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Foreword

The idea of verifying reinforced concrete structures at Ultimate Limit State using partial safety
factors has been proposed almost 100 years ago and partial factors have been defined in
standards since the 60s of last century. These factors have been usually calibrated to achieve the
same safety level as according to previous standards which were based on the verification with
allowable stresses. Since several decades, it is possible to calibrate them on the basis of reliability
analyses in a rational manner, but some open questions still remain.

The thesis of Qianhui Yu deals with these open questions related to the calibration of partial
factors, namely the pertinence of this approach in case of multiple failure modes (as for instance
flexure, shear and bond failures where both concrete crushing and steel yielding can be
involved), the approach to be followed in case of mechanical strain based models (examples of
the shear and the punching resistance according to the Critical Shear Crack Theory) and the
model uncertainties in the calculation of internal forces in case of very brittle
behaviour (example of textile reinforcement consisting of carbon or glass fibres).

The topics of this research were also inspired by the works related to the draft of the second
generation of the European code for concrete structures and the related discussions in two
committees at international level (CEN/TC250/CSC2/WG1/TG6 and fib TG 3.1 Reliability and
safety evaluation: full-probabilistic and semi-probabilistic methods for existing structures). As
a result of these discussions, some results of this research have been implemented in the latest
draft of this code and in the new fib Model Code 2020. For these reasons also, the outcome of
this research has a significant practical relevance.

This thesis has been partially funded by the Swiss Federal Road Authority and by cemsuisse,
whose support is greatly appreciated.

Lausanne, May 2023

Prof. Aurelio Muttoni
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Abstract

Every engineering calculation is an approximation of reality, with inevitable uncertainties
involved. This fact implies that a reliability verification accounting for the uncertainties is a
necessary step in the design and assessment of structures. Nowadays, probability-based partial
safety factor format is widely adopted in the structural reliability verification in design codes.
The safety format calibration is a continuing updating process with the advancements of
knowledge in structural engineering.

For reinforced concrete structures, open questions for the safety format calibration emerge with
the increasing application of advanced nonlinear structural resistance analysis approaches (e.g.
strain-based approaches and numerical methods like the NonLinear Finite Element Analysis) as
well as the application of new materials. Aiming at meeting these new challenges, several topics
within the partial safety factor format framework are investigated.

In the first part of this work, the simplifications and assumptions in the classical partial safety
factor format for the resistance of reinforced concrete structures are examined. Their suitability
for the implicit nonlinear analysis models is investigated focusing on the influence of multiple
failure modes. Reliability analysis case studies at different scales (cross-sectional resistance or
load-bearing capacity of structural elements and of simple structural systems) show that the
partial safety factors applied to material strength variables leads to a satisfactory level of
reliability, independent of the development of different failure modes induced by material
uncertainties.

In the second part of this work, the characteristic of the model uncertainties of strain-based
approaches is investigated using the punching shear resistance model based on the Critical Shear
Crack Theory (CSCT) as an example. It is shown that the model uncertainty of global resistance
solution of strain-based approach can be viewed as the resultant of the model uncertainties of
the sub-models. In addition, the model uncertainty of the global resistance solution can be lower
than those of the sub-models, depending on their sensitivity relationship. Based on these
observations, different types of partial safety formats for strain-based approaches are compared.
The relationship between the safety factors of the punching shear provisions in the second
generation of Eurocode 2 for the design of new structures and the assessment of existing critical
ones is established.

The last part of this work deals with the partial safety factor format calibration problem for
structures with brittle response. As an example, the partial safety format for the flexural
resistance of Textile Reinforced Concrete (TRC) is calibrated focusing on the model
uncertainties of action effect for brittle systems.

Based on these works, it is concluded that a suitable probabilistic modelling of the basic
uncertainties is fundamental for the effective calibration of the partial safety format and it should
be based on a good understanding of the relevant load bearing mechanisms. On its basis, a



detailed safety format composed of calibrated partial safety factors for the dominating
uncertainties is an effective reliability verification approach for both classical analytical design
equations and advanced nonlinear analysis methods.

Keywords: reinforced concrete structures, reliability analysis, partial safety factor format,
exponent sensitivity analysis, nonlinear analysis, multiple failure modes, strain-based approach,
model uncertainty quantification, Bayesian inference, brittle systems, Textile Reinforced
Concrete.
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Résumé

Tout calcul en ingénierie est une approximation de la réalit¢ et comporte des incertitudes
inévitables. Ce constat implique qu'il est nécessaire d'effectuer une vérification de la fiabilité
prenant en compte ces incertitudes lors du dimensionnement et de la vérification des structures.
Actuellement, le format de sécurité probabiliste comprenant les coefficients partiels de sécurité,
est largement utilisé dans les normes de dimensionnement lors de la vérification de la fiabilité
des structures. La calibration de ce format de sécurité est un processus en constante évolution et
progresse en fonction des avancées dans le domaine de l'ingénierie structurale.

En ce qui concerne les structures en béton armé, l'utilisation croissante d’analyses non-linéaire
avancées pour le calcul de la résistance telles que les analyses basées sur les déformations et les
méthodes numériques comme 1'analyse non-linéaire par éléments finis, ainsi que 'utilisation de
nouveaux matériaux, suscitent des questions quant a I'adéquation du format des coefficients
partiels de sécurité. Face a ces nouveaux défis, plusieurs sujets sont étudiés dans le cadre du
format des coefficients partiels de sécurité.

Dans la premiére partie de ce travail, les simplifications et les hypothéses du format classique
des coefficients partiels de sécurité pour la résistance des structures en béton armé sont
examinées. Leur adéquation aux modeles d'analyse non-linéaire implicite est étudiée en mettant
I’accent sur I'impact des modes de ruptures multiples. Plusieurs cas d’étude portent sur I'analyse
de fiabilité des structures a différentes échelles (résistance en section ou capacité portante
d'éléments structurels et de systémes structurels simples). Ils démontrent que I’application des
coefficients partiels de sécurité aux variables de résistance des matériaux permettent d'obtenir
un niveau de fiabilité satisfaisant, indépendamment du développement des différents modes de
rupture induits par les incertitudes liées aux matériaux.

Dans la deuxi¢me partie de ce travail, les caractéristiques des incertitudes du modéle des
approches basées sur les déformations sont examinées en utilisant comme exemple le modele de
résistance au poingonnement basé sur la théorie de la fissure critique (CSCT). Il est démontré
que l'incertitude du modéle de la résistance globale dans 1’analyse basée sur les déformations
peut étre considérée comme la résultat des incertitudes du mod¢le des sous-modeéles. De plus, il
est également démontré que l'incertitude du modele de la résistance globale peut étre inférieure
a celle des sous-modéles, en fonction de la sensibilité les liants. Sur la base de ces observations,
différents types de formats partiels de sécurité pour les analyses basées sur les déformations sont
comparés. La relation entre les facteurs de sécurité liés a la vérification du poingonnement dans
la deuxiéme génération de I'Eurocode 2 pour le dimensionnement de nouvelles structures et la
vérification des structures critiques existantes est établie.

La derniére partie de ce travail aborde le probléme de la calibration du format des coefficients
partiels de sécurité pour les structures présentant une réponse fragile. A titre d'exemple, le format
partiel de sécurité pour la résistance a la flexion du béton textile (BT) est calibré en se
concentrant sur l'incertitude du modéle des efforts internes pour les systémes fragiles.
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Sur la base de ces travaux, il est conclu qu'une modélisation probabiliste appropriée des
incertitudes de base est essentielle pour une calibration efficace du format partiel de sécurité.
Cette modélisation doit reposer sur une bonne compréhension du comportement mécanique de
la transmission des charges. En se basant sur cette approche, 'utilisation d'un format de sécurité
détaillé composé de facteurs de sécurité partiels calibrés pour les incertitudes prédominantes
s’avere étre une approche de vérification de la fiabilité efficace pour les équations de
dimensionnement analytiques classiques ainsi que les méthodes d'analyse non-linéaire avancées,
telles que les approches basées sur les déformations et 'analyse non-linéaire par éléments finis..

Mots-clefs : structures en béton armé, analyse de fiabilité, format des coefficients partiels de
sécurité, analyse de sensibilité des exposants, analyse non linéaire, modes de rupture multiples,
analyse basée sur les déformations, quantification de l'incertitude du modéle, inférence
bayésienne, systémes fragiles, béton textile.
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Chapter 1

Introduction

1.1  Structural reliability and partial safety factor format

It is pointed out in [CEB80a] that until the 19" century, all constructions were performed based
on empirical design and safety depended on the experience and intuition of the builders. In the
19" century, with the invention of metallic structures and the “Strength of Materials”, the
concept of safety limit appeared in the form of allowable stress which were then considered by
a “safety coefficient” applied to the material strength. The modern probability-based structural
safety concept can be traced back to the 1920s. In the book “The Safety of Structures” (in
German: Die Sicherheit der Bauwerke [May26]), Max Mayer proposed to calculate the safety
factors for the loads, geometrical quantities and material strengths consistently with their mean
values and standard deviations respectively and accounting for the concept of error propagation.

Significant progress of the probabilistic-based structural safety theory and its application to
codified design was made from the 1940s to the 1990s. Works on the relevant concepts (the
interpretation of the probability of structural failure, categorization of uncertainties, limit states,
action models, load combination models etc.)[CEB80a, CEB80b, CEB8S, El178, E1180, ISO86]
and the reliability analysis approaches based on the First Order Reliability Method [Fre56,
Cor69, Ros72, Has74] led to the formulation of the detailed probability-based partial safety
factor format in modern design codes.

The typical partial safety factor format used in structural design codes is briefly introduced in
the following.

The basic form of the structural reliability problem is the classical “R and £” problem [CENO02,
Sch17], where E refers to the action effect and R refers to the corresponding structural resistance.
Considering R and E as random variables, the probability of failure P, and the corresponding
reliability index S for a given limit state are defined as:

P, =P(R-E<0) (1
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p=-0"(P) @)

Where P(:) is the probability function and ®'(-) is the reversed cumulative distribution function

of the standard normal distribution.

The structural safety verification is performed by checking that the reliability index of the
relevant limit state is not lower than the target reliability index: f > f. The target reliability index
p: is defined based on the acceptable risk of failure of society, the economic criteria as well as
the accumulated experience of the engineering profession form past practice [Dit96, E1194]. For
example, for the ultimate limit state of structures with medium consequence class with a 50 years
reference period, a target reliability index of ;= 3.8 is required in EN 1990 [CENO02] and fib
Model Code 2010 [FIB13].

In design codes, the verification of structure reliability is further simplified by the so-called
semi-probabilistic approach [CEN02], in which the verification of f > f; is transferred into the
verification that the design resistance R, is no lower than the design action effect £y

E, <R, 3)

Within the FORM framework [Has74], the design values (R, and E;) should be based on the
values of the basic variables at the FORM design point. The basic principle of the FORM is to
calculate probability of failure (and the corresponding reliability index) by performing a first
order Taylor expansion of the limit state function at the FORM design point, which is the point
on the limit state surface (R - £ = 0) closest to the mean value point in the standard normalised
space (where the basic variables are transformed into standard normal distribution random
variables). The FORM is based on the fact that the Joint Probability Density Function (JPDF) in
the standardized normal space is axisymmetric and its value is rapidly decreasing with the
increasing distance from the mean value point. A qualitative illustration of the location of the
FORM design point is plotted in Figure 1.1 assuming that both R and £ are normally distributed
random variables.

With the help of the FORM sensitivity factors ar and ar (refer to Figure 1.1) [Has74], the
reliability verification can be further separated to the action effect side and the resistance side:

P(E2E,;) =0(ap) 4

P(R<R,) =D(-a f) )
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Figure 1.1: [lustration of the reliability index and the FORM design point for the limit
state function R — E = 0 assuming independent normal distributions of R

and E (figure adapted from EN 1990:2002 [CENO02])

The limit state function plotted in Figure.1.1 can be seen as the simplest form of the structural
reliability problem. In design practice, both the resistance and the action effect involve multiple
sources of basic uncertainties and the limit state function can have complex shape in high
dimension space. A general summary of the basic uncertainties involved in the structural design

problem is shown in Figure 1.2.
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Limit state verification : R, >E,

Model uncertainty in structural resistance | <=6, , 0, ...

Design value of resistance | R =R{X, , X ,....a,,, a,,,...0, ,,,0, ).} <— Uncertainty in material properties —X X,
\ Uncertainty in geometrical properties «a, a,..
Figure 1.2: Summary of the basic uncertainties involved in structural design

Accounting for different sources of basic uncertainties (Figure 1.2) and using the FORM
concept, the design action effect and design resistance can be assumed to be calculated with the
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design values of the basic random variables (refer to Figure 1.2 for notations of basic uncertainty

variables):
Ed :E{Fdl’E{Z""’adlﬁa(IZ""eE,d] 9‘915,(12’-"} (6)
Ry =R{X ;1. X ysr @O 11 Op v (7

The design values of the basic variables can be calculated with the suitably calibrated partial
safety factors for the basic variables. Theoretically, an individual partial safety factor can be
calibrated for each basic random variable accounting for the shape of the limit state function of
each specific case to achieve the exactly target reliability level. This approach is however not
applicable to daily engineering practice. Instead, usually some assumptions are made in order to
simplify the safety format calibration for codified design.

The first common assumption is to adopt standardized FORM sensitivity factors for the action
effect and the resistance side respectively. For example, in EN 1990:2002 [CENO02]) , it is
suggested that the values of ¢, =—0.7 and «, =0.8 can be adopted provided that the ratio

between the standard deviations of the action effect and the resistance is within the limit between
0.16 and 7.6 [CEN02, K6n81]. This assumption makes it possible to calibrate the partial safety
factors on the action side and the resistance side separately and also to calibrate the partial safety
factors for actions regardless of the type of construction material, which significantly simplifies
the safety format in practice.

Another important simplification is that typically some partial safety factors for different basic
variables are lumped together to reduce the total number of the partial safety factors in the design
format. For example, for the design resistance, it is suggested in EN 1990:2002 [CENO02] that
the partial safety factors for the geometrical, material and model uncertainties (denoted as 4a,
ym and yrq respectively) may be applied individually in the design resistance equation (see
Figure 1.3) or they can be lumped into the partial safety factors applied to material strength
variables directly (denoted as yu, see Figure 1.4).

/ Vra <= | Model uncertainty in structural resistance | <—60, 0, ...
- : 1 X, U - ol )
Design value of resistance | R d:y—R{ 7 - a,, * Aa/_}<_ Y - ncertainty in material properties —X X,
Rd m,i -
\ Aa «— | Uncertainty in geometrical properties «aa,..
Figure 1.3: Format for the design resistance of structures composing of partial safety

factors accounting for geometrical, material and model uncertainties

individually
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Figure 1.4: Safety format for the design resistance of structures composing of partial

safety factors applied to material strength variables (accounting for

geometrical, material and model uncertainties integrally)

The partial safety factor format (with possible simplification of lumping several partial safety
factors together) should be optimized in order to make the representative structures achieve a
reliability index as close as possible to the target level. The choice of the safety format needs to
account for the dominating uncertainties (which depends on the variability of basic uncertainties
and the sensitivity of the structural resistance to them) and also the convenience of use for
engineering practice.

In this thesis, the scope is limited to the safety format calibration problem of the resistance side
of reinforced concrete structures. In the following section, the new challenges in this field are
briefly introduced.

1.2  Reliability analysis and safety format calibration for
the resistance of reinforced concrete structures: open
questions

For reinforced concrete structures, despite the wide application of the partial safety factor format
in codified design, open questions emerge with the increasing application of advanced nonlinear
structural resistance analysis approaches (e.g. strain-based design approaches and numerical
methods like the NonLinear Finite Element Analysis) as well as the application of new materials.

The first fundamental question is the influence of multiple failure modes on the reliability of
design resistance of reinforced concrete structures. In suitably designed reinforced concrete
structures, the concrete and steel reinforcement are supposed to sustain the compression and
tension forces respectively in order to make full use of the advantages of both materials. From
this perspective, reinforced concrete structures have multiple failure modes by
design (dominated by concrete compression failure and steel yielding failure respectively).
Based on this consideration, a widely used partial safety factor format for the resistance of
reinforced concrete structures is composed of two partial safety factors, yc and ys, applied to the
material strength variables for concrete and steel reinforcement respectively (this type of partial
safety format is applied in [CENO4, FIB13,TEC14, GB10] and other design standards inspired
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on CEB-FIP Model Code 90 [CEB93] and previous versions [CEB64]). This pair of partial
safety factors are usually considered suitable when the design resistance of structures is
evaluated by analytical design equations. However, when nonlinear analysis methods are used
and potentially multiple action effects and the corresponding failure modes are verified

simultaneously, the effectiveness and the applicability of these partial safety factors needs to be
further investigated [All13, Cer08, Sch11].

Another crucial question is the model uncertainty quantification of nonlinear structural
resistance models [Casl8, Cerl8, Engl7, Haull, Kadl5, Schl1]. With the increasing
complexity of the structure resistance models, the complexity of the model uncertainty is also
increased. A typical example can be found in the strain-based punching shear resistance model
of the Critical Shear Crack Theory [Mut08], which is composed of two sub-models: the failure
criterion model and the load-rotation relationship. The punching shear resistance is calculated
by solving the equation set of these two sub-models. In this case, the model uncertainty can be
represented and quantified at the sub-model level or at the global resistance solution level.
Proper quantification of the model uncertainties and interpretation of the relationship between
the model uncertainties of the global resistance solution and those of the sub-models is a
fundamental question for the safety format calibration of such models.

Last but not least, the partial safety format needs to be re-evaluated when the structural response
is different from that of ordinary concrete structures. This is typically the case when new types
of reinforcement materials are applied. For example, when reinforcement with brittle behaviour
is used (e.g. Textile Reinforced Concrete with carbon or glass fabric [Val17]), the simplifications
and assumptions in the partial safety format of reinforced concrete structures needs to be re-
evaluated regarding the change of the internal force redistribution capacity. For the design of
ordinary concrete structures, when sufficient redistribution capacity can be assumed (e.g. for the
flexural resistance of suitably reinforced beams), the model uncertainty in the calculation of the
action effect in structural members has a relatively low influence on the structural reliability.
However, since the redistribution capacity of the structure is limited when brittle reinforcement
material is used, the action effect model uncertainty can have more significant influence and
needs to be properly accounted for in its safety format calibration.

1.3  Objective of the thesis

Following the context described above, the general objective of this work is to re-evaluate the
partial safety factor format framework for the design resistance of reinforced concrete structures
considering the challenges related to nonlinear structural resistance analysis approaches (e.g. the
strain-based approach for punching shear resistance [Mut08] and the NonLinear Finite Element
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Analysis) as well as the application of new materials (e.g. Textile Reinforced Concrete

[Vall7])). More specifically, the objectives are the following:

1.4

To develop a suitable sensitivity analysis tool for the resistance of reinforced concrete
structures that is convenient to use for the task of safety format calibration

To understand the similarities and differences between the explicit (e.g. classical design
equations) and implicit nonlinear structural resistance analysis models (e.g. strain-based
approaches and Nonlinear Finite Element Analysis in general) for concrete structures
from the perspective of reliability analysis

To understand how the multiple failure modes involved in the implicit structural
resistance models of reinforced concrete structures influence the reliability of the design
resistance and to verify the applicability of the partial safety factor format in such cases

To investigate the relationship between the model uncertainties of the global resistance
solution and the sub-models of the strain-based approaches for reinforced concrete
structures based on relevant experimental data and to develop a suitable model
uncertainty quantification approach for similar nonlinear analysis approaches

To investigate the suitable partial safety format for the strain-based punching shear
resistance model based on the Critical Shear Crack Theory

To quantify the potentially increased action effect model uncertainty of reinforced
concrete structures with brittle behaviour and to calibrate the partial safety factors for
the flexural resistance design of Textile Reinforce Concrete structures on its basis

Structure of the thesis

This work is a compilation of three scientific articles. In addition to the Introduction, the four

chapters included in the thesis are described below:

Chapter 2 presents an article published in the scientific journal FEngineering
Structures [Yu22]. This chapter presents a systematic investigate of the influence of the
multiple failure modes induced by material uncertainties on the reliability of design
resistance of reinforced concrete structures when the classical partial safety factor
format (composed of two safety factors applied to material strength variables) is applied.
Cases with increasing complexities in terms of the interaction between failure modes
are investigated in order to clarify the consistency and applicability of the partial safety
factors to such cases. In addition, the suitability of the simplification of lumping the
safety element for geometrical and model uncertainties into the partial safety factors for
the material strength variables is discussed on the basis of the exponent sensitivity
analysis of typical cases.
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Chapter 3 presents an article that is submitted to the scientific journal Engineering
Structures [ Yu23]. In this work, the model uncertainties of strain-based approaches for
structural concrete are investigated using the punching shear resistance model of the
Critical Shear Crack Theory (CSCT) as an example. The relationship between the model
uncertainties of the sub-models and the global resistance solution in the strain-based
approach is investigated through evaluation of the statistics of the model uncertainty
data gathered based on relevant experimental test results. Furthermore, the model
uncertainties of the different Levels-of-Approximation (LoAs) of the punching shear
resistance are also quantified and compared. On the basis of the model uncertainty
quantification result, different safety formats for the design models of strain-based
approaches are compared, focusing particularly on the provisions for the punching shear
design according to the new generation of Eurocode 2.

Chapter 4 presents an article published in the scientific journal Engineering
Structures [Yu21]. In this work, the consistent design and safety format calibration of
brittle reinforced concrete structure systems is investigated. The model uncertainty of
the action effect in brittle systems of textile reinforced concrete structures is investigated
based on test data and the result is applied to the calibration of the partial safety factors
for the textile reinforced concrete structures subjected to flexural failure mode.

Chapter 5 summarizes the main conclusions of the thesis and discusses topics for future
research.

Appendix A presents an example of the partial safety format calibration of the
mechanical-based anchorage strength model of shear reinforcement in beams and slabs
applying the methodology developed in this work.

It should be noted that Chapter 2 to 4 include their own introduction, literature review,

conclusions, annexes and notations as the present thesis is a compilation of journal articles

(paper-based thesis). The full bibliography is provided at the end of the thesis.

1.5

Scientific contribution of the thesis

The main contributions of this thesis can be summarized as following:

A simple and intuitive local sensitivity analysis method (the exponent sensitivity
analysis) is proposed to provide sensitivity information of the resistance models of
reinforced concrete structures that can be conveniently used in the approximated
reliability analysis with the FORM.

The exponent sensitivity analysis results of typical resistance models of reinforced
concrete structures (e.g. the cross-sectional bending resistance, the in-plane shear
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resistance of reinforced concrete panel, the coupled bending and shear resistance of
reinforced concrete girder) are presented.

- On the basis of the exponent sensitivity analysis result, the influence of the occurrence
of multiple failure modes induced by material uncertainties on the reliability of the
design resistance of reinforced concrete structures is clarified.

- The methodology for the suitable representation and quantification of the model
uncertainties of strain-based approaches for reinforced concrete structures is presented
and applied to the punching shear resistance model of the Critical Shear Crack
Theory (CSCT).

- The relationship between the model uncertainty of the global resistance solution and
those of the sub-models of strain-based approaches is established based on the exponent
sensitivity analysis.

- The suitable safety format for different Levels-of-Approximation (LoAs) of the
punching shear resistance models of the CSCT are provided.

- The methodology for quantification of the action effect model uncertainty of structural
systems based on test data of structural elements is developed. The action effect model
uncertainties of brittle reinforced concrete structural systems of Textile Reinforced
Concrete (TRC) beams are quantified using the proposed approach.

- Partial safety factor format for the flexural resistance design of TRC structures is
calibrated accounting for the brittle behaviour as well as the influence of the potentially
low thickness of TRC structural elements compared with traditional reinforced concrete
structures.

1.6 Limitations of the thesis

This work is limited to the resistance side of reinforced concrete structures. The uncertainties
and the safety factor calibration of the actions are not investigated. In addition, this work is
limited to the Ultimate Limit State (ULS) verification of structures.

No data is collected regarding the material strengths and the geometrical uncertainties in
ordinary reinforced concrete structures. This work is performed based on established
probabilistic models of these uncertainties from literature.

The influence of the spatial variation and correlation of the basic geometrical, material and
model uncertainties on the reliability of concrete structures is not investigated in this work.
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Chapter 2

Considerations on the partial safety
factor format for reinforced concrete
structures accounting for multiple
failure modes

This chapter is the post-print version of the article mentioned below, published in Engineering
Structures Journal. The authors of the article are Qianhui Yu (PhD Candidate), Prof. Miguel
Fernandez Ruiz and Prof. Aurelio Muttoni (thesis director). The reference is the following:

Yu Q., Fernandez Ruiz M., Muttoni A., Considerations on the partial safety factor format for
reinforced concrete structures accounting for multiple failure modes, Engineering Structures,
Vol. 264, 114442, 2022. (DOI: https://doi.org/10.1016/j.engstruct.2022.114442)

The work presented in this publication was performed by Qianhui Yu collaborating with Prof.
Miguel Fernandez Ruiz and under the supervision of Prof. Aurelio Muttoni, who provided
constant and valuable feedback, proofreading and revisions of the manuscript.

The main contributions of Qianhui Yu to this article and chapter are the followings:

= Comprehensive literature review regarding the application of partial safety factor format
and global safety factor format for the codified design of reinforced concrete structures.

=  Proposition of a simple and intuitive sensitivity analysis approach (exponent sensitivity
analysis) to quantitatively represent different failure modes.

= Reliability analysis of typical resistance models of reinforced concrete structures at
difference scales (cross-sectional resistance or load-bearing capacity of structural
element and simple structural systems).

= Interpretation of the reliability analysis result for typical resistance models with a
detailed analysis of the shape of the corresponding limit state functions and the exponent
sensitivity analysis.

11
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= (Clarification of the influence of multiple failure modes induced by material uncertainties
on the achieved reliability of design resistance for reinforced concrete structures with
the partial safety factor format.

= Interpretation of the influence of tail approximation in the reliability analysis of the
resistance of reinforced concrete structures.

= Proposition of a simple and practical test procedure for the validity of the non-
decreasing assumption of the structural resistance model and the corresponding
applicability of the partial safety factor format.

= Elaboration of the figures and tables included in the article.

=  Writing of the manuscript of the article.

12



Abstract

Abstract

The increasing usage of nonlinear analyses for the design of reinforced concrete structures and
the necessity of codes of practice to provide a consistent safety format for them is one of the
challenges that new generations of codes of practice are facing. Suitable safety formats shall
thus account for the peculiarities of nonlinear analysis, such as the possibility of having multiple
potential failure modes. In this work, the applicability of the classical Partial Safety Factor
Format (PSFF) for the resistance of reinforced concrete structures (composed of two safety
factors: yc for concrete compressive strength and ys for reinforcement yield strength) is
investigated accounting for the possibility of multiple failure modes in nonlinear analysis. In
addition, the similarities between nonlinear analysis and typical simple cases in the design of
structural concrete are shown. Reliability analysis is performed for the design resistance of
concrete structures according to PSFF under different design situations (cross-sectional
resistance or load-bearing capacity of structural elements and of simple structural systems). The
results show that the PSFF applied to material strength variables leads to a satisfactory level of
reliability, independently of the development of different failure modes induced by material
uncertainties in nonlinear analysis. In addition, it is also observed that the simplification of
integrating geometrical and model uncertainties into the partial safety factors for material
strength variables can potentially underestimate their influence on the structural reliability in
some cases. The case studies shows that occurrence of multiple failure modes can result into
significantly different distribution characteristics between the tail and most probable region of
the resistance of concrete structures. Attention should also be paid to a proper tail approximation
of the probability distribution of the resistance when calibrating safety formats for concrete
structures.

Keywords: reliability verification, partial safety factor format, structural concrete resistance,
multiple failure modes, nonlinear finite element analysis

2.1 Introduction

Every engineering calculation is an approximation of reality, with unavoidable epistemic and
aleatoric uncertainties. This fact implies that a reliability verification is a necessary step within
a design or verification procedure, as provisioned in codes of practice under various formats.
Within this context, the Partial Safety Factor Format (PSFF) is one of the most widely adopted
approaches to ensure reliable designs, due to its robustness, simplicity and generality [Dit96].

The PSFF results from the application of the semi-probabilistic approach, in which the reliability
verification is simplified to verify if a structure fulfils a given set of inequalities using design
values of the basic variables [CENO2]. The reliability requirement is accounted for in the design
values of the basic variables by means of partial safety factors calibrated on the basis of
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reliability analysis. A major advantage of PSFF is that it can be formulation-invariant [Dit96].
Different forms of PSFF are used in modern design codes for structures, which result from the
different choices in the assumptions and simplifications adopted in the calibration procedures.
One widely used simplification in the PSFF is to calibrate the partial factors on the resistance
and action side separately by adopting standardized First Order Reliability Method (FORM)
sensitivity factors [CENO4, FIB13, K6n81]. This treatment largely reduces the complexity of
the safety format calibration and also makes it possible to use a fixed set of partial factors on the
action side, independently of the material used for construction. It also allows to define the
partial safety factors for materials independently of the governing loading situation. For the
evaluation of the resistance of structures, with particular application to structural concrete, there
are two major approaches to implement the PSFF [EI180]:

= Providing partial safety factors for calculating the design values of material strength
variables. This PSFF is adopted in many design codes, such as Eurocode 2 for concrete
construction (EN1992-1-1:2004) [CENO04], Model Code 2010 [FIB13] , the Brazilian
standard NBR 6118:2014 [TEC14] , the Chinese standard GB50010-2010 [GB10] and
other design standards inspired on the CEB-FIP Model Code 90 [CEB93] and previous
versions [CEB64] .

= Providing tailored partial safety factors for calculating the design value of a structural
member’s resistance for different action effects (such as axial force, bending or shear).
This approach is for instance implemented in American standards (such as ACI 318-
19 [ACI19] and AASHTO LRFD [AAS20]), the Canadian standard CSA
A23.3 [CSA14] and the Australian standard AS3600-2018 [Stal8].

The PSFF implemented on material strength variables will be the focus of this work, consistently
with the provisions of Eurocode 2 for concrete construction (EN 1992-1-1:2004 [CENO04]). In
this approach, the partial safety factors of concrete and reinforcement strength are calibrated
separately, accounting for different values of material, geometrical and model uncertainties. The
partial safety factor of concrete (j¢) is typically calibrated using probabilistic modelling of basic
geometrical and model uncertainties of compression members, where the reinforcement
uncertainties are neglected. Conversely, the partial safety factor of reinforcing steel (s) is
typically calibrated based on data of bending of a cross section with moderate reinforcement
ratio, which is the most common case where s applies [Eur08]. As it can be noted, no
interactions between the two materials are explicitly accounted for in the safety format
calibration [Eur08]. Such an approach is very simple to use and to understand by designers, but
has received criticism particularly concerning nonlinear analysis [All13, Cas19, Cer08, Sch12].
Whether this classical combination of safety factors of y and s for reinforced concrete
structures is still suitable to be extended to nonlinear analysis method has been discussed
extensively in the development process of the 2™ generation of Eurocode for concrete
structure [CEN23]. The main concerns with this respect deal with the potential development of
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different failures modes, particularly when Nonlinear Finite Element Analysis (NLFEA) is
performed[All13, Cas19, Sch12] to assess structural resistance.

In nonlinear analyses, usually, there is no closed-form solution for the resistance as a function
of the basic design variables and the shape of the limit state function may vary from case to
case [Bell5, Syk18, Yu20]. Furthermore, when NLFEA is used, different types of action effects
and failure modes are implicitly verified at the same time, leading to a complex limit state
function. The safety format calibration procedure for this type of problem is thus not
straightforward.

Research efforts have been devoted in the past to the study of safety formats for NLFEA of
concrete structures at ultimate limit state [All13, Ben12, Cas19, Cer08, Pim14, Sch11, Sch12].
An alternative to PSFF to account for reliability in design are approaches based on the Global
Safety Factor Format (GSFF). For reinforced concrete structures and nonlinear analysis,
developments have been proposed by Ben Ftima et al. [Ben12], Cervenka et al. [Cer08], Schlune
et al. [Sch12] and Allaix et al. [All13]. In these approaches, the resistance random variable is
approximated with a given type of probabilistic distribution (usually lognormal) and by statistics
of resistance data of sampling points around the mean values of the basic variables. An obvious
drawback of these methods is that the sampling points used for the distribution parameter
estimation of the resistance variable are potentially far away from the limit state function and
the tail distribution of the resistance variable. This can lead to poor fit of the probabilistic
distribution of the resistance variable in the tail region [Pim14], which is a the most relevant
region concerning structural reliability [Rac77, Sch17]. In addition, the goodness-of-fit in the
tail region is difficult to investigate on the basis of standard tests [Dit94, Der09]. Besides the
above-mentioned methods, other approaches to the safety format problem for NLFEA have also
been developed. For instance, Castaldo et al. [Cas19] have proposed a method based on testing
whether multiple failure modes exist (by checking if sets of sampling points have the same
failure modes). In such case, it is proposed in [Cas19] to consider an additional safety factor
accounting for the influence of multiple failure modes.

In this work, the applicability of PSFF to cases involving multiple failure modes is investigated.
The manuscript presents in a detailed manner the simplifications and assumptions used in PSFF
to consider multiple failure modes. These concepts are eventually applied to a number of case
studies focusing on nonlinear analyses for structural concrete design. The cases are selected to
have increasing complexity in terms of the interaction between failure modes, in an effort to
clarify the consistency and applicability of the PSFF to such cases. Since the issue of multiple
failure modes is usually considered as a consequence of the combination of different material
strengths [Cas19], this work will focus first on material uncertainties. Subsequently, the question
of proper consideration of geometrical and model uncertainties will be addressed.
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2.2 Partial safety factor format for structural concrete
design

2.2.1 Assumptions and simplifications of the PSFF formulation

In the reliability verification of reinforced concrete structures, the limit state functions for the
resistance to different action effects have different forms. Ideally, to achieve a uniform reliability
level, the partial safety factors for material strengths need to be calibrated for each individual
case according to the pertinent limit state function. A direct application of such approach,
considering different partial safety factors for different structural verifications, may however be
inconvenient for practice. As a consequence, some simplifications are usually assumed when
deriving partial safety factors for the design and the verification of reinforced concrete
structures.

In Eurocode 2 [CENO04], the calibration of partial safety factor y,for material strengths is based
on the principles of the First Order Reliability Method (FORM) [CEN02, Has74]. Background
to the application of this approach in Eurocode 2 [CENO04] is provided in its
commentary [Eur08], where the following equation is introduced to calculate the partial safety
factors for concrete and reinforcement:

P == expla Y, L4, = exp(3 047, 164 )
d

VR = \/ Vrjod + I/gzeom + sz (2)

Where yu is the partial safety factor for material strength; f; and f; are the characteristic and the
design value of material strength, respectively; oz is the standardized FORM sensitivity factor
for resistance (typically oz = 0.8 [CENO02, Ko6n81]; £ is the target reliability (4 = 3.8 for the
ultimate limit state of structural elements with moderate consequence class with 50 years
reference period [CENO2]; V' is the Coefficient of Variation (CoV) of the resistance random
variable; Viod, Vgeom and Vy are the CoV of model, geometrical and material uncertainties,
respectively. The value of -1.64 in Eq.(1) refers to the 5% fractile of a standard normal
distribution, resulting from the fact that the partial factor is used to calculate the design value of
the material strength on the basis of the 5% fractile characteristic value. It should be noted that
the formulation of Eq. (1) assumes both the resistance and the material strength follow lognormal
distributions.

It can be observed from Eqgs. (1) and (2) that since the standardized FORM sensitivity factor (o
= 0.8 [CENO02, Ko6n81]) for resistance is adopted, the target reliability index for the design
resistance is set as arf. Correspondingly, the failure probability for the design resistance
(denoted as P, ;) can be defined as the probability of the resistance being lower than the design
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value (P, , = P(R-R, <0)) and its corresponding target value is set as P, ,

= D(-a,pB). It
should be noted that P, , is different from the failure probability of the structure (denoted as FPy),

since Py refers to the probability of the resistance being lower than the action effect (
P, = P(R-E <0) ). The target failure probability for the structure is P, =®(-4,). It can be

noted the value of P, is higher than P, . In this work, the scope is limited to the resistance

Jtag,R
side (the limit state of R—R, =0 and the corresponding reliability index of arf3). It should be

noted that parameters on the action side (e.g. the ratio of design variable load to the total design
load [Pac21]) can have a significant influence on the applicability and adequacy of the
standardized sensitivity factor az. This aspect will not be explicitly addressed in this work, which
focusses on the multiple failure modes problem on the resistance side and its reliability
implications.

Egs. (1) and (2) also show that for each material, the random variables representing model and
geometrical uncertainties are lumped with the material uncertainty into one random variable.
This is a simplification of the resistance function whose suitability will be discussed in Section
2.9 of this work. In addition, the partial safety factors for concrete and steel reinforcement are
calibrated separately. This treatment can be seen as another simplification of the limit state
function, implying that two limit state functions are verified independently: one governed by
concrete compressive strength only and another governed by steel yield strength only. These
two limit states will be referred to as Boundary Limit States (BLSs). Applying PSFF ensures
that the probability of failure for each BLS (Prr;) respects the target probability of failure for
resistance (Pragr):

P/,R,i =P(E)=P(f[ Sf[d)zq)(_aRﬂz)zpf,zag,R i=12 (3)

where Pr; is the probability of failure for boundary limit state i, P(-) is the cumulative
probability function, F; is the failure domain of boundary limit state of material 7, f; is the random
variable of strength of material i, fis is the design value of material i, @) is the Cumulative
Distribution Function (CDF) of standardized normal distribution, Py, r is the target probability
of failure for resistance, and i =1,2 refers to steel reinforcement and concrete, respectively.

When considering the material uncertainty only (the issue of model and geometrical
uncertainties will be discussed later in Section 2.10), the shape of the two BLSs can be plotted
in the standard normal space as shown in Figure 2.1, where X , and X, represent the yield

strength of the reinforcement and the concrete compressive strength random variable
transformed into the standard normal space (where both variables are transformed into standard
normal distributed random variables). In the case that both material strengths are assumed to
follow lognormal distribution, the transformation function are as follows:

In(f)) - 4, 7,
Xy=—7"7"— “4)

Oy,
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_ In(f.) - My

Oy,

I (5)
Where X, and X, are the material strength random variables transformed to the standard
normal space, f; is the reinforcement yield strength, /. is the concrete compressive strength, 4, .

and g, . are the mean values of the logarithmic material strength random variables and o, , and

o, are the corresponding standard deviations.

=== Boundary limit state functions (BLSs)

From case study IIT ==+ Possible limit state funcitons

4 _/4 — Joint probability density function(JPDF) isoline
=t
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- - -
R KA
ot 3 Ft
2 %
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Figure 2.1: Illustration of relation between actual limit state from case study I, II and

IV in Section 2.4-2.7 and BLSs (Xj and X are the material strength random
variables transformed to the standard normal space).

The actual limit state functions can be quite different from the BLSs (example of the shapes of
actual limit state functions from case study I, II and IV in Section 2.4-2.7 are also plotted in
Figure 2.1 for comparison). To make a connection between the actual limit state and BLSs, a
reasonable assumption is made on the resistance function. The assumption is as follows: If some
of the material strengths increase and the rest remains unchanged, the resistance of the structure

will not decrease; if all the material strengths increase, the resistance will also increase (as for

the assumption according to limit analysis [Pra51]). This assumption will be referred to as the
non-decreasing assumption in the following. The suitability of this assumption will be discussed
later. Based on the non-decreasing assumption of the resistance function, the sum of the two

BLSs forms an envelope for the actual limit state, as is illustrated in Figure 2.1. An upper bound
of the actual probability of failure can then be easily derived:

P p=P(F)<P(FLUF,)=P(F)+P(F,)-P(F,NFE)<2-P .z (6)
Where F'is the actual failure domain.

For a structural resistance subjected to two independent material strength random variables,
applying PSFF, the upper bound for the actual probability of failure corresponds to twice the

target value, 2Py, Which seems to be within the acceptable range for reliability verification
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using semi-probabilistic methods [K6n&1], since the reliability index would decrease from 3.04
(= or - = 0.8:3.8, corresponding to a Prg=1.2-107) to 2.82 (P;z=2- 1.2-107) in the worst case.

From another perspective, the treatment of calibrating the partial safety factors for concrete and
steel reinforcement strength separately can also be interpreted as both concrete and steel
reinforcement strength are assumed to be dominating and both of their FORM sensitivity
factors [Mad86] assumed equal to one:

a,, =1 (7
,, =1 (®)
Where «, and «, are the FORM sensitivity factors of concrete strength and of steel

reinforcement yield strength, respectively (in addition to the standardized FORM sensitivity

factor for resistance (ar)). It should be emphasized that &, and &, are the FORM sensitivity

/5.

factors corresponding to the limit state of R— R, =0 with the target reliability index of arf:

From the FORM perspective, this seems a conservative assumption since the sum of squares of
a, and «, are higher than one. The suitability of this assumption will however be examined

by studying the shape of the actual limit state functions in some representative cases of concrete
structures (see case studies presented in Sections 2.4-2.7).

From Figure 2.1, it can also be observed that by applying the PSFF, the distance from the closest
point (the FORM design point) on the BLSs to the origin point in the standard normal space is
limited to azf3. Since the actual limit state function is bounded by the BLSs (on the basis of the
non-decreasing assumption), the distance from the FORM design point on the actual limit state
function to the origin point should also not be smaller than azf; In other words, PSFF ensures
that the probability of failure estimated with FORM respects the target value.

It should be noted that in the previous derivation, only two basic variables, f. and f,, are
considered for the material uncertainties. When other material parameters are dominating (for
instance, the concrete tensile strength or the elastic moduli), additional considerations need to
be taken into account.

The previous analysis shows that for a non-decreasing structural resistance, PSFF should yield
a satisfactory reliability level with respect to material uncertainties. However, for cases where
the non-decreasing assumption of the resistance function is invalid (as those governed by crack
localization), the reliability verification is more complex, requiring to identify such cases by
means of a simplified method as later discussed in Section 2.9.

The previous considerations show that the applicability of PSFF depends on the shape of the
limit state function, which is governed by the mechanical response of the member. In Sections
2.4-2.7, the reliability analysis of some typical cases of reinforced concrete structural elements
is investigated in detail. The actual limit state functions of these cases are compared with the
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BLSs assumed by PSFF. The reliability analysis is performed for these cases to verify the result
of the previous theoretical analysis. Before going into detail on the reliability analysis of
concrete structures, a simple and intuitive sensitivity analysis method is introduced as a tool to
quantitatively identify different failure modes and also to help interpreting the results of
reliability analyses.

2.3 Exponent sensitivity analysis

Sensitivity analysis can describe how the variability of the model response is affected by the
variability of each input variable or their combinations [Mar21]. It is a widely used tool for
model interpretation and simplification [loo15]. In this section, a simple local sensitivity analysis
method is developed for the resistance of reinforced concrete structures, in an effort to
understand and to distinguish different failure modes. The partial derivatives of the logarithmic
resistance to the logarithmic basic variables is used as the sensitivity factor and the finite-
difference approximation method [Sal00] is used to calculate them. This local sensitivity factor
is referred to as the “exponent sensitivity factor” (or only “exponent”) in the rest of the work.
The detailed procedure for derivation of the exponent sensitivity factor will be introduced and
the motivations for using it will be explained more in detail in the following.

f,):
R=R(f1..,) ©)

Consider the resistance R as a function of basic parameters (f,, f,

Components of the basic parameter vector (f,, f, f,) can be any model parameter, including

material strengths, material elastic moduli and geometrical parameters. The exponent sensitivity
factors are defined based on the power multiplicative form approximation of the resistance
function:

RzRo.ﬁ[J{f ] | (10)

Where R, is the resistance at a reference point (f,., f,,. f,,) and ny is the exponent sensitivity
factor for parameter f.

The approximation in Eq. (10) is equivalent to perform first order Taylor expansion of the
logarithm of the resistance function in the logarithmic space of the model parameters. The

exponent sensitivity factor nj; for each parameter f; can be easily derived by calculating the direct
differentiation of In(R) over In(f;) numerically at the reference point:
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o= d(In(R)) . 1H(R(f1,oa--~,f,,0-eA,---,f,,,0))—1H(R(f1,o,-~-af/-,os--»fp,o)) (1
7 a(In(f))) A

Where A4 is a sufficiently small increment of parameter In(f,) .

There are several considerations for using the exponent sensitivity factors in the reliability
analysis of concrete structures:

According to dimensional analysis, the sum of all exponents of material strength variables and
the elastic modulus variables should be equal to 1 (refer to Appendix 2.A for cases where the
sum of exponents can be less than 1). The same consideration applies also to the geometrical
variables (the sum of the exponents of the geometrical variables is equal to 2 for forces and equal
to 3 for moments). This property can help making comparisons of the exponent sensitivity
factors of material strength variables (and geometrical variables) between different failure
modes.

When only material uncertainties are accounted for and they are modelled with lognormal
distributions, the FORM sensitivity factors can be calculated directly from the exponent
sensitivity factors and the CoV of the basic variables at the FORM design point by Eq.(12)
and (13). In the following case studies, the exponent sensitivity factors of material strength
variables are calculated at the PSFF design point (f;4, fca). Although the position to calculate the
exponent sensitivity factors are not strictly the FORM design point, the exponents can still give
useful information for the reliability analysis. It should be noted that the intention of the
proposed exponent sensitivity factors is not to replace the FORM sensitivity factors, but to
provide additional sensitivity information that has direct link to the mechanical behaviour of
concrete structures.

The exponent sensitivity factors provide valuable information about the mechanical behaviour
of concrete structures, which are independent from the probabilistic models of the basic variables
as well as from other assumptions and simplifications in the safety format calibration procedure.
For a given resistance model, the exponent sensitivity factors for the full applicable range of the
model are especially useful since they can be used for the safety format calibration accounting
for different probabilistic models of the basic variables in different design situations.

. = ng. Vfc
Jea 2V 42 (12)
fe' fe o
_ n [vVﬁ,
a,.

2 2 2 2 ( 1 3)
NV e gV

Based on the above-mentioned considerations, the exponent sensitivity analysis is used for
understanding and distinguishing different failure modes of concrete structures (i.e. which
material or materials govern the resistance). In the following sections, the reliability analysis of
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some typical concrete structure resistance cases will be studied and the exponent sensitivity
analysis will also be performed to help interpret the results of reliability analysis.

2.4 Case study I: System with uncoupled concrete and
steel failure

2.4.1. Definition of the case study

In this section, a simple case is analysed illustrating a situation where the upper bound of the
probability of failure (2Pruqr for cases with two material basic variables) is reached. The case
considers a structure composed of three elements: a steel tie and a column bearing a rigid beam
subjected to a concentrated load Q (see Figure 2.2, self-weight neglected). The resistance of the
structure is represented by a resistance variable R which is equal to the concentrated load Q.

(a) Column and tie structure (b) Concrete constitutive law (c) Steel constitutive law

I 2

T

_ Rigid beam lQ
_Steel tie with Concrete column with
steel area: AT " cross-section area: Ac
Figure 2.2: (a) Column and tie system (unit of dimensions: mm); (b) concrete

constitutive law; and (c) steel constitutive law.

In this structure, the beam is assumed to be a non-critical element, with failures only occurring
in the column or in the tie. In the column, the 2™ order effects are assumed to be negligible and
the contributions of both longitudinal and confinement reinforcements are neglected. Since the
system is statically determinate, the resistance function of the system can be directly derived, as:

/

1

L +1

. /
R:R(fy,fc):mm(fy-ATl—l,fc-AC ) (14)
2
Where R(") is the resistance function, f; is the yield strength of steel, f. is the compressive
concrete strength , A7 is the area of the steel tie and Ac is the cross-section area of the concrete
column (refer to Figure 2.2). In the following, the cross section area of the concrete column Ac¢
is assumed to be constant while the area of the steel tie Ar is varied.

As previously explained, the reliability analysis presented in this section considers only material
strength parameters as random variables in the resistance function. A lognormal distribution is
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Case study I: System with uncoupled concrete and steel failure

assumed for both materials strengths with the CoVs as follows: V.= 0.15 for concrete and Vi
= 0.04 for steel. It should be noted that the mean values of the material variables are not specified
so the following conclusions are independent of them.

For each case, when applying PSFF, the design resistance and the corresponding limit state
function for the resistance can be formulated as:

Gy = R=R, = RU £~ RUf s ) = RO, )~ REZE Ly (15)

ro7
Where Gris the limit state function for the design resistance; Ry is the design resistance with
PSFF, f,x and f;4 are the characteristic and design values of steel yield strength, respectively; f.«
and f;s are the characteristic and design values for concrete compressive strength, respectively;
7% 1s the partial factor for steel yield strength considering material uncertainty only and 7 is the
partial factor for concrete compressive strength considering material uncertainty only (the
terminology of according to EN 1990:2002 [CENO02] is adopted here, where lowercase indices
refer to partial safety factors accounting for material uncertainties only, whereas uppercase
indices refer to the partial safety factors accounting for the geometrical and model uncertainties
also).

For the values of the partial factors, considering only the material uncertainties, Eq.(1) can be
reformulated as Eq. (16) and (17):

Y. = exp(a RﬂtVf( _1~64V‘/4 ) (16)
7, =exp(a RIBtV/jr —-1.64V;) (17)

In the following, the reliability analysis for the limit state defined in Eq.(15) for each
case will be performed with Monte Carlo simulation.

For the purpose of performing reliability analysis, the crude Monte Carlo simulation [Mel18]
with Latin Hypercube Sampling (LHS) method [Mck00, OIs03] is used to analyse the

distribution of resistance R. Based on the resulting distribution from Monte Carlo analysis, the
actual achieved probability of failure P;r and reliability index f,,. by PSFF can be determined.

One million sample points are used in each Monte Carlo simulation to reduce the statistical
uncertainty in the estimated probability of failure [Sho68].

Besides the reliability index f,,. directly derived from empirical distribution of the Monte Carlo
simulation data, another reliability index f,, is also calculated by directly approximating the

distribution of resistance variable R with a lognormal distribution. The distribution parameters
are approximated with the mean and CoV of the corresponding Monte Carlo simulation data. It
should be pointed out that £, has the drawback of potentially neglecting tail approximation of

the resistance distribution. The motivation for calculating the index £, is to verify the approach

when a lognormal distribution is used to approximate the distribution of R, which has been
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adopted in several researches about GSFF [All13, Casl19, Cer08, Sch12]. By comparing S,
and S,., one can examine the error generated by neglecting the tail approximation and

determine if the approximation performed in calculating £, is suitable.

2.4.2. Reliability analysis result

Monte Carlo simulations are performed for all cases and the actual achieved reliability index
B, and the lognormal distribution approximated reliability index f,, are given in Figure 2.3.

It should be noted in Figure 2.3, the results are plotted with the normalized steel tie cross section

which is defined by the expression 4, = % Joa

area variable 4 o

(1414, /1,) . Comparing with

T,0 2
C cd

Eq.(14), it can be observed that 4, , is equal to one when the steel tie and the concrete column

T,0
fails at the same time at the PSFF design point (f;4, fca). The limit state function for the case of
4, , =1 is plotted in Figure 2.4. This case corresponds to the lowest achieved reliability level (

Bric.mins =2-82) of this case study. From the limit state function plot of Figure 2.4, it can be

directly observed that the two BLSs are both activated in this case and the achieved Py is
approximately twice the target value as previously discussed in Section 2.2. However, from the
B plot in Figure 2.3, it can be observed that as long as one of the elements is designed with

certain strength margin, the resulting P,z will be less than 2Ps,zr and the corresponding
reliability index will be closer to the target level.

S5r LN from approximated lognormal distribution of the resistance
4 /

3 ’ _
N
@, Target o,ff,=3.04 B, from Monte Carlo simulated distribution

=2.82

1+ B MCminl

0 I 1 1 1 |
0.88 0.90 0.95 1 1.05 1.10

Sy
A, =gy

c Jed

Figure 2.3: Reliability index achieved by PSFF for cases with different cross-section

area for the reinforcement tie
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Case study II: bending resistance of A cross-section (coupled failure modes)

(a) (b)
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Figure 2.4: Resistance function isolines, limit state function and Joint Probability

Density Function (JPDF) plot for 4, , =1 case: (a) 2D view and (b) 3D

view.

2.5 Case study II: bending resistance of A cross-section
(coupled failure modes)

In this section, a bending resistance case study is presented to further clarify the performance of
PSFF for a limit state potentially dominated by two failure modes. The reliability analysis is
developed for the bending resistance of a rectangular beam cross section (Figure 2.5a). The
bending resistance is evaluated by considering a bi-linear response of concrete with strain
limitation and neglected tensile strength, an elastic-perfectly plastic response of steel (Figure
2.5b-c) and assuming that sections remain plane after deformation (Euler-Bernoulli hypothesis).

(a) Beam cross-section view (b) Concrete constitutive law (c) Steel constitutive law
(Tl (T$
-€ e
cu ¢ f 1
) " JE,
stirrup —— =4 =4 1
IS <+ E.
I I :
= = L ‘f(
longitudinal reinforcement ___ 1 T
A =pbeh
b =250
Figure 2.5: (a) Cross-section (unit of dimensions: mm); (b) concrete constitutive law;

and (c) steel constitutive law.
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2.5.1 Definition of case study series and reliability analysis results

A lognormal distribution is assumed for both materials strengths with the mean values and the
CoVs as follows: fon=38 MPa; V= 0.15 for concrete and f;,» = 540 MPa; V= 0.04 for steel
(resulting f.s = 24.1 MPa and f, = 478.2 MPa according to Eq.(16) and (17). It should be noted
that the elastic moduli of both materials are accounted for as deterministic values, with E. =
30000 MPa and Es = 200000 MPa.

The width b and effective depth d of the cross section are assumed constant whereas the
longitudinal reinforcement ratio p; is varied (deterministically) between 0.16% and 4% in order
to generate cases governed by different failure modes.

Similar to the previous case study series, the achieved reliability index for the limit state of R -
R;= 0 (the same formulation as in Eq.(15)) is investigated. The results of Monte Carlo analysis
are presented in Figure 2.6(a). It can be noted that, within the range of simulation, the achieved
reliability index is either close to or higher than the target reliability index ( 8, ., =2.98 ). This
shows that PSFF yields an acceptable reliability level. By comparing also g,, with g,, itis
observed that, in some cases, f,, is significantly higher than S,., which shows that there is a
significant difference between the approximated lognormal distribution (used in calculating g, ,
) and the actual distribution of the resistance variable. For the case where S,, is higher than
B, the CoV of the whole sampling data is lower than that of the tail region of the distribution.

This result shows that calibrating the partial factor by a direct approximation of the resistance
function with a lognormal distribution using the CoV of the whole sampling data can lead to
unsafe result. This issue will be discussed in more detail Section 2.5.4.
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Case study II: bending resistance of A cross-section (coupled failure modes)

Regime(D: suitably-reinforced cross-section Regime(2): over-reinforced cross-section
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Figure 2.6: (a) Reliability index achieved by PSFF for different flexural reinforcement

ratio pr; (b) exponent sensitivity factor n of concrete compressive strength
fe, steel yield strength f,, concrete elastic modulus E. and steel elastic
modulus E; (c) comparison between square of approximated FORM
sensitivity factor &?r. and Sobol’s total index S, and (d) CoV of the

resistance variable based on Monte Carlo analysis
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2.5.2 Exponent sensitivity analysis and failure regimes study

To help understanding the simulation results, the exponent sensitivity factor for . , f,, Es, and
E., are calculated at the PSFF design point for each case. The results are plotted in Figure 2.6b.

Although FE;, and E. are considered as deterministic parameters in this study, their exponent
sensitivity factors are presented here to help understanding the different mechanical behaviour
of different failure modes. It can be observed that there is a discontinuous point on each exponent
curve at the reinforcement ratio p; = 2.65% (corresponding to a mechanical reinforcement ratio

S

®, = p, -—===10.53). This shows that there is an abrupt change in the regime of the resistance
cd

function at this point. From a mechanical point of view, the failure mode changes at this point.
At the PSFF design point, when p; < 2.65%, both nj and . are non-zero and their sum is equal
to one, implying a suitably-reinforced behaviour governed by both material strengths (Regime
®). When pp > 2.65%, ny is reduced to zero, which implies that over-reinforced bending
behaviour is governed only by concrete strength (Regime @, where the elastic moduli have also
an influence on the resistance, but their uncertainty is neglected here). Comparing the g, curve

in Figure 2.6a with the exponent curves in Figure 2.6b, it can be observed that when the PSFF
design point is governed by Regime @, the achieved reliability 3, is usually higher than the

target value. This means that the PSFF gives a conservative estimate of the design resistance.
When the PSFF design point is however governed by Regime @, the achieved reliability S,,.is

close to the target value.

For comparison reason, the FORM sensitivity factor for concrete strength estimated based on
exponent sensitivity factors (calculated with Eq. (12)) is compared with the classical global
sensitivity measurement total Sobol’s index [Sob90] in Figure 2.6¢. It can be observed that while
Sobol’s index provides valuable information about the global sensitivity of the performance
function, it does not reflect the shift of regime of the reliability analysis result. The latter occurs
due to the local change of shape of the limit state function. For the purpose of identifying
multiple failure modes and their influence on the reliability, the FORM sensitivity factor
(estimated based on the exponent sensitivity analysis) provides thus a more straightforward
information. The FORM sensitivity factor plot reflects the shift of regime in the achieved
reliability index f,,.. In addition, the relation between the occurrence of the maximum value of

B and the FORM sensitivity factor will be explained with more detail in the following.

It is also interesting to observe from Figure 2.6d that in the over-reinforced regime (Regime @),
the CoV of the resistance variable (V) is lower than the CoV of f.even though in this regime
the resistance is dominated by concrete strength only. The result can be explained by an
approximation of the CoV of the resistance with the help of the exponent sensitivity factors. In

this range, since n, =0, the CoV of the resistance can be roughly approximated as

=
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Case study II: bending resistance of A cross-section (coupled failure modes)

RS . . . .
Vo +n Vo =nJV, . Since n, is lower than 1 (due to the influence of ng. and ngy), it

naturally leads to the result of 7, <V, .

2.5.3 Analysis of selected cases

To help understanding the two types of performance of PSFF, two representative cases are
presented in the following, corresponding to flexural reinforcement ratios pr equal to 1.8% and
2.65%, whose results are plotted in the standard normal space in Figure 2.7 and Figure 2.8,
respectively. It can be observed that the limit state functions are both composed of two parts for
the two investigated cases. The first part has an inclined slope, which corresponds to Regime @
(suitably-reinforced bending governed by both material strengths) while the second part is
perpendicular to the Xj. axis, which corresponds to Regime @ (over-reinforced bending
governed by concrete strength only). The most important conclusions are presented below:

* In the case p;=1.8% shown in Figure 2.7, the PSFF design point (Xya, Xpa ) = (-orf:, -
orf3) is coincident with the FORM design point, which leads to the result that both ..

and ¢y, are equal to % . In this case, the maximum reliability level is achieved, which
is the \2a, 3, .

* In the case p;=2.65% shown in Figure 2.8, the PSFF design point corresponds to the
intersection point between the two regimes on the limit state function. For this case, the
achieved reliability index is close to the target one. This is justified because (i) the
horizontal branch of the limit sate function (Regime @) is coincident with the BLS
dominated by concrete strength; (ii) the FORM design point locates on the horizontal
branch and the distance between the origin point (0, 0) and the FORM design point is
exactly arf3; and (iii) the probability mass within the Regime @ failure domain is much
smaller than the corresponding for Regime @ (see volume below the joint probability
density function (JPDF) in Figure 2.8b).
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Figure 2.7: Resistance function isolines, limit state function and JPDF plot for p;=1.8%
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pr=2.65% (@;=0.53) case: (a) 2D view and (b) 3D view

2.5.4 Discussion on proper tail approximation

In the GSFF from literature, a lognormal distribution is often used to approximate the
distribution of the resistance variable and the distribution parameters (mean value and CoV) are
usually estimated with a few sampling points near the origin point in the standard normal space
of basic variables. To evaluate the efficiency of such approximation, the assumed lognormal
distribution is compared with the actual distribution from the Monte Carlo simulation. The

Monte Carlo simulation data for the p;=2.65% case is investigated in detail.

The Probability Density Function (PDF) plots of both the approximated lognormal distribution
and the simulated empirical distribution are shown in Figure 2.9a. The quantile-quantile plot (Q-
Q plot) of In(R/R.,) (Where R, is the mean value of the simulated data) is also presented in Figure
2.9b. The comparison shows that there is a significant difference between these two distributions
in the tail region.
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Case study II: bending resistance of A cross-section (coupled failure modes)

This difference is to a large extent motivated by the fact that there are two potential governing
regimes (® and @), which can be neatly observed in the Q-Q plot in Figure 2.9b (the governing
failure mode changes from Regime @ to Regime @ as R increases). This fact is also shown in
Figure 2.9¢, showing that the closest point on the resistance isoline to the origin point in the
standard normal space locates in Regime @ for low values of R while it locates in Regime @©

for higher values of R.

This result shows the necessity for a proper tail approximation. The approximated lognormal
distribution used in GSFF neglects the actual distribution in the tail region and leads to unsafe
estimates of the reliability level for this case. This is shown in Figure 2.9b, where the -arf:
quantile value of the actual distribution is lower than that of the approximated lognormal
distribution. Interestingly, it can be noted that since the PSFF directly evaluates the design
resistance with a point on the limit state function, it shall yield a relatively good tail
approximation result. This confirms the pertinence of the PSFF approach with this respect.
Specific methods to achieve proper tail approximation in the safety format calibration of
reinforced concrete structures have also been proposed by other researchers (for instance in
Foster et al. [Fos16]).
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Figure 2.9: Distribution plot of In(R/R,): (a) Probability density function (PDF) plot
and (b) Q-Q plot of approximated lognormal distribution and the actual

distribution and (c) resistance isoline plot of p;=2.65% case.
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2.6  Case study III: shear resistance of reinforced concrete
panels

In this section, to investigate different shapes of limit state functions, a case study on the shear
resistance of reinforced concrete panels is presented (see Figure 2.10(a)). Compared to the
bending resistance, the shear resistance involves damage of the concrete compressive strength
due to cracking (compression softening [Vec86]). It is thus useful to have a clear view on the
shape of the limit state function for this type of mechanical model.

2.6.1 Definition of case study series and reliability analysis results

The reliability analysis is performed for a reinforced concrete panel subjected to pure shear with
plane stress behaviour. The shear resistance is evaluated with Elastic-Plastic Stress Field method
(EPSF [Fer07]) where the reinforcement in the panel is considered as smeared and is modelled
by a uniaxial response with an elastic-perfectly plastic law (refer to Appendix 2.A and Figure
2.15 for details). The material model for concrete corresponds to a coupled damage elasto-
plastic model where the plastic behaviour follows a Mohr-Coulumb yield surface with a tension
cut-off and an associative flow rule (refer to Appendix 2.A and Figure 2.15 for details).

To obtain different regimes with different failure modes, the vertical reinforcement ratio p, is
varied between 0.1% and 1.5% whereas the horizontal reinforcement ratio p, is kept constant
as 1%. A lognormal distribution is assumed for both materials strengths with the mean values
and the CoVs as follows: f.,=28 MPa; V.= 0.15 for concrete and f;,= 585 MPa; V= 0.04
for steel (resulting fcq = 17.7 MPa and f,» = 518.0 MPa according to Eq. (16) and (17))). The
elastic moduli of both materials are accounted for as deterministic values, with E. =
30000 MPa and E,; = 200000 MPa. Similar to the previous case study, the actual achieved
reliability index p,,. and the lognormal distribution approximated reliability index g,, are

calculated for the limit state of R - R; = 0 (the same formulation as in Eq.(15)) for each p_ - p

X

combination, where in this case study, R represents the resistance to shear. The results are plotted
in Figure 2.10b. Similar to the case of bending, it can be observed that PSFF leads to reliability
levels close to or higher than the target one ( f,,c i, . = 2.94).
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Figure 2.10:  (a) Isolated shear panel; (b) reliability index achieved by PSFF for different
vertical reinforcement ratios p.; and (c) exponent sensitivity factors n of
concrete compressive strength f;, steel yield strength of reinforcement f,
(ng - and ny, « are the exponent sensitivity factors for vertical and horizontal
reinforcements respectively) , concrete elastic modulus E. and steel elastic

modulus Ej.

2.6.2 Exponent sensitivity analysis and failure regime study

The exponent sensitivity factors are calculated and plotted in Figure 2.10c. It should be noted
that, although the strength of vertical and horizontal reinforcements are assumed to be
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represented by one random variable f;, their exponent sensitivity factors are calculated separately
(denoted as ny, - and ny « respectively). Several failure regimes are observed to be governing
(see Figure 2.10c¢):

= Regime D a and b, when the shear resistance is governed by simultaneous yielding of
the vertical reinforcement and crushing of the concrete (for Regime Ma: p. < 0.42%

and Regime M b: 0.9% < p. <0.97%)
= Regime @, governed only by yielding of both reinforcements (for 0.42% < p. <0.9% )

= Regime ®), governed by concrete crushing only (for 0.97% < p. )

Accounting for these three regimes, the limit state functions have relatively more complex
shapes than the bending case, but the shear resistance is non-decreasing with the material
strengths (sufficient transverse reinforcement is assumed for crack control) and consequently,
PSFF yields close to the target or conservative reliability levels. The shapes of the limit state
function for two representative cases ( p, =0.4% and p. =0.9% ) are plotted in Figure 2.11.
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Figure 2.11:  Resistance function isolines, limit state function and JPDF plot for (a)
p—=0.4% and (b) p-=0.9% case (2D view)

In addition, it can be noted that the influence of the principal tensile strains on the concrete

compressive strength introduces a dependency of Regimes D and ® on the elastic moduli of

the materials (see Figure 2.10). In these cases, the sum of the exponents on material strength
parameters are significantly lower than one (an associated consequence of this phenomenon will
be discussed more in detail in Section 2.10).

For the purpose of simplicity, the horizontal and vertical reinforcements are modelled as the
same type of material and are represented by one random variable f; in this case. In practice,
different types of materials are potentially used for these reinforcements and their material
strengths should be modelled as independent random variables. To help understand the influence
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of increasing number of independent material strength variables, the exponent sensitivity factors
on the yielding strength of horizontal reinforcement (75_.) and vertical reinforcement (75 -) are
calculated separately and are plotted separately in Figure 2.10. It can be observed that in the
investigated case, in the range where both reinforcement strengths are dominating the resistance

(Regime @), ns .- np -=0.5. Assuming that the yield strengths of the horizontal and vertical

reinforcements are represented by two independent lognormal random variables with the same
CoV, then it can be established that the FORM sensitivity factors for both yield strengths are

equal to % The values are lower than the assumed one in the PSFF (o, =1). This result

shows that in these cases, when the number of independent material strength variables increases,
PSFF still yields conservative result.

2.7  Case study IV: Girder investigated With Nonlinear
finite element analysis

In the previous case study, the effect of presence of different failure modes has been investigated
for a small structural component where the acting internal forces are directly imposed or can be
determined by equilibrium considerations. In this section, a more complex case is studied, in
which Nonlinear Finite Element Analysis (NLFEA) is used to evaluate the load-bearing capacity
of a girder which is potentially subjected to both bending and shear failure modes. The
applicability of PSFF to such case is further investigated on the basis of reliability analysis. The
investigated example shown in Figure 2.12 is inspired by an experiment presented
in [Rup13] (test SR38), where the shear and longitudinal reinforcement ratios are adjusted to
study the effect of multiple failure modes.

The NLFEA programme JCONC [Fer07] based on the EPSF method developed at the Structural
Concrete Laboratory of EPFL is used to perform structural analysis. The applicability of this
approach to describe the behaviour of the test series in [Rup13] has been validated in other
works [Mutl5, Rup13]. In the numerical simulation, all applied loads are assumed to increase
monotonically and proportionally with the load factor Q (refer to Figure 2.12). The load factor
at the ultimate level O = R is used to represent the load carrying capacity of the girder.

A lognormal distribution is assumed for both material strengths with the mean values and the
CoVs as follows: fo.=38 MPa; V.= 0.15 for concrete and f,,»= 585 MPa; V5= 0.04 for steel
(resulting f;a = 24.1 MPa and f,« = 518.0 MPa according to Eq. (16) and(17))). The elastic
moduli of both materials are accounted for as deterministic values, with E. = 30000 MPa
and E; = 200000 MPa. Similar to the previous case studies, the achieved reliability index for the
limit state of R - R; = 0 (the same formulation as in Eq.(15)) is investigated.
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Figure 2.12:  Geometry and reinforcement layout of girder (Unit of dimensions: mm)

2.7.1 Reliability analysis

Since the computational cost of NLFEA is significantly higher than that of simple nonlinear
analysis methods in the previous cases, it is highly time-consuming to use crude Monte Carlo
simulation to perform reliability analysis. In addition, another difficulty in the reliability analysis
with NLFEA is that there are usually numerical errors involved, and this can reduce the accuracy
of the local sensitivity analysis for the resistance [Eng93, Liu91, Sch11, Soa02]. For this reason,
classical reliability methods which rely on the local gradient of the resistance function like
FORM are not directly applicable to NLFEA. To overcome these difficulties, the Importance
Sampling (IS) method [Mel18] combined with Response Surface Method (RSM) [Raj93] is used

to perform reliability analysis (Refer to Appendix 2.B for details).
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Table 2.1: Estimation of exponent sensitivity factors in each sub-region
Sub-region @ Sub-region®@ Sub-region @
Range of (Xj, X) [-arf,01 x [0 arfz]  [-arf3,0] X [-ar3,0] [0 arf3] x [-arf3,0]
Ny 0.05 0.09 0.17
ng 0.92 0.84 0.71

Based on the RSM analysis, the exponent sensitivity factors for the material strength variables
in different sub-regions in the corresponding standardized normal space are provided in Table
2.1 (Refer to Figure 2.13 for the range of different sub-regions). It can be observed that the sum

of ny. and ny in sub-region @ is significantly lower than one. This result is consistent with the

observation from Case Studies II and III that when the resistance is sensitive to the strain state,
the exponent sensitivity factors of the elastic moduli are higher than zero and thus the sum of 7y
and ny, are lower than one.

According to the IS reliability analysis, the achieved reliability level is fis = 3.83 (corresponding
to a failure probability of P;r=6.32-10") and the CoV of the evaluated probability of failure is
CoVp=7.61%. The achieved reliability level is higher than the target level (arf = 3.04), which
shows that PSFF yields conservative result in this case. The isolines of the resistance function
are shown in Figure 2.13b (the isoline plot is based on the response surface fitted using addition
sampling points for visualization purpose only). Two main regimes can be observed in the
resistance function, suggesting two types of failure modes. This is confirmed by the stress field
plot of the sampling point (X , X)) = (0, Xra) and (X, Xi:) = (X, 0) plotted in Figure 2.13c
and d where it can be observed that different failure modes occurred at these two points:

* At the sampling point (Xp, Xr) = (0, Xra) (Figure 2.13c¢), failure occurs with concrete
crushing of the web (refer to the black colour of the concrete elements) and yielding of
the shear reinforcement (refer to the brown colour of the reinforcement elements).

* At the sampling point (X3 , Xi) = (Xpa 0) (Figure 2.13d), failure occurs with concrete
crushing of the web and yielding of both shear and longitudinal reinforcements.
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Figure 2.13:  (a) Division of sub-regions and the corresponding sampling points;
(b)Resistance function isolines, limit state function and JPDF plot for the
girder case (2D view) (c) The stress filed plot of the girder near failure at

sampling point (0, Xzs) and (d) sampling point (Xs«, 0).

The reliability analysis result shows that with different failure modes, the PSFF still yields a
conservative reliability level. This case confirms that the conclusions of Section 2.2 are also
applicable to NLFEA methods.

2.8 Conclusions from case studies

The investigated case studies clearly show that the nature of different failure modes leads to an
abrupt change of the sensitivity of the load bearing capacity to the strength variables. This means
that in the design of reinforced concrete structures, since steel and concrete strengths have
significantly different variabilities, the variability of the resistance variable is strongly
influenced by the failure modes. The analytical and numerical studies shown above also show
that PSFF provides a satisfactory solution to the multiple failure modes problem. By adopting
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conservative FORM sensitivity factors for material strength variables (a, =a, =1), PSFF

verifies in an efficient manner the most unfavourable failure modes on the limit state function,
provided that the non-decreasing assumption is valid.

2.9 Test of the non-decreasing assumption

Since structural concrete is composed of materials which are not perfectly ductile (limited
deformation capacity of concrete and reinforcement steel, potential sliding of cracks without
sufficient aggregate interlocking), the non-decreasing assumption of the load-carrying capacity
is not always valid for practical structures. To reduce the influence of this phenomenon or even
to prevent the decreasing cases, design standards typically define provisions like minimum
reinforcement ratios, maximum height of the compression zone due to bending and detailing
rules defining maximum reinforcement spacings and appropriate reinforcement anchorages. In
design practice, a preliminary check of the non-decreasing assumption can be performed with
low computation cost. For the case with two material variables f. and f,, the load-carrying
capacity can be evaluated at three sampling points; R(fcq, fya), R(fea, fym) and R(fem, fra). 1If the
condition of R(feq, fya) < R(fea, fym) and R(fea, fr))< R(fem, f14) are both fulfilled, then it shows that
in the region that is most critical for the reliability analysis, based on the outcomes of the
selected sampling points, the non-decreasing assumption is not violated. In this case, the PSFF
can still be considered as applicable within the framework of semi-probabilistic method. In
essence, this is a simplified sensitivity analysis of the resistance function in the relevant region
for reliability analysis. For the cases where the non-decreasing assumption is invalid (for
instance such a case can be found in [Casl19]), more refined reliability verification
methods [Mel18] than the semi-probabilistic method can be more suitable.

2.10 Discussion on other basic uncertainties

The various case studies in Sections 2.4 — 2.7 show that the sensitivity of resistance (intended as
cross-sectional resistance or load-carrying capacity of a structural member) to material strength
variables varies significantly amongst different action effects and failure modes. In Section 2.2,
it has been shown that in the formulation of PSFF proposed in Eurocode 2 [CEN04], since for
reinforced concrete structures, only two partial safety factors are applied on the resistance side,
the geometrical uncertainties and the model uncertainties are actually lumped with the material
uncertainties. This simplification can be arguable for some cases. Assuming that all the basic
uncertainties follow lognormal distributions and their exponent sensitivity factors are known,
then the CoV of the resistance variable can be calculated as following:
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VR = \/V:jod + Z n;eum,il/gzeam,i + Z n;}j sz,j (1 8)

Where ng.0m and ny refer to the exponent sensitivity factors on geometrical and material
uncertainty variables, respectively. The sum over indices i and j indicates that there can be
multiple random variables representing each type of basic uncertainty. It should be noted that
only one model uncertainty variable is accounted for in Eq.(18), but in some cases there might
be more than one model uncertainty variable (for instance in the punching shear resistance model
based on Critical Shear Crack Theory [Mut08], potentially there are two model uncertainty
variables for the failure criterion model and the load rotation model respectively ).

Comparing Eq.(2) with Eq.(18), it can be observed that in the PSFF, the calculation of V% is
actually simplified with the assumption that the exponent sensitivity factors for all the basic
uncertainties are equal to one. To help verifying this assumption, using the case study II as an
example, the exponent sensitivity factors on the geometrical variables are plotted in Figure 2.14.
With respect to the uncertainty of the reinforcement area Aj, it has to be noted that for the regime
with reinforcement yielding, it is implicitly considered in the yield strength uncertainty, since
according to EN 10080 [EN105], the latter is measured on the basis of the nominal reinforcement
area. It can be observed in Figure 2.14 that the exponents on some geometrical variables (e.g.
the flexural depth d) are significantly higher than one, so that the assumption used in Eq. (2) can
underestimate the influence of geometrical uncertainties on the variability of the resistance. In
addition, comparing the exponent sensitivity factors in Figure 2.14 with those in Figure 2.6, it
can be observed that the exponent the effective depth d is also significantly higher those on the
material variables, especially in the over-reinforced range. In addition, as shown in [Mut23a],
the CoV of the model uncertainty is higher than the CoV of the yield strength and for thin
members, the same applies also for the CoV of the effective depth. These observations raise the
question about whether material uncertainties are still dominating in such cases and if it is still
suitable to lump the geometrical and model uncertainties with material uncertainties in a single
partial safety factor. Further detailed research needs to be performed to investigate this problem,
especially for the safety format calibration of NLFEA method of concrete structures. It is also
worth noting that EN 1990:2002 [CENO02] has addressed this problem by requiring that when
the geometrical uncertainty is significant for the reliability of the structure, the design value of
the geometrical variable ( refer to Equation 6.5 of EN 1990:2002 [CENO02]) should be directly
used in the limit state verification.
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Figure 2.14:  Exponent sensitivity factor n of the cross-sectional flexural depth d, the
cross-sectional width b and the steel reinforcement area As for Case
Study II

2.11 Conclusions

The basic assumptions, simplifications and applicability conditions of the Partial Safety Factor

Format (PSFF) on material strengths for the resistance of concrete structures are investigated in

the work with both theoretical considerations and numerical case studies. Some considerations
are also provided with respect to effects of the geometrical and model uncertainties. The main

conclusions are summarized below:

It is shown that, for the investigated cases, the PSFF on material strength yields
satisfactory reliability levels both for cases subjected to single or to multiple failure
modes induced by material uncertainties as long as the non-decreasing assumption of
the resistance function is valid (the load-carrying capacity is not reduced by an increase
of a material strength).

The investigation of the sensitivity of the different variables on the load-carrying
capacity expressed in terms of exponent sensitivity factors is a powerful tool to detect
different failure modes. Exponent sensitivity factor analysis of the full applicable range
of a given resistance model reflects the mechanical characteristics of the model. The
result can be conveniently combined with different probabilistic modelling of the basic
variables for different design situations, allowing to estimate useful indexes (e.g. the
First Order Reliability Method (FORM) sensitivity factors and the coefficient of
variation of the resistance variable) for calibrating the corresponding safety format.

Adopting conservative FORM sensitivity factors for material strength variables in the
PSFF calibration is necessary because they may vary significantly for different failure
modes. This treatment can be conservative for some cases, but has the advantages of
being simple to use in design practice and being applicable to a wide range of cases.
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= The simplification of integrating the safety elements for geometrical and model
uncertainties into the partial safety factors for material strengths can underestimate the
influence of geometrical and model uncertainties in some cases. With this respect,
further research needs to be performed to study the proper treatment of geometrical and
model uncertainties, particularly in the safety format for NLFEA.

=  Good tail approximation is instrumental for the effectiveness of safety formats.
Approximating the distribution of resistance variable with a single lognormal
distribution based on crude Monte Carlo simulation result risks of losing information
about the tail distribution and can potentially lead to unsafe results.
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Appendix 2.A: Principles of the EPSF method

In the Elastic Plastic Stress Field (EPSF) method, the equivalent plastic compressive strength
f,, is defined accounting for a concrete brittleness factor 7, and a transverse strain factor 7,,

according to Eq.(19). The brittleness factor 7, follows the relation proposed by

Muttoni [Mut90] given by Eq.(20). The damage due to cracking is considered by applying a
transverse strain factor 7,, which is evaluated as a function of the principal tensile strain

following the relation proposed by Vecchio and Collins [Vec86], given in Eq. (21).The elastic
modulus of concrete E. is considered independent of its transverse strain state as proposed in
Vecchio et al.[Vec94]. It shall be noted that the method considers the principal stress direction
to be parallel to the principal strain direction (refer to Figure 15). Based on the EPSF method,
the equilibrium conditions and the compatible conditions for the shear panel problem are given
in Eq. (22)-(27).

S =101, (19)
1
30 )
n.=—1 <1 (20)
%)
= min(l ;)
e = I 0 84 1708, 21
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p.o,. —rcotd=0 (22)

p.o,.—7ttan@=0 (23)

o,,+7(tand+cotd) =0 (24)
E..—¢€

tan® 0 = —g - gz (25)

£, =6, FE, . &, (26)

6. =¢, and s ¢ 27)

where ¢ and ¢, ,are the principal strains of concrete; z is the shear stress; p, and p, are the
horizontal and the vertical reinforcement ratio; o, and o are the stress in the horizontal and the
vertical reinforcement; 6 is the angle between the second principle strain of concrete and the
horizontal direction; ¢, and &, are the horizontal and the vertical strain of concrete and ¢,

and ¢, _are the strains of the horizontal and vertical reinforcements.

It should be noted that in this case, due to the form of concrete brittleness factor 7, (which has

an exponent of 1/3 on the concrete compressive strength variable), the sum of exponent
sensitivity factors for material strength variables are lower than one when concrete strength is
higher than 30 MPa. For further details about the influence of this factor on the safety format of
concrete structures, please refer to [Moc20].
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Figure 2.15:  (a) Isolated shear panel; (b) Steel constitutive law; (c) Mohr’s circle and
principle strains; (d) concrete yield surface and associative flow rule and

(e) concrete constitutive law.
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Appendix 2.B: Reliability analysis with response surface
method of case study IV

In this Appendix, the detailed reliability analysis for Case Study IV is presented.

The basic concept of the Importance Sampling (IS) method is to use an Importance Sampling
Probability Density Function (ISPDF) instead of the original Joint Probability Density Function
(JPSF) of the basic variables to draw sampling points in the Monte Carlo simulation in order to
achieve low variance in the estimated probability of failure with a relatively small sample size.
The IS method is one type of variance reduction technique in the reliability analysis method with
Monte Carlo simulation [Mell8]. The key issue of the IS method is to find suitable
ISPDF [Mell8]. An efficient ISPDF is proposed in [Mel18]:

h(X)=p(X _Xd,FORM) (28)

Where X is the vector of the random variables in the standardised normal space and X = (Xj,
Xr), h(X) is the ISPDF, ¢() is the original JPDF of X and X, rorwmis the estimated FORM design

point.

The ISPDF in Eq.(28) is generated by moving the sampling centre to the estimated most probable
failure point (FORM design point) on the limit state function. It can be observed that to
implement this method, a rough estimation of the FORM design point is still needed. For this
purpose, the Response Surface Method (RSM) is used.

The basic concept of the RSM is to use a small number of sampling points to make a closed-
form approximation of the resistance function as a basis for reliability analysis [Raj93]. The
Design of Experiment (DOE) technique [Mon17] can be used to select sampling points for
effectively constructing the response surface and multivariate linear regression method can be
used to fit the response surface [Mon17]. In the RSM, by taking sampling points in a relatively
large range in the space of basic variables, the influence of the numerical error in NLFEA can
be mitigated. The closed-form response surface function can then be used to estimate the FORM
design point with classical HL-RF method [Liu91].

In Case Study IV, a linear polynomial function without interaction in the standardized normal
space of the basic variables is used for the response surface, as is given in the following equation:

Ny =a,+a,X, + azoX/} (29)
Where Ng is the logarithm of the resistance R: Ng = In(R); ao, a; and a; are the coefficients to be
fitted with the data of the sampling points.

From the case studies in this work, it can be observed that different failure modes usually occur
with extreme combinations of material strengths. For example, the failure mode of the sampling
point with low f. value and high f, value tends to be different from that with high f. value and
low f; value. To account for this phenomenon, the response surface is fitted in sub-regions. The
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division of the sub-regions for this case study is shown in Figure 2.13a. This treatment aims at
increasing the precision of the response surface fitting with a small computation cost. The
resistance function is fitted in each sub-region, which result in three response surface functions.
The resistance in the whole space is then defined as the minimum resistance among the three
fitted response surface functions:

Ny = min(NR,l’NR,Z’NR,3) (30)
Where Ng; ,Ng 2, and Ng; are the response surface function in sub-region @, @ and ®.

This treatment aims as mimicking the mechanical behaviour that the dominating failure mode
of a structure is the one that results in the lowest loading bearing capacity.

It should be noted that it is also possible to use polynomial functions of higher order or other
type of functions for the RSM. In this case, the linear model without interaction is selected
because the model coefficients a; and a; can be directly related to the exponent sensitivity factors
ns and ng defined in Section 2.3, which directly reflect the differences between failure modes.

The three-level factorial design method [Mon17] is used to select the RSM sampling points in
each sub-region, as is shown in Figure 2.13a. In total, 21 sampling points are taken to fit the
response surface. Based on the NLFEA results of the sample points, multilinear regression
method is applied to estimate the model coefficients. The resulting coefficients and the
corresponding p-values in t-test [Monl7] are listed in Table 2.2. The aim of performing t-
test [Mon17] is to test if the error level is sufficiently low. If the t-test failure, it suggests either
the numerical error of the NLFEA method is too high or the response surface function is not
suitable for the given problem. In this case, all the p-values of the t-test are lower than 5%, and
the response surface fitting result is considered as acceptable.

Table 2.2: Estimations of the response surface coefficients and the corresponding p-

values of each sub-region of Case study IV

Sub-regions Sub-region @ Sub-region @ Sub-region ®

(X5, Xre) [-ar/f,0] x [0 arf3] [-ar/3,0] x [-ar/5,0] [0 arf3] x [-ar/3,0]
Coefficients ao ai az ao ai az ao ai az
Estimation -0.24 0.008 0.037 -0.25 0.014 0.034 -0.22 0.025 0.028
p-value 2e-14 9e-8 8e-12 2e-9 2e-4 le-6 2e-7 3e-4 2e-4

Based on the fitted response surface, the FORM reliability analysis is performed and the FORM
design point is estimated. The estimated FORM design point is calculated as Xy rory = (-3.45, -
1.42) in the standardized normal space.
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Then, IS reliability analysis is performed using the ISPDF. For the IS analysis, 1000 sampling
points are used. It should be noted that in this case, a relatively large number of sampling points
with the NLFEA evaluations is taken to reduce the statistical uncertainty. According to the IS
reliability analysis, the achieved reliability level is fis = 3.83 (corresponding to a failure
probability of P =6.32:10") and the CoV of the evaluated probability of failure is CoVas
=7.61%. It should be noted that the CoV of 7.61% corresponds to the CoV of the failure
probability for the nonlinear finite element model itself. Considering the magnitude of the
probability of failure (6.32-10-5), this level of CoV is considered as acceptable. In this case,
since the finite element model is relatively small, it is possible to use a large sample (with 1000
sampling points) to perform the IS analysis. However, when such an approach is not applicable,
other methods (e.g. Adaptive Kriging Monte Carlo Simulation method [Ech11]) may be used to
perform reliability analysis with reasonable computational time.
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NOTATION

Latin upper case letters

A

Ac

Ar

Ar
cov,

Fi
Gr()
1[Gr())]
Nr

P()

Pr
Priag
Pf,zag,R

SR

R()
Ry
Ry

Vr
Vmod

Vgeom

Ve
Vi

Xiea
X5

X

Xarorm

cross-section area of a structural component
cross-section area of the concrete column
cross-section area of the steel tie
normalized cross-section area of the steel tie

coefficient of variation of the estimator 13,»’ X

elastic modulus of a material

failure domain of boundary limit state of material i
limit state function for the design resistance
indicator function of Gg(*)

logarithm of the resistance R

probability function

probability of failure of the structure

probability of failure for the design resistance
target probability of failure of the structure

target probability of failure for the design resistance
estimator for probability of failure for the design resistance

load factor
resistance function

PSFF design value of resistance

mean value of the Monte Carlo simulated data of resistance

a random variable following the importance sampling probability density
function

Coefficient of Variation (CoV) of resistance random variable

CoV of the model uncertainty variable

CoV of the geometrical uncertainty variable

CoV of the material uncertainty variable

CoV of concrete compressive strength random variable

CoV of steel yield strength random variable

vector of basic random variables in the standardised normal space

concrete compressive strength random variable transformed to the standard
normal space

design value of concrete compressive strength in the standard normal space
steel yield strength random variable transformed to the standard normal
space

design value of steel yield strength in the standard normal space

estimated FORM design point in the standard normal space

Latin lower case letters
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ap, a; and az
b
d
Je
fed
Sem
o
fi
Ji
Jr
Ja
5
Jyd
Som

h()

Nys
NE:
NEs
nq
Ny
ng
(1, 11f 2)

nis
nyc

coefficients of the response surface function

width of a cross section

flexural depth of a cross section

concrete compressive strength

design value of concrete compressive strength
mean value of concrete compressive strength
equivalent plastic compressive strength of concrete

random variable of strength of material i

parameter j in the resistance function

characteristic value of material strength variable

design value of material strength variable

steel reinforcement yield strength

design value of steel reinforcement yield strength

mean value of steel reinforcement yield strength

height of a cross section

the importance sampling probability density function

span of a structural component

exponent sensitivity factor for reinforcement area

exponent sensitivity factor for concrete elastic modulus
exponent sensitivity factor for steel elastic modulus
exponent sensitivity factor for cross-section flexural depth
exponent sensitivity factor for concrete compressive strength
exponent sensitivity factor for parameter f;

exponent sensitivity factor for steel yield strength (the indices of x and z
refer to the vertical and horizontal directions respectively)
sample size of IS method

sample size of Monte Carlo simulation

Greek upper case letters

A
)

a sufficiently small increment of parameter In(f;)

cumulative distribution function of standardized normal distribution

Greek lower case letters

a;.,

a.

R
Dis
Lin

Puc
B
Je

FORM sensitivity factor of concrete strength
FORM sensitivity factor of steel reinforcement yield strength

the standardized FORM sensitivity factor for resistance

achieved reliability index evaluated with Importance Sampling method
achieved reliability index evaluated with lognormal distribution
approximation

achieved reliability index evaluated with Monte Carlo simulation
target reliability index

partial factor for concrete compressive strength considering material
uncertainty only

48



Reliability analysis with response surface method of case study IV

Vs
s

Vi

H In £,
Hy g,

partial factor for steel yield strength considering material uncertainty only
partial factors applied to material strength variables (accounting for all
basic uncertainties)

partial factors applied to material strength variables (accounting for
material uncertainties only)

first principal strain of reinforced concrete shear panel

second principal strain of reinforced concrete shear panel
horizontal and vertical strain of shear panel

transverse strain factor of shear panel

concrete brittleness factor

angle between the second principle strain and the horizontal direction of
shear panel
mean value of the logarithmic concrete compressive strength

mean value of the logarithmic steel yield strength

flexural reinforcement ratio of a cross section

horizontal reinforcement ratio of shear panel

vertical reinforcement ratio of shear panel

second principle stress of concrete in the shear panel

standard deviation of the logarithmic concrete compressive strength

standard deviation of the logarithmic steel yield strength

stress in the horizontal and the vertical reinforcement of shear panel

shear stress of shear panel
joint probability density function

mechanical flexural reinforcement ratio of a cross section

49



Partial safety factor format accounting for multiple failure modes

50



Chapter 3

Model uncertainties and partial
safety factors of strain-based
approaches for structural concrete:
example of punching shear

This chapter is the preprint version of the article mentioned below, submitted to Engineering
Structures Journal. The authors of the article are Qianhui Yu (PhD Candidate), Jodao T. Simdes
and Prof. Aurelio Muttoni (thesis director). The provisional reference is the following:

Yu Q., Simées J. T., Muttoni A., Model uncertainties and partial safety factors of strain-based
approaches  for structural concrete: example of punching shear, Engineering
Structures (submitted March 2023)

The work presents in this publication was performed by Qianhui Yu collaborating with Joao T.
Simdes and under the supervision of Prof. Aurelio Muttoni, who provided constant and valuable
feedbacks, proofreading and revisions of the manuscript.

The main contributions of Qianhui Yu to this article and chapter are the followings:

= Comprehensive literature review regarding the model uncertainty quantification and
safety format calibration for nonlinear analysis models of concrete structures.

=  Proposition of the model uncertainty quantification framework for strain-based
approaches.

= Database collection of punching shear test data.

*  Model uncertainty quantification of the Critical Shear Crack Theory (CSCT) punching
shear resistance model with Bayesian inference.

=  Proposition of the methodology of accounting for the measurement error in the model
uncertainty quantification.
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= Interpretation of the relationship of the model uncertainties of sub-models and global
resistance solutions of the CSCT punching shear resistance models.

= Comparison between the model uncertainties of different Levels-of-Approximation
(LoAs) of the CSCT punching shear resistance model of fib Model Code 2010.

= Proposition the suitable safety format for different LoAs punching shear resistance
model.

= Elaboration of the figures and tables included in the article.

= Writing of the manuscript of the article.
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Abstract

Abstract

The development of mechanical models relating the state of strains and the resistance of
reinforced concrete structures has become a trend in the last decades. These types of models are
referred to as strain-based approaches. Since strain-based approaches usually involve multiple
sub-models and take implicit forms, their model uncertainties tend to be more complex than
those of the explicit design equations commonly used in design codes. The characteristics of the
model uncertainties of strain-based approaches is investigated using the Critical Shear Crack
Theory (CSCT) for the punching shear resistance of structural concrete members as example.
Both by performing theoretical parametric analyses and by evaluating relevant experimental
data, it is shown that the model uncertainty of global resistance solution of strain-based approach
can be viewed as resultant of the model uncertainties of the sub-models. In addition, it is also
shown that the model uncertainty of the global resistance solution can be lower than those of the
sub-models, depending on their sensitivity relationship. The model uncertainties of different
Levels-of-Approximation (LoA) of the CSCT for punching are also compared. The LoA
approach intends to provide consistent and progressively refined model for different design tasks
in practice. The model uncertainty quantification result confirms that the model uncertainty of
higher LoA of CSCT has lower variability and also less conservative bias than lower LoA.
Finally, based on the obtained model uncertainties, different types of partial safety formats for
strain-based approaches are compared and discussed. Using the CSCT punching shear model as
an example, it is shown that the partial safety factors applied to the sub-models are more suitable
for higher LoAs since they can effectively account for the change of model uncertainty
associated to the change of failure mode. Based on the assumptions described in this work, the
relationship between the safety factors of the punching shear provisions in the second generation

of Eurocode 2 for the design of new structures and the assessment of existing critical ones is
established.

Keywords: model uncertainty, strain-based approaches, structural concrete, punching shear,
partial safety factors

3.1 Introduction

In modern design codes for concrete structures (e.g.,[ACI19, CENO02, Fosl6, Stal§], the
reliability verification is usually performed through calibrated safety formats accounting for the
inevitable uncertainties involved in design and construction practice. For the resistance of
concrete structures at ultimate limit state, material, geometrical and model uncertainties are
normally accounted for in the safety format [ElI80, Eur08, Fos16, JCSO1]. The probabilistic
modelling of the basic uncertainties is usually performed based on experience, engineering
judgement and available objective data for the relevant parameters [EII80, JCSO1]. The
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quantification of the uncertainties related to the resistance models is nonetheless becoming
increasingly challenging due to models’ rising complexity. Their quantification and probabilistic
description are however instrumental to ensure a proper reliability verification in design practice.

Resistance models in structural concrete were commonly explicit functions of the basic design
variables in the past. Yet, the development of well-established sound mechanical models relating
the state of strains and the resistance has been a trend observed in the last decades. These types
of structural resistance models are referred to as strain-based resistance models or strain-based
approaches in the following. In the area of structural concrete, an example of such models is the
Critical Shear Crack Theory (CSCT) [Mut08] (Figure 3.1) for the punching shear, where the
resistance of a slab-column connection is not only a function of the geometrical and material
parameters of the member, but also of the slab rotation (assumed to be correlated to the opening
of the critical shear crack which affects the capacity of the slab to transfer the shear forces to the
column). Other examples of strain-based approaches are the Modified Compression Field
Theory (MCFT) used to assess the shear resistance of structural concrete [Ben06, Vec86]
(Figure 3.2) or, in a more general framework, the Non-Linear Finite Element Analyses (NLFEA)
accounting for compatibility and equilibrium conditions together with failure criteria for
materials which are strain state dependent (this is for instance the case of the Elastic Plastic
Stress Field (EPSF) method [Mut90]).

(a) Slab-column connection (b) Failure criterion and load-rotation curves of CSCT

-

7
9q

l Slab rotati(()‘n/ W i

-

—

Load-rotation
Slab

Column Critical shear crack <— Strain-based resistance solution

Failure criterion

v

Figure 3.1: [Nlustration of (a) a slab-column connection and (b) model of the CSCT for

punching shear (refer to Notation section for details)

Since strain-based approaches usually involve multiple sub-models and take implicit forms, the
evaluation of the model uncertainties can be conducted at the level of the global resistance
solution or of the sub-models considered separately. In this work, using the CSCT for punching
shear resistance as an example, the suitable quantification method and the relationship between
the model uncertainties of the global resistance solution and those of the sub-models are
investigated. The relevance of investigating the CSCT for the punching shear resistance is
justified by the fact that it has been adopted for the provisions related to punching shear design
in the fib Model Code 2010 [FIB13] and in the second generation of Eurocode for concrete
structures [CEN23] (strain-based approach in the annex for the assessment of existing
structures).
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(a) Isolated shear panel (b) Concrete strain state  (c) Mohr’s circle and principle strains
2 . of concrete
—
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(d) Concrete constitutive law (e) Steel constitutive law  (f) Mohr’s circle for stresses
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Figure 3.2: [lustration of the analysis of a shear panel with MCFT (a) a reinforced
concrete panel subjected to shear force; (b) the strain state of concrete; (c)
strain compatibility expressed with Mohr’s stress circle (d) concrete
constitutive law; (e) steel constitutive law and (f) equilibrium expressed

with Mohr’s stress circles (refer to Notation section for details)

3.1.1 The Critical Shear Crack Theory for punching shear: main
idea

The main idea of the CSCT for punching shear is that the development of a so-called critical
shear crack near to the support governs the shear transferring capacity of the slab-column
connection (see [Mut08] for further details). The resistance is thus a function of the location,
shape and kinematics (function of bending and shear deformations) of this critical shear crack
[Guil0, Mut91, Sim18]. A refined model [Sim18] based on the principles of the CSCT [Mut17]
has shown that for slender slabs, as proposed by Muttoni in 2008 [Mut08]: (1) a failure criterion
can be established as a function of the normalized critical shear crack opening and (2) the critical
shear crack opening at failure can be correlated to the rotation of the slab y shown in Figure
3.1(a). Therefore, as shown in Figure 3.1(b), the punching shear resistance and the strain state
at failure (represented by the slab rotation ) can be calculated by intersecting the load-strain
relationship (where the strain refers in this specific case to the slab rotation y; this relationship
representing the response of the slab-column connection) and the failure criterion (this function
represents the punching resistance associated to a given crack opening, associated to the rotation
w). The failure criterion and the load-strain relationship are represented from a mathematical
point-of-view by two independent functions respectively. For this reason, it can be seen as the
simplest form of strain-based structural resistance models. This type of strain-based structural
resistance model is in fact an intermediate step between explicit analytical structural resistance
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models (where the resistance is calculated with a closed-form equation on the basis of the
geometrical and mechanical material values) and more complex implicit structural resistance
models (such as the NLFEA).

Investigating the model uncertainties of simple strain-based resistance models can help
understanding the relationship between model uncertainties of simple explicit analytical and
complex implicit numerical structural resistance models.

3.1.2 Quantification of model uncertainty for structural concrete
resistance analysis

Promoted by the implementation of reliability theory in design codes, the quantification of the
model uncertainty of structural resistance models used for concrete structures is a topic that has
attracted wide attention of researchers in recent years. Such quantification is usually performed
by comparing the calculated resistances to the experimental results included in databases
assembling relevant experimental tests performed under controlled conditions [JCS01, Tae93].
Numerous researchers have already performed this work considering the resistance models in
the form of analytical design equations included in current design codes [Now03, , Sykl3,
Syk18, Bell5, Fosl5, Fosl6, Hall9, Holl6, Ola20, Stel16]. The quantification of the model
uncertainty related to Non-Linear Finite Element Analyses (NLFEA) for concrete structures
(which are sometimes referred to as global resistance models [Cas19, Engl7, FIB13, Sch12])
has also been extensively investigated [Cas18, Cerl8, Engl7, Haul1, Kad15, Sch12]. Engen et
al. [Engl17] and Castaldo et al. [Cas18] evaluated the resistance model uncertainty considering
different modelling hypotheses to perform NLFEA (influence of the choice of material
constitutive laws, finite element type, convergence criterion). Cervenka [Cer18] quantified the
model uncertainty related to NLFEA applied to different types of internal forces (bending, shear,
and punching shear). Haukaas and Gardoni [Haull] proposed the Bayesian finite element
method, which attempts to account for the model uncertainty as it originates from different sub-
models (e.g. constitutive laws, equilibrium and strain compatibility conditions) in a finite
element solution.

As observed for instance by Haukaas and Gardoni [Haull], NLFEA are implicitly composed of
different sub-models involving multiple calibrated parameters. This complex nature makes it
difficult to quantify the model uncertainties related to NLFEA, which partially justifies the
absence of consensus on their treatment. In this context, investigating the model uncertainties of
simple strain-based approaches, which represent an intermediate step between explicit analytical
closed-form design formulae and complex implicit resistance models, can be a first interesting
step.

As with the NLFEA, also in the simple strain-based approaches, the global resistance model is
composed of different sub-models (e.g. the failure criterion model and the load-rotation model
in the CSCT for punching shear described above). Therefore, it is possible to quantify the model
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uncertainty at both the sub-model level and at the global resistance level. For example, in
reference [Mut08], for the strain-based punching shear resistance model of the CSCT, the model
uncertainty data shows that the variability (represented here by the Coefficient of Variation
(CoV)) of the global model uncertainty is lower than that of the failure criterion model. Reasons
behind this phenomenon and its implications for the safety format calibration of strain-based
approaches will be investigated in this paper.

3.1.3 The model uncertainties of the Levels-of-Approximation (LoA)
approach

To allow the application of sophisticated resistance models in daily design practice, an approach
by Levels-of-Approximation (LoA) [Mutl2, Mutl2a] can be explicitly or implicitly adopted.
This approach is a codified design strategy that aims at providing consistently and progressively
refined design methods that can be flexibly used for different tasks such as preliminary design,
detailed design of new structures and assessment of existing ones [Mut12, Mutl2a]. The LoA
approach has been adopted in the Swiss Code for structural concrete [Mut03, SIA13](since
2003) and in the fib Model Code 2010 [FIB13, Mutl3]. The LoA approach was intended to be
used together with physically sound design models rather than with empirical formulaec. When
lower LoAs are used, the mechanical parameters in the design model can be assessed in a simple
(yet conservative) manner. When more accuracy is required, higher order LoAs can be used with
refined calculations of the mechanical parameters [Mutl2a]. Four LoAs can be applied for
punching shear according to the fib Model Code 2010 [FIB13, Mutl2a] (provisions based on the
CSCT [Mut08] as previously introduced), corresponding to the calculation of the slab rotation
based on: simple design equations (LoA I and LoA II); involving linear elastic analysis (LoA
II) or eventually nonlinear analysis to calculate the expected strain (LoA 1V). With respect to
the model uncertainties related to the different LoAs, it is important to say that: (a) a higher LoA
is expected to have a lower level of model uncertainty and (b) a lower LoA is likely to have a
certain conservative bias in order to yield safe design results despite the higher model
uncertainty.

In this work, the model uncertainty of LoA II (normally used for the design of new structures)
and LoA IV (often applied in the assessment of critical existing structures) of the CSCT for
punching shear will be investigated. The relationship between the model uncertainty of the
corresponding sub-models (failure criterion and load-rotation relationship) and that of the global
resistance model, as well as the relationship between the model uncertainties related to the
different LoAs, are investigated not only from a theoretical point of view, but also by quantifying
the corresponding uncertainties based on an evaluation of experimental data applying the
Bayesian inference method.
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3.1.4 Organisation of the document

In Section 3.2, a theoretical approach based on exponent sensitivity factors [Yu22] (resulting
from the assumption that the models can be approximated by a power-multiplicative form) is
introduced to investigate the sensitivity of the global resistance solution to governing parameters
of the sub-models. With the help of the exponent sensitivity factors [Yu22], and the assumption
that the global resistance solution model uncertainty originates from the independent model
uncertainties of the sub-models (the assumption will be later validated with experimental data),
the theoretical relationship between the model uncertainties of the global resistance model and
those of the sub-models is derived in a general format for strain-based approaches. The result is
applied in Section 3.3 to the practical case of CSCT for punching shear based on a parametric
study of the corresponding exponent sensitivity factors. In Section 3.4, the theoretical derivation
and the results obtained with the parametric study are then verified by the quantification of the
model uncertainties using a set of experimental data of punching shear tests. The results of the
model uncertainties obtained for the database of experimental tests are discussed in Section 3.5.
Eventually, Section 3.6 presents a discussion on the different safety formats required for strain-
based approaches focusing particularly on the provisions for punching shear design according
to the new generation of Eurocode 2 [CEN23].

It is worth mentioning that although applied to the case of punching shear, the methodology
followed in this paper to quantify the model uncertainty can also be applied to other strain-based
approaches likewise.

3.2  Theoretical analysis on the relationship of models’
uncertainties of strain-based approaches

As previously introduced, a strain-based approach is a structural resistance model that is a
function of both basic design variables x, = (x,,x,,...x, ) (€.g., material and geometrical variables)
and, at least, a strain state variable ¢ . The resistance of a strain-based approach can be expressed

in a general form as:

Ric = Frel(%,6),0pc ] = Fre (X, Opc) = FFC(XFC)'HFC (D)
& :F'L'[(Xb7R)70a'] = F‘c(xc’ec) = FL(XC).QL'
R,mlu = R = RFC

Where Rrc is the resistance according to the failure criterion function F,.(-); x,. =(x,,¢) is the
vector of all input variables of the failure criterion function; 6, is the model uncertainty random
variable of the failure criterion function; F,(-) is the load-strain function; x, =(x,,R) is the

vector of all input variables of the load-strain function; R is the load level and 6, is the model
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uncertainty random variable of the load-strain function. The actual resistance (Rsu) according
to a strain-based approach is achieved when the load level (R) is equal to the resistance according
to the failure criterion (Rrc). When the model uncertainty variables are considered to be in
multiplication form [JCS01] to the corresponding functions, Eq.(1) can be further simplified,

with F,.() and F.() representing the failure criterion function and the load-strain function

excluding the model uncertainty variables.

Alternatively, the solution of a strain-based approach can also be expressed directly as follows
(considering the global model uncertainty to be in a multiplicative form):

R

solu

= }Tsolu (Xb s gsalu) = Eolu (Xb) ’ gsalu (2)

Where R, is the resistance solution (calculated by solving the equation set of Eq. (1)), £, ()

u

is the resistance solution function, which usually has an implicit form; 6 _, is the model

solu

uncertainty of the resistance solution as a whole and £, () is the function excluding the model

uncertainty variable.

It should be noted that Eq. (2), with a global model uncertainty 6

solu >

represents the solution of

the equation set of Eq. (1) where the model uncertainties of the two sub-models are accounted
for separately (illustrated in Figure 3.3). It is assumed that the model uncertainty of the resistance
solution originates from the uncertainties related to the sub-models. The suitability of this
assumption will be further discussed later based on experimental data. In Figure 3.3, the
uncertainty of other related failure mode is also illustrated. For example, in the case of punching
shear, its load-rotation relationship is related to the flexural behaviour of the structure. When the
flexural resistance is reached, the load-rotation relationship will have a plateau due to the
formation of a flexural mechanism (assuming a perfectly plastic behaviour) [Mut08]. The
influence of other failure modes on the model uncertainty of the strain-based solution (as for
instance the flexural failure mode in Figure 3.3) will also be discussed in this paper.

F

Uncertaint[y of load-rotation model F,

Uncertainty of other failure modes
(flexural failure mode in the case of punching)

R

solu

Uncertainty of resistance solution R

__________ «—— Uncertainty of failure criterion model 7.

Figure 3.3: Ilustration of the different model uncertainties of a strain-based approach

For the theoretical derivation, the failure criterion and the load-strain functions are approximated
by a power-multiplicative form of the variables:

59



Model uncertainties and partial safety factors of strain-based approaches

T ot G
R = Frel(xy,€),0pc1= Cpe 'foﬂ" &7 O
i=1
N
& :F;,[(Xb,R),ag] =~ CL_ .Hxi'h:_‘ .Rnﬁ,k '95

i=1

Where C,.,n..,and n,., are the approximated coefficients of the failure criterion equation, and

C,, n,;and n_, are those of the load-strain equation.

The power-multiplicative form approximation is equivalent of performing a first order Taylor
expansion of the two functions after transferring all the variables into the logarithmic space. This
transformation is valid assuming that all the variables in Eq. (1) are positive scalar values.

In the following, all the exponent factors (7., n.,, 1. and n, ) will be referred to as

exponent sensitivity factors, which can be estimated by calculating a numerical derivative of the
variable of interest in the logarithmic space [Yu22].

On the basis of the multiplicative form approximation of the sub-models, it is then possible to
derive the explicit form of the resistance solution:

1 NpCe 1 e Ngcit e irC e (4)

N
— 1=n, pipc o 1=n, pipc 1=n; gitpc s 1=n, pipc - 1=n, pipc
=0pc - 0, “Cre -C, | Ixz'

i=1

R

solu &

The model uncertainty of the resistance solution can then be derived as:

1 Npe o ( 5)

— l=n; gigc 1=n; pitpc
=0, -0,

4

solu

From Eq. (5) it can be observed that:

= the sensitivity of the global model uncertainty to the sub-model uncertainties depends
on the exponent sensitivity factors, which, as a matter of fact, reflects the shape of the
sub-models’ functions.

= the global model uncertainty can be lower than the model uncertainty of both sub-
models, depending on the values of 7, , (the exponent on the load variable in the load-

strain relationship) and 7, (the exponent on the strain variable in the failure criterion).

This fact is important for the safety format calibration problem of strain-based solutions.

In the following sections, the relationship between the global model and the sub-models’
uncertainties will be further investigated for the example described above.
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3.3 Application of the theorical analysis to the case of
punching shear according to CSCT

In this section, the resistance model of the CSCT for punching shear of reinforced concrete slabs
without shear reinforcement without unbalanced moment (axisymmetric slab-column
connection) as proposed by Muttoni [Mut08] will be investigated.

The basic form (without partial safety factors) of the failure criterion of the CSCT [Mut08] is:

3/4 (6)

VFC = FC(XFCDQFC) = FFC[(Xh’V/)a‘gFC]Zbo.s d\/f 'QFC

1115 ¥4

g0+ g

Where V.. is punching resistance calculated with the failure criterion model F,..(-), X, =(x,,¥)
, w 1s the slab rotation outside the column region and by s is the perimeter of the critical section
located d/2 from the column face.

With respect to the load-rotation relationship, as previously introduced, four different LoA can
be used. In the following, only the LoA II (normally used for the design of new structures) and
the LoA IV (often used in the assessment of critical existing structures) load-rotation
relationships are investigated. The two LoAs share the same failure criterion (Eq. (6)), but differ
in the calculation of the rotation .

3.3.1 LoA II load-rotation relationship

The LoA II load-rotation relationship [Mut08] is given by:

, 3 (7
_ 1.55_f«v.(L)2 .HLR’”when V< Vﬂex
V=Fpu (X0 0) = Frp g [(%,,V), 0 1= d-E; Ve
—>oowhen V=V,
}"Y ,Of;, rv (8)
Ve = 270my ——=21d’p [, (1= ") ——

=T, 2f. r,—r,

Where F,, () is the LoA II load-rotation function, V' is the punching shear load level, V,, is
the load associated to the flexural resistance of the slab (yielding to a flexural mechanism
[Mut08]) and m, is the flexural resistance per unit width of the slab.

The punching shear resistance (7, , ) is reached when the punching shear load (V") is equal to
the resistance according to the failure criterion (V,.): V,, , =V =V, . According to the

theoretical derivation in Section 3.2, the model uncertainty variables for the LoA II model have
the following relationship:
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1 nrcs (9)
l=n, pinrc e I=n, g ilrce _ Q. Jorca . g Towu
—YFC

LRI

gsnlu,ll = HFC HLR,II

1 nFC,E

Where the two exponents 7,z ; = and nyp ;= represent the influence

1- N, guMrc,s 1- N, g uMrc.e

of the model uncertainties of the failure criterion and load-rotation relationship on the resistance
solution, respectively.

By comparing Eq. (6) and Eq.(7) to Eq.(3), it can be observed that for the LoA II, in the power
multiplicative form approximation of the punching shear resistance model:

- The exponent sensitivity factor associated with the load variable in the load-strain
function is equal to n,_, , =1.5 (the subscript Il refers to LoA II) when V' < V., and tends
to oo for V'=Viex.

- The exponent sensitivity factor associated with the strain variable in the failure criterion
ny., differs from case to case.

In order to get the range of .., for representative cases, a parametric study is performed. The

ranges of the basic design variables used in it are listed in Table 3.1 (only cases where V'<Vj,,
are investigated).

Table 3.1: Design information of geometrical and material variables for parametric

study of slab-column connections

Basic variables Values

1 538 MPa

Je 33.6 MPa

E; 200 000 MPa

E. 30 000 MPa

d varied between 150 and 350 mm

h 1.2-d

c two cases investigated: ¢ = 1.5-d and 3-d
T rs=250.22-h

varied between 0.5% and 1.5%

dg 16 mm

The normalized failure criterion and load-rotation curves for the cases listed in Table 3.1 are
plotted in Figure 3.5. The value of the exponent factor of the strain variable in the failure criterion
equation (n,., ) is calculated for each case at the LoA 1I resistance solution point. The results

are plotted in Figure 3.5(a), where, for clarity of illustration, —n,., 1is plotted (as n,., has a

negative value, corresponding to a decrease of the resistance for increasing values of the strain
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variable). The resulting exponent factor of the load variable in the load-rotation relationship
n, ., 1s constant and equal to 1.5 as it can be observed from Eq.(7) (plotted in Figure 3.5 (b)).

Consecutively, the values of parameters describing the influence of the failure criterion ( 7y,
) and of the load-rotation relationship (-7, ;) sub-models’ uncertainties on the resistance

solution are also calculated and plotted in Figure 3.5(c) and (d) (refer to Eq.(9) for definitions).
It can be observed that, for the investigated cases, the value of - n,. . changes within a relatively

modest range (from 0.38 to 0.74). Consequently, the values of the exponents 7., and —ngy;,

are also relatively stable for the investigated cases.
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=
5
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=
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d b 1 T _d =350 mm ? ’
0 0.02 0.04 0.06
W
Figure 3.4: Normalized failure criterion and LoA II load-rotation relationships obtained

with the parametric study (refer to Table 3.1 for details)

Ifboth 6,. and 6, , are assumed to be lognormally distributed (to be verified with experimental

data), the relationship between the Coefficient of Variation (CoV) of the global model
uncertainty and the sub-models’ uncertainties can be approximated as follows (based on Eq.

O):

- 2 2 2 2 10
CoV = \/ Npear CoVie +Ngrg i - CoVigy (10)

S

Based on the range of values of 7, ; (0.47t0 0.64) and -1, ;, (0.24 to 0.35), it can be inferred

that the CoV of the resistance solution (Co Vi, 1) 1s lower than the maximum of the CoV of the
sub-models. This result is consistent with the data reported in [Mut08] and already introduced
in Section 3.1.2.
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Figure 3.5: (a) values of —rpc . 5 (¢) Mgy 5 () Mppcy and (d) —71 ; Obtained

with LoA II plotted as a function of the ratio Vo, i/Vjiex

3.3.2 LoA IV load-rotation relationship

Alternatively, the load-rotation relationship can be evaluated with the LoA IV, which considers
explicitly the influence of concrete cracking, steel yielding and tension-stiffening on the flexural
behaviour of the structure. The LoA IV load-rotation relationship usually takes an implicit form,
which can be represented by the following function:

V= FLR,[V (x,, HLR,IV) = FLR,JV [(x,.V), HLR,IV] = FLR,[V (x,,7)- HLR,IV (1 1)

In this paper, the analytical nonlinear load-rotation relationship presented in [Mut08]
considering the quadrilinear moment-curvature relationship for the reinforced concrete cross
section is adopted (refer to Appendix 1 of [Mut08] for the full calculation procedure according
to LoA IV).

Since the load-rotation relationship takes an implicit form in the LoA IV, the exponent
sensitivity factor referring to the influence of the load variable in the load-rotation relationship
n, p v (the subscript IV refers to the LoA IV) also differs from case to case. Similar to the

estimation of the exponents in Section 3.3.1, a parametric study is performed to investigate the
ranges of values in which the exponent factors vary (again, only cases where V'<Vj., are
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investigated). The normalized failure criterion and load-rotation curves for the parametric study
are plotted in Figure 3.6.
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Figure 3.6: Normalized failure criterion and LoA IV load-rotation relationship obtained

for the parametric study

The values of -n,., and n,,, for each case are calculated at the LoA IV resistance solution

point (see results in Figure 3.7(a) and (b)). The values of nHFCJV:;and

1=n, g yhec

Rorpay = 1 Prce are also calculated and plotted in Figure 3.7 (c) and (d). The following

—n n

& RIVI'FCe

phenomena can be observed:

* A regime change can be observed in the values of 7, , , which is the result of the
change of the flexural behaviour of the slab from fully cracked with the reinforcement
in the elastic regime to partial yielding of the flexural reinforcement.

* The values of n,,, vary within a much larger range (1.1-6.7) than in LoA IIL
Consequently, 7y, and —ny,;p ;- also vary within significantly larger ranges (0.19-

0.71 and 0.12-0.38, respectively). It can also be observed that when the regime change
occurs with the increasing punching-to-flexural resistance ratio Vou,n/Viex, the values
Norc.yand —nyp o, decrease significantly. As a result, it can be anticipated that the

model uncertainty of the resistance solution should have decreasing CoV with
increasing Vow,n/Viex,. In other words, the model uncertainty of the resistance solution
should be heteroscedastic.
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The results of the theoretical derivation above presented are verified in the following sections
by quantifying the model uncertainty as a random variable based on a collected database of
experimental tests.

3.4 Model uncertainty quantification of CSCT for
punching shear

3.4.1 General considerations

The quantification of the model uncertainty of the CSCT for punching shear is performed on the
basis of the Bayesian inference framework (refer to Annex 3.A for details). For that purpose, a
database [Clé12, Dral6, Ein16, Gua09, Guil0, Hal96, Kin60, Lip12, Fer10, Tas11, Tol88] of
55 tests on the punching shear resistance of slender flat slabs is collected. Only tests of
axisymmetric slabs without shear reinforcement, subjected to a centred monotonic loading are
selected. Also, in order to investigate the model uncertainty of the load-rotation relationship,
only tests with explicitly reported data of the rotation at failure are selected (refer to Annex 3.B
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for the details on the test database). It should be noted that the quantification of model
uncertainties relies on test data from test reports. With this respect, it has to be considered that
the reported test data are inevitably influenced by errors associated with measurement devices
and measurement procedures involved in tests [Ell180, Fos16, Gar02]. In this work, the influence
of measurement errors in the test data is considered following the method proposed by Gardoni
et al. in [Gar02] (refer to Annex 3.A.2 and 3.A.3 for details on the treatment of measurement
errors). In the following, the model uncertainties of the sub-models of the CSCT (failure criterion
and load-rotation relationship), as well as of the global strain-based resistance model are
quantified.

3.4.2 Quantification of model uncertainties following LoA II

In this section, the model uncertainties of the LoA II of the CSCT punching shear resistance
model are investigated.
For the failure criterion, the observation of the model uncertainty (denoted as 6, ) for a given

result from the collected test database is given by:

v,

FC test

FFC(XFC) FFC(Xb’Wtext)

v,

FC test

(12)

FC T

Where V., is the failure load of the test, x,. are the corresponding input variables and v,

is the rotation at maximum load of the test ( 6,.. is illustrated in Figure 3.8(a)).

The Quantile-Quantile plot (Q-Q plot) of the logarithmic ¢,. data from the assembled punching
shear tests database is shown in Figure 3.8 (b).

Similarly, for the load-rotation relationship, the observation of the model uncertainty variable
(denoted as 6,, , ) is given by:

Viest _ Viest ( 13 )

FLR,[I (Xg) FLR,]I (Xb s Vsalu,text)

HLR,H =

The definition of &,, , is also illustrated in Figure 3.8 (a) and the Q-Q plot of the logarithmic

0, , data from the assembled punching shear test database is plotted in Figure 3.8 (c).

Finally, for the global solution model, the observation of the model uncertainty, denoted as 6, ,, ,

, 1s calculated as follows:

_ I/;olu Jtest ( 1 4)
solu, I —
F.;()lu,ll (Xb)
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The definition of 8, , is also illustrated in Figure 3.8 (a) and the Q-Q plot of the logarithm of

the 6, , data from the assembled punching shear test database is plotted in Figure 3.8 (d).
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Figure 3.8: (a) Definition of the model uncertainties of the sub-models (b) Quantile-

Quantile plot and statistics (mean value and CoV) of data of the model
uncertainty of the failure criterion, (c) LoA II load-rotation model and (d)

of resistance solution

The correlation matrix of the model uncertainty data from the failure criterion sub-model, the
load-rotation relationship sub-model, and the global resistance model are provided in Table 3.2.
It can be observed that the correlation coefficient (calculated as the ratio between their
covariance and the product of their standard deviations) between the failure criterion sub-model
and the load-rotation sub-model is relatively small (0.25). This result shows that the
independency assumption about these two variables is acceptable for these models.
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Table 3.2: Correlation matrix of the model uncertainty data of failure criterion model,

load strain model and global resistance solution of CSCT

Orc Orrn O ot
0, 1
O, 0.25 1
0 0.68 -0.50 1

3.4.3 Bayesian inference of the model uncertainty distributions
parameters

Based on the model uncertainty data presented above and applying the Bayesian inference
method [Box92] (refer to Annex 3.A.1 for details), posterior distributions and point estimates
can be calculated for the model uncertainty distribution parameters. The isolines of the resultant
posterior distributions and point estimates of the distribution parameters are plotted in
Figure 3.9(a). It should be noted that the Bayesian inference is performed for the mean ( z, ) and

standard deviation (o, ) of the logarithm of the model uncertainty variables (In(6) )(refer to

Annex 3.A.1 for details), but for clarity of illustration, the approximated mean value ( ji,) and

the coefficient of variation (CoV, ) of the original model uncertainty variable 6 are presented.

The relationship between the distribution parameters in the original space ( &, and CoV, ) and

in the logarithmic space (x, and o,) is approximated as i, = exp(x,) and CoV, =o,. It can

also be noticed that the value of Col v, differs slightly from the reported CoV in Figure 3.8. This

is because the value in Figure 3.8 is the sample CoV, but the value CoV, in Figure 3.9 is based

on the posterior estimation of o, .

Furthermore, through probabilistic modelling of the measurement errors (refer to Annex 3.A.2
and 3.A.3 for details), posterior distributions and point estimates of the model uncertainty
parameters considering the influence of measurement errors can also be calculated. The resultant
posterior distributions and point estimates of the three model uncertainty variables after
accounting for the influence of measurement errors are plotted in Figure 3.9(b). It can be
observed that measurement errors have a significant influence on the standard deviation of the
model uncertainty variables.
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Figure 3.9: Posterior distributions of model uncertainty distribution parameters of LoA

II (a)with and (b)without measurement errors

It can be observed from Figure 3.9 that the CoV of the model uncertainty of the global resistance
solution (pink) is significantly lower than those of the sub-models (blue and red), which is
consistent with the theoretical derivation of Section 3.3. Attention should be paid to this aspect
in the calibration of the codified safety format of strain-based approaches.
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3.4.4 Quantification of model uncertainties following LoA IV

The procedure outlined in the previous section is applied in this section for the LoA IV, notably
to calculate the model uncertainty of the load-rotation relationship sub-model and of the global
resistance solution. It should be noted that the model uncertainty of the failure criterion sub-
model remains the same for LoA II and LoA IV since the same failure criterion is used.

The Q-Q plot of the 8, and 6, , data from the assembled punching shear test database is
plotted in Figure 3.10.
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Figure 3.11:  Posterior distributions of model uncertainty distribution parameters of LoA

Based on the model uncertainty data, following the Bayesian inference method [Box92](refer to
Annex 3.A.1 for details), the point estimates of the model uncertainty distribution parameters of
the three models can be calculated. Their posterior distributions and point estimates are plotted
in Figure 3.11. It can be observed that the measurement errors have a more significant influence
on the distribution parameters of the load-rotation relationship model uncertainty of LoA IV
than that of LoA II. This result suggests that the influence of other sources of uncertainty (as the

IV (a) with and (b) without measurement errors
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measurement errors) becomes more influential in more refined approaches, which indicates that
the application of models with increased complexity and level of detail requires a critical
evaluation of additional sources of uncertainties.

3.5 Discussions on the model uncertainties of LoA II and
LoA IV

3.5.1 Comparison between the model uncertainties obtained for LoA
II and LoA IV

Comparing the Q-Q plots of the model uncertainty data of the LoA II (Figure 3.8) and LoA IV
(Figure 3.10) load-rotation sub-models, it can be observed that, as expected, the LoA 1V load-
rotation model uncertainty data has a smaller CoV (19.9 %) than LoA II (24.3%). Furthermore,
it can be observed that the LoA II load-rotation sub-model has a significant conservative bias
(mean value equal to 0.83, corresponding to an overestimation of the rotation at the resistance
point), while the corresponding LoA IV sub-model has a smaller unconservative bias (mean
value 1.06). These results are consistent with the principles of an approach based on LoAs
introduced in Section 3.1.3.

From the quantile-quantile plots of LoA Il and LoA IV load-rotation model uncertainties (Figure
3.8 and Figure 3.10), it can also be observed that the LoA IV data show a good fit to a lognormal
distribution, while LoA II data have relatively larger deviations in the tail region. This is also
consistent with the fact that the formula of the LoA II load-rotation relationship has been derived
analytically by simplification of the general formula of the mechanically based LoA IV load-
rotation relationship [Mut08], but not explicitly accounting for the two regimes described above
(elastic and elastic/partial yielding of reinforcement). It is reasonable to assume that the model
uncertainty of the LoA II load-rotation sub-model results from both the innate LoA IV load-
rotation model uncertainty and the additional epistemic uncertainty introduced by the
simplification process. This assumption is further supported by the correlation between the LoA
II and LoA IV load-rotation model uncertainty data (with a correlation coefficient of 0.71), as
plotted in Figure 3.12, where the cases with the flexural reinforcement remaining fully elastic
according to LoA IV are represented by blue dots and those with the flexural reinforcement
partially yielding are represented by red dots.
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3.5.2 Relationship between model uncertainty of sub-models and
global resistance solution

The global resistance model uncertainty data is plotted in Figure 3.13 as a function of the
punching-to-flexural resistance ratio Vou/Vjer for both the LoAll and the LoAIV. Also, the
estimated CoVs of the global resistance model uncertainty solution based on the relationship

CoV,, = \/ Ryre’ ~Co~V§C+ Rork’ -CoNVLZR (refer to Figure 3.9(a) and 3.11(a) for values of CoV,,. and

solu

CoNVLR ) are also calculated and plotted in Figure 3.13. It can be observed that the moving CoV

of the model uncertainty data (calculated with 15 neighbour data points) of both LoA 1T and LoA
IV shows a descending trend. It is interesting to note that for LoA IV, the estimated CoViop,iv
has a descending trend following well the test data. This is a resultant of the decreasing values
of nypc, and nyp, , with the regime change of the LoA IV load-rotation relationship (see

Figure 3.7). From another perspective, the decrease of the moving CoV of the resistance solution
model uncertainty originates from the fact that with the increase of the ratio of Vou/Vyex, the
behaviour is increasingly dominated by the flexural behaviour of the structure (as the amount of
flexural reinforcement yielded is increasing, resulting into a softer secant of the load-rotation
relationship at the resistance point), which tends to have lower model uncertainty than a
punching failure occurring in a regime where most of the flexural reinforcement is responding
in the elastic regime.

On the other hand, for LoA II, the estimated CoV., s has a relatively constant value since the
approximated LoA II load-rotation relationship does not differentiate the different regimes in
the flexural response, resulting in a larger deviation of the Co Vo, i from the moving CoV of the
test data. This result shows that lower LoAs also tend to have higher statistical uncertainty
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resulting from the simplifications and approximations made in the model (additional epistemic
uncertainties). It can also be observed that if the model uncertainty is directly approximated by
arandom variable at the solution level, potentially higher statistic uncertainty will be introduced,
since the heteroscedastic nature of the model uncertainty of the resistance solution is ignored.
From this perspective, it is more appropriate to quantify the model uncertainties at the sub-model
level (especially for higher LoAs), when sufficient data is available.
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Figure 3.13:  Moving average and moving CoV of (a) LoA II and (b) LoA IV resistance

solution model uncertainty data

3.6 Discussion on the partial safety factors for strain-based
approaches

The partial safety factor format is widely adopted in the semi-probabilistic approach for codified
reliability verification, in which partial safety factors are applied to the governing basic design
variables in order to account for different types of basic uncertainties [CEN04, FIB13]. From a
theoretical point of view, the partial safety factors required to achieve a target reliability index
change from case to case. Nevertheless, in codified design practice, fixed values of partial safety
factors are used for practical reasons. These partial safety factors are normally calibrated based
on given optimization criteria and various calibration methods are available for that
purpose [Fah21, Gay04, Rac00]. The calibration process of the different partial safety factors is
however out of the scope of this paper and the following discussion will rather focus on the
comparison and the consistency of the partial safety factors to be applied to the same verification
(punching shear in the present work) according to the different safety formats. In the following,
two types of partial safety factors formats (and notably to the case of CSCT for punching shear)
are compared.
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On the one hand, Safety Format A uses several partial safety factors (see Figure 3.14(a)): one
partial factor y,. applied to the failure criterion sub-model, another partial factor y,, applied

to load-rotation sub-model (assuming that model uncertainties are dominating) and the two
partial safety factors to material strength wvariables used in design codes such as
Eurocode [CEN23] and fib Model Code 2010 [FIB13] (. for concrete compressive strength

and y, for steel yielding strength) which apply implicitly to the load-rotation relationship

(reducing the flexural resistance Vz.x). The design values of the failure criterion, the rotation and
the punching resistance become:
(15)

1 -
RFC,d = Fee (Xb,d 2 €4)
FC

Eq = Vaer 'Fg(xb,daR)
R =R..,=R

solu,d A FC.,d

On the other hand, safety format B includes the application of a single partial factor y, to the
resistance solution (in addition to the two partial safety factors y, and y. which are commonly

used for the flexural failure mode):

1 - 16
R =—1F, (Xb,d) ( )

solu,d ,B
Vv

The effect of applying the partial factors individually to the sub-models (Safety Format A) is
illustrated in Figure 3.14 (a) for the LoA IV. It can be observed that when the partial safety
factors are applied to the sub-models, they have a nonlinear effect on the resistance solution.
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Figure 3.14: (a) Ilustration of the effect of the partial factors of sub-models to the design
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1100mm and d, = 16mm and (b) the equivalent partial safety factor y, ,

of Safety format B for constant partial safety factors y,. and y,, of
Safety format A for the LoA IV approach of CSCT

3.6.1 Relationship between partial safety factors of different safety
formats

Integrating the multiplicative form approximation of the failure criterion and the load-rotation
sub-models of Eq. (3) into Eq. (15) and (16), the following functions can be respectively derived
for the design resistance in the two safety formats:
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-1 "FC.e 1

Npc,i Tl iMFC e (1 7)

"FC.e N
— 1=n; phpc s 1=n; pitgc 1=n; gitgc 1=n; gitgc 1=n; gitgc
Ropwan =Vec e Cre -C, : | I Xid
i=1

1 npc.e N rcitfeilrc.s (1 8)
_ o, 1=n; gitgc o 1=n; piipc o 1=n, pipc »
Roas =7 Cre -C, ) I | Xid
i=1

By equalling the design resistance obtained with the two safety formats (R, , , = R,z ), the

following relationship between the partial safety factors associated to the two formats can be
analytically established as follows:

1 “MECe (19)

1=n; jitgc o 1=n; phigc
7 def

Yv =7Vrc
On the basis of the values of the exponent sensitivity factors from the parametric analysis (refer
to Figure 3.5 and Figure 3.7), it can be inferred that a given pair of partial safety factors y,. and
Y.y cotresponds to a range of values for y, due to the variation of the exponents sensitivity

factors (n,z and nrc.) for the different cases. For the LoA IV, an illustration of the resulting
values of y, , for fixed values of y,.=1.62 and y,, =1.33 is plotted in Figure 3.14(b) (the
choices of these values will be explained in Section 3.6.2). The effect of the partial safety factors
7. and y, (for the flexural failure mode) on the punching shear resistance is also plotted (the

factors n. and np represent their corresponding exponent sensitivity factors in the punching
resistance solution function). The following observations can be made from Figure 3.14:

- toachieve the same design resistance, the values of the partial safety factor y, , applied
to the resistance solution can take a lower value than the partial safety factors
individually applied to the sub-models;

- the partial safety factor y, , presents three regimes corresponding to the three regimes
at failure considered in the load-rotation relationship (punching with reinforcement
remaining elastic, punching with reinforcement partially yielding and flexural failure);

- the partial safety factors y. and y; have a nonnegligible influence on the punching
shear resistance in the regime of punching shear failure with the flexural reinforcement
partially yielding.

The results in Figure 3.14 show that Safety Format A applied to the LoA IV can effectively
account for the change of model uncertainties associated to the different punching shear failure
regimes. Due to this reason, Safety Format A is more suitable in higher LoA, where the load-
rotation relationship and the failure criterion sub-models are treated as two independent
functions and where the different regimes at failure are explicitly accounted for (through the
load-rotation relationship).
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Following the same procedure, for the LoA II, an illustration of the resulting values of y, , for
fixed values of y,. and y,, is plotted in Figure 3.15. It can be observed that, unlike the case of
the LoA IV, the value y, , varies in a much smaller range (although a decreasing value of y, ,

can be observed for increasing values of the rotation). This results from the fact that the different
punching shear failure regimes are not explicitly accounted for and are not differentiated in the
load-rotation relationship (due to the simplification made in the load-rotation relationship of
LoA 1II as discussed in Section 3.3.1). This result suggests that for LoA I, both safety formats
A and B are suitable. However, it should be noted that since the model uncertainty of the load-
rotation relationship is higher for LoA II, the partial safety factors y,. and y,, should also be

higher than those for LoA IV.
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Figure 3.15:  (a)lllustration of the effect of the partial factors on sub-models to the design

resistance solution (same geometrical and material parameters as in the
LoA IV cases are used) and (b) the equivalent partial safety factor y, , of
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Safety format B for fixed partial safety factors y,. and V4 Of Safety
format A for the LoA II approach of CSCT

3.6.2 Relationship between partial safety factors adopted for the
punching shear provisions in the second generation of
Eurocode 2

In the new generation of the European standard for concrete structures (Eurocode 2 [CEN23]),
a closed-form design expression is provided for the punching shear design (Clause 8.4 of
prEN1992-1-1:2023 [CEN23], typically to be used for designing new structures). As discussed
in reference [Mut23a], this design expression is analytically derived based on a power-
multiplicative form approximation of the failure criterion and the LoA II load-rotation
relationship (which corresponds to constant values of »,., and » ). The validity of the

approximated closed-form design expression (as well as the values of the exponents »,., and

&

n, , adopted in it) is confirmed by the relatively low level of model uncertainty associated with
it (refer to [Mut23b] for details). For this closed-form design expression, only the safety format
B can be adopted (as no distinction can be made between load-rotation and failure criterion sub-

models). The calibration of the partial safety factor y, required in Safety Format B for such

design expression is presented in reference [Mut23]. It accounts not only for the model
uncertainty, but also for the material and geometrical uncertainties involved in the design model
(refer to [Mut23] for the calibration details), a value of y, =1.40 is proposed [Mut23b].

Alternative to the closed-form design expression in Clause 8, in Annex I of FprEN1992-1-
1:2023 [CEN23] (assessment of critical existing structures), the application of the strain-based
punching shear resistance model is also provided. In this case, the Safety Format A is adopted
and the following design formula is used:

Viea _ 1 3/4 (20)
bo,sd\/f Y rc 1+15We17'd
g0+dg

Va=7ar 'FLR (Xb,d V)
Vm/u,d,A = VFC,d =V

It should be noted that different LoAs of the load-rotation relationship are allowed to be used in
Eq.(20). Theoretically, the partial safety factors should be calibrated individually accounting for
their respective model uncertainties. However, in order to provide a relatively simple safety
format that is convenient in practice, the partial safety factors are not differentiated for the
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different LoAs of load-rotation relationships used in Eq.(20) and, to be on the conservative side,
the model uncertainties of lower LoA are adopted in the calibration of the partial safety factors.

With the relationship between safety factors presented in Eq. (19), the value of y,. can be
calculated based on the values of y, and y,, . Consistent with the functions adopted in the

derivation of closed-form design expression of Clause 8.4 of FprEN 1992-1-1:2023 [CEN23,

Mutl7, Mut23b], #,., -~ and x_, -5 are adopted (such values also agree with the result of the

2
parametric study of Section 3.3.1) and Eq.(19) relating the different partial safety factor
becomes:

vy 2D

Yre =33
Vo der

Using Eq.(21), the relationship between y,. and y, for different values of y,, is plotted in

Figure 3.16. It can also be observed that in most of the cases, the value of y,. is higher than the

1.622 777777777777 / /

value of yy,.
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Figure 3.16:  Relationship between the partial safety factor applied to resistance solution
7, (Safety Format B) and the partial safety factors applied to the sub-

models y,. and y,, (Safety Format A) adopting the exponent factors

2 3
Npce = -3 and e R =7

It is further assumed that the global resistance solution of strain-based model in Eq.(20) has the
same level of model uncertainty as the closed-form expression. This assumption should be
conservative for LoA II and LoA IV since in principle they should have lower level of model
uncertainties than the closed-form expression. Following this assumption, the partial safety
factor applied to the global resistance solution (Safety Format B) of the strain-based model can
be conservatively taken the same as the one for the closed-form design expression as y, =1.40.

Consider in addition that y,,= 1.33 [Mut08, Fer08], the value of y,. can be calculated as

follows:
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: (22)
Vre = ;TV ~1.62

def

This set of partial safety factors is adopted in Annex I of FprEN1992-1-1:2023 [CEN23], leading
the failure criterion to be written in a general format as:

Vieca _ 1 314 7 3/4 (23)
bosd\fe Tre s Vad 7 st vd
g0+dg dg0+dg

It should be emphasized that the relationship of the partial safety factors in Eq.(23) is derived
based on the conservative assumption that the model uncertainties of the global resistance
solution of higher LoAs are the same as that of the closed-form design expression. Theoretically,
more refined calibration of the partial safety factors for higher LoAs can be performed by
accounting for their corresponding model uncertainties. The format of Eq.(23) is adopted in
Annex [ [CEN23] as a conservative and consistent solution for engineering practice and, in
addition, it also includes the relationship between the different partial safety factors of different
safety formats for the strain-based approaches.

3.7 Conclusions

The model uncertainties of the sub-models and of the global solution of strain based-approaches,
their relationship and their impact on the suitable safety format to be adopted in design
provisions are investigated in this work.

A general theoretical approach to investigate the above-mentioned issues is first introduced,
showing that:

= By approximating the sub-models of a strain-based approach in a power-multiplicative
form, it is possible to easily establish the relationship between the model uncertainty of
the global solution and those of the sub-models of strain-based approaches.

= The model uncertainty of the global solution can be viewed as a resultant of the model
uncertainty of the sub-models. The influence of the sub-models on the uncertainty of
global solution depends however on their sensitivity relationship (represented by the
exponent sensitivity factors). With this respect, it is shown that the global model
uncertainty can be lower than the sub-models’ uncertainties, which is a relevant point to
be accounted for in the safety format calibration of strain-based approaches.

The theoretical approach introduced in this work is thereafter applied to the strain-based
approach of the Critical Shear Crack Theory (CSCT) for punching of reinforced concrete slabs
as an example (applying the approach by Levels-of-Approximation, LoA). In addition, the
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model uncertainties of the sub-models and of the global solution are also quantified by means
of a parametric analysis and experimental data. The main conclusions resulting from this work
are:

= The model uncertainty quantification confirms that the global solution uncertainty can
be significantly lower than those of the sub-models.

* By analysing two levels of approximation (namely LoA II and LoA IV according to fib
MC 2010), it is shown that the model uncertainty decreases with the increase of the LoA
(consistently with the main principles of such an approach). Furthermore, the model
uncertainty of lower LoAs can be considered as a resultant of the uncertainty of higher
LoAs and the additional epistemic model uncertainty introduced in the simplification
procedure adopted for the derivation of the lower LoA formulae.

= For higher LoAs, an approach based on the application of partial safety factors to the
sub-models appears to be more suitable than an approach relying on the application of
a single global partial safety factor to the resistance solution, since they can effectively
account for the change of model uncertainty associated to the change of the failure mode.
Particular attention needs to be paid to the nonlinear relationship between the partial
safety factors applied to the sub-models and the resulting design resistance for strain-
based approaches.

= [t is shown that, if constant partial safety factors are adopted for the sub-models, the
resulting global partial safety factor can vary depending on the material and geometrical
parameters as well as on the resulting failure modes. For the investigated case, the global
partial safety factor for punching according to the LoA IV varies between 1.48 and 1.00.

Based on some assumptions described in this work, the relationship between the safety factors
of the punching shear provisions in the second generation of Eurocode 2 for the design of new
structures (Clause 8.4) and the assessment of existing critical ones (Annex I) is established,
justifying the safety format adopted for the latter.

Annex 3.A Model uncertainty quantification accounting for
measurement error

3.A.1 Model uncertainty quantification using Bayesian method

For the purpose of model uncertainty quantification, the Bayesian method for statistical
inference of random variables is first briefly summarized.

A general form of the models of interests is considered:
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F =F(x,0) = F(x,0) = F(x)-0 = F(x)-exp(vo,, + 11,) (24)

Where F is the output variable of a given model (e.g., the punching strength 7, in the failure
criterion model of Eq.(6), the rotation angle y in the load-rotation model of Eq. (7) and (11)

and the punching resistance 7,

solu

in the global solution models), xis the vector of all input

variables of the model, including the basic variables and also the strain or load state variables;
6 is the model uncertainty random variable and @ is the vector of distribution parameters of &

Assuming that the model uncertainty variable follows a lognormal distribution (which is
consistent with the assumption adopted in literature [JCS01]) and it is in a multiplicative form
with the deterministic mechanical model [JCS01], Equation (24) is further extended, where
®=(u,,0,) are mean value and standard deviation of the logarithmic model uncertainty

variable @, F(-) is the deterministic mechanical model, exp(:) is the natural exponential

function, v is a standard normal distributed variable with zero mean and unit variance. The term
exp(vo, + 1,) in this equation is equivalent to the model uncertainty random variable 6.

To quantify the model uncertainty, the distribution parameters © = (y,,0,) need to be estimated

based on data observed from relevant experiments. In this paper, Bayesian approach will be used
for this purpose.

In Bayesian approach, the updating rule is used to make inference of the parameters © :
/(@) =xL(©)p(®) (25)

Where f(®) is the posterior distribution of the parameters accounting for the updated state of
knowledge, L(®) is the likelihood function representing the objective information contained in
a set of observed data related to @ , p(®) is the prior distribution reflecting the a-prior knowledge
about ® and x is the normalising factor, K=[IL(®)p(®)d®]_l. The likelihood function is

proportional to the conditioned probability of the occurrence of the observed data for given value
of ©.

In Bayesian framework, the choice of the prior distribution of the parameters can be based on
prior knowledge of the parameters. When there is no prior information available the
noninformative prior should be used [Box92].

The likelihood function is the conditional distribution function describing the likelihood of
occurrence of observations for given values of ©®. For the model uncertainty variable, the
observation values can be collected from a database of relevant test results. For a given test
result, the observed model uncertainty value can be calculated as:

(26)

5 L2,..,N,
j =y J=L24,.. t
F(x;)
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Where 6, is observed model uncertainty value of the J™ test, F, is the observed value of F in J*

test, x; is the vector of input variables of the ™ test, F(x‘ ;) is the calculated value based on the

model and N, is the total number of tests in the database.

Since 6 is assumed to follow a lognormal distribution with the parameters o, and y,, based on

the test database, the likelihood function can then be formulated as:

Lty,00) < [ [y —o(———

J=1 4 [4

y: { 1 In(0)-u, )} @7

Where In(-) is the natural based logarithmic function and ¢(-) is the standard normal probability

density function.

Based on the likelihood function in Eq. (27) and the noninformative prior distribution function,
theoretically the posterior distribution of © is available and point estimates of ® can be made
by calculating the posterior mean values. In addition, the covariance matrix of ® can also be
calculated to evaluate the confidence level in the point estimates. In this paper, to calculate these
statistics, the Hamiltonian Monte Carlo simulation method [Nea96] is employed, details of this
method can be consulted elsewhere [Nea96, Neall].

3.A.2 Treatment of measurement error in the Bayesian inference

In Section 3.A.1, the general Bayesian inference procedure for the model uncertainty
quantification problem is explained. In this section the quantification method is further advanced
by proper treatment of the influence of measurement error in the test data. The method used in
the paper is based on the method proposed by Gardoni et al. in [Gar02].

The quantification of model uncertainties relies on test data from test reports. It has to be
considered that the reported test results are influenced by the error due to measurement devices
and measurement procedures involved in tests [ElI80, Fos16, Gar02].

In order to take the influence of measurement errors into consideration, first they are modelled
as random variables. Denote x, as the true value for the i” input variable and %, as the measured

value of the corresponding variable. Assume that the measurement error related to the variable
is represented by a random variable e and the true value x, can be represented as the measured

value x, multiplied by the measurement error variablee, :
X, =X e, (28)

i xi

Accounting for the measurement error terms, Eq.(24) becomes:
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F=F(x)-0=F[(% e,,...%, ey)]-0 (29)

On the basis of Eq. (29), to achieve feasible form of the likelihood function, similar to the
approach used in Section 3.2, the multiplicative approximation form of the mechanical model

F(-) is used. The multiplicative approximation form of F(-) is

- orea A ul A n; 30
F(x)=F[(% -, Xy €)= C-T[ (£ -€,)" (30)

i=1
Where C and n, are the approximated first order coefficients of the model. It should be noted

that the values of C and n, vary from test to test.

Then Eq. (29) can be reformulated as:

F=F(x)-9;C-lﬂ[(fcf~eﬂ.)"’-9 1

i=1

= F@)'H(ex,-)”’ -0

In the previous derivation, only the measurement errors of the input variables are accounted for.
To be consistent, the measurement error of the output variable F is also considered. Similar to
the input variables, the measurement error of the output variable is modelled as a random

variable e, and it is considered that the measured value ¥ can be represented by the actual
value of F multiplied by the measurement error variable: ¥ = F-e, . Based on this assumption,

the following relationship can be derived:

F=F-e,=F&)[[(e.)" -0-e, (32)
i=1

A

Define 0 = % as the measured model uncertainty variable, based on Eq. (32), it can be derived
X

as:

F (33)

n N
O=——=0-]||(,)" e
EENEY '

Further assume that all the measurement error terms follow independent lognormal distributions

(with known distribution parameters), then it can be observed that &is a lognormally distributed

random variable, with the following distribution parameters:
Y 34

Hy =ty + D Mple, + M, G4

i=1

N 35
o, = \/0'02 +Z(n,.o",ﬂ )? +O'fF (35)
i=1
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Using the test database, a set of observations values of @ can be calculated. The likelihood
function for the model uncertainty variable can be then formulated as:

v | ) -4 (36)
Lty 0,) o [ [{—o(——)
=% 9

J J

It should be noted that the values of the exponents », vary from test to test. Using the likelihood

function of Eq.(36), the posterior distributions of the model uncertainty distribution parameters
can be calculated and the corresponding point estimates (posterior means) can be made by
Hamiltonian Monte Carlo simulation method [Nea96].

3.A.3. Probabilistic models for measurement errors

The probabilistic modelling of the measurement error terms involved in the CSCT punching
shear resistance function is explained in this annex. In this paper, the measurement errors of the
geometrical variables, material strength variables, the load and rotation variables are accounted
for. In particular, for the measurement error of the effective depth variable d and the slab rotation
variable v, the database is divided into different groups depending on the quality of
measurement in tests. For the effective depth, in most of recent tests, it has been measured on
saw-cuts after testing. For this type of test data, a relatively low variability of the measurement
error is assumed (Standard deviation= 2 mm) [Mut23]. On the other hand, in the tests without
measurement of saw-cuts showing the cross-section after tests, a higher variability is assumed
(Standard deviation =4 mm). For the slab rotation data, in some tests, it is directly measured by
inclinometer instrumented on the slabs; in the other tests, it is calculated based on measurement
of the displacement of the tested slabs. For the tests with direct measurement of rotation data, a
relatively low variability is assumed (CoV=5%), while for the tests with indirect derived rotation
data, a higher variability is assumed (CoV = 10%).

All the measurement error variables are assumed to follow lognormal distribution and their
assumed CoV values are adapted from [Mut23] and listed in Table 3.3. The mean values
correspond to the average of the measured values given in the test reports or to the nominal
values
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Table 3.3: Measurement error for different experimental variables
Parameter CoV
Effective depth d Nominal value or measured before casting 4/d (d in [mm])
Measured on saw-cuts after testing 2/d
Column size ¢ 1%
Maximum aggregate size dy 10%
Radius of the point of contraflexure 7, 5%
Compressive concrete strength £ (measured on control specimens) 5.8%
Yield strength of flexural reinforcement f; (measured on control specimens) 2%
Punching shear resistance (measured in the laboratory) 3%
Rotation y at failure Measured with inclinometers 5%
Calculated on the basis of deflections 10%
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Annex 3.B Tests used in the database

Table 3.4: Information of the assembled punching shear test database
Reference Specimen  Viest [KN] et [¥1073] Vson,r Vi Vson,iv View
Vot Vsotu,1v
Kinnunen & Nylander ~ IAl15a-5  254.8 12.0 2370 1.08 2546 1.00
[Kin60] IA15a-6 2744 15.1 2386 115 2572 1.07
IA15¢-11 3332 10.3 2889 1.15 3100 1.07
IA15¢-12 3312 9.2 288.6 1.15 3099 1.07
1A30a-24 429.2 14.6 400.0 1.07 423.6 1.01
[A30a-25 407.7 13.0 377.8 1.08  400.0 1.02
IA30c-30 490 124 4333 1.13 4578 1.07
IA30c-31 539 14.3 429.6 125 4532 1.19
IA30e-34 331.2 23.0 321.0 1.03 3256 1.02
IA30e-35 3312 20.4 3178 1.04 3246 1.02
Guandalini et al. PG-1 1023 8.9 8373 122 8614 1.19
[Gua09] PG-3 2153 8.4 1699.6 127  2023.0 1.06
PG-6 238 11.7 229.1 1.04 2444 097
PG-7 241 22.3 1955 123 2128 1.13
PG-10 540 22.3 451.0 120 5053 1.07
Guidotti PGl11 763 10.3 6693 1.14 7570 1.01
[Guil0] PG19 860 10.5 736.1 1.17 8293 1.04
PG20 1094 7.1 9774 1.12  1036.1 1.06
PG23 839 10.0 770.1  1.09  846.6 0.99
PG24 1102 8.6 9483 1.16  999.8 1.10
PG25 935 124 6553 143 7543 124
PG26 1175 8.5 853.1 138 8893 132
PG27 900 12.1 7042 128 7939 1.13
PG28 1098 7.8 9278 1.18 9757 1.13
PG29 854 10.6 781.7 1.09  858.8 0.99
PG30 1049 7.5 963.6 1.09 1012.6 1.04
Einpaul et al. PEIO 530 6.5 4983 1.06 573.1 092
[Ein16] PEI1 712 10.1 5875 1.21 673.7 1.06
PE9 935 13.8 784.7 1.19 8899  1.05
PE12 1206 29.4 989.8 1.22 1092.2 1.10
PE6 656 4.5 6343 1.03  662.6 0.99
PE7 871 6.7 7694 1.13  809.5 1.08
PE8 1091 8.7 986.6 1.11 1035.0 1.05
PES 1477 12.7 1286.8 1.15 13119 1.13
PE3 961 10.0 800.1 1.20 8583 1.12
PE4 985 5.3 1029.4 0.96 1005.7 0.98
Tassinari PT22 989 15.6 776.7 127 8874 1.11
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[Tas1l1] PT31 1433 10.6 1129.6 1.27 12158 1.18
Clément PF21 1838 52 1540.8 1.19 1632.7 1.13
[Clél12] PF22 2007 3.8 1965.7 1.02 19314 1.04
PF23 2685 8.3 2008.3 1.34  2088.1 1.29
Lips etal. PL1 682 6.0 636.2 1.07 6650 1.03
[Lip12] PL3 1324 13.2 1196.5 1.11 1216.7 1.09
PLA4 1625 6.5 1483.6 1.10 1476.6 1.10
PL5 2491 4.7 2588.5 096  2466.6 1.01
Tolf S2.1 603 8.5 646.0  0.93 692.6  0.87
[Tol88] S2.2 600 10.7 629.1 095 672.6  0.89
S2.3 489 17.8 4713  1.04 529.8  0.92
S2.4 444 15.8 4554  0.97 512.7  0.87
Hallgren HSCO 965 14.1 888.7 1.09 10259 0.94
[Hal96] HSC1 1021 13.2 8884 1.15 1026.7 0.99
HSC2 889 10.9 8385 1.06  966.7 0.92
Fernandez Ruiz et al. PV1 974 7.6 9141 1.07 932.8 1.05
[Fer10]
Drakatos et al. PD7 983 20.0 843.0 1.17 9441 1.04
[Dral6] PD9 1040 11.3 1036.9 1.00 1058.0 0.98
Average - - - - 1.13 - 1.05
CoV - - - - 94% - 8.8%
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Notation

Latin upper case letters

Cre

CS
CoV
CoV,
CoVs,

CoVys,

F;olu,][ ()
F.;‘()/M,]V ()
F.()
F,()
L()

R

Rrc
Rrca
Rsolu
Rsolu,d

V

Vrc

VF C,test

I/ﬂex

Vsolu,[[

the approximated intercept coefficient of the failure criteria equation
the approximated intercept coefficient of the load-strain equation

coefficient of variation of a random variable

The estimated coefficient of variation of the model uncertainty variable

the estimate of the 5% quantile of the posterior distribution of CoV,

the estimate of the 95% quantile of the posterior distribution of CoN v,
the elastic modulus of steel reinforcement

the measured value of the output variable F in a model

the deterministic part of a model

the LoA II load-rotation function (accounting for model uncertainty variable)

the deterministic LoA II load-rotation function

the LoA IV load-rotation function (accounting for model uncertainty variable)

the deterministic LoA IV load-rotation function

the failure criterion function (accounting for model uncertainty variable)

the deterministic failure criterion function

the resistance solution function of strain-based approach

the deterministic resistance solution function for LoA II
the deterministic resistance solution function for LoA IV

the load-strain function (accounting for model uncertainty variable)

the deterministic load-strain function

the likelihood function

the load level for a structural element

the strength of a structural element according to the failure criterion model
the design failure criterion function

the resistance solution of a structural element

the design resistance of a structural element according to a given safety format
the punching shear load level

the punching strength calculated with failure criterion model

the punching shear strength corresponding to a given rotation level observed
in an experimental test

the punching shear load associated with flexural resistance of the slab

the punching shear resistance calculated with the LoA II
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Vvolu,[ V

Vsolu, test

the punching shear resistance calculated with the LoA IV
the punching shear resistance observed in an experimental test

Latin lower case letters

bos
c

exp(")
fe
fek
Som
5
ok
Som
SO

In(-)
mg

e

NeR 1T
NgR 1V
nerci

nerc1v

NeoLR,I1

perimeter of the critical section for punching shear

rectangular column size

the distance from extreme compression fibre to the centroid of the longitudinal
tensile reinforcement (the effective depth)

the maximum diameter of the aggregate

the reference aggregate size (dy = 16 mm)

the measurement error vector

the measurement error of the derived variable F in a model

the measurement error of the i variable in a model
the natural exponential function

the uniaxial compressive strength of concrete (cylinder)

the characteristic value of the uniaxial compressive strength of concrete

The mean value of the uniaxial compressive strength of concrete

the yield strength of steel reinforcement

The characteristic value of the yield strength of steel reinforcement

The mean value of the yield strength of steel reinforcement

the posterior distribution function accounting for the updated state of
knowledge

the thickness of a concrete slab

the natural based logarithmic function

the nominal flexural resistance per unit width of the slab

the exponent sensitivity factor (referred to as exponent below) of concrete
compressive strength variable in the resistance solution

the exponent of the steel yielding strength in the resistance solution

" basic variable in the failure criteria

the exponent of the i
the exponent of the strain variable in the failure criteria

the exponent of the i basic variable in the load-strain function

the exponent of the load variable in the load-strain function

the exponent of the shear load for the LoA II load-strain function

the exponent of the shear load for the LoA IV load-strain function

the exponent of the failure criterion model uncertainty in the LoA Il resistance
solution

the exponent of the failure criterion model uncertainty in the LoA IV resistance
solution

the exponent of the load-rotation model uncertainty in the LoA II resistance
solution
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noLr 11
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e
rq

s

the exponent of the load-rotation model uncertainty in the LoA IV resistance
solution

the prior distribution function

the radius of the column

the radius of the load introduction at the perimeter

the radius of isolated slab element

vector of all input variables of a model

vector of the measured input variables of a model

vector of basic variables for a structural element

vector of design values of basic variables for a structural element
vector of all input variables of the failure criterion function
the vector of all input variables of the load strain function

a standard normal distributed variable (with zero mean and unit variance)

Greek upper case letters

®

vector of the mean and standard deviation of the logarithmic model uncertainty
variable

Greek lower case letters

a
e

Ve
VFc
Y frex
Vs
Vv
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LR, II

>

LRIV

'Q;«FD 2

solu *

)

solu, Il

NN
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direction of the crack in a reinforced concrete panel subjected to shear
shear strain
the partial safety factor applied to concrete compressive strength

the partial safety factor applied to the failure criterion function
the partial safety factor for the flexural resistance of a slab

the partial safety factor applied to steel yield strength

the partial safety factor applied to the resistance solution

the partial safety factor applied to the load-rotation relationship

strain state variable of a structural element
principle strains of concrete

design value of the load strain relationship

strain of steel reinforcement

the model uncertainty random variable of the LoA 1I load-rotation model
the model uncertainty random variable of the LoA IV load-rotation model
the model uncertainty random variable of the failure criterion function
the model uncertainty random variable of the load-strain function

the model uncertainty of the resistance solution as a whole

the model uncertainty of the resistance solution for LoA 11

the model uncertainty of the resistance solution for LoA IV
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Hsy,

Hosy,
Ho

o, and O,

the measured model uncertainty random variable (including measurement
error)

the normalising factor for the posterior distribution function

the mean value of In(er)

the mean value of In(ey;)

the mean value of the logarithmic model uncert o, ainty variable

the mean value of the measured logarithmic model uncertainty variable
(including measurement error)
the estimate of the 5% quantile of the posterior distribution of ,

the estimate of the 95% quantile of the posterior distribution of 7,

the mean value of the original model uncertainty variable i, ~ exp(x,)
the reinforcement ratio

the principal stresses of concrete

stress of steel reinforcement

the standard deviation of In(er)

the standard deviation of In(ey;)

the standard deviation of the logarithmic model uncertainty variable

the standard deviation of the measured logarithmic model uncertainty variable
(including measurement error)

shear stress applied to a shear panel

the standard normal probability density function

the rotation angle of a slab outside the column region in a slab column
connection
the measured rotation angle of the slab in an experimental test
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Chapter 4

A consistent safety format and design
approach for brittle systems and
application to Textile Reinforced
Concrete structures

This chapter is the post-print version of the article mentioned below, published in Engineering
Structures Journal. The authors of the article are Qianhui Yu (PhD Candidate), Patrick Valeri,
Prof. Miguel Fernandez Ruiz and Prof. Aurelio Muttoni (thesis director). The reference is the
following:

Yu Q., Valeri, P., Fernandez Ruiz M., Muttoni A., 4 consistent safety format and design
approach for brittle systems and application to textile reinforced concrete structures,
Engineering Structures, Vol. 249, 113306, 2021.

(DOIL: https://doi.org/10.1016/j.engstruct.2021.113306)

The work presents in this publication was performed by Qianhui Yu collaborating with Patrick
Valeri, Prof. Miguel Fernandez Ruiz and under the supervision of Prof. Aurelio Muttoni who
provided constant and valuable feedbacks, proofreading and revisions of the manuscript.

The main contributions of Qianhui Yu to this article and chapter are the followings:

= Post-process of the data of nine three point bending experimental test of Textile
Reinforced Concrete (TRC) beams (measurement after saw-cut of the beam cross
sections and Digital Image Correlation data process).

= Modelling of the flexural response of the tested TRC beams and interpretation of the
test results.

=  Modelling of the assembled cross-beam systems and collection of action effect model
uncertainty data on its basis

» Interpretation of the action effect model uncertainty data for different analysis methods.
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= Parametric analysis and discussion for the applicability of different action effect analysis
models for textile reinforced concrete beams.

= Proposition of suitable action effect analysis methods for textile reinforced concrete
beams.

= (Calibration of different partial safety formats for the flexural design for textile
reinforced concrete structures.

= Elaboration of the figures and tables included in the article.

= Writing of the manuscript of the article.
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Abstract

Abstract

Design and verification of structures in modern codes of practice account for a safety format,
ensuring that the probability of failure does not exceed a given threshold. Although specific
safety formats are proposed in some cases for special types of structures or analyses, most
designs and verifications are currently performed on the basis of the Partial Safety Factor Format
(PSFF). This format is applied to cover different materials and structural responses, allowing for
a uniform methodology to account for reliability. Such consideration greatly simplifies the
design process, but raises concerns on its consistency when different structural responses are
observed. In the PSFF as considered in fib Model Code and Eurocodes, no explicit distinction is
made on the value of the partial safety factors (for actions or materials) depending on whether a
structural system has a brittle or a ductile response. This can be potentially inconsistent, as brittle
systems have limited or no redistribution capacity of internal forces (which can give rise to
premature failures if action effects are poorly estimated), while ductile systems have large
potentials to redistribute internal forces and are thus little sensitive to this issue.

In this work, to investigate on the suitability of PSFF for brittle structures, the most suitable
manner to determine internal forces for brittle elements failing in bending and the corresponding
model uncertainties of action effects are investigated in detail. The concepts are derived from a
theoretical perspective and applied to the case of Textile Reinforced Concrete (TRC). This
material is a promising development to reduce the carbon footprint of concrete construction and
to build lightweight structures, but exhibits a very brittle response in bending (contrary to
ordinary reinforced concrete with usual reinforcement ratios). In this work, by means of an
experimental and theoretical investigation, it is shown that following a suitable approach to
estimate internal forces for brittle systems as TRC leads to a low level of model uncertainty of
action effects. This leads to the conclusion that, compared to standard design of ductile systems,
no additional correction is required for safety issues. Following this outcome, the partial factors
for TRC structures are calibrated. In addition, due to the significance of geometrical
uncertainties, a method for designing TRC on the basis of a design value of the effective depth
(a reduced value accounting for construction tolerances instead of its nominal dimension) is
eventually discussed, showing that it allows for a more uniform level of safety.

Keywords: safety format, brittle response, statically indeterminate system, action effect model
uncertainty, Textile Reinforced Concrete, tests
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4.1 Introduction

In the last decades, Textile Reinforced Concrete (TRC) has emerged as an interesting alternative
to reinforced concrete, allowing to reduce material consumption and the carbon footprint of
cementitious-based materials [Garl5, He02, Val20]. This new paradigm relies on the use of a
non-metallic fabric as reinforcement (typically made of carbon or glass), which is insensitive to
corrosion. As a consequence, cover requirements of the reinforcement can be reduced to
minimum static values, allowing to decrease the overall thickness of TRC elements to 10-30
mm. In addition, since no passivation of the reinforcement is required, a low-clinker content
cement can also be used allowing to reduce the environmental footprint of the material related
to its CO, emissions.

Despite the potential of TRC, its practical use remains still limited. This is to a large extent
explained by the lack of a consistent design framework. Conventional methods widely accepted
for reinforced concrete are potentially not directly applicable to TRC due to its brittle nature.
This issue is particularly instrumental in the case of statically indeterminate structures, where
redistributions of internal forces are usually required to develop the full structural strength of
the system. Other aspects that are critical for the application of TRC in practice are the potential
sensitivity of thin elements to construction tolerances and its reduced resistance in case of
fire [Coll1, Ehl10, Rei08].

Currently, several analytical and numerical models are available to describe the response of TRC
members with respect to its sectional behaviour. An extensive review of the state-of-the-art can
be consulted elsewhere (see for instance [Bra06, Pell7]). These approaches refer normally to
mean material properties and allow determining the average resistance of TRC structural
elements (or with a bias factor which should be close to 1.0). However, their application in
practice requires accounting for the inevitable uncertainties inherent to structural design. As a
consequence, a suitable safety format needs to be implemented, ensuring that the probability of
failure does not exceed an acceptable threshold. In the case of the resistance formulae, such
format shall account for the variability of the material properties as well as uncertainties related
to the calculation model and to construction tolerances.

For the reliability verification of structures, the so-called Partial Safety Factor Format (PSFF) is
adopted in many design codes (Eurocodes [CEN02, CENO04] and fib Model Code [FIB13] for
example). In the PSFF, design values of the basic variables are defined through partial safety
factors and limit state verifications are made with the design values of basic variables [CEN02].
Partial factors for different materials and actions need to be calibrated so that the reliability levels
for representative structures in design are as close as possible to the target reliability level. With
respect to the adoption of a suitable safety format for TRC design, several efforts have been
performed in the past [Haul9, Jus15, Krol9, Rem18, Rem20, Wes18] to address the principles
of structural reliability and design procedures.
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The relationship between individual partial factors in PSFF of Eurocodes is shown in Figure
4.1(adapted from Figure C3 in EN1990:2002 [CENO02] accounting for the new definitions in the
draft of the second generation of prEN1990:2020 [CEN20]). It should be noted that in addition
to the basic uncertainties listed in Figure 4.1, the partial safety factors should also account for
approximations and uncertainties in the safety format calibration. Also, it has to be noted that
this figure describes the classical verification method for structures, where the analysis
(calculation of internal forces) is conducted separately from the calculation of the associated
resistances. Within this frame, the verification is conducted at a given cross section by
comparison of sectional internal forces and related resistances. Such procedure will be referred
in the following as a local verification. As an alternative, the distribution of internal forces can
be calculated considering the response and strength of the materials (following a nonlinear
analysis). This allows one to determine directly the load-carrying capacity of the system and will
be referred to in the following as a global verification method. In this case, the quantification of
the model uncertainties [Eng17] can be quite different and other safety formats [CENO02, FIB13]
can be more appropriate.

In Eurocodes [CENO02], the partial factors of actions y+ and the partial factors of material strength
variables 7y are typically calibrated separately by using constant standardised First Order
Reliability Method (FORM) sensitivity factorsfCENO02, Has74, Kon81]. Taking advantage of
this frame, in order to define a safety format for TRC structures, only the partial factors related
to the resistance (materials) need to be recalibrated, while the partial factors for action variables
from Eurocodes [CEN02] can theoretically be maintained.

It is interesting to note in Figure 4.1 that the model uncertainty of action effects is accounted for
in the partial factor for action variables, 7. Such assumption, provided that a constant value of
yr 1s adopted, ignores differences related to material response (brittle/ductile response) and
analysis method (linear-elastic response/consideration of redistributions). This simplification
can lead to unsatisfactory levels of reliability for statically indeterminate brittle structures (as
those built with TRC).
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Figure 4.1: Relation between individual partial factors (adapted from

EN1990:2002 [CENO02], refer to Notation section for details)

In this work, the action effect model uncertainty of TRC structures will be investigated on the
basis of a statistical evaluation of the results of an experimental programme designed for this
purpose. This investigation will focus not only on statically determinate elements, but also on
the response of statically indeterminate structures failing in a brittle manner. The safety format
and partial factor related to the resistance (3is) for TRC structures will then be calibrated based
on a proper probabilistic modelling of the basic variables. A suitable model to account for action
effects on TRC structures and the corresponding model uncertainty will be presented. On its
basis, tailored values of the partial safety factors for TRC will be derived as well as a suitable
design approach for calculation of internal forces.

4.2  Action effect model uncertainty in statically
indeterminate structures

In this section, the different influences of brittle and ductile responses on statically indeterminate

structures are examined with respect to their mechanical consequences and the associated

reliability considerations.
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4.2.1 Influence of sectional behaviour on the structural response

To illustrate the different model uncertainty of action effects of structures with different
sectional response (brittle/ductile), the load-bearing behaviour of statically indeterminate
structures with different materials is first investigated. As a representative example, two beams
with identical geometry and loading conditions (see Figure 4.2a) but whose material response is
different are examined:

= Beam BI refers to the classical response of concrete reinforced with ordinary steel
rebars. Its moment-curvature diagram can be approximated by a quadrilinear law
showing a plastic plateau with large deformation capacity related to extensive yielding
of the longitudinal reinforcement and significant ultimate strain of the reinforcement
steel (see Figure 4.2b). This response can be considered as ductile and thus insensitive
to imposed deformations (allowing one to calculate the structural capacity according to
limit analysis [Niel1]).

=  Beam BII refers to a structure reinforced with a brittle reinforcement, as for TRC, whose
failure occurs prior to any plastic plateau or to an over-reinforced structure with
conventional steel reinforcement where the compression zone crushes before the
reinforcement yields. The capacity to redistribute internal forces is limited to the change
of stiffness related to the cracked response and the structure can potentially be sensitive
to imposed deformations (limit analysis not applicable to calculate its structural
capacity).

In a classical design of a reinforced concrete structure, the internal forces are calculated
assuming linear uncracked behaviour (not considering cracking nor yielding). This allows
neglecting the influence of the reinforcement on the stiffness, so that no iteration is required in
designing a new structure. In this case, the sections of the beam described above would be
designed so to resist for the external action (gg) both the maximum sagging moment according
to a linear response (Mg = 9/16 - geL?/8) and the maximum hogging moment (Mg g = -
qeL?/8), requiring thus different amount of reinforcement at these sections, see Figure 4.2b. In
reality, when the load is applied, different phases of response can be observed as shown in
Figure 4.2¢ for the two characteristic sections (hogging and sagging region). Before cracking
occurs, the distribution of bending moments follows that of the elastic uncracked behaviour,
with proportional increments to the load at both control sections (maximum sagging moment
equal to 9/16 - gL*/8 and a maximum hogging moment equal to - ¢L*/8). Cracking occurs first
in the hogging region (gc.ng in Figure 4.2¢), leading to a local loss of stiffness. As a
consequence, bending moments increase more than proportionally in the sagging region and less
than proportionally in the hogging region.

For a higher level of load, cracking at the sagging region also occurs (gcrs.g) and the internal
forces redistribute thereafter according to the relative stiffness of the hogging and sagging
regions. Since the reinforcement in the hogging region is higher due to the design procedure
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(Figure 4.2b), its stiffness is also higher and moments increase more than proportionally in the
hogging region (Figure 4.2¢). Depending on the strength, the hogging or sagging region can first
attain their strength. In Figure 4.2c, this case corresponds to the hogging region. Consequently,
for beam BII, a brittle failure occurs over the intermediate support, while the sagging region
would still have a capacity to increase the acting moment, giving rise to a load carrying capacity
lower than the action assumed for design (gr < g£). On the contrary, for beam BI, the response
of the governing section is ductile, and this allows for further redistributions of internal forces,
until both regions attain their resistance and the full structural capacity is reached [Mut90] (gr:
= qr), see Figure 4.2c.

It is interesting to note thus that when brittle responses can be expected, evaluations of the
internal forces deviating from the actual one can lead to unsafe designs. The consequences of
this fact in terms of reliability are however not explicitly accounted for in the current Eurocodes
safety format, as the safety element for the model uncertainty of action effects are only accounted
for in the partial factors on actions (j#), which is independent of the response of the structure
and type of action effect analysis model. On the other side, in structures with ductile behaviour,
the load carrying capacity corresponds exactly to the load assumed for design, despite the fact
that the actual behaviour deviates significantly from the simplified behaviour assumed for the
analysis (typically linear elastic behaviour). It can be concluded that for structures with ductile
response, the model uncertainty of action effects is relatively small, whereas for brittle response,
the model uncertainty of action effects shall be consistently accounted for in accordance with
the type of analysis performed. This will be discussed in the following section.
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4.2.2 Model uncertainty of action effects in structural concrete

The need for considering the uncertainties in calculating the internal forces in a structure, in
addition to the uncertainties related to the actions, has been acknowledged already in the first
attempts to quantify the partial safety factors. According to the first discussions within CEB in
view of the preparation of the first Model Code [CEB64], the partial safety factor for actions
was assumed to account for the uncertainties related to calculation of the internal forces in case
of refined analyses. However, for the case of typical structural analysis or in presence of
particular uncertainties, an additional partial factor ys;= 1.12 (1.4/1.25) increasing the value of
the actions was defined [CEB59]. This additional factor was intended to account for the
uncertainties in modelling the structure, for potential errors and for neglected effects [CEB64].

A more detailed description of the uncertainties considered with this additional partial safety
factor, including an estimate of the coefficients of variation of the ratio between actual and
calculated internal forces Fex/Ecuic , has been proposed in the CEB Manuals “Structural
Safety” [CEB74, CEB74a, CEB80]. The considered uncertainties (coefficients of variation in
brackets) were:

(i) effect of differences between the actual structure and the idealized system assumed in the
analysis (see uncertainty AE1 in Figure 4.1, 8% for concrete structures and 5% for steel
structures);

(i) approximations in the analysis (5%);

(ii1) influence of imperfections during execution on the internal forces (see uncertainty AE3 in
Figure 4.1; 5% for concrete structures and 2% for steel structures);

(iv) the effect of neglected actions at ultimate limit state (as for instance imposed deformations,
including thermal effects and shrinkage);

(v) the inaccuracy in determining the influence of load combinations with the chosen safety
format of partial safety factors (for the uncertainties (iv) and (v), a coefficient of variation
of 8% for concrete structures and of 5% for steel structures, respectively).

In addition, also the uncertainty related to the assumed probability functions of the actions has
been considered (with a value of the coefficient of variation between 0 and 5% depending on
the coefficient of variation of the action). It has to be noted, that in the safety format of Figure
4.1, this effect should be accounted for in the partial safety factor of the actions (see also change
in the latest draft of prEN 1990:2020 [CEN20]) so that it is not considered in the following.

The coefficient of variation of the ratio between actual and calculated action effect (Eexy/Ecaic)
can be obtained from the square root of the sum of the squares. For concrete structures, the total
coefficient of variation becomes Vss = 0.125=(0.08> + 0.02* + 0.05” + 0.08%)*° whereas for steel
structures, Vss = 0.076=(0.05> + 0.02* + 0.02> + 0.05%) °°. In [CEB80], the partial safety factor

75 has been calculated based on reliability analysis assuming a probability of failure and a
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coefficient of variation for the actions. The obtained values were approximately 1.125 for
concrete and 1.075 for steel structures, respectively. Similar values could be obtained following
the approach of [CEN02] by assuming lognormal distributions, a target reliability index Sig;s50 =
3.8 and a sensitivity factor for non-dominating actions (0=0.4) leading to yss
=exp(0.4-0.70-3.8-0.125)=1.14.

According to the knowledge of the authors, this is the most detailed description of the
uncertainties covered by the partial factor ys, still available in the literature and the result has
been acknowledged in different codes (current Eurocode “Basis of structural design [CEN02]
for instance, defines values of s between 1.05 and 1.15, see table Al.2(B), note 4).
Nevertheless, it has to be noted that the considerations described above reflect the state of
knowledge and the engineering practice at that time (1960s and 1970s). They were highly
influenced by the concern to calculate the “actual” internal forces as accurate as possible with
the tools of that time (typically hand calculations or rudimentary computer programs), but
surprisingly, the difference between statically determinate or indeterminate structures hasn’t
been considered explicitly. In addition, as shown above, for statically indeterminate structures,
a significant uncertainty can arise from the difference between the mechanical behaviour
assumed for the structural analysis (typically linear elastic uncracked) and the behaviour
assumed for calculating the sectional resistance (typically cracked concrete with nonlinear
behaviour for concrete and steel).

4.2.3 Definition of the random variables for model uncertainties

From the case study described above, it has been observed that the model uncertainty of action
effects (local value of an internal force at a given cross section) will eventually influence the
model uncertainty of the load-carrying capacity of a statically indeterminate structure. As shown
in the example above, in the classical design approach of structural concrete, the models used to
determine action effects and resistance are not necessarily the same. The analysis of action effect
is typically determined assuming a linear response and neglecting the influence of cracking
(constant uncracked stiffness) whereas, for calculation of the resistance, cracking and the
nonlinear response of both concrete and steel reinforcement are considered. As previously
discussed, this does not have consequences at ultimate for ductile responses, but can have
implications for brittle redundant systems.

With respect to the quantification of the local resistance model uncertainty, a random variable
can be defined by comparing the experimentally measured local resistance with the theoretical
resistance. It shall be noted that the experimental local resistance data is usually obtained by
experimental programmes on statically determinate structures, so that uncertainties related to the
calculation of internal forces are not relevant. The local resistance model uncertainty is thus
analysed through the following ratio:
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Rexp (M

QR,local = R
calc

where Op 1cq; 15 the random variable for the local resistance model uncertainty, Ry, is the
experimental local resistance and R.q. is the calculated resistance.

For the action effect model uncertainty, the random variable 8y is defined in analogy with

eR,local as:
g, Eewn )
=
Ecalc

where 6 is the random variable for action effect model uncertainty, E.., is the experimental
action effect and E.4. is the calculated action effect. The definition of 8 in Eq. (2) has however
some inconsistencies because E.., and E.q. refer to the local level while the load-carrying
capacity of a structural system (potentially redundant) is governed by its global response. Due
to this reason, it is not appropriate in general to directly use the variable E.x,/Ecq. for a given
cross section to quantify the action effect model uncertainty. Instead, the global resistance model
uncertainty variable of a statically indeterminate structure can be defined as:
Gexp (3)

gglobal =
calc

where 0g;0pq; refers to the random variable for the global model uncertainty, gey to the
experimentally measured load-carrying capacity of a statically indeterminate structure in terms
of load factor at ultimate load bearing capacity and g... to the calculated load-carrying capacity.
As shown in the previous case study, the global model uncertainty contains the model
uncertainty of action effects and the model uncertainty of local resistance. The model uncertainty
of action effects can then be quantified by removing the model uncertainty of local resistance
from that of global resistance.

4.3 Experimental programme

To investigate the flexural response of TRC structures and to provide basic test data for
investigating the action effect model uncertainty of TRC in statically indeterminate structures,
an experimental programme was performed. The test series consisted of nine thin slab strips
tested under three-point bending load condition. The tests were performed at the Structural
Concrete Laboratory of Ecole Polytechnique Fédérale de Lausanne (Switzerland) and were
performed in seven consecutive days at an average age of 301 days (to ensure constant
mechanical properties).
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4.3.1 Mechanical properties of the materials

The mortar mix described in [Val20b] was used for the experimental programme, composed of
nearly 40 % binder and nearly 60 % aggregate (maximum aggregate size 1.6 mm). All specimens
were cast on the same day following an identical procedure and preparation of the mix.
Compressive tests on the mortar produced in three batches were carried out on 70 x140 mm
cylinders tested at the same period as the beam specimens. The mean value of the strength f. of
14 compressive tests is given in Table 4.1. As for the elastic modulus and tensile strength of the
mortar, values were derived on the basis of £, value according to the data of [Val20b] (results
are provided in Table 4.1).

Table 4.1: Mechanical properties of the mortar (mean values and coefficients of

variation CoV)

Value CoV
Elastic Modulus of mortar E.. [GPa] 31.0 2.58%"
Mortar tensile strength Sfem [MPa] 4.4 9.43% Y
Mortar compressive strength Jfem [MPa] 128.5 10%

Y Values according to [Val20b]

The textile fabrics were carbon fibre (CF) meshes. Two types of fabrics were used (named CFO1
and CF02 in the following), both coated with epoxy and with a layer of quartz-sand applied to
the surface, but with different net cross section area of roving (details on the geometry and main
properties can be consulted in [Val20b]). The mechanical properties of the textile fabric are
given in Table 4.2. Bare textile (single rovings extracted from the fabric grid) were also tested
in tension. Consistent with what has been observed by Valeri et al.[Val20b], a straightening
phase of the rovings was first observed, followed by a linear response characterized by the
tangent modulus of elasticity of the filament (£, ») until its tensile strength (fiexm).

Table 4.2: Mechanical property of textile reinforcement in longitudinal direction

(number of tests, CoV in brackets)

Fabric CFO01 CF02(#, CoV)
Net cross section Qgex [MmM?] 0.85 1.70

Nominal perimeter Utex [mm] 7 11

Grid spacing €rex [mm] 20.0 17.0

Strength ! Srex,m [MPa] 1833 1833 (5, 7.41%)
Elastic modulus " Eex.m [GPa] 228 228 (5, 10.9%)

D calculated on the basis of the nominal value of the net cross section
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4.3.2 Specimens and experimental results

The specimens had a rectangular cross section (250mm-width and 60mm-height) with varying
span L (refer to Figure 4.3 and to Table 4.3). All specimens were cast following the same
procedure and dimensions. As the tested span length was different (Table 4.3), variable overhang
lengths resulted (L,; and L, in Figure 4.3). These overhangs varied between 0.3m to 1.2m. Since
the self-weight of the beams is relatively small compared to the failure load, the influence of the
overhang length in the overall response can be considered as negligible.

(@) hydraulic jack (150kN)

§
load cell s
| b =250 mm

test beam
[ ]
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M ‘

= - -]
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d, =500 n=22 d =479 n=21 d, =522 n=22 I
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" Measured roving position
b =250 b =250 b=250
Figure 4.3: Specimens: (a) test setup; and (b) Representative cross section of the tested

specimens (units: [mm])

The specimens were reinforced with the textiles CFO1 or CF02, that were intentionally not kept
with a constant cover, but only attached at their ends. This allowed the textile to vary its position
during casting, in order to investigate the influence of construction tolerances and casting
procedure in the structural response. After the bending tests were conducted, saw-cuts were
performed on the specimens near the cross section failing in bending (representative cross
section) and the exact position of the rovings were measured. The illustration of the measured
roving positions in each cross-section is given in Figure 4.3b. Since the effective depth was not
constant over the beam width, the average flexural depth d,. and the average flexural
reinforcement ratios pu. are defined as follows:
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n
d — erdi_ and ) — NyQtex (4)
ave ny > ave bdave

Where n, refers to the number of rovings in a cross section, d; to the flexural depth of each
roving, a. to the net cross section of a single roving and b to the cross section width. Details
are given in Table 4.3.

Digital Image Correlation (DIC) was performed at the sides of the specimens and used to track
their displacement fields following the same methodology as described in [Val20b]. The results
of DIC were checked with continuous readings obtained by means of a Linear Variable
Displacement Transformers (LVDT) attached to the top side of the mid-span of each specimen.
The load-deflection (F-9) relationships recorded for the tests are shown in Figure 4.4 (0 based
on DIC measurements). For low levels of load, a linear response is observed until the cracking
moment is reached. Once cracking develops, the response becomes softer, with a stiffness
depending on the reinforcement ratio and slenderness. Failure occurred in all specimens in
bending in a brittle manner due to rupture of reinforcement.

20 T T T T

0 20 40 60 80 100 120
0 [mm]
Figure 4.4: Measured load-deflection responses of tested specimens
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Table 4.3: Main parameters of the bending specimen and measured flexural resistance

at maximum load

Name L Textile  Number  of  dex Anin Auax dwe  Paye Adave Mey
[m]  type rovings 7, [mm?] (mm] [mm] [mm] [%] [KNm]
TB1 1.2 CF02 22 1.7 423 509 464 032 129 236
TB2 1.15 CF02 22 1.7 464 538 499 030 11.0 333
TB3 1.1 CF02 22 1.7 49.0 550 514 029 11.0 3.64
TB4 2.1 CF02 22 1.7 44,5 547 500 031 215 277
TBS 2.2 CF02 21 1.7 446 522 479 030 23.0 223
TB6 24 CF02 22 1.7 498 548 522 029 220 3.04
TB7 24 CF02 21 1.7 380 49.0 453 027 250 199
TBS 2 CF02 30 1.7 483 549 515 040 194 358
TB9 0.63 CFOl 39 0.85 299 463 383 035 82 1.63

4.4 Bending test analysis

The flexural response of TRC can be modelled by considering a linear response of both concrete
and textile reinforcement and assuming that plane sections remain plane after deformation
(Bernoulli-Navier hypothesis), see Figure 4.5a. This assumption has been extensively
investigated and validated in previous investigations [FIBO7, Haw18, Hegl6, Prel9, Schl12,
Tys09, Porl6] .
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Figure 4.5: (a) Model assumptions for flexural response; (b) material constitutive law

of concrete and textile reinforcement and (c) calculated and experimental

load-deflection curves

Due to the significant variation of the roving flexural depth in some cross sections, each roving
is modelled separately for calculation of the response. Failure occurs in all cases when the
outermost roving reaches its tensile strength, as it fails in a brittle manner and the rest of rovings
are not capable of withstanding their increase of force. With respect to the properties of the
rovings within the concrete section, their strength and stiffness have to be reduced with respect
to bare textile properties (in order to account for the delayed activation of stresses and local
damage [Chu06, Pho73, Val20b, Vor06]). This will be performed in the following by means of
two distinct efficiency factors [Vall7, Val20a]. The first, named 77, reduces the effective textile
tensile strength with respect to the bare textile. The second, named 775, reduces the effective
modulus of elasticity of the textile.
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The value of the efficiency factors is determined in this work by means of calibration with test
results, in order to have an average of measured-to-calculated values equal to 1.0 both in terms
of strength and deformation at failure. This yields the value 7y = 0.91 and 7z = 0.79. Such an
approach is adopted as the aim of this work is the statistical analysis of the TRC response
(alternative approaches based on physical models to determine such efficiency factors can be
consulted elsewhere [Val20a, Val20b].). It can be noted that the calibrated value of 7z is lower
in this case than the value of 7y, which is uncommon in comparison to the results from other
researchers [Val20a, Val20b]. This fact can be partly grounded on the fact that the roving
position was variable through the length of the specimens and thus the geometry (stiffness and
resistance) of the governing cross section in bending is not necessarily constant through the
length of the specimen. Also, the influence of the duration of the structural tests, different to that
of the material characterization tests, is accounted for in these coefficients which can be relevant
for the concrete stiffness.

The calculated load-deflection curves (£-9) are plotted in Figure 4.5¢ together with the measured
results. The comparison between the tested ultimate resistance R.,, the calculated one R and
the corresponding maximum deformation of each beam is givens in Table 4.4. The comparison
shows that the CoV of the resistance (5.13%) is relatively low (lower than those reported by
other authors [Rem18]).

Table 4.4: Three-point bending test results
Specimen  Reyp [KN] Reae [KN]  Rewy/ Reate Oexp [mm] Ocale [MM]  Oexp/ Ocale
TB1 8.4 8.5 0.99 26.4 26.5 1.00
TB2 13.2 12.2 1.08 26.3 21.9 1.20
TB3 16.5 16.0 1.03 28.8 25.6 1.13
TB4 5.8 5.8 1.00 76.3 77.6 0.98
TBS 43 4.6 0.93 80.6 87.0 0.93
TB6 5.6 5.1 1.10 116 88.4 1.31
TB7 3.4 3.5 0.97 106.4 113.3 0.94
TBS8 7.4 7.7 0.96 7.4 7.7 0.96
TB9 11.7 11.3 1.04 5.7 8.0 0.71
Average 1.0 1.0
COoV 5.13% 17.10%
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4.5 Response of statically indeterminate systems of TRC
and model uncertainty of action effects

As previously explained, the response of statically indeterminate systems and the corresponding
action effect model uncertainties can be significant for the safety format calibration, particularly
when a brittle response can be expected. This is for instance the case for TRC, whose response
was experimentally examined in the previous Section with reference to statically determinate
structures. In order to investigate the response of statically indeterminate TRC structures, a large
database will be presented in this section obtained by assembling the test results on determinate
members. This database will eventually be used to create a probabilistic model of the action
effect model uncertainty.

The main idea to simulate the response of statically indeterminate members based on the
response of statically determinate ones is shown in Figure 4.6a (details for a worked example
are provided in Appendix 4.B). As it can be seen, a redundant system is generated by assembling
two simply supported beams connected at mid span. Such a statically indeterminate system will
be referred to in the following as an assembled cross-beam system. Due to the symmetry
conditions of the system, each component beam has the same load-deflection response as in a
three-point bending test and the response of the complete system can be obtained by the
superposition of the load-deflection relationship of the two component beams, see Figure 4.6b.
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Figure 4.6: (a) Assembled cross-beam system test set-up; (b) load-deflection relationship of
the cross-beam system obtained by superposition of both responses of its component beams and
(c) considered moment-curvature (M-y ) relationships for different structural analysis models

4.5.1 Action effect model uncertainty for different types of
structural analyses

In the following, the experimental results on the assembled cross-beam systems are compared
to three types of structural analyses:

= Linear Analysis assuming UnCracked stiffness (LAUC in Figure 4.6b and c).
= Linear Analysis assuming Fully-Cracked stiffness (LAFC in Figure 4.6b and c).

= NonLinear Analysis assuming uncracked and cracked behaviour. This analysis is
conducted assuming a trilinear moment-curvature relationship and the actual extent of
cracked and uncracked regions (NLA in Figure 4.6b and c).

In order to quantify the model uncertainty of action effects, the local resistance model
uncertainty will be removed from the global model uncertainty. To do so, tailored values of the

efficiency factor 77, are calibrated for each individual beam, in order to match the experimental
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resistance, see Table 4.5. The action effect model uncertainty for each analysis method can then
be defined as:

o Qe )
Lave = Qrauc
o Qe ©)
ELARC ™ Qrarc
Qexp (7)
HE,NLA = Onin

where Q.., refers to the experimental resistance of an assembled cross-beam system by
superimposing the experimental response of its two component beams. The terms Q; 4y¢» Qrarc
and Q4 refer to the global resistances (load-carrying capacities) of the assembled cross-beam
system calculated with LAUC, LAFC and NLA methods respectively and 0 ; ayc, O Larc and
Ok n1a refer to the corresponding action effect model uncertainty variables for the three types of

analysis.

Table 4.5: Tailored efficiency factor 7 for the basic beams
Specimen TBI1 TB2 TB3 TB4 TBS TB6 TB7 TB8 TB9

1 0.90 0.98 0.94 0.91 0.85 1.00 0.88 0.87 0.95

4.5.2 Data of action effect model uncertainty for different types of
structural analyses

By combining the nine bending tests of basic beams presented in Section 4.3, a total of 36
assembled cross-beam systems can be generated. The resulting action effect model uncertainty
data is plotted in Figure 4.8a. The assembled experimental load-deflection curves of six
representative cases and the corresponding load-deformation curves with LAUC, LAFC and
NLA are shown in Figure 4.7. A summary of the results of all the assembled cross-beam tests is
also provided in Table 4.6 and plotted in Figure 4.8a. As it can be noted, both NLA and LAFC
give very close prediction to the actual resistance, while LAUC has a relatively larger scatter,
suggesting that the simplifications made about the uncracked stiffness of the structure
components result in a higher model uncertainty for statically indeterminate structures. In
addition, NLA allows reproducing the different stages of response (uncracked or partially
cracked) in a realistic manner.

To further increase the size of sample for action effect model uncertainty data, the number of
components of a cross-beam system can still be increased in order to generate more
combinations. Following the same methodology, assembled cross-beam system composed of
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three to five components are further investigated. In total, 372 different cross-beam systems are
generated and the resulting action effect model uncertainty data is plotted in Figure 4.8b. A
summary of the statistics of the assemble cross-beam tests is provided in Table 4.6. It can be
observed that, with the enlarged database, the difference between the model uncertainty data of
the NLA, LAUC and the LAFC method is more pronounced, which confirms that the NLA and
LAFC result in a lower level of action effect model uncertainty than the LAUC.
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Assembled experimental response

LAUC
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Figure 4.7: Representative assembled cross-beam system cases
Table 4.6: Statistics of the cross-beam system tests with two components and two to
five components
Number of Number of Load effect analysis  Variable Average CoV
assembled tests value
components
Two 36 LAUC Ok Lauc 1.05 8.51%
36 LAFC Oc Larc 1.02 4.01%
36 NLA Onra 1.01 3.35%
Two to five 372 LAUC Ok Lauc 1.14 11.01%
372 LAFC Ok Larc 1.06 4.47%
372 NLA Onia 1.03 3.39%

As shown in Figure 4.1, the action effect model uncertainty of statically indeterminate system
results from multiple sources as: the uncertainties related to the structural modelling of action
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effects; the uncertainties in material properties influencing action effects; and the uncertainties
in geometrical properties influencing action effects. The result shows that NLA yields lowest
CoV level, which signifies that NLA can significantly reduce the uncertainties related to the
structural modelling of action effect. Comparing the tail region of NLA, LAUC and LAFC from
the Quantile-Quantile plot [Sch17] (vertical axis referring to quantiles in a standard normal
distribution) of 0g yy4, O Larc and O | 4yc data (see Figure 4.8a) it seems however that in the
tail region there is no significant difference between these three distributions. This is explained
by the fact that the tail region is composed only of results concerning two beams (specimens 6
and 9) influencing the response of all methods to evaluate the internal forces, see 4.8c.
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Figure 4.8: Quantile-Quantile plot for action effect model uncertainty sample data of

(a) cross-beam of two components; (b) cross-beam of two to five

components; and (c) detail of tail region for cross-beam of two components

4.6 Limits of applicability of linear analyses assuming
uncracked and fully-cracked behaviour

The analyses on statically indeterminate structures based on the assembled cross-beams are
based on the three-point bending tests data tested within this research program. This implies that
only a limited range of the basic design variables has been explored. In this Section, the
applicability of LAUC and LAFC will be investigated for a wider range of design cases.
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To that aim, the same methodology of the assembled cross-beam system is used in this section.
The basic data for the three-point bending test is in this case estimated on the basis of a non-
linear analysis (tri-linear moment-curvature relationship). This approach was previously
observed to lead to the most realistic results, and to reproduce the various regimes of response
(see Figure 4.7). A series of numerical assembled cross-beam system case studies are generated
by varying the span L, the cross-section height 4, and the textile reinforcement cross-section area
Arex of the component beams. By comparing the structural analysis result (global resistance of
the structures) from the LAUC and the LAFC with that of NLA, the limit of applicability of
LAUC and LAFC is further examined.

4.6.1 Range of design parameters of numerical case study

In the numerical cases, assembled cross-beam systems with two component beams with
rectangular cross-sections (refer to Figure 4.6) are studied. In order to investigate the influence
of the variation of relative stiffness between the component beams, the dimensions of the first
component beam in the assemble cross-beam system is kept constant and the dimensions of the
second beam are varied in the selected range.

For all the component beams of the assembled cross-beam systems, the cross-sectional width is
kept constant (b = 250 mm). The material parameters are also kept constant, adopting the same
material properties as for Section 4.3. To simplify the simulation, all textile reinforcements in a
given beam are considered to be aligned at the same depth. Three independent parameters are
used to characterize the beams in the numerical cases: the span L, the cross-section height /, and
the textile reinforcement cross section area A... The vector composed of the three design
parameters form the design vector X, for a given component beam:

Xnum = [Lr h'Atex] (8)

For a given component beam, the other parameters are dependent on the values of its design
vector X..m: the cross-sectional effective depth of a given component beam (d) is assumed to be
proportional to the height 4 with a constant ratio d = 0.85h and the reinforcement ratio p is

Atex
bd °

defined as p =
In each numerical case, two beams are assembled. The design vector of component beam A is
always kept constant as X, 4 = [LA, hA,Atex,A], with L,~=1.7 m, hy = 60 mm and A~ 66.3
mm? (resulting in p4 = 0.52%). The design vector of component beam B (denoted by Xnum,B,ijk
with i,j,k =1-10) is varied. The design parameters of beam B are varied within the following
range: Lg; = (1.0-4.0) m; Ap; = (30-120) mm and Ay 5 = (23.8-142.8) mm?, resulting in pp jx =
(0.09-2.24)% (i,j,k=1-10). For each parameter, ten equally spaced values in the ranges specified
are considered, leading to a total of 1000 cases. For example, for the case of [i, j, k]=[1,1,10],
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Xoump.ijk = [L1 "1 Arexpao], With Lg;= 1.0 m, hz; = 30 mm and Aiexs0 = 142.8 mm’
(resulting in pg = 2.24%).
For each case, the resistance of the assembled cross-beam system analysed with LAUC and

LAFC (refer to Appendix 4.B for the detailed analysis method) are compared with that analysed
with NLA in order to get the corresponding action effect model uncertainty data:

0 _ Qnia )
E,LAUCnum — QLAUC
0 _ Qnia (10)
E,LAFCnum — QLAFC

It should be noted that O ; sy¢c num and O papc num Only contains uncertainties related to the
structural modelling of action effects and are thus different than the definition of 6 ; 4y¢ and
Ok Larc in the previous section (Section 4.5.1 Eq. (5)-(6)).

4.6.2 Results of the case study

The histograms of the resulting g r4vcmm and g rarcnm data for all cases are plotted in Figure
4.9 and the statistical values are given in Table 4.7. It can be observed that, in general, the LAFC
results in smaller scatter in the action effect model uncertainty.
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Figure 4.9: Histogram of the Ogr4vcmm and Oprarcmm data from the numerical

assembled cross-beam system case study

Table 4.7: Statistics of the numerical cross-beam system tests with two components
Number of fictitious Load effect Variable Average value COoVv
tests analysis
1000 LAUC Ok Lavcnum 1.06 11.21%
1000 LAFC Ok LaFCnum 1.00 1.66%

To have a better understanding of the limit of applicability of the two methods, the resulting
Oc Lavcmum and g rarcum for the cases with = 80 mm are plotted in Figure 4.10. As it can be
seen in this figure, G r4vcwum has significantly higher variation than g r4rcnm. For the cases
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when the reinforcement ratio of both beams is similar, the LAUC method yields a G r4vucnum
value close to 1, but in a wide range of cases the value of G r4ucum deviates significantly from
1. On the other hand, the LAFC yields in most cases €t r4rcmum valuesclose to 1. This confirms
the applicability of the LAFC method in general. The result of the LAFC only deviates
significantly from the expected value when the reinforcement ratio of Beam B is close to the
minimum reinforcement ratio for bending. This means that a significant portion of the beam
remains uncracked at failure and thus, the fully cracked assumption deviates from the actual
response. For practical purposes, this situation can be avoided by requiring a reinforcement ratio
higher than the minimum. It is also interesting to notice that in the cases where the two
component beams have the same reinforcement ratio (oz = p1 = 0.52%), despite the variation of
other parameters, the result &g r4vcmm and Gz rarcam values remain close to 1. This is because
the ratio between the uncracked stiffness of the two beams are the same as the ratio between
their fully cracked stiffness in these cases.

As a conclusion from the previous considerations, it can be observed that, unlike for ordinary
reinforced concrete structures, it is not advised to use the LAUC method to perform action effect
analysis for TRC structures. A LAFC can, on the other hand, be applied provided that sufficient
amount of flexural reinforcement is provided. It should also be noted that the previous comments
focus on the cases with bending failure governed by rupture of the textile reinforcement
(covering also cases with low levels of axial compression forces). Other failure modes (such as
failures for very high levels of compression forces or shear) remain outside of the scope of this
work (covered by other partial safety factors).
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Figure 4.10:  Results of O ; aycnum and Og ;arc num for cases with hg = 80 mm

4.7  Safety format of TRC structures

In this section, the reliability verification framework of Eurocodes [CENO02] is used to calibrate
the safety format for TRC structures on the basis of probabilistic reliability theory. Similar to
the case of reinforced concrete structures, a number of uncertainties (associated to material,
geometry and modelling) shall be accounted for in the partial factor for TRC. In addition, due to
the brittle behaviour of TRC structures, it is necessary to discuss if additional safety
considerations are needed for the model uncertainty of action effects (a common situation with
respect to design of other reinforced concrete elements failing in a brittle manner by punching
or second-order effects). In the following, the probabilistic modelling of the basic uncertainties
is discussed and two types of safety formats are proposed for TRC structures. The efficiency of
the proposed safety formats for TRC structures is discussed based on the reliability analysis of
representative cases.
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4.7.1 Basic uncertainties in the design of TRC structures

4.7.1.1 Material uncertainties

Two material strength basic variables are involved in the reliability analysis problem of TRC
structures: the tensile strength of textile reinforcement and the concrete compressive strength.
The material strength variables are assumed to follow lognormal distribution according to the
recommendations in [JCSO1]. For the concrete compressive strength, the distribution parameters
provided in the second generation of Eurocode prEN1992-1-1:2020 [CENO02] are used, where
the coefficient of variation (CoV) is taken as 15.6%, which accounts for both the uncertainty in
concrete cylinder strength and the uncertainty in the in-situ strength efficient factor 7, [ CEN02].
For the distribution parameters of the textile reinforcement tensile strength, the statistics of the
data from [Val20b] are used, where the CoV of the tensile strength of textile reinforcement is
taken as 15% (which accounts for the uncertainty in the single roving tensile strength based on
test results). These distribution parameters are consistent with data from other
researchers [Rem18]. The uncertainty in the efficiency factor 7 of textile reinforcement is not
accounted for in the material uncertainty, but in the uncertainty of the resistance model
(calibration factor). It should be emphasized that with respect to the statistical properties for the
textile reinforcement tensile strength, they should be based on the data provided by the
manufacturer or derived from specific tests (products can have highly variable properties). The
probabilistic modelling of the material strength variables used in the safety format calibration in
this work is summarized in Table 4.8.

Table 4.8: Probabilistic modelling of basic random variables for safety format
calibration of TRC
Uncertainty ~ Variable Distribution Mean CoV Standard deviation
Material Textile reinforcement ~ Lognormal Srexm 15% -
tensile strength frex [JCSO01] [Val20b]
Concrete compressive ~ Lognormal Tisfem 15.6% -
strength /e [JCS01] [CENO02]
Geometrical Flexural depth d Normal dyom - 3 [mm]
[JCSO01] [Rem18]
Model Resistance model Lognormal 1.0 10% 0.1
uncertainty g joca [JCSO1] [Rem!18]
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4.7.1.2 Geometric uncertainties

Since the case of bending is considered and the material strength of textile reinforcement is
calculated on the basis of the nominal value of the roving area, the governing geometrical value
is the effective geometrical depth (d). Its uncertainties are mainly related to how the
reinforcement is fixed during casting, to the type of the member (with flanged or full cross
section), to the casting and control procedure and to the type of reinforcement (stiff or soft).
Statistical data of the flexural depth variable can be found in literature. According to [Rem18],
a mean value of -0.2 mm and a standard deviation of 2.0 mm of the measured data is observed
for the deviation (error) of the flexural depth from nominal values (d-dom). This shows that it is
possible to have relatively good quality control of the position of the textile reinforcement in
TRC structures. For practical applications of TRC structures, the distribution parameters of the
flexural depth random variable will be considered related to their quality control and allowable
execution tolerance. Since the total thickness of TRC structures is in general much smaller than
in ordinary concrete structures, the assumptions of execution tolerances of concrete structures
are not considered applicable to TRC structures. Referring to the data from [Rem18] and also
taking the efficiency of the textile reinforcement into account, a tolerance of +/- 5 mm for the
error of effective depth (d-d..n) will be assumed in the following. The error of effective depth
(d-duom) is assumed to follow a normal distribution, with a mean value of 0, and -5 mm
corresponds to the 5% fractile. Based on the normal distribution assumption, the standard
deviation of d-d..» can then be calculated as 5/1.645 = 3.0 mm. Since duom is a deterministic
value, the flexural depth variable d has the same standard deviation (3 mm) as d-d,om, see Table
4.8. It should be noted that, with a constant value of execution tolerance for the flexural depth,
the CoV of the flexural depth variable decreases with the increasing thickness of the structure.
The same phenomenon has also been noticed in reinforced concrete structures in the second
generation of Eurocode prEN1992-1-1:2020 [CEN20].

4.7.1.3 Model uncertainties

Two types of model uncertainties are considered for the partial factor calibration of TRC
structures: (i) the resistance model uncertainty and (ii) the action effect model uncertainty. For
the resistance model uncertainty variable, 6 .., the model used to analyse the tests presented
in this work showed a fairly low CoV (equal to 5.13%). Such low value results partly from the
fact that a calibrated value of the efficiency factor 7y was adopted. When designing TRC
structures, a general value of this efficiency factor shall be adopted (not calibrated based on
tests), potentially leading to a higher value of CoV of the model uncertainty variable. Based on
the work of other researchers|[Haul9, Rem18, Rem20], a reasonable value for the CoV can be
considered as 10%, that will also be used in the following, see Table 4.8.

For the action effect model uncertainty, as previously explained in Figure 4.1, it is theoretically
accounted for in the partial factors for the actions provided in Eurocodes. It shall yet be noted
that the model uncertainty of action effects accounted for by these partial factors depend neither
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on the material response (brittle or ductile) nor on the structural analysis methods (LAUC,
LAFC, NLA or others). For TRC structures, it has been shown in this work that when using
NLA or LAFC for a redundant structure, the model uncertainty of action effects is relatively low
compared to the values reported in Section 4.2.2 and to other uncertainties reported in Table 4.8
(maximum CoV=4.47% for the investigated cases). This is however not the case for LAUC
(maximum CoV=11.01%). Based on this consideration, it is proposed that both NLA and LAFC
methods can be used to calculate the action effect (internal forces) of TRC structures without
the need to adjust the action effect model uncertainty level. LAUC cannot however be used,
unless additional specific considerations were made on the safety factors.

4.7.2 Safety format proposals

Based on the characteristic of basic uncertainties involved in the resistance of TRC structures,
two types of safety formats are proposed.

4.7.2.1 Safety format I: partial factor y,., , for the tensile strength of textile
reinforcement and consideration of nominal dimensions

The first proposal for the safety format is based on the use of a partial factor for the strength of
the textile and the use of nominal values for the geometric dimensions. This approach
corresponds thus to current design practice for conventional reinforced concrete structures, but
providing a tailored partial safety factor for the strength of the reinforcement.

The calculation of the value of the partial safety factor can be performed assuming that the
resistance function R can be approximated by a lognormal distribution (detailed information
about such an estimation is provided in Appendix 4.A). Thus, the partial safety factor v, ; for
calculation of the design value of the tensile strength of textile reinforcement (fiexq =
ftex.ck/Ytex,1) can be calculated based on the approximated value of the CoV of the resistance,
Vg:

(11

_ f tex,ck
Ytex, 1 =
f tex,d

Where ft., 4 refers to the design value of the textile tensile strength, fioy ¢k to its characteristic

= exp(ogBegeVr — 1.645Vf1ex)

(5% fractile) value, ap to the FORM sensitivity factor for the resistance (adopted equal to
0.8 [CEN02] ), B4 to the target reliability index and f;4; = 3.8 for structures with medium
consequence class and a reference period of 50 years at the ultimate limit state [CENO02], Vz to
the CoV of the resistance variable and Vj.. the CoV of the material (15% according to Table
4.8). With respect to Vk, its value can be approximately estimated (detailed information about
such an estimation is provided in Appendix 4.A) by considering the CoVs for the material,
geometrical and model uncertainties (refer to Table 4.8) as:
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12
Vg = \/VQZR +VE +V§ (12
The general format to calculate the design value of the resistance (R;) can thus be established
as:

(13)

f tex,ck f ck
R; = R{(——,—,d
¢ {Ytex.l Yc nomJ
Where f,;, refers to the characteristic compressive strength of concrete, y to its partial safety
factor (1.5 according to Eurocode prEN1992-1-1:2020 [CEN20]) and d,;,, to the nominal value

of the geometrical dimensions.

Detailed information about the safety format calibration method is provided in Appendix 4.A.
As it can be noted, the estimated value of Vi varies with the change of the nominal effective
depth of the structure (see Table 4.8). For the investigated range of the nominal effective depth
(15-60 mm), the estimated value of V; ranges between 0.19 and 0.27 (see detailed results in
Appendix 4.A). It should be noted that according to prEN1990:2020 [CEN20], when V}, is higher
than 0.20, the approximated Eq.(11) is not applicable for the partial factor calibration anymore.
In this section, however, Eq.(11) is still used to make a first approximated calculation of the
partial safety factor. Its effectiveness will be verified by the reliability case study in Section
4.7.3. Considering the wide applicable range of the safety format, referring to the approximated
estimation values of Vg, a relatively conservative value of Vp = 0.225 is selected in the following
and the value of the partial factor y;,, ; is then calculated as:

Ytex,l ~ 1.55 (14)

It should be noted that the partial factor for concrete compressive strength y. = 1.5 from
Eurocode prEN1992-1-1:2020 [CEN20] is also adopted in this research. The effectiveness of
this proposal will be verified in Section 4.7.3 by calculating the actual achieved reliability level
of representative cases.

4.7.2.2 Safety format II: partial factor y,,, ;; for the tensile strength of textile
reinforcement and consideration of design values for the dimensions

As shown in previous paragraph, for thin members, the geometrical uncertainties (related to the
effective depth) can become governing. For this reason, it makes sense to separate the
geometrical uncertainties from material and model uncertainties as previously discussed
by [Rem18, Rem20]. Considering the general form of the limit state function and the
probabilistic models of the basic uncertainties (see details in Appendix 4.A), the material and
model uncertainties will be lumped into one partial factor yi, ;; applied to the tensile strength
of textile reinforcement. With respect to the geometrical uncertainties, they will however be
considered apart, by means of a design value of the effective depth (this alternative possibility
using design values of geometrical dimensions is already given by prEN1992-1-1:2020
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[CEN20]). The partial safety factor can thus be estimated with the help of FORM sensitivity
factors as:

(15)

_ f tex,ck
Ytex,II -
f tex,d

= exp (\/a?tex + O%Jsztex + VHZO(RBtgt - 1-645Vftex>

Details on this derivation and the values for the various parameters are given in Appendix 4.A
of'this chapter. With respect to the design value of the effective depth, it is calculated by reducing
the nominal value by a distance of Ay:

ddesign = dpom — g (16)
whose value results (see Appendix 4.A for details):
Ag= adaRBtgtUd (17)

Based on the safety elements defined above, the general format to calculate the design value of
resistance can be defined:

frex,ck feck (18)
Rq = R{ e ’ = 'ddesign}
Ytex, ;1 Yc

By applying this methodology, the value of the partial factor y¢e, ;; and A4 can be derived for
the given range of dyom, as shown in Figure 4.11 for representative cases.

(a) ‘ ' ' ' (®)

1.3F . 6 \'
4+ |
Viewn 1.2.F 1 Ad [mm] 2t .
1.1 - : - ' 0 ; : - :
15 20 30 40 50 60 15 20 30 40 50 60
d,,, [mm] d, = [mm]

Figure 4.11:  Estimated values as a function of nominal effective depth: (a) y;ey ;3 and
(b) Aq

It can be observed that the estimated value of Y, ;; ranges between 1.13 and 1.33 and the value
of A, between 6.8 mm to 2.4 mm. As a reasonable and safe estimate, the following values are

suggested:
Ytex,II ~ 1.25 (19)
Ag= 6 mm (20)

The effectiveness of this proposal will be verified and compared with Proposal I in Section 4.7.3
by calculating the actual achieved reliability level of representative cases.
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4.7.3 Comparison and verification of the two safety format
proposals

A series of representative cases are investigated in the following to compare the previous
proposals. To that aim, the classical design method of verifying at sectional level is considered,
implying that the influence of statically indeterminate structures is taken into account by the
partial factor on actions. The geometry of the studied cross section is shown in Figure 4.12a.
The range of the key design parameters used in this case study series is listed in Table 4.9. The
value of cross-section height h and reinforcement ratio p are varied in a deterministic manner to
generate a series of different cases.

(a) (b)

| ’ |
4 B
achieved,]
/)7 ——— T T T T =T =7 T[g— - akﬂtgt
M ~ achieved D achieved, Il
< <€ p =0.1%-0.9 %
N 0 ' : : : ;
sSess=s==-= 15 20 30 40 50 60
A, =pbd d,, (mm]

Figure 4.12:  (a) Geometry of the investigated cross section and (b) achieved reliability

index of the invesitigated bending case with the two safety format proposals

Table 4.9: Key design parameters for the representative cases
Variable  fiexw [MPa]  fi,[MPa] b [mm] A [mm] dwom [mMm]  p
Value 1800 150 250 18.75-75 0.84 0.1% - 0.9%
Variable = Random Random Deterministic  Deterministic Random Deterministic
type variable variable variable

For the reliability analysis, the basic uncertainties introduced in Section 4.7.1 (listed in Table
4.8) are accounted for. The general form of the performance function g is defined as:

g= 9R,localR(ftex'fc' d) — Ry (21

Based on the safety format proposals, the design value of the resistance for the two safety formats
can be calculated using Eq.(13) and Eq.(18) and the reliability analysis is performed using
FORM to calculate the actual achieved reliability S, pieveq fOr the two types of safety formats
as:

PT'Ob(g < 0) = ®(—Pachievea) (22)

Where Prob () refers to the probability function, g to the performance function, @ to the
cumulative probability function of standardized normal distribution and B -pieveq refers to the
actual achieved reliability index for a given case. The reliability analysis is performed with
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FORM method and the achieved reliability index from the two safety proposals are plotted in
Figure 4.12b.

As it can be observed, the value of the achieved reliability level for Proposal I, Bychieved
ranges between 2.12 to 3.66 and the value of the value of the achieved reliability level for
Proposal II, Bychievea i1 ranges between 2.87 to 3.22. Comparing the achieved reliability index
for the two proposals with the target of agf;4; = 3.04, it can be observed that in most of the
range of the investigated cases, both safety formats result in acceptable levels of reliability.
However, for Proposal I, when the effective depth is very low (smaller than 20 mm), the achieved
reliability level is lower than the acceptable level (£0.5 target level) [Kon81]. It can also be
observed that the maximum achieved reliability level for Proposal I is even high for large
thicknesses, suggesting potentially uneconomic design. Proposal II yields a more uniform level
of reliability.

4.8 Conclusions

This work investigates on a suitable safety format and analysis method for Textile Reinforced
Concrete (TRC) structures. The results of an experimental programme on nine TRC slabs are
presented and the implications of a brittle response on the reliability of a structure are discussed.
Its main conclusions are listed below

=  Structures presenting brittle responses (implying limited or none redistribution capacity
of internal forces) can fail for load levels below those considered for design if the
calculation of internal forces deviates from the actual response (typically, elastic-
uncracked behaviour assumed in the calculation of internal forces). This situation does
not occur for a ductile response and raises questions on the consideration of model
uncertainty of action effects within the Partial Safety Factor Format (PSFF) as
considered in Eurocodes.

= The analysis of statically indeterminate TRC structures shows that performing a linear
elastic calculation of internal forces considering fully cracked stiffness properties for all
sections is a suitable manner to estimate the internal forces and response of TRC. This
holds true provided that more than minimum amount of reinforcement are provided in
the structure.

= Alternatively, using a nonlinear analysis (considering the development and extent of
cracking) is also a suitable manner to estimate the internal forces. It is even more
accurate than the previous, but requiring a significant effort for analysis.

= Estimating internal forces on the basis of the uncracked stiffness of the sections (as
usually performed for ordinary reinforced concrete) can lead to relatively large
deviations on the response and internal forces of a brittle structure as TRC. Such method
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shall not be used for design unless specific considerations were implemented to cover
this increased uncertainty.

= Since for thin members, the variability of the effective depth can be significant
compared to the mean value, the geometrical uncertainties can play a major role in
calibrating the partial safety factors for designing structures at ultimate limit state. On
the basis of reliable internal forces (determined by a linear-elastic fully cracked analysis
or a nonlinear analysis), a safety format can be considered for TRC following the PSFF.
Two ways for so doing are detailed in the manuscript:

o Consideration of a partial safety factor for the tensile strength of the
textile (%ex = 1.55) and nominal dimensions. All uncertainties (material,
geometrical and model) are lumped into the partial safety factor of the textile.

o Consideration of a reduced partial safety factor for the tensile strength of the
textile (yx = 1.25) and design dimensions (reduction of 6 mm in effective
depth). In this case, material and model uncertainties are accounted for in the
partial safety factor of the textile while geometrical uncertainties are considered
in the design dimensions.

o In general, the second safety format is preferable, leading to a more uniform
level of safety.

It shall be noted that the aim of this investigation is to propose a safety format for designing
TRC and a methodology for calibrating the associated safety factors and parameters. For
practical applications, the values proposed in this investigation (.x and A;) should be tailored
on the basis of actual values of material and geometrical uncertainties, which can depend on the
material used, production method and quality control procedure.
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Appendix 4.A: Derivation of the safety format proposals for
TRC structures

In this annex, the methodology used for the safety format calibration of TRC structures is
presented. The annex is based on the semi-probabilistic reliability verification approach of the
Eurocodes [CENO2]. To that aim, the target reliability index p4; provided in
EN1990:2002 [CENO02] for structures with medium consequence class and a reference period of
50 years at the ultimate limit state is used (B;g; = 3.8).

The partial factors used in the semi-probabilistic reliability verification approach of the
Eurocodes [CENO02] are calibrated based on the First Order Reliability Method (FORM) [Has74,
Mad86]. Based on the FORM, to achieve the target reliability level, the partial factor for each
basic random variable can be defined with the aid of the FORM sensitivity factors, which are
the directional cosines of the vector between the mean value point and the FORM design point
in standardised normal space.

In principle, independently of the type of safety format selected, the required partial factors to
achieve the exact target reliability level are different for each individual case due to the
difference in the shape of the limit state function. The shape of the limit state function depends
on the mechanical model of the corresponding limit state as well as the probabilistic modelling
of the basic uncertainties involved in the limit states. However, to simplify the design procedure,
in the semi-probabilistic approach, the values of the partial factors are fixed and selected with
the criterion that the achieved reliability level for representative design cases are as close as
possible to the target value. Another important simplification in the safety format calibration in
Eurocodes is to adopt standardised FORM sensitivity factors for the resistance variable and the
action effect variable. The FORM sensitivity factor for the resistance ay is assumed to take the
value of 0.8 and that for the action effect aj is assumed to take the value of -0.7 provided that
the ratio between the standard deviation of the action effect variable and the resistance variable
is within the range of 0.16 to 7.6 [CENO2]. Using these standardised values makes it possible to
separate the task of calibrating the partial safety factors on the resistance side and on the action
effect side, which largely simplified the safety format calibration procedure. On the basis of such
simplification, the target for the calibration of the partial factors for the resistance of TRC
structures becomes:

Prob(R — Ry < 0) = ®(—agfige) (23)

When using the FORM or other reliability methods to calibrate the partial factors, iterative
procedures are usually needed. However, under some conditions, simple analytical solutions can
be derived for the partial factors. This can be done by making reasonable assumptions about the
form of the limit state function. The resulting partial factors can eventually then be verified with
the FORM or full-probabilistic reliability methods for the representative design cases. This
strategy will be followed in this work when calibrating the safety format for TRC structures.
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Considering the basic random variables involved in the resistance of TRC structures, the general
form of the resistance function can be assumed as:

R = HR,localR(ftex: fer d) (24)

The specific form of the resistance function depends on mechanical model of the resistance and
also the values of the basic variables.

For calculation of the bending resistance of TRC structures, the methodology presented in
Section 4.3 is considered, based on the Bernoulli-Navier assumption. The resistance of a cross
section can be controlled either by the tensile strength of the textile reinforcement or by the
compressive strength of concrete (but not by the two material strengths at the same time). The
cases where the resistance is controlled by concrete strengths are not within the scope of this
work, as they are similar to conventional over-reinforced concrete structures, and the safety
elements for this type of cases are actually applied through the partial factor on concrete
compressive strength. For the cases where the resistance is controlled by the textile
reinforcement, Eq. (24) can be further simplified to the following form:

R = 9R,localR(ftexr d) (25)

It is then reasonable to make an additional assumption considering that the resistance can be
approximated by a multiplicative form of the basic random variables:

R = HR,localR(ftexr d) = ARHR,localftexd (26)

Where A represents a coefficient that depends on the other deterministic parameters related to
the resistance. Based on the assumption in Eq.(26), the CoV of the resistance I can be
calculated approximately as:

Vi = J Vo, +VE _+V§ (@)

It should be noted that Eq.(27) would be a close approximation if all the basic variables follow
lognormal distributions, but in this case the flexural depth d is modelled as a normally distributed
variable. In any case, Eq.(27) can still be a reasonable approximation for the purpose of
estimating the partial factors. The validity of the above assumptions will eventually be verified
by reliability analysis of representative cases with the selected partial factors.

With respect to the value of Vy, it depends on the nominal flexural depth, and this results in
different values of V for cases with different flexural depths. For instance, for the range of dyom
= 15-60 mm, the approximated value of V% is plotted in Figure 4.13a.

131



Safety format and design approach for brittle systems and application to TRC

() 03f ®
\ Lo,
021
05¢
0.1f

0 ; : : ; ! 0 ; — : ; !
15 20 30 40 50 60 15 20 30 40 50 60
d [mm] d [mm]

nom nom

Figure 4.13:  Analysis of the influence of d,.n: (a) V&; and (b) FORM senstivity factors

Following the same strategy, the FORM sensitivity factors for the basic variables can also be
estimated as follows:

2 (28)
Cftox = ftex
ex 2 2 2
VeR + Vftex +V;
2 29
o~ Vf 6R 29)
6r ~ 2 2 2
VGR + Vftex +V;
2 30
) A (30)
Ag =

VgR + foex + V2

The change of the FORM sensitivity factors with the flexural depth is plotted Figure 4.13b. It
should be stressed that the above analysis is based on two approximations: the assumption that
the resistance can be approximated as a multiplicative form of the basic variables and the
assumption that the resistance can be approximated by a lognormal distribution. From this
analysis, it can be observed that the FORM sensitivity factor for the flexural depth decreases
with increasing depth. It can further be observed that for the cases where the mean value of the
flexural depth is relatively small, its uncertainty becomes dominant. Since the flexural depth
follows a normal distribution (see Table 4.8), in the cases when the uncertainty of the flexural
depth is dominating, the assumption that the resistance follows lognormal can be not valid
anymore. This means the estimated FORM sensitivity factors of the range where the flexural
depth is small can deviate from the actual value. Nevertheless, the estimated values can still
provide important information for the safety format calibration problem and can be used as a
useful reference. The estimated values of the CoV of the resistance variable and the FORM
sensitivity factors of basic variables are used in the safety format calibration in Section 4.7 and
their effectiveness is eventually verified by reliability analysis of representative cases.
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Appendix 4.B: Analysis of an assembled cross-beam system

The aim of this annex is to provide a detailed example of the assembled cross-beam system,
following the procedure explained in Section 4.5. The assembled cross-beam composed of beam
TB1 and TB8 is used for this purpose. For beam TB1 (refer to Section 4.3 for the values of the
parameters of beam TB1), the uncracked cross-sectional flexural stiffness Elj; is:

bh3 , 31)
Elyc = Ecm— = 140 10° [kN - mm?]

Thus, the uncracked stiffness of the beam TB1 results:

aqQ 48E1 By
(%)LAUC = L—3UC = 3.88 [kN/mm] (32)

And the cracked cross-sectional flexural stiffness Elr. of beam TBI is:
bxy (33)

3 Ecm+ ) (di — xn)%ArexErexm = 1.13 - 107 [KN - mm?]

=1

EIFC =

Where xy refers to the position of the neutral axis (see Figure 4.5) and the fully-cracked stiffness
of beam TBI1 is:

dQ 48EI 34
(%)LAFC = L—3FC = 0.31[kN/mm] (34)

The uncracked and fully-cracked stiffness of beam TBS8 can be calculated with the same method.
Based on this information, the load-deflection curves of the assembled system using LAUC and
LAFC methods are calculated and plotted in Figure 4.14. For the NLA, a trilinear moment-
curvature relationship is assumed for each beam and the actual extent of cracked and uncracked
regions are accounted for. The resultant response of the assembled system using NLA method
and the assembled experimental response are plotted in Figure 4.14. for the selected case.
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Figure 4.14:  Response of the assemble cross-beam system composed of beam TB1 and
TBS
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Notation

Latin upper case letters

Atex

Ar

Ecarc
Ecm

Eexp

Eq
Etex,m
Elrc, Eluc
F

Frep

L

Lol ’ LoZ
M

M, My
M
Mexp
Mhoggfng

M sagging
M R,hog

MR,sag
Prob ()
Q

Qa, Qs
Qexp

Qrarc
Qravc

QN LA
R calc

R exp
Rq
Utex
Va
Vftex
Vr
Vsq
Ver
Xk

X num

total area of textile reinforcement in a beam cross section

coefficient in the multiplicative form approximation of the resistance function
calculated action effect at a given cross section of a structure

mean value of the elastic modulus of concrete (motar)

experimental action effect at a given cross section of a structure

design value of action effect

mean value of the elastic modulus of textile reinforcement

fully cracked and uncracked flexural rigidity of a cross section

load applied to a tested beam

representative value of action variables

span of a beam

overhang of a beam in three point bending test

bending moment of a cross section

bending moment of a cross section of beam BI and BII

cracking moment of a cross section

ultimate bending resistance of a tested beam

maximum hogging moment of a beam according to a linear response
maximum sagging moment of a beam according to a linear response
resistance of a beam cross section to the hogging moment

resistance of a beam cross section to the sagging moment

probability function

load applied to an assembled cross-beam system

load transferred to a component beam of an assembled cross-beam system
experimental resistance of an assembled cross-beam system

resistance calculated with Linear Analysis assuming Fully-Cracked stiffness
(LAFC)

resistance calculated with Linear Analysis assuming UnCracked stiffness
(LAUC)

resistance calculated with NonLinear Analysis (NLA)

calculated local resistance of a structure

experimental local resistance of a structure

design value of resistance

nominal perimeter of the roving of textile reinforcement

Coefficient of Variant (CoV) of the flexural depth random variable

CoV of the textile reinforcement tensile strength random variable

CoV of the resistance random variable

CoV of the action effect model uncertainty

CoV of the model uncertainty of local resistance

the characteristic value for a material strength variable

the design vector for a component beam in the numerical cross-beam system
study

Latin lower case letters

anom

nominal value of geometrical variables
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Otex net cross section of the roving of textile reinforcement

b width of a beam cross section

d flexural depth of a roving in a cross section

dave average flexural depth of all the rovings in a cross section

Amax maximum value of the flexural depth of all the rovings in a cross section

Amin minimum value of the flexural depth of all the rovings in a cross section

ddesign design value for the flexural depth

dnom nominal value for the flexural depth

Ctex grid spacing of the textile reinforcement

fe the compressive strength of concrete (motar)

feck characteristic value for concrete (motar) compressive strength

fem mean value of the compressive strength of concrete (motar)

fetm mean value of the tensile strength of the concrete (motar)

frex the textile reinforcement tensile strength

frex,ck characteristic value of the textile reinforcement tensile strength

frexd design value of the textile reinforcement tensile strength

frexm mean value of the textile reinforcement tensile strength

g() performance function

h height of a beam cross section

n, number of textile rovings in a cross section

Qcalc the calculated global resistance of a statically indeterminate structure in terms
of load factor

Ger,hog external load level when the hogging region of a beam cracks

Ger,sag external load level when the sagging region of a beam cracks

qe external action

Gexp experimental global resistance of a statically indeterminate structure in terms
of load factor

QR hog external load level when the hogging region of a beam reaches the ultimate
resistance

QR sag external load level when the sagging region of a beam reaches the ultimate
resistance

Qri external load level when beam BI reaches its load carrying capacity

Qril external load level when beam BII reaches its load carrying capacity

XN position of the neutral axis of a cross section

Greek upper case letters

i reduction factor for the flexural depth

() cumulative distribution function of standardized Normal distribution

Greek lower case letters

ay FORM sensitivity factor of the flexural depth random variable

ag FORM sensitivity factor for action effects

Aftex FORM sensitivity factor of the textile reinforcement strength random variable

Qg FORM sensitivity factor of the model uncertainty of local resistance random
variable

ag FORM sensitivity factor for the resistance

Bachieved achieved reliability index

Bachieved, | achieved reliability index for safety format proposal I
Bachievea, [I  achieved reliability index for safety format proposal 11
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ﬁtgt

B tgt,50
Yc

Ya

v

Ysd
Ytex,

Ytex,11
)

5ca|

Oexp

&c

&

n

/3

T

77is

O

eE ,LAFC
OE,LAFC,num

HE,LA uc
OE,LA UCnum

QE,NLA
gglobal
9R,local
Yo

Pave

O¢

Oj

X

the target reliability index

the target reliability index for a reference period of 50 years

partial factor for concrete compressive strength

partial factors applied to action variables

partial factors applied to material strength variables

partial factors for action effect model uncertainty

partial factor for textile reinforcement strength in safety format Proposal I
partial factor for textile reinforcement strength in safety format Proposal 11
mid-span deflection of a structure

calculated mid-span deflection of a structure

experimental mid-span deflection of a structure

strain of concrete

strain of a single textile reinforcement roving

mean value of the conversion factors for material strength variables
efficiency factor for the textile modulus of elasticity

efficiency factor for the textile tensile strength

the in-situ strength efficient factor of concrete

random variable for action effect model uncertainty

action effect model uncertainty variable for LAFC

action effect model uncertainty variable for LAFC evaluated with numerical
method

action effect model uncertainty variable for LAUC

action effect model uncertainty variable for LAUC evaluated with numerical
method

action effect model uncertainty variable for NLA

random variable for the global resistance model uncertainty

random variable for the local resistance model uncertainty

flexural reinforcement ratio of a cross section

average flexural reinforcement ratio of a cross section

stress of concrete

stress of a single textile reinforcement roving

curvature of a cross section
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Chapter 5

Conclusions and Outlook

5.1 Conclusions

This chapter summarises the conclusions of this thesis. In addition, an outlook on the research
which could be addressed in future works to advance the state-of-the-art is included.

This work explores the different aspects of the partial safety format calibration problem involved
in the resistances of reinforced concrete structures. In general, it is concluded that a suitable
probabilistic modelling of the basic uncertainties is fundamental for an effective partial safety
format calibration, which should be based on a good understanding of the mechanical behaviour
of the relevant load bearing mechanisms. On its basis, a detailed safety format composed of
calibrated partial safety factors for the dominating uncertainties is an effective reliability
verification approach for both classical analytical design equations and advanced nonlinear
analysis methods like strain-based approaches and NonLinear Finite Element Analysis.

In the following, the main conclusions of this work are listed by chapter.

Chapter 2: Considerations on the partial safety factor format for reinforced concrete
structures accounting for multiple failure modes

Focusing on material uncertainties, the basic assumptions, simplifications and applicability
conditions of the Partial Safety Factor Format (PSFF) for the design resistance of concrete
structures are investigated. By a detailed analysis of the shapes of the limit state functions of
different resistance models, the similarities between the simple analytical models and more
advanced nonlinear analysis models are demonstrated. The main conclusions of this chapters are
the followings:

» Exponent sensitivity factor analysis of some typical structural resistance models for
reinforced concrete structures shows that it is an efficient tool to detect different failure
modes. In addition, performing exponent sensitivity analysis of basic uncertainty
variables of the full applicable range of a resistance model and estimating the reliability
index using approximated First Order Reliability Method (FORM) on its basis can
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provide valuable information for the safety format calibration of the corresponding
model.

= On the basis of the investigation of the basic assumptions, simplifications and
applicability conditions of the PSFF on material strength variables, it is concluded that
the PSFF yields satisfactory reliability levels both for cases subjected to single or
multiple failure modes as long as the non-decreasing assumption of the resistance
function is valid.

= Adopting conservative FORM sensitivity factors for material strength variables in the
PSFF calibration is necessary because they may vary significantly with the change of
failure modes. This treatment can be conservative but has the advantage of being simple
to use in design practice and being applicable to a wide range of cases.

= The simplification of integrating the safety elements for geometrical and model
uncertainties into the partial safety factors for material strengths can underestimate the
influence of geometrical and model uncertainties in some cases.

= Good tail approximation is instrumental for the effectiveness of safety formats.
Approximating the distribution of resistance variable with a single lognormal
distribution based on crude Monte Carlo simulation result risks of losing information
about the tail distribution and can potentially lead to unsafe results.

Chapter 3: Model uncertainties and partial safety factors of strain-based approaches for
structural concrete: example of punching shear

The characteristics of the model uncertainties of the implicit strain-based approaches
(composing of multiple sub-models) are investigated. A general theoretical analysis based on
the power-multiplicative form approximation of the sub-models shows that the model
uncertainty of the global solution can be viewed as a resultant of the model uncertainty of the
sub-models. The influence of the sub-models on the uncertainty of global solution depends
however on their sensitivity relationship (represented by the exponent sensitivity factors). With
this respect, it is shown that the global model uncertainty can be lower than the sub-models’
uncertainties, which is a relevant point to be accounted for in the safety format calibration of
strain-based approaches.

The theoretical approach is then applied to the strain-based approach of the Critical Shear Crack
Theory (CSCT) for punching of reinforced concrete slabs. The resulting major conclusions are:

= Analysis of the model uncertainty data of the sub-models the CSCT punching shear
models confirms that they can be approximated by independent lognormal distributions.

= Comparison between the model uncertainty data of the sub-models and the global
resistance solutions confirms the theoretically derived relationship based on the
exponent analysis.
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By analysing two levels of approximation of the punching shear resistance model
(namely LoA II and LoA IV according to fib MC 2010), it is shown that the model
uncertainty decreases with the increase of the LoA (consistently with the main principles
of such approach). Furthermore, the model uncertainty of lower LoAs can be considered
as a resultant of the uncertainty of higher LoAs and the additional epistemic model
uncertainty introduced in the simplification procedure adopted for the derivation of the
lower LoA formulae.

On the basis of model uncertainty analysis result, the suitable safety format for the CSCT

punching shear resistance models is discussed. The conclusions are:

For higher LoAs, an approach based on the application of partial safety factors to the
sub-models appears to be more suitable than an approach relying on the application of
a single global partial safety factor to the resistance solution, since they can effectively
account for the change of model uncertainty associated to the change of the failure mode.
Particular attention needs to be paid to the nonlinear relationship between the partial
safety factors applied to the sub-models and the resulting design resistance for strain-
based approaches.

If partial safety factors are adopted for the sub-models, the resulting global partial safety
factor can vary depending on the material and geometrical parameters as well as on the
resulting failure modes. For the investigated case, the global partial safety factor for
punching according to the LoA IV varies between 1.48 and 1.00.

The relationship between the safety factors of the punching shear provisions in the
second generation of Eurocode 2 for the design of new structures (Clause 8.4) and the
assessment of existing critical ones (Annex I) is established, justifying the safety format
adopted for the latter.

Chapter 4: A consistent safety format and design approach for brittle systems and
application to textile reinforced concrete structures

The suitable safety format and analysis method for Textile Reinforced Concrete (TRC) is
investigated accounting for the influence of brittle behaviour on the reliability of such structures.
The main conclusions are:

Structures presenting brittle responses (implying limited or none redistribution capacity
of internal forces) can fail for load levels below those considered for design if the
calculation of internal forces deviates from the actual response (typically, elastic-
uncracked behaviour assumed in the calculation of internal forces). This situation does
not occur for a ductile response.

The analysis of statically indeterminate TRC structures shows that performing a linear
elastic calculation of internal forces considering fully cracked stiffness properties for all
sections is a suitable manner to estimate the internal forces and response of TRC. This
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5.2

holds true provided that more than minimum amount of reinforcement are provided in
the structure.

Alternatively, using a nonlinear analysis (considering the development and extent of
cracking) is also a suitable manner to estimate the internal forces. It is even more
accurate than the previous, but requiring a significant effort for analysis.

Estimating internal forces on the basis of the uncracked stiffness of the sections (as
usually performed for ordinary reinforced concrete) can lead to relatively large
deviations on the response and internal forces of a brittle structure as TRC. Such method
shall not be used for design unless specific considerations were implemented to cover
this increased uncertainty.

Since for thin members, the variability of the effective depth can be significant
compared to the mean value, the geometrical uncertainties can play a major role in
calibrating the partial safety factors for designing structures at ultimate limit state. On
the basis of reliable internal forces (determined by a linear-elastic fully cracked analysis
or a nonlinear analysis), two types of PSFF are calibrated for the flexural resistance of
TRC:

o Consideration of a partial safety factor for the tensile strength of the textile
(#4ex = 1.55) and nominal dimensions. All uncertainties (material, geometrical
and model) are lumped into the partial safety factor of the textile.

o Consideration of a reduced partial safety factor for the tensile strength of the
textile (Jx = 1.25) and design dimensions (reduction of 6 mm in effective
depth). In this case, material and model uncertainties are accounted for in the
partial safety factor of the textile while geometrical uncertainties are considered
in the design dimensions.

o In general, the second safety format is preferable, leading to a more uniform
level of safety.

Outlook and future works

Some questions related to the topics studied in this research remain open. In the following, some

of these future research lines are outlined:

The model uncertainty quantification of the NonLinear Finite Element Analysis
(NLFEA) approaches still pose many challenges to be dealt with in future works. A
major challenge is the scarcity of test data on the global response of structures. Taking
the case of the punching shear resistance of slab-column connections as an example, in
this work, the model uncertainty quantification is performed based on data from
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laboratory tests of isolated slab-column connections. The corresponding investigations
on the partial safety format is also performed at the isolated slab-column connection
elment level. By contrast, in practice, the majority of the flat slabs are continuous
structures with multiple spans supported by several columns and walls, which can have
significantly different behaviour from isolated slab-column connection potion due to the
influence of Compressive Membrane Action (CMA), the redistribution of internal
bending moments that can occur in continuous flat slabs and the non-uniform
distribution of shear stress along the control perimeter. Calibrating the partial safety
format at the isolated structural potion level is suitable when the verification of the
punching shear resistance of a flat slab is performed adopting conservative assumptions
regarding the global behaviour (neglecting the beneficial influences of CMA and
internal force redistribution) and adopting conservative assumptions for the non-
uniform distribution of the shear force along the control perimeter. However, when a
more refined analysis of the punching shear resistance is required (e.g. in the assessment
of critical existing structures) and the global behaviour of continuous flat slab structure
including the beneficial effects of CMA and internal forces redistribution are accounted
for by NLFEA, theoretically, the corresponding safety format needs to be re-calibrated
with the model uncertainties of the continuous flat slab structures, which can be different
from those of isolated specimens. However, due to the complexity of full-scale tests on
continuous flat slabs, as well as the resources needed for that purpose, very little test
data is available at this scale. The difference between the scale of the available
benchmark test data and the scale of the NLFEA model used in the calculation of
structural load bearing capacity is a problem that needs to be investigated in future
works.

Another important question is related to the categorization of the model uncertainties of
the NLFEA approaches. It has been shown in Chapter 3 that the model uncertainty of
global resistance solution of strain-based punching shear resistance model tends to be
heteroscedastic as a resultant of the different influences of the sub-models for different
cases. For the punching shear resistance model, it is applicable to perform the model
uncertainty quantification at the sub-model level since it has a relatively simple form
with clearly defined and mechanical-based sub-models. However, it can be anticipated
that such an approach is not necessarily applicable for more complex NLFEA with
multiple calibrated parameters in multiple sub-models. For this type of model, the only
feasible approach is to represent the model uncertainty at the global resistance level. It
is reasonable to anticipate that the global resistance model uncertainty of such models
can also be heteroscedastic due to similar reasons as for the case of the strain-based
punching shear resistance model. Researchers have tried to categorize the global
uncertainty of the NLFEA by differentiating ductility level [Eng17] or governing failure
modes [Cerl18]. In this work, it is shown that the exponent sensitivity analysis is an
effective tool to identify the influence of different failure modes in the structural
resistance model (also in the cases with multiple failure modes coupling). In future
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researches, to categorize the model uncertainties of the global resistance solution of
NLFEA on the basis of the exponent analysis of the relevant variables can be a
promising direction to achieve a better representation of model uncertainties of such
models.

= Regarding the treatment of material uncertainties, the influence of their spatial variation
and correlation needs to be further investigated in future research. For example, the
tension stiffening effect of concrete after cracking can have a significant influence on
the punching shear resistance of slab-column connections in continuous slabs. The
tension stiffening effect depends on the crack pattern of the structure, which is
influenced by the spatial variation of the property of concrete. How to properly account
for the influence of this type of effect on the reliability of reinforced concrete structures
still needs to be investigated.
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Appendix A

Safety format calibration example:
the anchorage strength model of
shear reinforcement in beams and
slabs

This Appendix is a part (Section 6.8 and Appendix D) of the post-print version of the article
mentioned below, published in Engineering Structures Journal. The authors of the article are
Frédéric Monney, Qianhui Yu (PhD Candidate), Prof. Miguel Fernandez Ruiz (thesis co-
director) and Prof. Aurelio Muttoni (thesis director). The reference is the following:

Monney F., Yu Q., Fernandez Ruiz M., Muttoni A., Anchorage of shear reinforcement in
beams and slabs, Engineering Structures, Vol.265, 114340, 2022.
(DOIL: https://doi.org/10.1016/j.engstruct.2022.114340)

The main contributions of Qianhui Yu to this article and this annex are the following:
= Probabilistic modelling of the basic uncertainties of the anchorage strength model

=  Proposition of the reliability analysis and the safety format calibration methodology for
the anchorage strength model

* Interpretation, analysis and discussion of the reliability analysis and safety format
calibration result.

= Writing of the manuscript of section 6.8 and Appendix D of the article.
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Appendix A.1: Safety format calibration for the anchorage
strength model

This appendix presents the process of the safety format calibration procedure for the anchorage
strength model for shear reinforcement in beams and slabs developed by Monney et al.
in [Mon22].

Based on the average behaviour observed in tests, the anchorage strength model is developed
and takes the following form (refer to [Mon22] for details of the development of the mechanical
model and refer to Notation section for definition of the symbols):
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o :4-’?lmln(rb;rmﬂ’spa”)(l+2-k3 .k4)+4.7drb -k4(1+k3 -5j+
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To use this model in codified design practice, the unavoidable uncertainties involved in design
need to be accounted for and the design equation (including partial factors) for the developed
model needs to be calibrated to fulfil the corresponding reliability requirements.

The target reliability requirement of Eurocode for the ultimate limit state design for structures
with medium consequence class and a reference period of 50 years (with a target reliability index
of [ =3.8) is considered and the design equation for the proposed anchorage strength
model (Eq.(1)) is calibrated accordingly. The material, geometrical and model uncertainties
involved in the model need to be accounted for in the safety format calibration. The probabilistic
modelling of the uncertainties involved in the independent input variables of the model are
shown in Table A.1. The distribution of the model uncertainty (considered as an independent
random variable multiplied to the model) is also provided in Table A.1. It should be noted that
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the distribution parameters for the concrete cover c are derived based on its allowance value for
deviation according to Eurocode 2 [CEN04, [SO13]. In Eurocode 2 (Clause 4.4.1.1 and 4.4.1.3),
the acceptable deviation for concrete cover for buildings is recommended as 10 mm. Taking this
into account, the minimum allowed concrete cover Cuin (Cmin = Crom — 10 [mm]) is assumed to be
the 5 % fractile of its distribution. It should also be noted that the bar diameter @ is not
considered as an independent random variable because the uncertainty in the area of cross
section of the bar is already included in £, and fz. Also, the crack width w is not accounted as an
independent random variable because it is a derived variable based on the independent input

variable.
Table A.1: Distribution parameters of the basic uncertainties of the achorage strength
model
Basic variable Distribution Coefficient of Variation Bias f?ctor Reference
fi type Vi i
Model uncertainty ~ lognormal 0.129 1.05 [Mon22]
Sooais® lognormal 0.156 el o8 [Mut23]
5 lognormal 0.045 el 845 r [Mut23]
a lognormal 0.05 1 assumed
Orand lognormal (0.2:9/1.645)/Dmana 1 assumed
Liail lognormal (9/1.645)/ 141 1 assumed
lognormal In(crom/(Crom -10))/1.645 1 [CENO04]
dg lognormal 0.1 1 [Mut23]
fr lognormal 0.005 1 [Dar98§]

D The value in this columns refer to the ratio between the mean value and the value used in
the design formulae (characteristic for material strength variables and nominal for other
variables) [Mut23]

2 f. 4is actual in-situ compressive concrete strength
The semi-probabilistic approach and the simplification of using standardised FORM (First Order
Reliability Method) sensitivity factors [CEN02] for the resistance (o = 0.8) is adopted in the
following safety format calibration procedure. Accounting for the standardized FORM
sensitivity factor, the reliability requirement for design equation of the anchorage strength can
be expressed as:

P(O-SR ~Osrd < O) = q)(_aR ' ﬁtgt) (2)

Where P() is the probabilistic function, oz is the anchorage strength variable, oyzq s the design
anchorage strength (calculated with partial safety factors) and @ is the cumulative probability
function of the standardised normal distribution.
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To facilitate the partial factor calibration, the CoV of the anchorage strength model (V%) is first
estimated approximately based on exponent sensitivity analysis [Yu20] of the basic input
variables:

Ve=rl2n V7 3)

Where n; are the exponent sensitivity factor for basic variable f; (defined as the partial derivative
of the logarithm of the anchorage strength oz to the logarithm of the variable f; at the mean value
point of the basic variables). Details of the assumptions and approximations in the exponent
sensitivity analysis and the estimation of Vx can found in references [ Yu20, Yu21].

The resulting CoVs for cases with different combinations of design parameters are plotted in
Figure A.1 From the CoV plots, it can be observed that as a result of the two different failure
modes (spalling failure and pull-out failure) involved in the anchorage strength model, the Vz
plots show two regimes and the dominating variable for the variability of the model change with
the dominating failure mode. When the concrete cover value is relatively low, the spalling failure
mode is dominating and the variability of concrete cover variable is dominating. On the other
hand, with relatively high concrete cover value, the pull-out failure mode is dominating and the
model uncertainty becomes dominant.
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(a)
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Figure A.1: (a) CoV of the resistance variable; (b) partial safety factor; and (c) design
value of the concrete cover. (Parameters used: poor bond conditions; J14;
dg=16 [mm]; m=4; lui=50; Onaa=49; a=90 [°]; f.=38 [MPa];
Jfy =500 [MPa]; fz = 0.056).

Based on the previous observations, the following format of the design equation for the
anchorage strength model is proposed:
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In the proposed format in Eq. (4) (which is based on Eq.(1) incorporating the partial safety
factors), the design values are obtained with the partial safety factor yz and with a reduction A,
of the concrete cover (cs = Crom - Ac, Where ciom 1S the nominal concrete cover). The motivation
of using a design value of the concrete cover ¢y is to achieve a uniform reliability level for cases
dominated by different failure modes. It should be noted that the approach of applying design
value of dominating geometrical variables in the design equation is also adopted in Eurocode
[CEN23, CENO02].

The required values for the partial safety factor yz and A. to achieve the target reliability level
(ar: Pigr) are estimated based on FORM theory considering that concrete cover is an independent
variable and that the rest of the uncertainties are lumped into another independent random
variable (in a similar approach as the one presented in [Yu2l] but considering a lognormal
distribution for the concrete cover). The resulting equations are given below, with representative
cases plotted in Figure A.2.

[ 2 2 2 2
exp( L= topyr e~ Or 'ﬁzgz “\V& = Ororu Vi )

VR = n
[T )

c
_ _ nom
A =cm

exp(aFORM,c O Py Vc)

Where aroru,c are the approximated FORM sensitivity factor for variable ¢ (estimated as
arorme = ne V/ Vi), The following values for the two safety factors are proposed based on the
analysis results:

yr 1.4
A, =8 [mm] (6)
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To verify the effectiveness of the selected combination of safety factors, reliability analysis of
representative cases is performed with Monte Carlo simulation method. Accounting for the
probabilistic models of the basic variables, the achieved reliability for the design strength is
calculated with the following equation:

[ 2 2 2 2
exp( l_aFORM,c “Op 'ﬁtgt ‘ANVr = Crorm Vr )

TR = n
[T )

A =c _ Crom

c nom
exp(aFORM,c "0+ P Vc)

For each case, one million sample points are used in the Monte Carlo simulation to ensure proper
tail approximation of the anchorage strength variable (refer to [Yu20] for details about the
necessity of tail approximation in the cases of multiple failure modes). The achieved reliability
indexes of the investigated cases are plotted in Figure A.2. The result shows that with the
proposed combination of safety factors, a satisfactory range of the achieved reliability level
(ranging between 2.5 and 3.5) is achieved, which confirms the applicability of the proposed
safety format.

It should also be noted that the value A. for calculating the design value ¢, can potentially be
reduced when the concrete cover is updated on the basis of measurements (e.g. in the assessment
of existing structures). Under this circumstance, the value of A, can be calculated based upon
updated information about the probabilistic model of the concrete cover with the procedure
outlined in this section.
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Figure A.2:  Achieved reliability index for different cases.
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Notation

Latin lower case letters

C
Cmin

cIl()ﬂ’l

Je.ais

Sek

fi

Jr

Iy

Jok

ki to k4
L1ait

ni

w

concrete cover

minimum value of concrete cover

nominal value of concrete cover

design value of the concrete cover

maximum aggregate size parameter

maximum aggregate size

concrete cylinder compressive strength

actual in-situ concrete compressive strength
characteristic value of the concrete compressive strength
basic variable

bond index

yield strength of reinforcement

characteristic value of the yield strength of the reinforcement
factors of the model

tail length

exponent sensitivity factor of basic variable f;

in-plane crack opening

Latin upper case letters

Vi
Vr

Coefficient of Variation of basic variable f;

Coefficient of Variation of the resistance function

Greek lower case letters

a
O.FORM,c
OR

ﬂach ieved
Prat

TR

Hep

Het

His

ni

OsR

OsRd

[2)

bending angle

approximated FORM sensitivity factor for concrete cover
First Order Reliability Method sensitivity factor for resistance
achieved reliability index

target reliability index

partial safety factor for the anchorage strength model
coefficient accounting for casting effects on bond conditions
brittleness factor of concrete in tension

strength reduction factor to account for casting position effect
number of lugs per rib

anchorage strength calculated with the model

design anchorage strength

bond stress

153



Anchorage of shear reinforcement in beams and slabs

Thail spall average bond stress for failures induced by spalling in the tail region
Greek upper case letters

Ac reduction of concrete cover for design

Others

7] bar diameter

g, longitudinal bar diameter within the bend

Drmand mandrel diameter (= inner diameter after bending of the bar)

) cumulative probability function of the standardised normal distribution
PO probabilistic function
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