action effects within the Partial Safety Factor Format (PSFF) as 
considered in Eurocodes.  

 The analysis of statically indeterminate TRC structures shows that performing a linear 
elastic calculation of internal forces considering fully cracked stiffness properties for all 
sections is a suitable manner to estimate the internal forces and response of TRC. This 
holds true provided that more than minimum amount of reinforcement are provided in 
the structure. 

 Alternatively, using a nonlinear analysis (considering the development and extent of 
cracking) is also a suitable manner to estimate the internal forces. It is even more 
accurate than the previous, but requiring a significant effort for analysis. 

 Estimating internal forces on the basis of the uncracked stiffness of the sections (as 
usually performed for ordinary reinforced concrete) can lead to relatively large 
deviations on the response and internal forces of a brittle structure as TRC. Such method 



Conclusions 

129 

shall not be used for design unless specific considerations were implemented to cover 
this increased uncertainty. 

 Since for thin members, the variability of the effective depth can be significant 
compared to the mean value, the geometrical uncertainties can play a major role in 
calibrating the partial safety factors for designing structures at ultimate limit state. On 
the basis of reliable internal forces (determined by a linear-elastic fully cracked analysis 
or a nonlinear analysis), a safety format can be considered for TRC following the PSFF. 
Two ways for so doing are detailed in the manuscript: 

o Consideration of a partial safety factor for the tensile strength of the 

textile (tex = 1.55) and nominal dimensions. All uncertainties (material, 

geometrical and model) are lumped into the partial safety factor of the textile. 

o Consideration of a reduced partial safety factor for the tensile strength of the 

textile (tex = 1.25) and design dimensions (reduction of 6 mm in effective 

depth). In this case, material and model uncertainties are accounted for in the 
partial safety factor of the textile while geometrical uncertainties are considered 
in the design dimensions. 

o In general, the second safety format is preferable, leading to a more uniform 
level of safety.  

It shall be noted that the aim of this investigation is to propose a safety format for designing 
TRC and a methodology for calibrating the associated safety factors and parameters. For 

practical applications, the values proposed in this investigation (tex and d) should be tailored 

on the basis of actual values of material and geometrical uncertainties, which can depend on the 
material used, production method and quality control procedure. 
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Appendix 4.A: Derivation of the safety format proposals for 
TRC structures 

In this annex, the methodology used for the safety format calibration of TRC structures is 
presented. The annex is based on the semi-probabilistic reliability verification approach of the 

Eurocodes [CEN02]. To that aim, the target reliability index 𝛽௧௚௧ provided in 

EN1990:2002 [CEN02] for structures with medium consequence class and a reference period of 

50 years at the ultimate limit state is used (𝛽௧௚௧ = 3.8). 

The partial factors used in the semi-probabilistic reliability verification approach of the 
Eurocodes [CEN02] are calibrated based on the First Order Reliability Method (FORM) [Has74, 
Mad86]. Based on the FORM, to achieve the target reliability level, the partial factor for each 
basic random variable can be defined with the aid of the FORM sensitivity factors, which are 
the directional cosines of the vector between the mean value point and the FORM design point 
in standardised normal space.   

In principle, independently of the type of safety format selected, the required partial factors to 
achieve the exact target reliability level are different for each individual case due to the 
difference in the shape of the limit state function. The shape of the limit state function depends 
on the mechanical model of the corresponding limit state as well as the probabilistic modelling 
of the basic uncertainties involved in the limit states. However, to simplify the design procedure, 
in the semi-probabilistic approach, the values of the partial factors are fixed and selected with 
the criterion that the achieved reliability level for representative design cases are as close as 
possible to the target value. Another important simplification in the safety format calibration in 
Eurocodes is to adopt standardised FORM sensitivity factors for the resistance variable and the 

action effect variable. The FORM sensitivity factor for the resistance 𝛼ோ is assumed to take the 

value of 0.8 and that for the action effect  𝛼ா is assumed to take the value of -0.7 provided that 

the ratio between the standard deviation of the action effect variable and the resistance variable 
is within the range of 0.16 to 7.6 [CEN02]. Using these standardised values makes it possible to 
separate the task of calibrating the partial safety factors on the resistance side and on the action 
effect side, which largely simplified the safety format calibration procedure. On the basis of such 
simplification, the target for the calibration of the partial factors for the resistance of TRC 
structures becomes:  

𝑃𝑟𝑜𝑏ሺ𝑅 െ 𝑅ௗ ൏ 0ሻ ൌ  Φሺെ𝛼ோ𝛽௧௚௧ሻ (23) 

When using the FORM or other reliability methods to calibrate the partial factors, iterative 
procedures are usually needed. However, under some conditions, simple analytical solutions can 
be derived for the partial factors. This can be done by making reasonable assumptions about the 
form of the limit state function. The resulting partial factors can eventually then be verified with 
the FORM or full-probabilistic reliability methods for the representative design cases. This 
strategy will be followed in this work when calibrating the safety format for TRC structures.  
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Considering the basic random variables involved in the resistance of TRC structures, the general 
form of the resistance function can be assumed as: 

𝑅 ൌ 𝜃ோ,௟௢௖௔௟𝑅ሺ𝑓௧௘௫ , 𝑓௖ ,𝑑ሻ (24) 

The specific form of the resistance function depends on mechanical model of the resistance and 
also the values of the basic variables.  

For calculation of the bending resistance of TRC structures, the methodology presented in 
Section 4.3 is considered, based on the Bernoulli-Navier assumption. The resistance of a cross 
section can be controlled either by the tensile strength of the textile reinforcement or by the 
compressive strength of concrete (but not by the two material strengths at the same time). The 
cases where the resistance is controlled by concrete strengths are not within the scope of this 
work, as they are similar to conventional over-reinforced concrete structures, and the safety 
elements for this type of cases are actually applied through the partial factor on concrete 
compressive strength. For the cases where the resistance is controlled by the textile 
reinforcement, Eq. (24) can be further simplified to the following form:  

𝑅 ൌ 𝜃ோ,௟௢௖௔௟𝑅ሺ𝑓௧௘௫ ,𝑑ሻ (25) 

It is then reasonable to make an additional assumption considering that the resistance can be 
approximated by a multiplicative form of the basic random variables: 

𝑅 ൌ 𝜃ோ,௟௢௖௔௟𝑅ሺ𝑓௧௘௫ ,𝑑ሻ ൎ 𝐴ோ𝜃ோ,௟௢௖௔௟𝑓௧௘௫𝑑 (26) 

Where AR represents a coefficient that depends on the other deterministic parameters related to 

the resistance. Based on the assumption in Eq.(26), the CoV of the resistance 𝑉ோ can be 

calculated approximately as:  

𝑉ோ ൎ ට𝑉ఏೃ
ଶ ൅ 𝑉௙೟೐ೣ

ଶ ൅ 𝑉ௗ
ଶ 

(27) 

It should be noted that Eq.(27) would be a close approximation if all the basic variables follow 
lognormal distributions, but in this case the flexural depth d is modelled as a normally distributed 
variable. In any case, Eq.(27) can still be a reasonable approximation for the purpose of 
estimating the partial factors. The validity of the above assumptions will eventually be verified 
by reliability analysis of representative cases with the selected partial factors. 

With respect to the value of Vd, it depends on the nominal flexural depth, and this results in 
different values of VR for cases with different flexural depths. For instance, for the range of dnom 

= 15-60 mm, the approximated value of VR is plotted in Figure 4.13a. 
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Figure 4.13: Analysis of the influence of dnom: (a) VR; and (b) FORM senstivity factors 

Following the same strategy, the FORM sensitivity factors for the basic variables can also be 
estimated as follows: 

α௙௧௘௫ ൎ ඨ
𝑉௙೟೐ೣ
ଶ

𝑉ఏೃ
ଶ ൅ 𝑉௙೟೐ೣ

ଶ ൅ 𝑉ௗ
ଶ 

(28) 

αఏೃ ൎ ඨ
𝑉௙ഇೃ
ଶ

𝑉ఏೃ
ଶ ൅ 𝑉௙೟೐ೣ

ଶ ൅ 𝑉ௗ
ଶ 

(29) 

αௗ ൎ ඨ
𝑉௙೏
ଶ

𝑉ఏೃ
ଶ ൅ 𝑉௙೟೐ೣ

ଶ ൅ 𝑉ௗ
ଶ 

(30) 

The change of the FORM sensitivity factors with the flexural depth is plotted Figure 4.13b. It 
should be stressed that the above analysis is based on two approximations: the assumption that 
the resistance can be approximated as a multiplicative form of the basic variables and the 
assumption that the resistance can be approximated by a lognormal distribution. From this 
analysis, it can be observed that the FORM sensitivity factor for the flexural depth decreases 
with increasing depth. It can further be observed that for the cases where the mean value of the 
flexural depth is relatively small, its uncertainty becomes dominant. Since the flexural depth 
follows a normal distribution (see Table 4.8), in the cases when the uncertainty of the flexural 
depth is dominating, the assumption that the resistance follows lognormal can be not valid 
anymore. This means the estimated FORM sensitivity factors of the range where the flexural 
depth is small can deviate from the actual value. Nevertheless, the estimated values can still 
provide important information for the safety format calibration problem and can be used as a 
useful reference. The estimated values of the CoV of the resistance variable and the FORM 
sensitivity factors of basic variables are used in the safety format calibration in Section 4.7 and 
their effectiveness is eventually verified by reliability analysis of representative cases. 
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Appendix 4.B: Analysis of an assembled cross-beam system 

The aim of this annex is to provide a detailed example of the assembled cross-beam system, 
following the procedure explained in Section 4.5. The assembled cross-beam composed of beam 
TB1 and TB8 is used for this purpose. For beam TB1 (refer to Section 4.3 for the values of the 

parameters of beam TB1), the uncracked cross-sectional flexural stiffness 𝐸𝐼௎஼  is: 

𝐸𝐼௎஼ ൌ 𝐸௖௠
𝑏ℎଷ

12
ൌ 1.40 ∙ 10଼ ሾkN ∙ mmଶሿ 

(31) 

Thus, the uncracked stiffness of the beam TB1 results: 

ሺ
𝑑𝑄
𝑑𝛿
ሻ௅஺௎஼ ൌ

48𝐸𝐼௎஼
𝐿ଷ

ൌ 3.88 ሾkN/mmሿ 
(32) 

And the cracked cross-sectional flexural stiffness 𝐸𝐼ி஼  of beam TB1 is: 

𝐸𝐼ி஼ ൌ
𝑏𝑥ே

ଷ

3
𝐸௖௠ ൅෍ሺ𝑑௜ െ 𝑥ேሻଶ𝑎௧௘௫𝐸௧௘௫,௠

௡ೝ

௜ୀଵ

ൌ 1.13 ∙ 10଻ ሾkN ∙ mmଶሿ 
(33) 

Where xN refers to the position of the neutral axis (see Figure 4.5) and the fully-cracked stiffness 
of beam TB1 is: 

ሺ
𝑑𝑄
𝑑𝛿
ሻ௅஺ி஼ ൌ

48𝐸𝐼ி஼ 

𝐿ଷ
ൌ 0.31ሾkN/mmሿ 

(34) 

The uncracked and fully-cracked stiffness of beam TB8 can be calculated with the same method. 
Based on this information, the load-deflection curves of the assembled system using LAUC and 
LAFC methods are calculated and plotted in Figure 4.14. For the NLA, a trilinear moment-
curvature relationship is assumed for each beam and the actual extent of cracked and uncracked 
regions are accounted for. The resultant response of the assembled system using NLA method 
and the assembled experimental response are plotted in Figure 4.14. for the selected case. 
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Figure 4.14: Response of the assemble cross-beam system composed of beam TB1 and 

TB8 
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Notation 

Latin upper case letters 
Atex  total area of textile reinforcement in a beam cross section 
AR  coefficient in the multiplicative form approximation of the resistance function 
Ecalc  calculated action effect at a given cross section of a structure 
Ecm  mean value of the elastic modulus of concrete (motar) 
Eexp  experimental action effect at a given cross section of a structure 
Ed  design value of action effect 
Etex,m   mean value of the elastic modulus of textile reinforcement 
EIFC ,  EIUC  fully cracked and uncracked flexural rigidity of a cross section 
F  load applied to a tested beam 
Frep  representative value of action variables 
L  span of a beam 
Lo1 , Lo2  overhang of a beam in three point bending test 
M  bending moment of a cross section 
MI , MII  bending moment of a cross section of beam BI and BII 
Mcr  cracking moment of a cross section 
Mexp  ultimate bending resistance of a tested beam 
Mhogging  maximum hogging moment of a beam according to a linear response 
Msagging  maximum sagging moment of a beam according to a linear response 
MR,hog  resistance of a beam cross section to the hogging moment 
MR,sag  resistance of a beam cross section to the sagging moment 
Prob ()  probability function 
Q  load applied to an assembled cross-beam system 
QA , QB  load transferred to a component beam of an assembled cross-beam system 
Qexp  experimental resistance of an assembled cross-beam system 
𝑄௅஺ி஼   resistance calculated with Linear Analysis assuming Fully-Cracked stiffness 

(LAFC) 
𝑄௅஺௎஼   resistance calculated with Linear Analysis assuming UnCracked stiffness 

(LAUC) 
𝑄ே௅஺  resistance calculated with NonLinear Analysis (NLA) 
Rcalc  calculated local resistance of a structure 
Rexp  experimental local resistance of a structure 
𝑅ௗ  design value of resistance 
Utex  nominal perimeter of the roving of textile reinforcement 
Vd  Coefficient of Variant (CoV) of the flexural depth random variable 
Vftex  CoV of the textile reinforcement tensile strength random variable 
VR  CoV of the resistance random variable 
VSd  CoV of the action effect model uncertainty 
VR  CoV of the model uncertainty of local resistance 
Xk  the characteristic value for a material strength variable 
Xnum  the design vector for a component beam in the numerical cross-beam system 

study 
Latin lower case letters 
anom  nominal value of geometrical variables 
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atex  net cross section of the roving of textile reinforcement 
b  width of a beam cross section 
d  flexural depth of a roving in a cross section 
dave  average flexural depth of all the rovings in a cross section 
dmax  maximum value of the flexural depth of all the rovings in a cross section 
dmin  minimum value of the flexural depth of all the rovings in a cross section 
ddesign  design value for the flexural depth 
dnom  nominal value for the flexural depth 
etex  grid spacing of the textile reinforcement 
fc  the compressive strength of concrete (motar) 
fc,ck  characteristic value for concrete (motar) compressive strength 
fcm  mean value of the compressive strength of concrete (motar) 
fctm  mean value of the tensile strength of the concrete (motar) 
ftex  the textile reinforcement tensile strength 
ftex,ck  characteristic value of the textile reinforcement tensile strength 
ftex,d  design value of the textile reinforcement tensile strength 
ftex,m  mean value of the textile reinforcement tensile strength 
g()  performance function 
h  height of a beam cross section 
nr  number of textile rovings in a cross section 
qcalc  the calculated global resistance of a statically indeterminate structure in terms 

of load factor 
qcr,hog  external load level when the hogging region of a beam cracks 
qcr,sag  external load level when the sagging region of a beam cracks 
qE  external action 
qexp  experimental global resistance of a statically indeterminate structure in terms 

of load factor 
qR,hog  external load level when the hogging region of a beam reaches the ultimate 

resistance 
qR,sag  external load level when the sagging region of a beam reaches the ultimate 

resistance 
qR,I  external load level when beam BI reaches its load carrying capacity 
qR,II  external load level when beam BII reaches its load carrying capacity 
xN  position of the neutral axis of a cross section 
Greek upper case letters 
∆ௗ  reduction factor for the flexural depth 
()  cumulative distribution function of standardized Normal distribution 
Greek lower case letters 
𝛼ௗ  FORM sensitivity factor of the flexural depth random variable 
𝛼ா   FORM sensitivity factor for action effects   
𝛼௙௧௘௫  FORM sensitivity factor of the textile reinforcement strength random variable 
𝛼ఏ  FORM sensitivity factor of the model uncertainty of local resistance random 

variable 
𝛼ோ  FORM sensitivity factor for the resistance 
𝛽௔௖௛௜௘௩௘ௗ   achieved reliability index 
𝛽௔௖௛௜௘௩௘ௗ , 𝐼  achieved reliability index for safety format proposal I 
𝛽௔௖௛௜௘௩௘ௗ , 𝐼𝐼  achieved reliability index for safety format proposal II 
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𝛽௧௚௧  the target reliability index 
𝛽௧௚௧,ହ଴  the target reliability index for a reference period of 50 years 
γ஼   partial factor for concrete compressive strength 
F  partial factors applied to action variables 
M  partial factors applied to material strength variables 
Sd  partial factors for action effect model uncertainty 
γ௧௘௫,ூ  partial factor for textile reinforcement strength in safety format Proposal I 
γ௧௘௫,ூூ  partial factor for textile reinforcement strength in safety format Proposal II 
  mid-span deflection of a structure 
cal  calculated mid-span deflection of a structure 
exp  experimental mid-span deflection of a structure 
c  strain of concrete 
i strain of a single textile reinforcement roving 
 mean value of the conversion factors for material strength variables 
E efficiency factor for the textile modulus of elasticity 
f efficiency factor for the textile tensile strength 
is the in-situ strength efficient factor of concrete 
𝜃ா random variable for action effect model uncertainty 
𝜃ா,௅஺ி஼   action effect model uncertainty variable for LAFC 
𝜃ா,௅஺ி஼,௡௨௠  action effect model uncertainty variable for LAFC evaluated with numerical 

method 
𝜃ா,௅஺௎஼   action effect model uncertainty variable for LAUC 
𝜃ா,௅஺௎஼,௡௨௠  action effect model uncertainty variable for LAUC evaluated with numerical 

method 
𝜃ா,ே௅஺  action effect model uncertainty variable for NLA 
𝜃௚௟௢௕௔௟   random variable for the global resistance model uncertainty 
𝜃ோ,௟௢௖௔௟   random variable for the local resistance model uncertainty 
  flexural reinforcement ratio of a cross section 
ave  average flexural reinforcement ratio of a cross section 
c  stress of concrete 
i  stress of a single textile reinforcement roving 
 curvature of a cross section 
  

  

  
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Chapter 5 

Conclusions and Outlook 

5.1 Conclusions 

This chapter summarises the conclusions of this thesis. In addition, an outlook on the research 
which could be addressed in future works to advance the state-of-the-art is included. 

This work explores the different aspects of the partial safety format calibration problem involved 
in the resistances of reinforced concrete structures. In general, it is concluded that a suitable 
probabilistic modelling of the basic uncertainties is fundamental for an effective partial safety 
format calibration, which should be based on a good understanding of the mechanical behaviour 
of the relevant load bearing mechanisms. On its basis, a detailed safety format composed of 
calibrated partial safety factors for the dominating uncertainties is an effective reliability 
verification approach for both classical analytical design equations and advanced nonlinear 
analysis methods like strain-based approaches and NonLinear Finite Element Analysis. 

In the following, the main conclusions of this work are listed by chapter. 

Chapter 2: Considerations on the partial safety factor format for reinforced concrete 
structures accounting for multiple failure modes 

Focusing on material uncertainties, the basic assumptions, simplifications and applicability 
conditions of the Partial Safety Factor Format (PSFF) for the design resistance of concrete 
structures are investigated. By a detailed analysis of the shapes of the limit state functions of 
different resistance models, the similarities between the simple analytical models and more 
advanced nonlinear analysis models are demonstrated. The main conclusions of this chapters are 
the followings: 

 Exponent sensitivity factor analysis of some typical structural resistance models for 
reinforced concrete structures shows that it is an efficient tool to detect different failure 
modes. In addition, performing exponent sensitivity analysis of basic uncertainty 
variables of the full applicable range of a resistance model and estimating the reliability 
index using approximated First Order Reliability Method (FORM) on its basis can 



Conclusions and Outlook 

140 

provide valuable information for the safety format calibration of the corresponding 
model. 

 On the basis of the investigation of the basic assumptions, simplifications and 
applicability conditions of the PSFF on material strength variables, it is concluded that 
the PSFF yields satisfactory reliability levels both for cases subjected to single or 
multiple failure modes as long as the non-decreasing assumption of the resistance 
function is valid. 

 Adopting conservative FORM sensitivity factors for material strength variables in the 
PSFF calibration is necessary because they may vary significantly with the change of 
failure modes. This treatment can be conservative but has the advantage of being simple 
to use in design practice and being applicable to a wide range of cases. 

 The simplification of integrating the safety elements for geometrical and model 
uncertainties into the partial safety factors for material strengths can underestimate the 
influence of geometrical and model uncertainties in some cases. 

 Good tail approximation is instrumental for the effectiveness of safety formats. 
Approximating the distribution of resistance variable with a single lognormal 
distribution based on crude Monte Carlo simulation result risks of losing information 
about the tail distribution and can potentially lead to unsafe results. 

Chapter 3: Model uncertainties and partial safety factors of strain-based approaches for 
structural concrete: example of punching shear 

The characteristics of the model uncertainties of the implicit strain-based approaches 
(composing of multiple sub-models) are investigated. A general theoretical analysis based on 
the power-multiplicative form approximation of the sub-models shows that the model 
uncertainty of the global solution can be viewed as a resultant of the model uncertainty of the 
sub-models. The influence of the sub-models on the uncertainty of global solution depends 
however on their sensitivity relationship (represented by the exponent sensitivity factors). With 
this respect, it is shown that the global model uncertainty can be lower than the sub-models’ 
uncertainties, which is a relevant point to be accounted for in the safety format calibration of 
strain-based approaches. 

The theoretical approach is then applied to the strain-based approach of the Critical Shear Crack 
Theory (CSCT) for punching of reinforced concrete slabs. The resulting major conclusions are:  

 Analysis of the model uncertainty data of the sub-models the CSCT punching shear 
models confirms that they can be approximated by independent lognormal distributions. 

 Comparison between the model uncertainty data of the sub-models and the global 
resistance solutions confirms the theoretically derived relationship based on the 
exponent analysis. 
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 By analysing two levels of approximation of the punching shear resistance model 
(namely LoA II and LoA IV according to fib MC 2010), it is shown that the model 
uncertainty decreases with the increase of the LoA (consistently with the main principles 
of such approach). Furthermore, the model uncertainty of lower LoAs can be considered 
as a resultant of the uncertainty of higher LoAs and the additional epistemic model 
uncertainty introduced in the simplification procedure adopted for the derivation of the 
lower LoA formulae. 

On the basis of model uncertainty analysis result, the suitable safety format for the CSCT 
punching shear resistance models is discussed. The conclusions are:  

 For higher LoAs, an approach based on the application of partial safety factors to the 
sub-models appears to be more suitable than an approach relying on the application of 
a single global partial safety factor to the resistance solution, since they can effectively 
account for the change of model uncertainty associated to the change of the failure mode. 
Particular attention needs to be paid to the nonlinear relationship between the partial 
safety factors applied to the sub-models and the resulting design resistance for strain-
based approaches. 

 If partial safety factors are adopted for the sub-models, the resulting global partial safety 
factor can vary depending on the material and geometrical parameters as well as on the 
resulting failure modes. For the investigated case, the global partial safety factor for 
punching according to the LoA IV varies between 1.48 and 1.00. 

 The relationship between the safety factors of the punching shear provisions in the 
second generation of Eurocode 2 for the design of new structures (Clause 8.4) and the 
assessment of existing critical ones (Annex I) is established, justifying the safety format 
adopted for the latter. 

Chapter 4: A consistent safety format and design approach for brittle systems and 
application to textile reinforced concrete structures 

The suitable safety format and analysis method for Textile Reinforced Concrete (TRC) is 
investigated accounting for the influence of brittle behaviour on the reliability of such structures. 
The main conclusions are:  

 Structures presenting brittle responses (implying limited or none redistribution capacity 
of internal forces) can fail for load levels below those considered for design if the 
calculation of internal forces deviates from the actual response (typically, elastic-
uncracked behaviour assumed in the calculation of internal forces). This situation does 
not occur for a ductile response.  

 The analysis of statically indeterminate TRC structures shows that performing a linear 
elastic calculation of internal forces considering fully cracked stiffness properties for all 
sections is a suitable manner to estimate the internal forces and response of TRC. This 
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holds true provided that more than minimum amount of reinforcement are provided in 
the structure. 

 Alternatively, using a nonlinear analysis (considering the development and extent of 
cracking) is also a suitable manner to estimate the internal forces. It is even more 
accurate than the previous, but requiring a significant effort for analysis. 

 Estimating internal forces on the basis of the uncracked stiffness of the sections (as 
usually performed for ordinary reinforced concrete) can lead to relatively large 
deviations on the response and internal forces of a brittle structure as TRC. Such method 
shall not be used for design unless specific considerations were implemented to cover 
this increased uncertainty. 

 Since for thin members, the variability of the effective depth can be significant 
compared to the mean value, the geometrical uncertainties can play a major role in 
calibrating the partial safety factors for designing structures at ultimate limit state. On 
the basis of reliable internal forces (determined by a linear-elastic fully cracked analysis 
or a nonlinear analysis), two types of PSFF are calibrated for the flexural resistance of 
TRC: 

o Consideration of a partial safety factor for the tensile strength of the textile 

(tex = 1.55) and nominal dimensions. All uncertainties (material, geometrical 

and model) are lumped into the partial safety factor of the textile. 

o Consideration of a reduced partial safety factor for the tensile strength of the 

textile (tex = 1.25) and design dimensions (reduction of 6 mm in effective 

depth). In this case, material and model uncertainties are accounted for in the 
partial safety factor of the textile while geometrical uncertainties are considered 
in the design dimensions. 

o In general, the second safety format is preferable, leading to a more uniform 
level of safety.  

5.2 Outlook and future works 

Some questions related to the topics studied in this research remain open. In the following, some 
of these future research lines are outlined: 

 The model uncertainty quantification of the NonLinear Finite Element Analysis 
(NLFEA) approaches still pose many challenges to be dealt with in future works. A 
major challenge is the scarcity of test data on the global response of structures. Taking 
the case of the punching shear resistance of slab-column connections as an example, in 
this work, the model uncertainty quantification is performed based on data from 
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laboratory tests of isolated slab-column connections. The corresponding investigations 
on the partial safety format is also performed at the isolated slab-column connection 
elment level.  By contrast, in practice, the majority of the flat slabs are continuous 
structures with multiple spans supported by several columns and walls, which can have 
significantly different behaviour from isolated slab-column connection potion due to the 
influence of Compressive Membrane Action (CMA), the redistribution of internal 
bending moments that can occur in continuous flat slabs and the non-uniform 
distribution of shear stress along the control perimeter. Calibrating the partial safety 
format at the isolated structural potion level is suitable when the verification of the 
punching shear resistance of a flat slab is performed adopting conservative assumptions 
regarding the global behaviour (neglecting the beneficial influences of CMA and 
internal force redistribution) and adopting conservative assumptions for the non-
uniform distribution of the shear force along the control perimeter. However, when a 
more refined analysis of the punching shear resistance is required (e.g. in the assessment 
of critical existing structures) and the global behaviour of continuous flat slab structure 
including the beneficial effects of CMA and internal forces redistribution are accounted 
for by NLFEA, theoretically, the corresponding safety format needs to be re-calibrated 
with the model uncertainties of the continuous flat slab structures, which can be different 
from those of isolated specimens. However, due to the complexity of full-scale tests on 
continuous flat slabs, as well as the resources needed for that purpose, very little test 
data is available at this scale. The difference between the scale of the available 
benchmark test data and the scale of the NLFEA model used in the calculation of 
structural load bearing capacity is a problem that needs to be investigated in future 
works.  

 Another important question is related to the categorization of the model uncertainties of 
the NLFEA approaches. It has been shown in Chapter 3 that the model uncertainty of 
global resistance solution of strain-based punching shear resistance model tends to be 
heteroscedastic as a resultant of the different influences of the sub-models for different 
cases. For the punching shear resistance model, it is applicable to perform the model 
uncertainty quantification at the sub-model level since it has a relatively simple form 
with clearly defined and mechanical-based sub-models. However, it can be anticipated 
that such an approach is not necessarily applicable for more complex NLFEA with 
multiple calibrated parameters in multiple sub-models. For this type of model, the only 
feasible approach is to represent the model uncertainty at the global resistance level. It 
is reasonable to anticipate that the global resistance model uncertainty of such models 
can also be heteroscedastic due to similar reasons as for the case of the strain-based 
punching shear resistance model. Researchers have tried to categorize the global 
uncertainty of the NLFEA by differentiating ductility level [Eng17] or governing failure 
modes [Cer18]. In this work, it is shown that the exponent sensitivity analysis is an 
effective tool to identify the influence of different failure modes in the structural 
resistance model (also in the cases with multiple failure modes coupling). In future 
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researches, to categorize the model uncertainties of the global resistance solution of 
NLFEA on the basis of the exponent analysis of the relevant variables can be a 
promising direction to achieve a better representation of model uncertainties of such 
models.   

 Regarding the treatment of material uncertainties, the influence of their spatial variation 
and correlation needs to be further investigated in future research. For example, the 
tension stiffening effect of concrete after cracking can have a significant influence on 
the punching shear resistance of slab-column connections in continuous slabs. The 
tension stiffening effect depends on the crack pattern of the structure, which is 
influenced by the spatial variation of the property of concrete. How to properly account 
for the influence of this type of effect on the reliability of reinforced concrete structures 
still needs to be investigated.  
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Appendix A 

Safety format calibration example: 
the anchorage strength model of 
shear reinforcement in beams and 
slabs 

This Appendix is a part (Section 6.8 and Appendix D) of the post-print version of the article 
mentioned below, published in Engineering Structures Journal. The authors of the article are 
Frédéric Monney, Qianhui Yu (PhD Candidate), Prof. Miguel Fernández Ruiz (thesis co-
director) and Prof. Aurelio Muttoni (thesis director). The reference is the following: 

Monney F., Yu Q., Fernández Ruiz M., Muttoni A., Anchorage of shear reinforcement in 
beams and slabs, Engineering Structures, Vol.265, 114340, 2022.  
(DOI: https://doi.org/10.1016/j.engstruct.2022.114340) 

The main contributions of Qianhui Yu to this article and this annex are the following: 

 Probabilistic modelling of the basic uncertainties of the anchorage strength model  

 Proposition of the reliability analysis and the safety format calibration methodology for 
the anchorage strength model  

 Interpretation, analysis and discussion of the reliability analysis and safety format 
calibration result. 

 Writing of the manuscript of section 6.8 and Appendix D of the article. 
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Appendix A.1: Safety format calibration for the anchorage 
strength model 

This appendix presents the process of the safety format calibration procedure for the anchorage 
strength model for shear reinforcement in beams and slabs developed by Monney et al. 
in [Mon22]. 

Based on the average behaviour observed in tests, the anchorage strength model is developed 
and takes the following form (refer to [Mon22] for details of the development of the mechanical 
model and refer to Notation section for definition of the symbols):  
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(1) 

To use this model in codified design practice, the unavoidable uncertainties involved in design 
need to be accounted for and the design equation (including partial factors) for the developed 
model needs to be calibrated to fulfil the corresponding reliability requirements. 

The target reliability requirement of Eurocode for the ultimate limit state design for structures 
with medium consequence class and a reference period of 50 years (with a target reliability index 

of tgt = 3.8) is considered and the design equation for the proposed anchorage strength 

model (Eq.(1)) is calibrated accordingly. The material, geometrical and model uncertainties 
involved in the model need to be accounted for in the safety format calibration. The probabilistic 
modelling of the uncertainties involved in the independent input variables of the model are 
shown in Table A.1. The distribution of the model uncertainty (considered as an independent 
random variable multiplied to the model) is also provided in Table A.1. It should be noted that 



Appendix A.1: Safety format calibration for the anchorage strength model 

147 

the distribution parameters for the concrete cover c are derived based on its allowance value for 
deviation according to Eurocode 2 [CEN04, ISO13]. In Eurocode 2 (Clause 4.4.1.1 and 4.4.1.3), 
the acceptable deviation for concrete cover for buildings is recommended as 10 mm. Taking this 
into account, the minimum allowed concrete cover cmin (cmin = cnom – 10 [mm]) is assumed to be 
the 5 % fractile of its distribution. It should also be noted that the bar diameter Ø is not 
considered as an independent random variable because the uncertainty in the area of cross 
section of the bar is already included in fy and fR. Also, the crack width w is not accounted as an 
independent random variable because it is a derived variable based on the independent input 
variable. 

Table A.1: Distribution parameters of the basic uncertainties of the achorage strength 

model 

Basic variable 
fi 

Distribution 
type 

Coefficient of Variation  
Vi 

Bias factor 
i

 1) 
Reference 

Model uncertainty lognormal 0.129 1.05 [Mon22] 

fc,ais
2) lognormal 0.156 e1.645∙V [Mut23] 

fy lognormal 0.045 e1.645∙V [Mut23] 

 lognormal 0.05  assumed 

Ømand lognormal (0.2∙Ø/1.645)/Ømand  assumed 

ltail lognormal (Ø/1.645)/ltail  assumed 

c lognormal ln(cnom/(cnom -10))/1.645  1 [CEN04] 

dg lognormal 0.1  [Mut23] 

fR lognormal 0.005  [Dar98] 
1) The value in this columns refer to the ratio between the mean value and the value used in 
the design formulae (characteristic for material strength variables and nominal for other 
variables) [Mut23] 

2) fc,ais actual in-situ compressive concrete strength 

The semi-probabilistic approach and the simplification of using standardised FORM (First Order 

Reliability Method) sensitivity factors [CEN02] for the resistance (R = 0.8) is adopted in the 

following safety format calibration procedure. Accounting for the standardized FORM 
sensitivity factor, the reliability requirement for design equation of the anchorage strength can 
be expressed as: 

    P 0sR sRd R tgtσ σ α β      (2) 

Where P() is the probabilistic function, sR is the anchorage strength variable, sRd is the design 

anchorage strength (calculated with partial safety factors) and is the cumulative probability 

function of the standardised normal distribution. 
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To facilitate the partial factor calibration, the CoV of the anchorage strength model (VR) is first 
estimated approximately based on exponent sensitivity analysis [Yu20] of the basic input 
variables: 

 2 2
R i iV n V   (3) 

Where ni are the exponent sensitivity factor for basic variable fi (defined as the partial derivative 

of the logarithm of the anchorage strength sR to the logarithm of the variable fi at the mean value 

point of the basic variables). Details of the assumptions and approximations in the exponent 
sensitivity analysis and the estimation of VR can found in references [Yu20, Yu21]. 

The resulting CoVs for cases with different combinations of design parameters are plotted in 
Figure A.1 From the CoV plots, it can be observed that as a result of the two different failure 
modes (spalling failure and pull-out failure) involved in the anchorage strength model, the VR 
plots show two regimes and the dominating variable for the variability of the model change with 
the dominating failure mode. When the concrete cover value is relatively low, the spalling failure 
mode is dominating and the variability of concrete cover variable is dominating. On the other 
hand, with relatively high concrete cover value, the pull-out failure mode is dominating and the 
model uncertainty becomes dominant. 
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Figure A.1: (a) CoV of the resistance variable; (b) partial safety factor; and (c) design 

value of the concrete cover. (Parameters used: poor bond conditions; Ø14; 

dg = 16 [mm]; l = 4; ltail = 5Ø; Ømand = 4Ø;  = 90 [°]; fc = 38 [MPa]; 

fy = 500 [MPa]; fR = 0.056). 

Based on the previous observations, the following format of the design equation for the 
anchorage strength model is proposed: 
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 (4) 

In the proposed format in Eq. (4) (which is based on Eq.(1) incorporating the partial safety 

factors), the design values are obtained with the partial safety factor R and with a reduction c 

of the concrete cover (cd  cnom - c, where cnom is the nominal concrete cover). The motivation 

of using a design value of the concrete cover cd is to achieve a uniform reliability level for cases 
dominated by different failure modes. It should be noted that the approach of applying design 
value of dominating geometrical variables in the design equation is also adopted in Eurocode 
[CEN23, CEN02]. 

The required values for the partial safety factor R and c to achieve the target reliability level 

(Rꞏtgt) are estimated based on FORM theory considering that concrete cover is an independent 

variable and that the rest of the uncertainties are lumped into another independent random 
variable (in a similar approach as the one presented in [Yu21] but considering a lognormal 
distribution for the concrete cover). The resulting equations are given below, with representative 
cases plotted in Figure A.2. 
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Where FORM,c are the approximated FORM sensitivity factor for variable c (estimated as 

FORM,c = ncꞏVc/VR). The following values for the two safety factors are proposed based on the 

analysis results: 
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To verify the effectiveness of the selected combination of safety factors, reliability analysis of 
representative cases is performed with Monte Carlo simulation method. Accounting for the 
probabilistic models of the basic variables, the achieved reliability for the design strength is 
calculated with the following equation: 
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For each case, one million sample points are used in the Monte Carlo simulation to ensure proper 
tail approximation of the anchorage strength variable (refer to [Yu20] for details about the 
necessity of tail approximation in the cases of multiple failure modes). The achieved reliability 
indexes of the investigated cases are plotted in Figure A.2. The result shows that with the 
proposed combination of safety factors, a satisfactory range of the achieved reliability level 
(ranging between 2.5 and 3.5) is achieved, which confirms the applicability of the proposed 
safety format. 

It should also be noted that the value c for calculating the design value cd can potentially be 

reduced when the concrete cover is updated on the basis of measurements (e.g. in the assessment 

of existing structures). Under this circumstance, the value of c can be calculated based upon 

updated information about the probabilistic model of the concrete cover with the procedure 
outlined in this section. 
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Figure A.2: Achieved reliability index for different cases. 
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Notation 

Latin lower case letters 

c concrete cover 

cmin minimum value of concrete cover 

cnom nominal value of concrete cover 

cd design value of the concrete cover 

ddg maximum aggregate size parameter 

dg maximum aggregate size 

fc concrete cylinder compressive strength 

fc,ais actual in-situ concrete compressive strength 

fck characteristic value of the concrete compressive strength 

fi basic variable 

fR bond index 

fy yield strength of reinforcement 

fyk characteristic value of the yield strength of the reinforcement 

k1 to k4 factors of the model 

ltail tail length 

ni exponent sensitivity factor of basic variable fi 

w in-plane crack opening 

Latin upper case letters 

Vi Coefficient of Variation of basic variable fi 

VR Coefficient of Variation of the resistance function 

Greek lower case letters  

α bending angle 

αFORM,c approximated FORM sensitivity factor for concrete cover 

αR First Order Reliability Method sensitivity factor for resistance 

achieved  achieved reliability index 

tgt  target reliability index 

R partial safety factor for the anchorage strength model 

ηcp coefficient accounting for casting effects on bond conditions 

ηct brittleness factor of concrete in tension 

ηis strength reduction factor to account for casting position effect 

ηl number of lugs per rib 

σsR anchorage strength calculated with the model 

σsRd design anchorage strength 

b bond stress 
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tail,spall average bond stress for failures induced by spalling in the tail region 

Greek upper case letters  

c reduction of concrete cover for design 

Others 

Ø bar diameter 

Øl longitudinal bar diameter within the bend 

Ømand mandrel diameter (= inner diameter after bending of the bar) 

 cumulative probability function of the standardised normal distribution 

P() probabilistic function 
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