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Abstract
High-strength (HS) and light-weight aggregate (LWA) concretes are generally used to

reduce member sizes and self-weight. The bond between the aggregate particles and the
cement paste can be strong enough in HSC and LWAC to cause the aggregate to fracture
at cracks which in turn reduces the shear stress which can be transferred across cracks by
means of aggregate interlock. The contribution of aggregate interlock to the shear strength
of reinforced concrete beams is uncertain and depends on parameters such as the amount
of shear reinforcement and the contribution of arching action for loads applied close to
the support. These aspects can influence the crack pattern and relative crack
displacements, which in turn affects the contribution of aggregate interlock to shear
strength. Previous tests on slender reinforced concrete beams without shear reinforcement
have shown that shear strength is reduced by aggregate fracture. There is a lack of similar
test data for members with stirrups and for members with varying shear span to effective
depth ratios. This thesis describes a set of 22 beam tests carried out by the author, on short
span beams and simply supported slender beams all with and without stirrups. Tests also
include continuous beams with stirrups. Two different types of aggregate were used
(gravel and limestone) to investigate the effect of aggregate fracture on shear strength.
The cracks tended to pass around the gravel aggregate and through the limestone
aggregate. Shear stresses were estimated at critical shear cracks from constitutive
relationships derived from the author’s push-off tests. The shear strengths of the 22 beams
tested are compared with strengths calculated in accordance with the design provisions in
EC2, BS8110 and CSA design codes, in which aggregate fracture is not explicitly
considered. Strut-and-tie models for short span beams with and without stirrups are also
presented. A discrete crack slip model is also developed for shear panels, short span and
continuous beams, in which the behaviour is assumed to be governed by shear stresses
along cracks. The analytical and finite element models developed can be used to assess

the influence of crack roughness on the shear strength of reinforced concrete beams.
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a = Shear span measured between centrelines of bearing plates; Aggregate size
a, = Clear shear span measured between inner edges of bearing plates

a.r= Effective aggregate size assume in calculations
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s = Crack sliding or slip; Spacing of the stirrups

SG = Strain gauge

ST = Stirrup index: for short span beams S/ =nAsty/(bhﬂ')

5

for slender beams SI=pf,/(V/.)
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so= Diagonal crack spacing

s.. = Effective crack spacing

Smx, Smy = Crack control parameters in the X, y directions according to MC90

T = Tensile force transferred to the bottom node in strut-and-tie model

T,;= Tensile force carried by each stirrup

T, = Tensile force transferred to the bottom node by direct strut

T;= Tensile force transferred to the flexural reinforcement by indirect strut 11

T,»’ = Tensile force transferred to the bottom node by indirect strut I1I

V"= Shear force

V. = Shear concrete component

Vs = Stirrup contribution to shear

Vras= Shear resistance to yielding of the shear reinforcement

Vramax = Maximum shear resistance limited by crushing of the compression struts
Vrawer = Shear resistance provided by the web

Viu= Vertical component of friction shear forces according to truss with friction model
v = Constant shear stress at cross section (V/bz)

v, = Normalized shear stress (v/vf. )

v.; = Shear stress on crack surface (MCFT)

w = Crack opening or crack width

z = Effective level arm (for shear z=jd=0.9d, unless stated)

a = Inclination of shear crack (also refered as £.); Threshold angle in multi-fix model

f = Shear retention factor; Compression softening factor of the concrete strength
(MCFT); Fraction of total tensile force transferred by direct strut to bottom node in
strut-and-tie model for short span beams with stirrups; Angle between the strut and

the crack plane; Interpolation factor applied to V. (EHE)
o= Vertical deflection

& = Strain in concrete cylinder at peak stress /.
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& = Elastic strains

&= Crack strains

& = Principal tensile strain (MCFT)

& = Principal compressive strain (MCFT)

& = Strain in the x-direction

& = Strain in the y-direction

&er, E4er = Strain in the r, d directions in the crack element
Eerr Eyor = Strain in the x, y directions in the crack element
¢ = Friction angle

@., ¢s = Capacity reduction factors (CSA)

7%= Shear strain relative to x, y axes

¥ ¥ = Partial factors for concrete and steel

A = Proportion of load carried by direct strut in strut-and-tie model for short span beam
L = Friction parameter

v = Strength reduction factor for concrete cracked in shear; v=0.6/1-f./250] (EC2);
Poisson ratio (NLFEA)

6= Inclination of compression stress field (strut)

Psxw Psy = Reinforcement ratios for steel in x, y directions (MCFT)
1= Flexural reinforcement ratio

p» = Shear reinforcement ratio

oner= Normal stresses at the crack

7, = Shear stress at the element

7.» = Shear stress at the crack

w = Dilatancy angle
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CHAPTER 1 — Introduction

1.1 Motivation and challenges

This work is primarily concerned with the influence of aggregate interlock on the shear
strength of reinforced concrete beams. The bond between the aggregate particles and the
cement paste can be strong enough in high-strength concretes (HSC) to cause the
aggregate to fracture at cracks which in turn reduces the shear stress which can be
transferred across cracks by means of aggregate interlock. A similar situation can arise in
light-weight aggregate concretes (LWAC). The contribution of aggregate interlock to the
shear strength of reinforced concrete beams is uncertain and depends on parameters such
as the amount of shear reinforcement and the contribution of arching action for loads
applied close to the support. These aspects can influence the crack pattern and relative
crack displacements, which in turn affects the contribution of aggregate interlock to shear

strength.

Taylor’s [1, 2] pioneering experimental and analytical work on slender beams without
shear reinforcement indicated that aggregate interlock could contribute up to 50% of the
shear strength. Regan [3, 4] recently carried out a series of tests on beams without stirrups
which showed that shear strength was reduced if the coarse aggregate fractured at cracks.
This work led to the maximum design concrete strength being limited to 60MPa in the
UK National Annex to Eurocode 2. Regan was unable to establish the influence of
aggregate fracture on the shear strength of beams with stirrups due to the failure of many
investigators to report the type of aggregate used in their tests. A key aim of the current
work is investigate the influence of aggregate fracture on shear strength in beams with

stirrups.
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A significant limitation in the design methods for shear given in codes such as BS8110
[5], MC90 [6], or EC2 [7] is that they do not, with the exception of LWAC, take into
consideration the type of aggregate used. In general, the potential reduction in shear
strength due to smoother cracks is only considered by means of the concrete compressive
strength and not by the type of aggregate. For example, UK National Annex to EC2 limits
the concrete strength to 60MPa in shear calculations to account for fracturing of the
course aggregate, unless further experimental evidence is provided. On the other hand,
Canadian design equations, which are based on the well known Modified Compression
Field Theory (Vecchio & Collins [8]), aggregate fracture can be considered by reducing
the effective size of the aggregate in the calculations. However, this is generally done
according to the concrete strength and not to the type of aggregate. Moreover, the
allowance of changing the aggregate size in the simple approach suggested in the
Canadian code seems to be only recommended for cases of members without shear

reinforcement.

Concerns about aggregate fracture have been raised by authors including Walraven et al.
[9, 10]. These concerns led to them testing several series of simply supported slender
beams using HSC and LWAC. These tests did not show any significant reduction in shear
strength due to aggregate fracture. However, to the author’s knowledge, no tests have
been carried out using different aggregate types in identical beams with similar concrete
strengths and different shear span to effective depth ratios, including cases with and
without shear reinforcement. Moreover, little experimental evidence is available on

continuous beams with stirrups.

Shear in structures becomes more critical in zones near the supports or applied loads,
where the stress distribution is not uniform. In these discontinuity regions, standard
theory is not applicable and more recent approaches such as the strut-and-tie method
(STM) have been developed in order to detail the reinforcement layout at these regions.
Although the STM is transparent, several assumptions are required in terms of strength
and geometry of truss elements (strut, nodes and ties). Again, the influence of aggregate
fracture is not taken into account directly since cracking and transverse strains are only
considered by means of “effectiveness” concrete strength factors. In particular, EC2
allows the STM to be used for designing short span beams as an alternative method to
simple design formulas. However, the predictions of these formulae and STM can vary

considerably. It is questionable which method is more realistic since aspects such as size
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effects and the influence of the position of critical shear cracks on strength of the strut are

neglected in many of these approaches. The inconsistencies between the predictions of

simple design formulae, NLFEA and strut-and-tie models have intrigued the author since

his early days as a structural engineer in a consultancy office in Madrid.

1.2 Objectives

The main objectives of this work are highlighted below.

1.

The assessment of normal and shear stresses transmitted along cracks in which the
aggregate particles had fractured completely for different shear reinforcement

ratios.

The modelling of in-plane shear stress states by means of smeared and discrete

crack approaches.

The development of an experimental programme in order to assess the influence
of aggregate fracture on shear behaviour for different beam slenderness ratios
(short span and slender beams), including cases with and without shear

reinforcement.

To investigate the accuracy of the design equations for shear in RC short span and
slender beams which are available in codes of practice. This study includes a close
examination of critical parameters and assumptions made by each method,

especially those related to aggregate interlock action.

The provision of general recommendations to improve shear strength predictions
when using either design formulae or more elaborate smeared/discrete crack
approaches, in particular for cases where the aggregate particles split at the crack

surface.
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1.3 Outline of Thesis

This thesis consists of nine chapters. The introductory chapter is followed by chapters 2
and 3 in which the different approaches for modelling shear in reinforced concrete
members used in practice are reviewed. Chapter 2 focuses on the different analytical
methods which form the base for most of shear equations suggested in design codes such
as EC2 or BS8110. Although most of these methods are grounded on the truss analogy

concept, smeared and discrete crack approaches are also discussed.

In chapter 3, several approaches for modelling cracking in reinforced concrete members
by means of the Finite Element Method are presented. The advantages and shortcomings
of each approach are discussed, as well as recommended values for the different

parameters required for non-linear finite element analysis.

Aggregate interlock action is studied in chapter 4, in which experimental push-off test
data obtained in this work is presented. The results are also discussed in view of the
predictions from analytical models described in previous chapters. Subsequently shear
panel test results available in the literature are examined in chapter 5. A simple discrete
crack slip approach is presented and validated using existing experimental data. This
approach applies crack dilatancy relationships, which had been previously validated in

chapter 4.

The experimental results and test procedures for a series of 22 beam tests carried by the
author at the Heavy Structures Laboratory at Imperial College London is presented in
chapter 6. The results obtained from the short span beams are analysed in chapter 7. In
addition, a strut-and-tie model is proposed, which is consistent with EC2
recommendations for STM. The predictions of a large data base of short span beams
using the proposed STM model are compared with those obtained from design methods
suggested in EC2 and BS8110. In chapter 8, the slender beam tests presented in chapter 6
are analysed. Similarly as in chapter 7, the accuracy of the predictions from the different
design equations is discussed. Estimations of shear stresses along critical cracks are
shown in chapters 7 and 8, which were obtained by either interpolation of push-off test

data or analytical models that had been previously studied in chapters 4 and 5.

Finally, in chapter 9 the main conclusions drawn from this work are outlined as well as

recommendations for future work.
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CHAPTER 2 — Literature Review

2.1 Introduction

Shear design in structural concrete has been a topic of research for many years. The large
number of factors influencing shear behaviour such as aggregate interlock, dowel action
or size effect, makes the study of shear in reinforced concrete a challenging subject. This
is evidenced by the large number of research groups that are currently carrying out

experimental and analytical work in this area.

This great effort for improving shear design equations has been largely motivated by the
shear failure of some existing structures, which were designed using early code
formulations. Typical examples presented by Collins et al. [11, 12] include the collapse of
roof beams in the Air Force warehouse in Ohio back in 1955 to the more recent collapse
of Laval’s bridge in Quebec (2006), which is shown in Figure 2.1. Both structural failures

showed the importance of longitudinal reinforcement and size effects in shear design.

Figure 2.1: Shear failure of Laval’s bridge, Quebec 2006 (adapted from [13]); Left- Photograph

taken in road supervision hours before the collapse; Right- General view
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Shear transfer in cracked reinforced concrete members is commonly described using the
well known truss analogy, which was first proposed by Ritter [14] and Morsch [15] at the
beginning of the Twentieth Century. Subsequently, many attempts have been made to

improve the truss analogy.
In structural concrete, four major methods are commonly used to calculate shear strength:
1. Classical Method: based on the Truss Analogy (€=45")
2. Variable Strut Angle Method: based on the Theory of Plasticity
3. Smeared Truss Models: Compression Field Theories
4. Discrete Crack Approaches

These four methods, which are the most commonly used in shear design/analysis, are
reviewed in this chapter, which examines their assumptions, limitations and differences in
in outcome. The role of aggregate interlock is presented, along with equations for several
crack dilatancy models, which can be used in non-linear analytical procedures. The
different approaches for studying shear, which are presented in this chapter, are also
reviewed in terms of their capacity to model the potential reduction in shear strength
resulting from the loss of aggregate interlock at smooth cracks passing throught the coarse
aggregate. Some of these models are assessed in chapter 4 using experimental data from

the author’s push-off tests.

Shear in structures often becomes critical in zones near the supports or applied loads
where the stress distribution is not uniform; these regions are commonly denoted as
“Discontinuity regions” (D regions). The traditional assumption that plane sections
remain plane no longer applies in D regions. The strut-and-tie method (STM) is widely
recommended for the design and analysis of D regions. The STM has the advantage of
being a relatively simple procedure but there are still significant uncertainties and
questionable assumptions implicit in the method. Some of the most important aspects of

strut-and-tie modelling are outlined in this chapter.
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2.2 Classical and variable inclination strut methods

The truss analogy forms the basis of most design methods for shear. Traditionally the
shear resistance is assumed to be given by V=V_.+V; where V. is the shear resisted by a
beam without stirrups and ¥V is the contribution of the stirrups calculated using a truss
system with struts inclined at 45°. The concrete term “V,.” was introduced to improve the
correlation between test results and strengths predicted with Morsch’s truss. This term is
estimated using empirical rules first appended in codes such as DIN1045 and SIA

(Sociéte Suisse des Ingénieurs et des Architectes) as well as in the ACI 318.

Alternatively, in the plasticity approaches developed by Muttoni et al. [16], Nielsen [17]
and Nielsen & Braestrup [18], shear is assumed to be completely resisted by the steel
component Vs with no contribution of V.. The plasticity methods form the basis of the
variable strut inclination design method (VSI) given in EC2. In this design method, the
inclination of the strut is freely selected within a prescribed range wich depends on the

strength of the struts in the inclined stress field.

In practice, the lowest possible angle of inclination is usually adopted to minimise the
area of stirrups. Codes provide different ranges for €. For example, EC2 gives
2.5<cotf<1 (21.8°<0<45%) or MCI0 gives 3<cotd<1 (18.4°<f<45%). From truss

equilibrium the ultimate shear due to yielding of the stirrups is given by expression (2.1).

A
Vigs = 2 fyzc0t0 .20
S

where A, = area of the transverse reinforcement, s = stirrup spacing in the longitudinal
direction, f,,« = design yield strength of transverse reinforcement, z= inner lever arm

taken as 0.9d in shear and &= strut inclination.

Once the transverse reinforcement begins to yield, & decreases to activate more stirrups.
This strut rotation, which has been measured in tests by Walraven [9, 10] or Hamadi &
Regan [19] amongst others, results in an increase of the compressive stress in the strut.

The ultimate shear stress that causes crushing of the strut is given by equation (2.2):

V

Rd ,max

=vf,,.b,zsinf.cos@ =vf b, z/(cotd +tanb) .. (22)

where v=0.6(1-1.4+/250) according to EC2, f.x = cylinder concrete strength, b,, = minimum

width between tension and compression chords.
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Figure 2.2 shows the variation in Vzgs and Vggmae With the strut angle. The minimum
permissible value for @ is the greater of & ,,, or the value calculated by equating the
design shear force to the web crushing capacity (Vrgmax), Which is given by equation 2.2.
On the other hand, if the ultimate shear strength is to be calculated for a given shear
reinforcement ratio, & must be obtained from equations (2.1) and (2.2), checking that 6

<6#<6c as shown in Figure 2.2.

In the variable strut angle model the concrete strength has an “effective” strength factor v
that takes into account the biaxial compression-tension stress state and the influence of
cracks running skew to the strut which reduce the effective area of the concrete in
compression. The difference between the predictions given by the classical truss model
and the variable strut angle method are shown in Figure 2.2. In the variable strut
inclination method, the shear strength is generally taken not lower than the shear strength

of equivalent beam without shear reinforcement (point A in Figure 2.2)

Vi
A} 5 Viegbyz standard method
L _ W
C Add sti ps VRd,S variable
C strut
eqn. (2 1) B inclination

method

A5° 40° 35 a0 25° 200 15° 0 0.5
Oc — B

Figure 2.2: Variable strut inclination method

One of the advantages of using the variable strut inclination method is that since it is
based on a pure truss, the contribution of concrete is more visible than with a simplified
constant @ truss, where an empirical value for 7, must be added. As reported by Regan
[20], the concrete term in the classical 45° truss approach, which is estimated as the
strength of the equivalent beam without stirrups, can be physically misleading. This is due
to the large difference in the ultimate load behaviour between members with and without
shear reinforcement. Some authors like Reineck [21] suggest that the addition of this
“artificial” concrete component in the 45° truss method can be explained as the
contribution of concrete to shear strength due to friction forces along the failure cracks,

(see section 2.4).
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The Spanish code EHE [22] adopts a compromise solution between the classical 45° truss
and the variable strut inclination method with regards to the concrete contribution.
According to EHE, the total shear is given by the sum of SV, and V,, where fequals 1 if
is 45° and 0 if @ is 26.6° (cot@=2). For intermediate values of £, EHE provides an
interpolation relationship, which is a function of the assumed angle € and the crack
inclination, which is estimated from the elastic stresses at the level of the neutral axis.
Once the angle of the strut is selected by the designer, similar checks are made as in the
variable inclination strut method of EC2 (crushing of the strut, yielding of the stirrups and
failure of the tensile chord). Although this method offers a transition between the
extremes of the classical or variable strut inclination methods, it is possibly more

misleading than either.

Another advantage of the VSI sectional method in EC2 worth mentioning is that it models
the transition between regions of uniform stress fields and regions where trusses, fans and
other strut-and-tie systems are used together. These regions can be modelled using a
plasticity truss model, which considers the entire stress fields. The variable strut angle
method seems more rational than the simple truss in such transition regions since it can be

demonstrated clearly that all systems are in equilibrium (Walraven [23]).

A shortcoming in the variable strut inclination method is the assumption that the principal
tensile stress is zero. In addition, the shear taken by the compression zone is neglected.
The variable strut inclination angle method, which is justified with the lower bound
theorem of plasticity, only considers the ULS. The plasticity truss model is effectively a
rotating crack model in which the effect of previous cracks is neglected. No consideration
is given to the effects of variations in aggregate interlock at cracks. The failure to
consider shear transfer at cracks can lead to the shear strength being overestimated by the
plasticity truss model if the minimum angle of the compressive stress field is governed by
interface shear at the cracks. Aggregate fracture at the crack can only be taken into

account in an indirect manner by limiting the effective concrete strength in the strut.
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2.3 Modified Compression Theory

The Modified Compression Field Theory developed by Vecchio and Collins [8] is a
further development of the Compression Field Theory. In the CFT it is assumed that the
principal tensile stress f; is zero after the concrete has cracked while in the MCFT the
effect of the residual tensile stress in the concrete between the cracks is taken into
account. Tensile stresses across the diagonal struts increase from zero at the cracks to a

maximum in the middle of the strut as shown in Figure 2.3 (left).
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Figure 2.3: MCFT: Left — Tensile stresses along a cracked strut; Right — Mohr’s circle for average
strains (adapted from Collins & Mitchell [11])

The MCFT model consists of strain compatibility and equilibrium equations which can be
used to predict the complete shear deformation response. All the compatibility equations
are expressed in terms of “average” strains measured over base lengths long enough to
include several cracks. The compatibility conditions for both CFT and MCFT are given in
equations (2.3), (2.4) and (2.5), which are obtained from Mohr’s circle shown in Figure

2.3 (right).

2(e,. —¢&,)
=" 727 .. (23
v tan & @3)
& téE, =€, +¢E, ... (24)
tan?@ = x5 .. (2.5)
£,— &

where j,= shear strain, &= strain in the x-direction, &= strain in the y-direction, &~
principal tensile strain in concrete (positive value), &= principal compressive strain in

concrete (negative value).
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The Mohr’s circle (Figure 2.4) can be used to derive an equation for relating the principal

compressive stress f> and tensile stresses, see equation (2.6).

‘ahear
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Figure 2.4: Mohr stress circle for average concrete.
f, =(tan@ +cotO)v — f, ... (2.6)
where v = V/(b,jd).

The equilibrium conditions for a symmetrical cross section subjected to pure shear shown

in Figure 2.5 can be expressed as

_ -2 2
Ay, foa = (fy81I0° 0= f cos” 0).b,s .. (2.7)
variation of tensila znrc; ﬁgﬂm[ Avf
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Figure 2.5: Cross section, principal stresses and tension in web reinforcement

Substituting equation (2.6) into (2.7) leads to the following expression
A,
V:ﬁbwjdcot6?+M.jdcot¢9 ... (2.8)
s

Collins & Mitchell [11] noted that equation (2.8) expresses shear resistance in terms of
the sum of a concrete and steel contributions, as the traditional or classical method. The
concrete contribution depends on the average tensile stresses in the concrete whilst the
latter depends on the tensile stresses in the stirrups and the angle of the inclined stress
field. It is important to highlight that although the approaches might seem similar, the

concrete contribution suggested in the MCFT is not constant as assumed in the classical
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truss method. Furthermore, V. in the MCFT it is not equal to the shear strength of a
similar member without shear reinforcement. As shown in this section, V., according to
the MCFT is a function primarily of the crack width. Increasing the number of stirrups
reduces the crack spacing, which in turn decreases the crack width and hence increases

the concrete contribution (Cladera [24]).

One of the most important features of the MCFT is the average strain-stress relationships
derived from the tests of reinforced panels subjected to pure shear (Vecchio and Collins
[8]). The concrete compressive strength is reduced to take into account softening due to
transverse tensile strain (&;). Initially [8], a parabolic relationship for cracked concrete in
compression subjected to high tensile strains in the direction normal to the compression

was suggested, see equation (2.9).
2
f‘c2 = j;Zmax [2(82,}[(92,} ] (29)
gC gC

/ﬂMKWT):fﬁmxz ! <1.0 ... (2.10)

S 08-034. 5
&

c

where

Later Vecchio & Collins [25] modified equations 2.9 and 2.10 in the light of the new
experimental data. The compression curve used for concrete was changed to the
Thorenfeldt asymmetric curve instead of the parabolic relationship used originally. Figure
2.6 shows that the new relationship given for concrete softening A(1993), which is

referred to as Model B in [25], is not significantly different from the original one.

Alternative analytical relationships have been presented by different researchers to
account for compression softening (Kollegger & Melhorn [26], Miyahara et al. [27],
Belarbi & Hsu [28]). As recognized by Vecchio & Collins [25], there is a considerable
variation between these models although the comparison is difficult for some of them
since the equations were implemented in models which accounted for crack slip. As

reported by Vecchio [29], compression softening is influenced by slippage on the cracks.

Equation (2.10) was derived for the MCFT in which the crack slip is not taken into
account. On the other hand, if crack slip is to be considered in the model, the rate of

softening must be reduced to account for the greater strains obtained in (2.10), which are
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due to slippage (Vecchio [29]). Typical examples include the Disturbed Stress Field
Model (DSFM) suggested by Vecchio [29], which is not discussed here, or in the Truss
with Crack Friction model (see section 2.4). In both types of approaches, crack slip is
considered. In the DSFM, the parameter Cs was introduced in the softening curve (2.10),
as shown in Figure 2.6; a value of C;=0.55 provided optimal predictions of shear panels

investigated by Vecchio [29].

According to Vecchio & Collins [25], concrete strength can have also an influence in
concrete softening; high-strength concretes tend to show a slightly larger softening than
normal strength concretes. Moreover, size effects can also have an effect on f. Effective
strengths used in plasticity approaches (see section 2.1), assume a constant reduction
parameter v, which is only a function of the concrete strength; for normal concrete
strengths v is around 0.5, which corresponds to similar levels of softening as in the

MCEFT for transverse strains of around 4¢, (see Figure 2.6).

1.2 o Vecchio & Collins [8]
Concrete softening i
107 & (MCFT) £(1993)= ——<1.0
o 1+ Cd.Cs
0s B (1993)
B (C50:55) Cd =027 52037
Q06 - &'
Cs =1 (MCFT)
0.4 -
02 o Vecchio [29]
0 0 T T T T T T T T T CS - 0.55 (DSFM)

g1/ec’

Figure 2.6: Concrete softening due to transverse strains according to Vecchio and Collins

For concrete in tension the curve proposed in Vecchio & Collins [8] is given by the

following equations

if e1<e, then f, =FE. ¢ .. (2.11)

if e1> ¢ then f :A ... (2.12)

1+./200.¢,
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Equation (2.12) was updated subsequently by Vecchio & Collins [25] to include two new
parameters «; and a; that accounted for the bond characteristics of the reinforcement and

the type of loading. The updated equation is as follows

a,.o,.f.,
= == (213
h 1+./500.¢, @)

where £, is usually taken as 0.33/."~.

As mentioned earlier, the stress and strain formulations adopted in the MCFT, use
average values and so local variations are not considered. In the method, a check must be
done to ensure that reinforcement can take the increment in tensile stress at the crack. In
order to make this check a value of the stress along the crack must be assumed. The shear
transfer at the cracks by aggregate interlock action is estimated using relationship (2.14),

which was derived from Walraven's test data.

f2
+1.64.f,—0.82. T .. (2.14)
v

v, =018y

cimax
cimax

where

M .. (2.15)

V. =
“am 0 31+ 24.w/(a +16)

In the expressions above, a is the maximum aggregate size in millimetres and w is the
average crack width over the crack surface which is estimated as the product of the
principal tensile strain (¢&;) and the crack spacing (sg). In order to account for aggregate
fracture at the crack in high-strength concretes, an effective maximum aggregate size (a.y)
was suggested by Lubell et al. [30] and Angelakos et al. [31], which is a function of f;
only. The maximum size of the aggregate used in equation (2.10) is reduced linearly as /.
is increased from 60 to 70MPa. This approach does not make any allowance for the

influence of aggregate type on crack roughness.

The spacing of the shear cracks is considered to be dependent on the crack spacing in the
longitudinal and transverse reinforcement directions s,, and s,,. The MCFT suggest
expression (2.16) for sq Values for s,,. and s,, can be estimated using MC90 equations
for crack spacing which are dependent on the spacing between the reinforcement bars and

the bond strength.
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... (2.16)

S6’:

[sin 0 L ©0s HJ
Spe Smy

According to the Modified Compression Theory at low shear values, tension is
transmitted across the crack by increases in reinforcement stresses until yielding occurs.
After yielding of the reinforcement at the cracks, a shear stress v.; is needed along the
crack to maintain equilibrium. The calculated average stress state and the local stress state
at the crack must be statically equivalent. From this condition equation (2.17), which
limits the value for the tensile stress, can be derived. Consideration of equations (2.8) and

(2.17) shows that the shear stress v,; is required to maintain equilibrium in a member

without shear rebars (p,=0).
fi=vatanb+p (f, - f,) .. (2.17)

The Modified Compression Field Theory can provide accurate predictions of shear
strength and deformation as shown in chapter 4, despite the simplifications in the method.
The first and most important assumption made in the MCFT is that of a rotating crack
model in which previous cracks are assumed to be inactive. The MCFT assumes that the
angles of the principal strains and stresses axes coincide (6); in the literature this is
referred to as the co-axiality principle. The crack in which all the checks are carried is
assumed to be oriented at the same angle @ as the compressive stress field. Theoretically,
no shear stresses should be expected in this plane so the physical meaning of v, is
troublesome. The advantages and disadvantages of using a rotating crack model instead of

a fixed crack model are discussed in section 3.2.1.

Another concern with the MCFT is that no check is made on interface shear at previous
cracks which may be critical for shear transfer. Furthermore the tension stiffening effect
of the reinforcement can be significantly overestimated since it is modelled by adjusting
the stress strain response for cracked concrete rather than the response of the
reinforcement. As described previously, the MCFT defines equilibrium and compatibility
in terms of average stress and strains without any bond slip considerations of the
reinforcement bars, so it seems reasonable that the prediction of the local stresses at the

reinforcement bars is not entirely accurate.

Lastly, the MCFT has been often criticized from a practical perspective since it requires

the use of a computer in order to solve the system of equations. To overcome this problem
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Bentz & Collins provide free software packages RESPONSE 2000 and MEMBRANE
2000, to solve the equations. Bentz et al. [32] developed simplified versions of the
MCFT, which can be used in order to predict the maximum shear capacity rather than the

complete load-deformation response. These simplified equations are incorporated in the

Canadian code CSA A23.3 [33]; see equations (2.18) to (2.20).

V.=V, +V, <0254 f.b,d ... (2.18)
V,= %ﬂﬁbwd +4, @fyd cotd ... (2.19)
S

where ¢., ¢ = capacity reduction factors, b, = web width, d = effective shear depth
(d,=0.9d), A; = area of longitudinal reinforcement on the flexural tension side. The CSA
standard limits the maximum value of Vf, to 8MPa. Parameter f3 represents the shear
retention factor i.e. ability of cracked concrete to transmit shear by means of aggregate
interlock, while @ is the angle of inclination of the strut. Both £ and @ are estimated in

terms of the longitudinal strain at the mid-depth of the section using equations (2.20) and

2.21).

B = 040 . 1300 ... (2.20) 0 =29°+7000¢ .. (2.21)
(1+1500¢,) (1000 +5., ) ’
M,/d+V, :
where ¢, = ﬁ; My and Vyare the factored moment and shear force at section.
s“7sl

The effective crack spacing (s..) is taken as 300mm for members with at least minimum
stirrups and s,,~=35s./(15+a)>0.85s, for members without stirrups. The crack spacing
parameter (s.) is the longitudinal spacing between cracks, measured at mid-depth of the
member; s, is usually taken as d, for members without horizontal reinforcement at the
web. As highlighted by Collins et al. [34], parameter £ consists of the product of a strain
effect factor, which is given by &, and a size effect factor governed by s... Hence shear
strength decreases as the longitudinal strain increases and for members without stirrups,
as the member depth decreases. In addition, for members with stirrups, an increase in &
results in a decrease in the shear strength due to the lower stirrup contribution V.
Yielding of the longitudinal reinforcement on the flexural tension side must be checked as

in the classical and variable strut inclination methods.
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2.4 Discrete crack models

The methods for shear design described so far are “smeared approaches” where the
compression field is analysed independently of the crack pattern. In addition, the angle of
the compression field is skewed to the crack pattern (£,=6) as shown in Figure 2.7 (left).
In reality shear failure is likely to be governed by equilibrium at the critical shear crack as

shown in Figure 2.7 (right), which is related to the aggregate interlock.

Figure 2.7: Left— Crack oriented as compression fields (8 =4,); Right— Strut crossed by cracks
(adapted from Schlaich et al. [35])

As emphasized by Reineck [21], research should focus more on the so-called “failure
mechanism approaches”. In these methods the actual failure surface in a member or the
critical crack and the localized crushing of the concrete in the compression zone are
considered. Discrete crack approaches provide a more rational description of the shear
behaviour, but are probably too complex for practical purposes since they usually require

the solution of complicated analytical equations.

Truss Model with Crack Friction

An example of a discrete method for shear design is the Truss Model with Crack Friction
proposed in 1996 FIP Recommendations [21]. These recommendations are based on
previous work by Poli et al. [36, 37], Kirmair [38] and Kupfer [39]. The model considers
the equilibrium of a free-body diagram of a separated element along a diagonal crack as it
was done by Mdrsch but also considers the friction force along the crack due to aggregate

interlock.

The shear resisted by the web (Vrawe») 1S the total sum of the shear force component
carried by the vertical stirrups (Vzqs), which is obtained using equation (2.1), and the
vertical component of the friction forces at the crack (V). The latter component
represents the “concrete contribution” in the standard truss method. To calculate Vzges,

the inclination of the crack as well as the crack spacing must be assumed or estimated, for
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example by performing a non-linear analysis. A constitutive law for the transfer of forces
along the cracks by interface shear must be implemented. Several aggregate interlock
models are available in the literature (see section 2.5), which relate crack opening and slip

to shear and normal stresses at the crack.

According to the truss model with crack friction, strains must be determined in the chords
and web in order to calculate V;, which depends on the crack width and slip. As pointed
by Reineck [21], V' depends on the shear force, strain conditions in the member, on the
longitudinal strain at mid-depth (&) and crack spacing. However, for practical reasons

and applicability of the method, a constant value of V; is generally assumed in the codes.
The 1996 FIP Recommendations give the following values:

e For members without axial forces:

Vi =0.07(b,2 ) .. (2.22)
cot 8. =120 ... (2.23)

e with axial compression:

cotfp =120-0200,/f.,, .. (2.24)

Vi=0.10(1—-cotp, /4).(b,zf,) =0 ... (2.25)
¢ with axial tension:

cotfp =120-0900c ,/f., 20 ... (2.26)

Vi=0.10(1-0.36/cotB,).(b,zf,,) 20 .. (2.27)

A value for f. of 40° is commonly used for members without axial tension force.
However, as discussed in chapters 6, 7 and 8, the inclination of the critical shear crack can
vary from 45° to 30° depending on the shear span to effective depth ratio (a/d) and type of
loading. In beams with axial compression and tension the angle f. is decreased and
increased respectively. Equation (2.26) for members with axial tension can result in large

amounts of transverse reinforcement (Reineck [21]).

Further improvements need to be implemented in the previous method for lightweight and

high-strength concretes where the shear component resisted by friction at the interface
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(V7a) will be clearly overestimated using equations (2.22, 2.25 and 2.27). This is due to the

fact that aggregate fracture at the crack is not taken into account.

One last important aspect that was highlighted by Reineck [21] refers to the strength
assumed for the concrete struts between shear cracks. As mentioned in section 2.3 the
concrete strength is decreased by transverse tensile strains in the struts, which are induced
by stirrups and friction forces along cracks. Crack slip and shear transfer along cracks is
taken into account in the truss model with crack friction and so the compression softening
implemented in the model should be lower than normally used in the rotating crack
approach, (see section 2.3). According to Reineck [40], a reduction factor of 0.85 is
recommended, which is considerably larger than used in plasticity approaches, where v is
typically about 0.5. Reineck’s recommendations for the strength reduction factor are
based on work carried by Schlaich & Schéfer [41], Schifer et al. [42], Eibl & Neuroth
[43], Kollegger & Mehlhorn [26].

Other discrete crack models

Other examples of discrete cracking approaches, are the methods of Poli et al. [36, 37]
and Prisco et al. [44]. All these approaches use a friction law to define the force transfer
along the cracks. Opening and sliding of the crack are considered as well as non-

coaxiality (f,>6) in the orientation of the strut and the crack.

The method developed by Poli et al. [36, 37] used the Rough Crack Model described in
detailed in section 2.5, to describe for the aggregate interlock at the crack. The
contribution of Vywas studied by the authors for I thin-webbed beams basing their method
on the plane truss proposed by Morsch but with aggregate interlock considerations
similarly as the truss with crack friction model. A system of non-linear equations was
solved accounting for equilibrium, stirrups-to-concrete compatibility, friction law for
aggregate interlock, solid concrete between shear cracks and crack spacing. Other
aggregate interlock models were applied, such as the two-phase model (Walraven [45],

see section 2.5), resulted in similar predictions.

In their initial method Poli et al. [36, 37] neglected any shear and bending stiffness of the
diagonal struts as well as the beneficial effect of the dowel action. The ratio for transverse
reinforcement was kept small in order to assure that shear failure would be governed by
the yielding of the stirrups. Poli et al. [36, 37] made refinements to the model to take into

consideration the shear and bending carrying capacity of the struts as well as bond-slip
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between of the stirrups and concrete. These changes resulted in a decrease of the
inclination of the compressive fields allowing for a more economical design compared to

the original model.

Constant relative displacements along the crack were assumed in the original model. In
later work done by Prisco & Gambarova [44] a non uniform law for the relative
displacements along the crack (Figure 2.8) was implemented as well as plastic-strain
accumulation in the stirrups and dowel action. The first two enhancements showed that
the assumptions made initially were not on the safe side since they had a negative effect.
The experimental values of the crack opening and slip obtained in the author’s tests (see
chapter 6), showed a more uniform distribution than that shown in Figure 2.8. This
suggests that the variation of the crack displacements along the crack can be influenced

by the depth of the member as well as the amount of longitudinal reinforcement.

3
X @)

b Case 1 " Case 2 Casel Case2

Figure 2.8: Analytical model proposed by Prisco & Gambarova [44]; a) Web-shear cracks; b)
Flexure-shear cracks; c) & d) Assumed crack opening and slip distribution along crack (Case 1 &
2)

Another example of a truss model in which equilibrium at the crack was imposed in order
to obtain the ultimate shear capacity was suggested by Hamadi & Regan [19]. In their
model the inclination of the strut was obtained by minimising the total complementary
energy of the internal structure. Although several simplifications were assumed, sensible
predictions were obtained and most importantly the relevance of decreasing the stiffness
of the aggregate interlock action could be assessed. An alternative approach reported by
Regan [3], which seem to be adopted in DIN1045:2000, is to use the variable strut
inclination method limiting the shear stress at the critical crack instead of using the plastic

solution; this approach is discussed in further detail in section 8.3.3.
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2.5 Aggregate interlock models

2.5.1 General aspects

The discrete crack approaches, described in section 2.4, consider failure along the actual
critical crack surface and study the interface transfer of forces between the rough concrete
crack faces, also known as “aggregate interlock action”. Although this technique might
seem to give a more physical meaning solution than smeared crack approaches, aggregate
interlock must be implemented by means of analytical models. In this section, several
aggregate interlock models available in the literature are reviewed. The performance of
some of these models is further investigated in chapter 4 in view of the experimental

results obtained from push-off test carried out in this work.

Numerous experiments have been performed in the past showing that the shear force
transferred along the cracks is not related in a simple direct way to shear displacements.
Crack width, slip, aggregate size and normal stresses are all interrelated. Hence it is

extremely difficult to establish a precise analytical model to link them all together.

To understand the mechanical behaviour of aggregate interlock action concrete must be
studied as a composite material consisting of two phases (see Figure 2.9). Phase I is
composed of the aggregate particles that have high strength and stiffness and phase 11 is a
matrix material consisting of hardened cement paste with fine sand, which has lower
strength and stiffness. The interface between the aggregate and the matrix is the critical
path that the crack is going to follow so that for normal concretes the crack intersects
phase II but never phase I as shown in Figure 2.9 (left). However, there are other
instances where the bond between the aggregate and the cement paste is strong enough to
fracture the aggregate at the crack. This results in smooth cracks as shown in Figure 2.9

(right), which are commonly observed in lightweight and high-strength concretes.

Rough crack Phase II Smooth crack (aggregate fracture)

Phase I: aggregate particles; Phase II: Matrix (cement paste and sand particles)

Figure 2.9: Aggregate interlock; Lefi— Rough cracks; Right— Aggregate fracture (smooth cracks)
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Experimental evidence shows that when crack faces are subjected to relative shear
displacements a wedging action is initiated which generates normal stresses and activates
the reinforcement that crosses the crack to maintain equilibrium. It is widely accepted that
the crack width (w) has an important role in aggregate interlock action; higher values of w
results in lower stiffness of the aggregate interlock. Different opinions exist about
whether size and type of aggregate (rounded, crushed, lightweight) are crucial parameters.
According to Taylor [1], the ratio between aggregate and matrix strengths is the most
important parameter which influences the roughness of the crack. In practice, concrete
strength is assumed to be the critical variable and only light-weight aggregate concrete is

considered separately.

Hamadi & Regan [19] performed push-off experiments in order to study the influence of
the aggregate type. These tests were carried using concretes with either lightweight or
normal gravel aggregates. From their experimental results they concluded that stiffness at
the crack was dependant on crack opening and type of aggregate but not on the normal
stresses. On the contrary, the ultimate shear strength was found to be a function of the

normal stresses and type of aggregate but not on the crack opening.

Similar tests were carried by Walraven and Reinhardt [46]. The variables to be studied in
this case were the type of reinforcement (embedded and external reinforcement bars), the
concrete strength (f..~=13—60MPa), the type of concrete (sand gravel, lightweight
concrete), the grading of the concrete, the scale of the concrete (D,,,,=16 and 32mm) and
the initial crack width. An interesting aspect which was observed in these tests was the
different behaviour of cracks with embedded or external reinforcement bars. A local
concentration of stresses was observed near the embedded reinforcement bar, which was
caused by the reduction of the crack width in this region. One consequence of this
concentration of stresses is that the crack opening path (w-s relationship) is
approximately linear for reinforced cracks independently of the reinforcement ratio, as
shown in Figure 2.10.a. This was not the case for push-off tests with external
reinforcement (Figure 2.10.b). Changes in bar diameter in reinforced cracks, while
keeping p constant, showed no major influence on the response. Conclusions drawn for
reinforced cracks were made for concretes with moderate strength (20-38MPa).
However, in lightweight concrete specimens, the crack opening paths observed were

much steeper with As>>Aw as shown in Figure 2.10.c.
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Figure 2.10: Crack opening paths for a) Reinforced cracks; b) Unreinforced cracks; ¢) Reinforced

cracks: lightweight and high-strength concretes (adapted from Walraven and Reinhardt [46])

Walraven & Reinhardt’s [46] experiments showed that changing the grading of the
aggregate in gravel concrete by increasing the size from 16 to 32mm or by removing all
particles between 0.25 and 1.00mm had no significant influence. As expected, increasing
the reinforcement ratio and concrete strength decreases the normal and shear
displacements in reinforced cracks. Lastly, these tests showed similar results for
specimens with external restraint bars and specimens with soft sleeves secured to both
sides of the crack over a short length. The latter specimen configuration was used to avoid

concentration of stresses around the embedded reinforcement bars.

2.5.2 Crack dilatancy models

To implement the aggregate interlock phenomena into the calculations crack dilatancy
models can be used with constitutive laws that can be based on an empirical formulation
(Hamadi & Regan [19], Walraven & Reinhardt [46]; Bazant & Gambarova [47];
Gambarova & Karakog¢ [48]) or an analytical rational formulation (Walraven [45]; Li,
Maekawa & Okamura [49]). For most of the cases the formulation is based on a total
deformation theory where normal and tangent stresses are expressed as functions of the

relative displacements Aw and As.

The “Linear aggregate interlock” and’’ Crack rough’ models

One of the most widely used friction laws is the linear aggregate interlock relation of
Walraven & Reinhardt [46]. The method, which is a based on linear regression analysis of
their experimental data, is simple and yet still achieves good accuracy. The model is
given by equations (2.28) and (2.29) for normal gravel concrete. An interesting feature of

this model is that a minimum value of the crack slip is required to mobilize the shear and
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normal stresses; this value is larger for the normal stresses than for shear stresses as

shown in Figure 2.11.a.

o= —]2% + 135070 (0191w —0.15) £, As .. (228)
r, = —J;’O" + 1.8 +(0.23407°77 —020) £, |As .. (2.29)

where o, and 7 are greater than zero.

Expressions (2.28) and (2.29) are used for normal gravel concrete while the following

expressions are suggested for a lightweight concrete.

= Ja (19280 —1)As .. (2.30)
40
7, = —{;6 +(1.495.w717% —1)As .. (231)

An example of relations (2.28) and (2.29) is plotted in Figure 2.11.a for a concrete with a
cube strength f., of 56.1 MPa. The stiffness of aggregate interlock given by the slope of
these equations is considerably larger than for the lightweight concrete expressions (2.30)

and (2.31).

T
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a) Linear aggregate model b) Rough crack model

Figure 2.11: Aggregate interlock models; a) Linear aggregate interlock model proposed by
Walraven & Reinhardt [46]; b) Rough crack model proposed by Bazant & Gambarova [47]

The rough crack model proposed by Bazant & Gambarova [47] is also based on empirical

results. In this case the constitutive model was obtained by optimising the fit of Paulay &
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Loeber’s [50] test results at constant crack width. The rough crack model considers the

crack surface as a regular array of trapezoidal asperities.

One of the main features of this model is that shear stress is primarily dependant on the
displacement ratio =As/Aw. The curve has an asymptotic behaviour for large values of r,
as shown in Figure 2.10.b, which is a consequence of microcracking and crushing of the
matrix near the aggregate particles. For values of Aw>D,,,,/2 where D,,,, is the maximum

aggregate size, the crack reaches the state of no contact.

The constitutive equations (2.32) and (2.33) are again functions of As, Aw and f.. as in
Walraven & Reinhardt’s [46] model. However additional parameters D, and tensile

strength f; are introduced.

Gy == (ay £ .. (2.32)
Aw
a, +a4.‘r\3
T, =T, ... (2.33)
l+a,.r

where

f
p= 1.30{1— 0.231 J

1+0.185Aw+5.63.(Aw)*

7,a
r=As/Aw; r, =—2-20

< a, +(Aw)*

max 2

4,=001.D,. % a =0000534; a,=1450; a =22, a4=2.44{1—4j

9 7,=0.195.1.,

Improvements to this model were proposed in later work by Gambarova & Karog [48].
According to the authors a better formulation to the relation between normal traction and
crack displacements was found. Daschner & Kupfer [51] tests were used to optimise the
curve fitting because the confinement stress was kept constant. Expressions (2.32) and
(2.33) were modified to:

O, =44, m%ﬁ . (234)
(1 +r )
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3
a, +a,r
ro=r |- 2R, 5 o ... (2.35)
D._.. l+a,r

where

a,.a,=0.62; a, =2;_45; a, =2.44.[1—:J; 7, =0.2.1,,
0 0

The “Two-phase” and” Contact density”’ models

Other attempts to model aggregate interlock action were done by developing a more
theoretical approach such as the “Two-phase Model” proposed by Walraven [45] or the
“Contact Density Model” introduced by Li et al. [49].

The two-phase model assumes that concrete consist of two ideal phases; spherical
aggregate particles, which are perfectly stiff, and a perfectly plastic matrix, see Figure
2.12. As shown in Figure 2.12, shear stresses generate when the sphere particles intrude

into the matrix.

a. Phase of no b. Phase of growing c. Phase of
contact contact maximum
0<A <Ay Ag<A<A, contact

A> A,

Figure 2.12: Different phases in aggregate interlock action assumed by the two-phase model

(adapted from Walraven & Reinhardt [46])

The statistics of aggregate distribution are taken into account to estimate the active area
between the inclusions and the matrix. The tangent stiffness is again a function of crack

displacements (4s, Aw) and aggregate distribution. The formulation is given by equations

(2.36) and ( (2.37).

oy =—0,, {4, —1.A,) ... (2.36)
7, =0,,(4,+ud) ... (2.37)

where o, = matrix compressive strength; g = friction coefficient between intrusion and

matrix;4,= tangent average contact area; 4, = normal average contact area.
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The Contact Density Model developed by Li, Mackawa & Okamura [49] also deals with
aggregate interlock using contact density probability functions. In this model the
inclinations of the contact units or intrusions € (within a range of -90° and 90°) is a
stochastic variable described by its density probability function Q2(8). The direction of the

contact stresses is proposed to be constant and normal to 6.

The mathematical formulation for this model is given by equations (2.38) and (2.39)

/2
G = [y K (AW). 4, (B).c080.40 ... (2.38)
-/2
/2
Ty = [0, K(AW).4,Q(0).5in0.d0 ... (2.39)
-r/2

In expressions (2.38) and (2.39) Q is assumed to be a trigonometric function independent
of the size and grading of the aggregate as well as the strength and type of coarse
aggregates. The effective ratio of contact area K(Aw) expresses the contact stage along the
crack when Aw is large compared with the roughness of the crack surface. The contact
force (ouom) 1s calculated using an elasto-perfectly plastic model. The surface area 4, is
estimated as 1.27 times the area of the crack plane. This estimated value only applies for

normal concretes with strengths not higher than 50MPa as will be discussed later on.

Considerations for smooth cracks

As mentioned earlier, cases where the aggregate fractures at the crack can lead to a
reduction of the aggregate interlock action and so the crack dilatancy models described

earlier need to be examined carefully.

The linear aggregate interlock model offers alternative equations (2.30) and (2.31) for
lightweight aggregate, which seems to accounts for the lower stiffness due to smoother
cracks. However, these equations do not always provide accurate results for normal
concretes in which the aggregate splits at the crack, as it is shown in section 4.5. On the
other hand, the two-phase model (Walraven [45]) is based on the assumption that the
crack goes round the idealised sphere aggregate and the case of the crack going through
the particle is not considered. The crack rough model, makes use of empirical parameters
(ap, a;, az, a3 and p) and so would seem necessary to perform a recalibration of these

parameter in order to take into account for cases where aggregate breaks at the crack.
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Although experimental work will be required, the enhancement of the latter method

seems feasible, at least from a theoretical point of view.

The contact density model by Liu et al. [49], due to its rational derivation, can be oriented
towards the assessment of flat surface cracks. Even though the background theory for this
model is mostly applied to gravel aggregate concrete some innovations are being
developed by Maekawa et al. [52] in recent publications in order to adapt the method to
smooth fracture surfaces. As recognized by Maekawa et al. [52], the changes required to
adapt the model to even cracks are not straightforward. First modification required would
involved the density function Q(6), which is generally assumed to be 0.5cos . For smooth
cracks this function can be substituted by a truncated normal distribution (Maekawa et al.
[52]). The contact density function €(6) in this case will no longer be independent from
the type of aggregate as it was assumed before. The other variable that would need to be
modified is the effective ratio of contact K(4w) since the roughness is considerably small

compared with Aw.

The formulas proposed by Maekawa et al. [52] for high-strength concrete are based on
statistical analysis of histograms of directional crack distributions. For lightweight
concrete where the aggregates are much softer the same formulas are suggested, but in
order to avoid overestimating the stresses transferred at the crack a reduced contact

yielding stress is recommended.

Simplified aggregate interlock models

Despite the extensive formulation and different alternatives among the crack dilatancy
techniques some of the models described earlier can lead to extremely difficult and time-
consuming calculations. In fact, crack dilatancy models as stated by Feenstra et al. [53]
can result in asymmetrical tangential stiffness matrices, which generate numerical
difficulties in solving the algebraic equations typically set for a non-linear finite element

analysis.

In order to implement the crack dilatancy model into an interface finite element, the linear
aggregate interlock model given by expressions (2.28) and (2.29) seems the simplest
approach. The stability of mechanical systems with a non-symmetrical tangent-stiffness
matrix K is satisfied if all the eigenvalues of the matrix (K+K") are positive (Feenstra et al.
[53]). This condition is derived from the fact that internal strain energy (U) must be

positive for any kinematically admissible strain-rate vector in order to assure stability.
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From Feenstra et al. [53] stability analysis, it was concluded that all the crack dilatancy
models presented in this section showed cases with negative eigenvalues, where stability
was lost before the maximum shear stress was attained. Only the contact density model
showed a better stability, which was due to the fact that the stiffness matrix is less

asymmetric than the remaining models.

This clearly justifies the use of simpler aggregate interlock models, which could be
implemented in a simpler manner into shear design methods while keeping a certain level
of accuracy. An example is shown in section 2.3 in the MCFT for the shear carried at the

crack v.; (see equations 2.14 and 2.15).

Another example of simplified formulation for aggregate interlock is equation (2.40)
proposed by Hamadi & Regan [19], which was obtained from regression of the
experimental data from push-off tests. The stiffness parameter k suggested by the authors
was 5.4N/mm” and 2.7N/mm’ for natural gravel and expanded clay aggregates
respectively. According to equation (2.40) the aggregate interlock stiffness depends only
on the type of aggregate and crack width. Hamadi & Regan [19] used a shear friction type
of formula (2.41) to obtain the shear capacity (7,;), in which the cohesion (c) and friction
(1) parameters need to be estimated. Although this approach is commonly used in design
codes, the influence of the crack width is neglected. This is inconsistent with other
approaches such as the v.m. value used in the MCFT (see equation 2.15). Further

discussion regarding the shear friction formula is presented in section 4.4.

T, = iAs ... (2.40)
Aw
T, =C+ uc ... (2.41)

Li, Maeckawa, Okamura & Soltani [49, 54] presented simplified equations (2.42) and
(2.43), which were based on the contact density theory described earlier. Similarly as in

the rough crack model, equations (2.42) and (2.43) are a function of the As/Aw ratio.

,, =383 | T —cot My -V .. (2.42)
2 l+y
13y As
7., =3.83f. 5 where y =— ... (2.43)
I+ Aw
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Lastly, MC90 provides design equations (2.44) and (2.45) for rough interfaces that can be
used to assess the shear stresses mobilized for a certain value of crack sliding. This model
assumes a linear relationship up to a crack slip of 0.1mm, as shown in Figure 2.13. The
ultimate shear stress corresponds to a crack slip of approximately equal to 2mm and can
be estimated using equation (2.46).

According to MC90, the crack slip is accompanied by a crack opening, which can be

2/3

estimated as w=0.6s"" (units in mm). These equations were presumably derived from

push-off test data since the As/Aw is similar to that shown in Figure 2.10.
e For s<0.Imm

T=57,s8 ... (2.44)

e For s>0.1lmm

[T} —O.S[T} =0.35-0.03 ... (2.45)

z-ult z-ult

0477 5

c

where 7 ... (2.46)
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Figure 2.13: MC90 predicted shear stress as a function of the crack slip
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2.5.3 Aggregate interlock contribution to shear strength of RC beams

As shown in this chapter, the role of aggregate interlock action assumed by the different
shear models available in the literature can be significantly different. The contribution of
shear transfer along cracks must be considered either directly or indirectly in order to
obtain reasonable predictions of shear strength in reinforced concrete beams. However,
this contribution might vary depending on the amount of shear reinforcement provided,

shear span to effective depth ratio, concrete strength or type of aggregate used.

Experimental data regarding aggregate interlock is mainly focused in members without
shear reinforcement. Early estimates of the percentage of vertical shear carried across
flexural cracks were provided by Fenwick & Paulay [55]. According to their experiments
an approximate figure of 70% of the shear was taken by aggregate interlock, while the
remaining 30% was carried by the compression zone and dowel action. Later work
carried out by Taylor [1, 2] confirmed that the contribution of aggregate interlock was
predominant, as shown in Figure 2.14. The percentages provided by Taylor [1, 2] for the
contribution of aggregate interlock (35-50%), dowel force (15-25%) and shear
contribution of the compression zone (20-40%) have been well documented in a great

number of references found in the literature.
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Figure 2.14: Components of shear resistance obtained experimentally by Taylor [1, 2] in members

without shear reinforcement (adapted from Taylor [2])
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According to these results, there seems little doubt that aggregate fracture in members
without shear reinforcement can results in a reduction of shear strength due to the lower
aggregate interlock capacity. As mentioned earlier, Taylor [1] supported the idea that the
most critical parameter, which governs the crack roughness, is the ratio between the
aggregate and matrix strengths. According to this, the influence of the type of course
aggregate used in the concrete can be critical. Clear evidence regarding the effect of using
different types of aggregates was provided by Regan et al. [4]. This work showed that
beam tests using limestone aggregate, which generally fractures at the crack, had a lower
shear resistance compared with beams made with granite or normal gravel aggregate

concretes.

As highlighted by Regan [3], the type of aggregate used is generally not reported by
researchers, which complicates the interpretation of the experimental databases. This is
surprising, considering that experimental databases are being gathered using data from all
continents, where presumably the type of aggregate used is completely different. Tests
carried out in Canada generally used limestone aggregate (Collins [56]), which as
recognized by Angelakos et al. [31] can result in a noticeable decrease of crack roughness
with the concrete strength. In the UK, limestone aggregate is commonly used for high-
strength concretes, while for normal strength concretes gravel aggregate is usually more

common.

Although the contribution of aggregate interlock is more or less understood for members
without stirrups, there is a lack of experimental data regarding aggregate interlock
contribution for members with stirrups (Taylor [1, 2], Regan [4]). The shear design
approaches described in this section rely upon the shear transfer across cracks and so it
seems reasonable that aggregate fracture might also have an effect in this case. However,
as mentioned by Regan et al. [4] this influence might be less than in members without

stirrups since shear reinforcement provides a better control over the crack widths.

In this area, it is noticeable work carried by Walraven [9, 10] using either lightweight or
high-strength concretes, in which the crack roughness was influenced by splitting of the
aggregate. According to their experimental work of slender beams with stirrups, a
reduction of the shear strength could not be observed. This was explained by the fact that
shear forces could still be transmitted along the crack due to the irregular shape of the
crack surfaces (roughness at a macrolevel) which allowed for additional contact areas to

develop. However, it remains questionable whether this would apply to other load
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arrangements and beam dimensions where these irregularities in the crack surface might
not be attained. As reported by Regan et al. [4], experimental evidence provided by
Motamed [57], seems to suggest that there might be a potential concern for lightly

reinforced high-strength limestone aggregate members.

Design codes generally account for aggregate fracture indirectly by means of the concrete
strength. UK National Annex to EC2 limits the concrete strength to 60MPa in shear
design equations due to concerns about aggregate cracking. Similar approach is taken in
other codes such as Spanish code (EHE). However, for both EC2 and EHE codes, this
limitation is imposed for both cases of members with and without shear reinforcement,

which might not be entirely accurate.

On the other hand, Canadian Code (see section 2.4) which is based on the MCFT, the
aggregate size can be reduced in the calculations in order to account for aggregate
fracture. As discussed previously, this is usually done according to the concrete strength
only. Moreover, for members with stirrups the simplified equations in the Canadian Code,
assumes a constant value for the crack spacing and so allowance for changing the size of

the aggregate size is not made.

As shown, the design codes can be inconsistent regarding a potential reduction in shear
strength due to aggregate fracture. Furthermore, the type of aggregate is completely
neglected, except for lightweight aggregate concrete members. Therefore, it seems
sensible that further research is carried out in order to assess these assumptions made by

the different design codes.
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2.6 Strut-and-tie modelling

General aspects

The Strut-and-Tie Method (STM) is an application of the lower bound theory of plasticity
used in design for the ULS in regions where plane sections do not remain plane (D
regions). In these areas called discontinuity regions, there is a statical or geometrical

disturbance that causes non-uniformity of internal forces as shown in Figure 2.15.

Figure 2.15: Stress lines in B and D regions for a concrete beam (adapted from Schlaich &

Schafer. [58])

The load is assumed to be transferred from the loading points to the supports through a
truss in which compression stress fields are resisted by concrete and tension stress fields
by reinforcement (Figure 2.16). The main concept of STM is to solve a continuum

concrete structure by calculating a truss structure (strut-and-tie system).

Figure 2.16: Example of a strut-and-tie model for a deep beam

The lower bound theory of plasticity states that for a given load case if there is a stress
distribution that satisfies equilibrium with the boundary conditions and stresses

everywhere are below a threshold value or strength defined by the codes, the structure
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will carry those loads without collapsing. The theory does not require the actual stress

state to be calculated since it is a lower bound theorem.

Although the method was originally based on Morsch’s truss analogy concept used to
explain shear in a RC beam, it was not well established until 1987 when Schlaich, Shafer
and Jennewein [35] defined the basis for this method and its applications for discontinuity
regions. The Féderation Internationale du Béton (fib) enhanced this method helping STM

make its way into codes of practice.

The following procedure is used to develop a strut-and-tie model.
1. Definition of the D-region; borders and forces within these boundaries.
2. Drawing a strut-and-tie model on the basis of assumed node geometry.
3. Solving for the truss member forces.

4. Calculate the reinforcement layout providing the required tie capacity and enough

anchorage length for the bars to ensure the correct behaviour at the nodes.
5. Dimension nodes using truss member forces obtained previously.
6. Go back to new geometry (step 2) in order to find a converged solution.

Despite the didactic value of the STM and its many appealing applications the method is
not always trouble-free and has many uncertainties. These difficulties are outlined here
for general strut-and-tie modelling, although some of them are further discussed for the
particular case of STM of short span beams shown in chapter 7. Regarding the steps
listed, which are needed to develop a strut-and-tie model, steps number 1, 3, 4 and 6 are
straightforward. On the contrary steps 2 and 5 are more problematic since the geometry of
the strut-and-tie model changes not only with the load case but also with the magnitude of

the load.
There are four major problems in developing strut-and-tie models. These are:

1. Uncertainties in obtaining dimensions, stiffness and effective strength of strut, ties

and nodes for the truss models.

2. Need to select the optimal strut-and-tie model and iteratively adjust and refine the

truss geometry.
3. Need to combine different load cases.

4. Uncertainties for statically indeterminate models.

67



Chapter 2 — Literature Review

Definition of nodes

In order to obtain the dimensions and shape of a node, the widths of the incoming strut
and ties are needed. The widths of the elements are chosen so that stresses are below the
code restrictions. One possible way of dimensioning a node is to assume that the stresses
on all the sides of the node are equal which results in a hydrostatic biaxial state of
stresses. This can be done by defining the boundaries of the nodes so that they are
proportional and perpendicular to the forces acting on them. Defining the node in this

manner guarantees that no shear is transmitted to the node face.

However, this procedure can be quite laborious for cases where more than three truss
elements meet since the centrelines are unlikely to coincide. In addition, hydrostatic
nodes are not always feasible due to geometrical constraints. An example of this is shown
by Brown et al. [59], in Figure 2.17 (left). According to these limitations, non-hydrostatic
nodes are usually recommended by the codes (AASHTO LRFD and ACI 318-05).
Schlaich et al. [35] proposed a simplified method, where the centrelines coincide but the
stresses on the sides of the node were different and constant. In this procedure a check to
assure that these stresses were below the limit was needed. In addition, in order to limit
the shear within the node it was recommended that the ratio of maximum to minimum

principal stress be less than two.

A comprehensive study of modelling nodes in STM was presented by Schafer [60], which
included general guidelines for dimensioning and checking bearing stresses for several
types of nodes. These guidelines have been implemented in several design codes such as
EC2. A typical example of compression-tension node (CT) is shown in Figure 2.17
(right), which is commonly used in STM of beams supported on bearing plates. The width
of the incoming strut can be easily obtained from the length of the bearing plate (/;) and

distance from the bottom to the centroid of the reinforcement (c).

-

Figure 2.17: Types of nodes in STM (adapted from Brown et al. [59]); Left— Hydrostatic node at

impractical case; Right— Non-hydrostatic CT node (estimation of strut width)
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Statically indeterminate systems

Another problem faced by the STM is to estimate accurately the stiffness of struts and ties
due to the presence of cracks. The truss systems to be solved in a strut-and-tie model must
be simple so that all element forces can be obtained with only equilibrium conditions (i.e.
statically determinate systems). Hence, in general cases the stiffness of both strut and ties
are not required. However, if the stiffness of the truss elements could be estimated the
member forces could then be calculated, even for statically indeterminate configurations.
Moreover, if the load-deformation response of the struts and ties were known the
equivalent deflection behaviour could be predicted for the evaluation of the serviceability

limit state.

An example of a statically indeterminate system can be found in short span beams with
stirrups (see chapter 7), in which the proportion of the load that is taken by the stirrups is
not known. Several approaches can be applied to solve hyperstatic strut-and-tie systems.
The simplest assumption is made by the classic plastic truss method, where the most
loaded ties are assumed to yield. Another approach is the decomposing method proposed
by Schaich & Schafer [61], in which the system is divided into several statically
determinate systems. However, a reasonable estimation of the stiffness and the imposed-
loading distribution of each model are needed in order to sum all these sub-models. Other
authors such as Ameida [62], suggest an energetic technique in order to consider
compatibility in the general model. Lastly, a stiffness analysis by strain compatibility can
be carried out in a similar manner as the method applied for beam-column joints proposed
by Vollum & Newman [63]. In any of these approaches, additional information from both
laboratory testing and non-linear finite element analysis would be beneficial to validate

the assumptions made in the strut-and-tie model.

Effective strength of struts

Another topic of debate in the strut-and-tie method is the effective strength assumed for
the struts. Different design codes provide a wide range of reduction factors to apply to the
cylinder compressive strength to estimate the capacity of the struts. EC2 applies no
reduction for cases where the concrete strut is in a region with transverse compressive
stress or no transverse stress, while v is used to reduced f, for struts in cracked
compression zones where 1=0.6(1-/;+/250). This parameter is identical to the one

suggested for the variable inclination strut method used for shear design (see section 2.1).
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Other codes such as Model Code MC90 give different values depending on the

constitutive laws used for concrete.

e For compression using a parabola-rectangle diagram

O ramax = 0.85.fcd.[2.(5c le))— (e, /gd)z] for  &.<gqy
GRd,max = 085]:’01 fOI' Ecl < Ec < Ecu
O ra.max = 0.00 for ew<e

where &.,=0.002

e For a bi-linear stress-strain relationship

O pamax = 0.85.14 [1- 7, /250] for uncracked areas

O pamax = 0.60.1,, .[1 —fi /250] for cracked areas

There are six major factors influencing the strength of the concrete strut.

1.

Shape of the strut: prismatic where the strength of the strut is closest to a concrete
cylinder; fan and bottle-shaped where the strut spreads out as it moves from the

ends causing splitting for smaller values than ;. .

. Disturbances in the strut: initial cracks parallel or skewed with respect to the strut

orientation. The influence of aggregate interlock is not taken into account in the
codes. Another disturbance in the strut can be the tensile stresses or strains induced
by a crossing tie such as the case of a stirrup in the truss analogy for shear in a RC

beam.

. Distributed reinforcement: well distributed reinforcement can control the spreading

effect of the strut and increase the overall ductility.

. Confinement: either by reinforcement or by mass surrounding the element the

performance of the strut can be enhanced by confinement. This favourable effect
had been studied thoroughly in the literature and has been implemented in most of

the codes of practice.

. Angle of strut: reduced angles between struts and ties should be avoided since it

might violate strain compatibility at the nodes (Schafer [60]). Transverse strains

induced by the ties into the strut will result in this extreme case in an excessive
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reduction in strength of the strut. Collins & Mitchell [11] suggested a relationship
(see Table 7.1) to obtain the effective strength in the strut in order to satisfy
compatibility at the bottom node. The strength was written in terms of the strain at

the tie and the angle between the strut and the tie.

6. Size of strut: STM generally do not make any allowance for size effects. However
up to date, there is no general agreement on the influence of size effects in short
span beam where strut-and-tie models are applied. This topic is discussed in further

detailed in section 7.6, in view of experimental evidence available in the literature.

Uniqueness of strut-and-tie model and applicability to practical cases

In many instances, the STM can provide more than one possible truss that can satisfy
equilibrium since the method is based on the lower bound theory. Optimal models will
minimise the strain energy. The largest strains are concentrated in the most ductile
elements, which are the steel ties. Hence a common rule is that models with shortest ties

are optimal.

New procedures for topology optimisation are now being developed, for example
evolutionary methods proposed by authors such as Qing Quan Liang et al. [64]. These
techniques combine FEA with an optimisation algorithm, which systematically removes
elements that have least contribution to stiffness. In this manner the optimal strut-and-tie
model is defined gradually by the remaining elements. The element virtual strain energy
is calculated for element removal and ‘“Performance Index” is used to control the
optimisation process. These techniques are found to be useful but quite hard to implement

for cases of non-linearity.

In general, the calculations performed in a strut-and-tie analysis can be time-consuming
since the truss must be iteratively adjusted. In addition, different truss models must be
developed for each load case. As shown by the strut-and-tie models developed by the
author (see chapter 7), an iterative scenario is generally required to solve these models,
even for very simple geometrical cases. Computer-based graphical design programmes
are being developed by research groups such as the Swiss Federal Institute of Technology
(ETH), the University of Stuttgart, Purdue University or software programmes such as
CAST developed by Tjhin and Kuchma [65] amongst others. The main objective of these
aids is to provide the designer with powerful tools that can optimise the computations in a
strut-and-tie design routine. Lastly, NLFEA can be carried out in addition, in order to

asses the effect of crack pattern, although this process is not trouble-free (see chapter 3).
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2.7 Conclusions

Shear design in structural concrete has been a challenging topic for many years. The truss
analogy first proposed by Ritter [14] and then improved by Morsch [15] at the beginning
of the Twentieth Century has been a powerful tool up to date in understanding the shear
transfer mechanisms in a RC beam. However, progress has been made since those early
truss models. Four different groups of approaches have been developed; classical 45°
truss model, variable strut inclination method (plasticity trusses), smeared truss models

(compression field theories) and discrete crack approaches.

Predictions of the shear strength provided by these approaches have improved
considerably from early formulations, which were based only on empirical results. As
reported by Collins et al. [12], early design equations for shear have been proven to be
unsafe since the experimental data used in calibrating the models corresponded to rather
small specimens. Nowadays it is a well know fact that aspects, which used to be
considered secondary, such as size effect or amount of longitudinal reinforcement, can

have a critical role in shear performance of RC members.

Analytical models for shear can be complex due to the large number of parameters that
need to be taken into account. Aggregate interlock action has a significant contribution to
shear strength. This contribution has been studied in depth for members without shear
reinforcement (Taylor [1, 2], Regan [4]) but to a lower extent for shear reinforced
members. Design methods for shear rely on the shear transfer across well-formed cracks
in either a direct or indirect manner. Plasticity approaches, such as the variable inclination
strut model for regions with uniform stress fields or the strut-and-tie models for
discontinuity regions, make use of constant “effectiveness strength” factors to consider

these aspects.

On the other hand, the modified compression field theory offers a rational approach in
which the shear transmitted along the crack is limited according to the crack width and
aggregate size. However, the MCFT is formulated in a smeared manner using average
stresses and assuming coaxiality between strains and stresses. Discrete crack models
using a truss with aggregate interlock models, offer an attractive alternative since failure
is studied along the critical crack surface rather than a smeared crack element. Either
smeared or discrete models can provide accurate predictions, although several
simplifications are generally required in order to include them in design codes used in

practice.
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Strut-and-tie modelling, which was developed by Schaich et al. [35], is often claimed as a
transparent method for designing and detailing discontinuity regions. It is shown that the
method requires several simplifications regarding geometry assumed for the truss
elements or the effective strength of the struts. In addition, several difficulties can be
faced in developing a strut-and-tie model such as uniqueness of the model, combination
with other load cases or dealing with statically indeterminate systems. Design provisions
are available in the codes of practice for STM, which can be used in a regular basis for the
design of D regions. In addition, solving strut-and-tie models generally require an
iterative approach and so computational tools to optimise these calculations are being

developed.

In order to produce an accurate strut-and-tie model in which some of the uncertainties
mentioned above is critical, laboratory testing will be required. Additionally, the use of
finite element modelling can also be helpful to generate strut-and-tie models, as
recognized by Schaich & Schaffer [58]. Moreover, carrying a non-linear finite element
analysis (NLFEA) can provide useful information of the crack pattern, which can be
responsible for failure. However, as described in chapter 3 this analysis is not
straightforward and often requires experimental data in order to calibrate the models used

in the NLFEA.
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3.1 Introduction

Finite element modelling has been applied on a regular basis by researchers and designers
in order to predict shear behaviour of RC structures. In the past, non-linear finite element
analysis (NLFEA) was restricted to few specific cases due to its difficult applicability.
The considerable emerging number of user-friendly NLFEA software packages available
has increased the number of cases where NLFEA are performed. However, two main
difficulties have arisen. Firstly, NLFE predictions are highly dependent on the
constitutive model applied and parameters assigned in the model. Due to the large amount
of constitutive models available and considerable number of parameters required in each
model, the calibration process of each parameter can be extremely time consuming.
Secondly, mesh properties, solver configurations or boundary conditions can influence
the numerical stability of the FE model. Numerical difficulties can be expected in the
NLFE modelling of shear critical concrete structures due to their brittle behaviour.
Additionally, NLFEA predictions may contradict in many instances existing design
equations and irrational solutions can be obtained if the model has not been validated

beforehand with existing experimental data.

The main objectives of the non-linear finite element models developed by the author were
to support experimental data and validate proposed analytical methods. The FE models
were developed using DIANA v.9 software package, which offers a large variety of state-
of-the-art constitutive models for concrete. Several techniques to model cracking in
reinforced concrete are investigated (smeared, discrete and combined). This chapter

summarizes the main features of the constitutive models implemented in the NLFEA
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presented in chapters 5, 7 and 8. In addition, values assumed for the parameters required
in the NLFEA are contrasted with general recommendations from the literature. It must
be noted that the performance of most of the constitutive models investigated for
concrete, is case dependent. Hence the conclusions drawn in this chapter regarding
NLFEA should be considered as a guideline only for similar models. The FE models
presented here, assume plane stress conditions and in general shear behaviour was

predominant over other types of failure.
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3.2 Crack modelling in NLFEA

Two main techniques are commonly used to model cracking in NLFEA of reinforced
concrete structures; namely smeared and discrete cracking methods. In the smeared crack
approach, cracking is smeared within the element unlike the discrete approach where a
gap is introduced into the mesh after cracking. The discrete crack approach is more
realistic than the smeared crack formulation but it is far more complicated to implement
in a finite element model since it requires the nodal connectivity to be changed on crack
formation. Furthermore, the crack must follow the element edges. The smeared method
idealises the cracked element as a continuum which can lead to “stress locking” effects
near the crack. These local effects are usually unimportant and the general behaviour of
the structure can be well predicted with smeared models. In case the stresses at the crack
are to be estimated more accurately, the alternative method of combining smeared and
discrete cracking elements seems more sensible, as shown in chapters 7 and 8. Other
considerations related with smeared cracking models, which were investigated by authors
such as Rots et al. [67-69], include “mesh-induced directional bias” and “numerical
instabilities” due to bifurcations caused by closely spaced cracks. Some of these aspects

are further discussed in section 3.5.

3.2.1 Smeared cracking models

Smeared cracking is commonly formulated based on either a total strain concept or in a
strain-decomposition manner. The second approach offers several advantages since it
divides the total strain into two components: strain of the concrete between cracks and
strain at the crack itself (e=¢&,+&,). This division allows to combine different types
models for concrete such as elastic, plastic or visco-elastic models. As reported by Rots
and Blaauwendraad [66], the relevance of this approach has been documented in the past
by several authors (Bazant & Gambarova [47], De Borst & Nauta [67], Rots et al. [68],
Riggs & Powel [69]).

Independently of the decomposition of strains used, the inclination of the crack can be
assumed to be totally fixed or fully rotating. An alternative hybrid approach, such as the
multi-directional fixed crack technique (Rots and Blauuwendraad [66]), can incorporate
the extreme cases of fully rotating and totally fixed cracks dependent on the choice of
threshold angle (&) at which further cracking is permitted. The main features of these

three approaches (fixed, fully rotating and hybrid) are reviewed in the next sections.
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Fixed inclination crack models

The main advantage of using a fixed crack model, as opposed to a fully rotating approach,
is that previous cracks are considered in the analysis. In addition, the fixed crack model
enables the normal and shear actions to be considered separately (Maekawa et al. [52]).
On the other hand, one of the main drawbacks of the totally fixed or multi-directional
fixed models is that there are several uncertainties in the shear stiffness assumed after
cracking. The reduction of shear strength once the crack has formed is defined by the

shear retention factor (f), see Figure 3.1.

The shear retention factor, which is usually assumed constant, can have a significant
effect on the rotation capacity of the struts crossing the cracks, due to shear friction along
the crack. For simplicity £ is generally assumed as 0.1 or 0.2, which was originally
proposed by Suidan and Schnobrich [70]. These values of the shear retention are widely
used in FE modelling, see TNO DIANA [71], Rots et al. [66, 68], Kotsovos & Pavlovic
[72], Pimentel [73]. However, according to experimental evidence, shear stiffness after
cracking is not constant and decreases as the crack gets wider. Authors such as Rots &
Blaaunwendraad [66], Cervenka et al. [74], or Figueiras [75] presented more realistic
models with a variable shear retention factor, which decreases as the normal strain at the
crack (&) increases, see Figure 3.1. Rots and Blaaunwendraad’s model applies to
unreinforced cracks, while Cervenka and Figuiras’ models were developed for cracks
which are crossed by reinforcement bars. These models are given by equations (3.1, 3.2
and 3.3). The ultimate strain (&) in equations (3.1) and (3.3) is dependent on the

tension softening assumed in the model, the crack bandwidth (%), and the fracture energy
(G

e Rots and Blaauwendraad [66]

ﬂ=[1— Eon ] .. (3.D)

&
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where k is positive, usually taken as 1

o Cervenka et al. [74]
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where ¢;=7+333(p-0.005); c,=10-167(p-0.005); c5=1; 0 <p <1 (p is dependent on the

reinforcement ratio)

e Figueiras [75]
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Figure 3.1: Shear retention factors according to different models

The models described above seem to be more realistic from a theoretical point of view
than assuming a constant value of f. However, two main disadvantages can be
highlighted. Firstly, the models given by equations (3.1 to 3.3) can produce shear
retention factors well above 0.4 for low normal strains (Figure 3.1). As reported by Rots
and Blaaunwendraad [66], assuming large values of £ (>0.5) can result in extremely stiff
responses due to overestimation of principle stress rotation after cracking. Secondly, these
models assume that the shear stiffness of the aggregate interlock across macro-cracks is
zero (B =0 for &, > &), Which is inconsistent with experimental evidence, such as
push-off tests data shown in chapter 4. In view of these limitations, a constant value of the
shear retention factor was finally adopted in this work; conventional values of £ (0.1-0.2)
were used, although parametric studies were carried out for each model to assess the

consequences of this assumption.
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Rotating crack models

In the fully rotating models (threshold angle =0), the stresses are computed along the
axis of the principal strains (co-axiality principle). Hence shear transfer along the cracks
and shear retention factors are not required. A typical example of fully rotating model is
the Modified Compression Field Theory (MCFT) developed by Vecchio and Collins [8].
According to the authors of the MCFT, the co-axiality assumption seems to be valid for a
large number of cases. However, as reported by Vecchio [29] or Maekawa et al. [52], the
co-axiality principle does not apply for structural cases where shear slip and shear transfer
along cracks is predominant. Experimental data shows a delay between the direction of
the principal stresses and the principal strains (Vecchio [29]). According to Maekawa et
al. [52] the co-axiality assumption would only seem reasonable for cases such as RC
elements with no pre-cracks, a cracked RC element reinforced in both directions and
cracked elements with small crack widths. As shown in short span beams modelled by the
author (see section 7.4), similar predictions were obtained using totally fixed and fully
rotating models. In this case this was due to the limited crack rotation within the shear
span, and so the same did not apply for more slender beams. Another example of the
performance of a fully rotational crack model can be seen in shear panels, which are
investigated in chapter 4. As reported by Vecchio [29], one of the deficiencies in the
MCEFT, which is related with the co-axilality assumption, can be observed in shear panels
which are lightly reinforced in one direction. In such cases, where there is a high strut
rotation, the ultimate shear strength and stiffness is generally overestimated by the

MCFT.

Hybrid fixed-rotating crack models

Several attempts have been made in order to improve fully rotational models to capture
more realistically the influence of shear transfer along previous cracks. Hybrid models
between fully rotating and fixed crack models have been developed. Although the
predictions using these models are in many cases more accurate than the extreme rotating

and fixed models, severe numerical difficulties can arise.

An example of hybrid formulation is the “Disturbed Stress Field Model” (DSFM)
presented by Vecchio [29]. The main advantage of the DSFM compared to the MCFT is
that co-axiality is no longer required since a crack slip relationship is introduced.
Alternatively to the DSFM, other hybrid models such as the multi-directional fixed crack

model (Rots et al. [68]) were developed. The multi-directional fixed crack model, which
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is denoted as “multi-fix” in this work, is easily formulated for strain-decomposition
models (see Rots et al. [68]). This model, which is implemented in DIANA, was adopted
for the NLFEA shown in chapters 5, 7 and 8. The multi-fix model assumes that once the
maximum tensile stress criterion is violated, a crack forms perpendicular to the principal
tensile stress direction. The direction of the crack is kept fixed; hence the principal stress
can rotate due to shear transfer along the crack. A new crack may form in a different
direction if the maximum tensile stress criterion is again violated. Similarly as in the fixed
model, a shear retention factor £ must be assumed in the multi-fix model. However, the
consequence of estimating £ seems less relevant than in the fix model since in this case

the orientation of the crack is updated to some extent.

Regarding the criteria for the formation of a new crack, four possible criteria are

distinguished by Rots and Blaauwendraad [66]:
a) the principal tensile stress is violated

b) the angle between the principal tensile stress and the existing crack(s) exceed the

value of the threshold angle ()
c) both conditions (a) and (b) are violated
d) either conditions (a) or (b) is violated

As reported by Rots and Blaaunwendraad [66], condition (a) will not limit the number of
cracks, which will lead to an inefficient algorithm especially when the stresses can rotate
considerably (high values of £~0.5). Excessive number of cracks at a single point will
result in ill conditioning of the stiffness matrix and numerical difficulties for cases of
crack re-opening (Rots and Blaaunwendraad [66]). Similar problem as in case (a) will be
faced if (d) is assumed. Condition (b) on its own would not be reasonable since the tensile
stress would be completely ignored. Therefore, (c) seems to be the most suitable criteria
from a numerical perspective and so was adopted in the FE models used in this work. It is
important to note that this assumption can lead to extreme cases, as reported by Rots [68],
where the principal tensile stress can reach up to three times the tensile strength while the
threshold angle condition is still not violated. In order to avoid these situations a

reasonable value of the threshold angle (&) needs to be chosen.

The default value of the threshold angle « assumed in DIANA is 60°, which generally

provided sensible results in FE models developed by the author. In most of the beams
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analysed here, the value of « did not have a significant effect on the predictions.
Furthermore, for beams with stirrups, the FE model was more stable assuming a value of
a=60°. However, in beams without shear reinforcement, where shear cracks crossed
previous flexural cracks (see beams B0 in chapter 8), a value of « equal to 60° provided
slightly higher values of the ultimate strength. In such cases, a value of « equals to 30°
provided better predictions. Similar conclusion was obtained by Pimentel [73] in his
analysis of slender beams without shear reinforcement, using the multi-fix model.
Pimentel [73] justified this value of alpha from observation of the crack pattern obtained
in the experiments. The value of « equals to 30° also agreed with earliest estimates given
by Rots and Blaauwendraad [66], which was suggested as a balance between

“computational cost and level of sophistication”.

3.2.2 Discrete crack models

Discrete cracking is generally modelled by means of interface elements introduced in the
FE mesh. In general, a previous analysis using smeared cracking elements only, is carried
out in order to assess the exact position and geometry of the cracks. The formulation of
constitutive model used in the interface elements are based on the total deformation
theory, where normal and tangent stresses are expressed as functions of the crack relative

displacements Aw and As, see Figure 3.2.

'y | \  Dn=—
= As

n

Figure 3.2: Relationships between normal/shear stresses and crack opening/slip displacements in

interface elements (adapted from DIANA [71])
Two types of models, which are described in DIANA [71], were investigated:
a) Discrete crack model

b) Crack dilatancy models
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Discrete crack model

The discrete crack model implemented in DIANA, is a simple formulation where the
shear and normal stresses are uncoupled, hence D; = 0 (i#/) in Figure 3.2. The crack
initiation is only governed by Mode I (tension) criteria. Once the tensile stress reaches the
tensile strength a tension softening relation is applied for normal stresses while constant
shear retention is assumed in shear. The model does not consider the reduction in shear
stiffness due to crack widening nor the interaction between 7z and o. However, the

numerical stability is guaranteed since the stiffness matrix remains symmetrical.

The main difficulty of this approach would be to provide a reasonable value for the shear
stiffness (D;;) after cracking since this parameter has a direct effect on the sliding allowed
at the crack. As reported by Feenstra et al. [53], if the discrete crack elements are aligned
with the potential principal tensile stresses, D, could be assumed as zero. Although this
assumption might be reasonable up to a certain level of loading, it is questionable whether
it would still apply at loads near failure, where strut realignments can be expected.
According to the author, providing an estimate of D,,>0 would seem to be a more
reasonable approach since it would allow for stress redistribution in some extent. As
shown in sections 7.5.3 and 8.3.3, D>, can be estimated from either push-off test data or
from analytical approximations. The aggregate interlock stiffness predicted by analytical
models such as Hamadi and Regan’s [19] formula or most of the crack dilatancy models
discussed in section 2.5.2, is a function of the crack width. Therefore, an estimated of D>,
can be obtained assuming a sensible value for the crack opening near failure. This initial
estimated value of D,,, can be easily optimised if crack slip data from tests is available.
Estimating the shear stiffness from crack openings at loads near failure should provide a
lower bound of the shear stresses at early loading, since D, is underestimated at these

load stages.

Crack dilatancy models

Crack dilatancy models (CDM) can be applied to account for aggregate interlock in
macro-cracks in a more realistic manner than the simple discrete crack model described
above. As explained by Fenstra et al. [53], the crack dilatancy model is mobilized in the
open-crack state, i.e. the tensile stress at the interface element reaches zero in the
softening curve. Before the crack dilatancy model is mobilized, the initial linear-elastic
and crack development (tensile softening) states are identical as in the simple discrete

crack model described previously.
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The main shortcoming of the CDM is that stiffness matrix D is non-symmetrical and so
the stability of the analysis is compromised. From the author’s experience using CDM,
these difficulties can be partially overcome by reducing the load steps considerably or
applying an adaptive type of loading. However, if failure is sudden, such as in beams
without stirrups, an indirect displacement control such as the “Crack Mouth Opening

Displacement” control (CMOD) seems necessary.

Another important aspect that must be highlighted is the relevance of the type of
algorithm (see section 3.5.2) applied to solve the system of non-linear equations in the
FEA, when using interface elements with CDM. In the NLFE models, the load stages at
which the discrete crack started to open was critical in terms of numerical stability.
Solvers such as the traditional Newton-Raphson or the Quasi-Newton (secant), described
in section 3.5.2, provided a good performance. However, the constant and linear solvers,
which apply the stiffness matrix obtained in previous load step, provided spurious results.
These algorithms seemed to be inefficient to capture the sudden changes in stiffness

produced at the crack initiation stage.
Several CDM relationships are implemented in DIANA:
- Linear aggregate-interlock model (Walraven & Reinhardt [46])
- Rough crack model (Bazant & Gambarova [47] or Gambarova & Karakog [48])
- Two-phase model (Walraven [45])
- Contact density model (Li et al. [49])

These approaches, which are based on either empirical or analytical models, were
presented in section 2.5.2. According to Feenstra et al. [53], the contact density model
provided a better numerical stability compared with the rest of the models. The linear
aggregate interlock relationship suggested by Walraven and Reinhardt [46] is also widely
applied due to its simplicity. The performance of some of these models is investigated in

section 4.5 using experimental data from the push-off tests carried out by the author.

In view of the numerical difficulties faced in some of the NLFEA performed in this work
using CDM, it can be concluded that the use of CDM should be restricted to very limited
cases, where the crack slip is significant compared with crack opening. As discussed in
chapters 7 and 8 for the analysis of the beams tested, the simpler discrete crack model

provided reasonable predictions when sensible estimates of D,, were applied.
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3.3 Constitutive material models applied
In order to cover the main groups of smeared cracking techniques described in previous

section, two types of material models were investigated.
1. Total Strain models: rotating and fixed crack model
2. Multi-directional fixed crack model

The first model is based on the total strain formulation and includes fully rotational and
totally fixed alternatives. The second model used was a strain-decomposition, multi-
directional smeared crack in tension with an elasto-plastic model in compression. The
main features of these models are described in previous section. The constitutive
equations for compression, tension and shear, as well as the parameters generally
assumed in each model are described below. The expressions for the strain vectors and
stiffness matrix assumed in each model are omitted; refer to Rots and Blaauwendraad [66]

or DIANA’s Users Manual [71] for detailed information regarding these equations.

Total Strain Models: fixed and rotating crack models

The equivalent stresses are calculated in terms of the strains in the crack directions,
assuming a constant Poisson ratio. In the Total Strain fixed model this direction
corresponds to the initial crack orientation, while in the rotating crack model the principal
strain/stress direction is used. Unloading is modelled in both tension and compression
through a straight secant strain-stress path, which passes through the zero point as shown

in Figures 3.3 and 3.4.

After cracking, the shear stiffness is assumed constant in the fixed crack model (£G). In
the rotating model, co-axiality is forced by introducing a tangential shear modulus (G2,
G,; and Gj3;) according to equation (3.4), derived by several researchers (Bazant [76],

William et al. [77], Rots and Blaauwendraad [66]).

G, =——7 ... (3.4)
/ 2.i£l.l. —£ )
where (i,j) = (1,2); (2,3); (3,1) for G;,, G2; and G3; respectively.

An important aspect that must be highlighted regarding the Total Strain models is that the
Poisson ratio must be taken as zero. This assumption is not required in smeared models
using a strain decomposition method, since the elastic strains in the concrete (&) are

independent of the strains in the crack (&.,). As described by Pimentel [73], the elastic
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strains in the concrete reduce considerably right after cracking. This reduction of & can
only be captured in strain decomposition methods and not in the total strain models. If a
conventional value of v larger than zero is introduced in the Total Strain models, the
transverse strains can be severely overestimated. The situation is more critical for cases
with large crack openings, since the crack strains would be taken into account to obtain
the transverse strains, which is not correct. As noted by Pimentel [73], these unrealistic
transverse deformations can introduce large perturbations in the stress fields. Similar
conclusions are obtained in the FE analysis carried outh by the author for shear panels
tested by Vecchio & Collins [8], refer to chapter 5. This numerical analysis showed very
low stiff predictions of the shear panels, if conventional values of v=0.2 were used in the
Total Strain models. Other researchers, such as Vecchio [78], have taken values of v for
the concrete after cracking equal to zero. This assumption seems to provide reasonable
predictions in many structural cases. However, as pointed by Pimentel [73], this might not
be the case in structures where the increase in concrete strength due to confinement is

significant.

The tension softening relationships generally applied in the models developed in this
work corresponded to either a linear relationship or a Hordyk [79] model (see Figure 3.3).
Both models are defined by means of the fracture energy (Gy) and the crack bandwidth
(h), which provides a certain degree of objectivity regarding mesh refinement, as
discussed in section 3.5.1. The fracture energy was estimated from MC90 formula (3.5),
which is dependent mainly on the tensile strength. In cases where the elements were

heavily reinforced, Gy was increased in order to take into account tension stiffening.

G, =Gf0.[;c'"J ... (3.5

where f.,,o=10MPa and Gy is a function of the aggregate size according to Table 3.1.

dpax | G x10°
[mm] [N/mm]

8 25
16 30
32 58

Table 3.1: Coefficients required to obtain the fracture energy according to MC90
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Figure 3.3: Tension softening curves applied for loading and unloading (crack band concept)

As mentioned earlier, the crack bandwidth concept, which was originally introduced by
Bazant & Oh [80], was used in the smeared crack models. This concept, which is
generally used in non-linear fracture mechanics theory, assumes that the crack strains are
concentrated along a strip or band of constant width (#) with a constant strain distribution
as shown in Figure 3.3. In finite element modelling, the value assume for # depends on
the element size and integration scheme. The crack bandwidth (4) was assumed in the
models as the square root of the area of the element for bidimensional plane stress
elements. More elaborate estimates of 4 for the plane stress elements would be rather
problematic since the orientation of the cracks is not generally known a priori. On the

other hand, for interface elements /# was taken as the thickness of the element.

In compression, several relationships are commonly applied in practice (see Figure 3.4).
Typical examples include symmetrical parabolic curve of Hognestad, Thorenfeldt curve
or relationship proposed by fib [60, 81]. The asymmetric parabolic curve proposed by
Feenstra [82] is adopted in this work. This strain-stress curve consists of three branches,
which are limited by points O, A, B and D in Figure 3.4. An initial linear relationship is
assumed until point A, while two parabolic curves are fitted for pre-peak and post-peak
load branches; see equations in Figure 3.4. The residual compressive stress for large

strains was limited to 0.2c., in order to avoid numerical difficulties.
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Figure 3.4: Strain-stress curves for concrete in compression

As shown in Figure 3.4, there is a good agreement between the different models in the
ascending branch of the strain-stress curves for compression. However, this is not the case
for the descending branch. Aspects such as the level of confinement or high strength
compressive behaviour have a significant role on the post-peak strain-stress curve. An
accurate definition of the post-peak branch is more relevant in the analysis of the load-
deflections response of over-reinforced structures (Wong & Vecchio [83]), since a larger

stress redistribution is expected after the critical region begins to crush.

The parabolic descending branch proposed by Feenstra [82], is defined by means of the
compressive fracture energy G, although not much information is available in the
literature about this parameter. In practice, G. is generally estimated from the tensile
fracture energy using an approximate value of 100G, (Ozbolt & Reinhardt [84]). This
estimated value of G. was adopted in the FE models developed by the author. However,
recent work from Pimentel [73] or Majewski et al. [85], shows that there is not a general
agreement about this particular parameter. For example, Pimentel [73] applied estimates
of G, in his numerical models up to two times the reference value provided by Ozbolt and
Reinhardt, obtaining equally accurate answers. On the other hand, in the NLFEA carried
out by Majewski et al. [85], the conventional value of 100G, produced a clear
overestimation of the ductility of the specimen. In this case, values of G, of around 50G,

provided more sensible answers (from personal communication).

These results support the idea that the influence of G, on the numerical predictions is case
dependent, which was otherwise expected. Pimentel [73] NLFEA involved slender beams
failing in shear diagonal tension, while work carried by Majewski et al. [85] focused on

columns failing in compression. It seems clear that the second case, the influence of G,
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would be much more relevant than in the former case. The NLFEA carried in this work,
involved either cases where failure was due to shear in diagonal tension (slender beams
without stirrups) and shear-compression (short span beams). Therefore, the influence of
G, on the predictions was expected to be different for either type of shear failures. In
short span beams analysed in chapter 7, where the role of G, would seemed to be more
critical, only a small fraction of elements near the loading plate reached strains above the
peak. Hence, the margin for stress redistribution was low and so changes in G, in the

NLFEA did not make much difference in the numerical predictions.

A more comprehensive model to consider the post-peak behaviour of concrete in
compression was developed by Markeset and Hillerborg [86]; the Compression Damage
Zone (CDZ) model. In their approach, energy is dissipated through a combination of
smeared axial splitting and a localized deformation, as shown in Figure 3.5 (right). In the
CDZ the axial splitting is related with the fracture energy in tension, while the localized
deformation (w.) depends on the crack surface; w. can vary from 0.4mm to 0.7mm for
normal density concrete or be less than 0.3mm if the aggregate fractures. Although CDZ
offers a reasonable approach, there are large uncertainties in the material parameters
required in the model. Furthermore, the values obtained for G. using the CDZ, which had
a good agreement with experimental data provided by Vonk [87], are not that different

from the conventional value of 100Gy, as shown in Figure 3.5 (left).

30 - O width 50 mm o
O width 100 rnrn] Tests (Vank) * ‘ l’ I’ l fc
—  — width 50 mm s = Om Win
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Note: values used in the CDZ model in the figure (G/=0.12N/mm; f;=45MPa; w.=0.4mm)

Figure 3.5: Compression fracture energy according to CDZ (adapted from Markeset and

Hillerborg [86]); Left- experimental and predicted values of G.; Right- Fundamentals of CDZ
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Finally, the reduction in compression strength of the concrete due to transverse strains
was taken into consideration in the NLFEA by using predefined-function VC1993
implemented in DIANA, (see Figure 2.6). This algorithm, which is based on work carried
by Vecchio and Collins [25], was applied in the Total Strain models. However, this might
be questionable for the total strain fixed crack model, since concrete softening could be
overestimated according to (Vecchio [29]). The performance of this softening curve is

studied in chapter 5 in the analysis of shear panel tests.

Multi-directional fixed crack model

The multi-fixed model was applied using equivalent uniaxial strain-stress constitutive
equations for tension and compression as in the Total Strain models described in previous
section. A shear retention factor f is assumed since the model is based on a multi-
directional fixed crack concept. Standard values of 0.1 and 0.2 are used, similarly as in

the fixed crack models.

The multi-fix model combines smeared cracking with plasticity, since it is formulated
based on strain decomposition concept (see section 3.2.1). Strains in the crack are
modelled using a multi-directional fixed model, while plasticity theory is applied for the
concrete strains. In order to deal with biaxial stress states (Figure 3.6), which often
combines tension with compression, a constant (Rankine) cut-off was applied for tension

and a Druker-Prager yield surface was adopted for compression, see equation (3.6).
1
flo.ek)= 7o Po+a,x’ o= pek) .. (3.6)

where P / & are the projection matrix/vector respectively given by equations (3.7).

(2 -1 -1 0 0 0
-1 2 -1 0 0 0
P=|-1 -1 2 0 0 0] ;z={1 1 10 0 0} ...3.7)
0 0 0 0 6 0
0 0 0 0 0 6|

parameters ayand . are given by equations (3.8).

2sin 6cos
oy = ? Bo=5— ’
3—sing 3—sing

... (3.8)
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The friction angle @, which is generally assumed as 30° in other plasticity criteria, was
taken as 10°, in order to force equation (3.6) to go through points 4(0,0,-f.) and B(0,-1.16
fe-1.16 f2) in Figure 3.6, which correspond to uniaxial and biaxial tests respectively. In a
similar manner, the cohesion (c) must be equal to 0.42f.. According to DIANA [71], the
dilatancy angle  is not essential for plane stress situations. Hence associative plasticity

(v = ¢) is assumed for simplicity.
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Figure 3.6: Biaxial stress state of concrete (adapted from Kupfer and Gerstle [88])

Strain hardening/softening c(k) is introduced in equation (3.6) by defining the uniaxial
stress-strain parabolic relationship, which was previously described for the Total Strain
models (see Figure 3.4). The only difference in the input of this relationship in DIANA is
that the parabolic relationship is not pre-defined for plasticity models and so the points
are introduced in a discrete manner in terms of stress-plastic strains. In order to assess the
points, which define the descending parabolic branch, the crack bandwidth /% is estimated

manually from the average size of the elements in the mesh.

The compressive softening due to transverse strains is not taken into account directly in
multi-fix model as in the Total Strain models. Instead, the concrete strength in elements,
which are influenced by large transverse strains, is reduced to some extent. Shear panels
examined by the author showed that the effectiveness factor v suggested in EC2 could be
applied as a reference value (see section 5.4). Alternatively, Pimentel [89] suggests a
concrete strength of 0.85f.,, which is based on recommendations made by Reineck [40].
Concrete softening can be overestimated if same softening curves developed for rotating
crack models are applied in models where the crack slip is taken into account (Vecchio
[29]). As reported by Pimentel [89], this would be the case in the multi-fix model since

the crack slip is considered in the model.
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3.4 Modelling of reinforcement

Reinforcement bars are generally modelled in DIANA as “embedded elements” which
add stiffness to the mother elements in which they are surrounded in. Alternatively, truss
elements can be used, although the mesh must be adapted to the reinforcement in order to
have perfect node connectivity. On the other hand, embedded elements provide no extra
degrees of freedom to the model and strains are obtained from the displacement field of
the mother elements. These assumptions imply perfect bonding between the concrete and
the reinforcement bar. In order to introduce bond-slip relationships, truss elements must
be then used in combination with interface elements that are placed between the
reinforcement bar and the concrete. This compromises the mesh generation and the
numerical stability of the model. Hence, perfect bonding was assumed in the models
presented in this work. In addition, the material model applied for the reinforcement steel
consists in a conventional perfect plasticity Von Misses yield criteria with no strain
hardening. The reinforcement is defined in most of the models as discrete elements as
opposed to continuous grids. The differences between both types of elements are
discussed in next section. Reinforcement crossing interface elements required additional

considerations which are further commented on section 3.4.2.

3.4.1 Grid and discrete embedded elements

Two main alternatives are commonly available to simulate reinforcement by means of
embedded elements; namely discrete and smeared (grid) reinforcement. As discussed, the
discrete embedded reinforcement can also be modelled by using truss elements with
matching node connectivity to the mesh. The grid alternative is suitable for large areas
where reinforcement is distributed evenly in two or one directions, such as two-way slabs
or shear-reinforced beams respectively. However, the question may arise of whether to
use discrete or smeared reinforcement when the spacing between reinforcement bars is
significant. Aspects such as mesh density or type of material model used for concrete may
have an influence in this decision since the decrease in stiffness in the system due to

cracking might be more or less abrupt depending on these two variables.

In addition, the probability of having a significant number of finite elements with no
reinforcement crossing them would be high if the spacing between discrete reinforcement
elements is large. The situation may worsen if the FE mesh density is increased. The
behaviour of plain concrete elements could vary depending on the type of constitutive

model used.
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In order to investigate the consequences of using either type of reinforcement elements,
continuous beam BL1, described in chapter 6, was modelled using both discrete and grid
reinforcements. The spacing between stirrups in BL1 is 150mm and the quadrilateral
elements, which are used in the mesh, have an average side of 55mm. This mesh
configuration leads to one column of finite elements located between stirrups, which are
not crossed by any reinforcement, as shown in Figure 3.7. A second case was also
investigated, which is denoted as BL1b, where the stirrup spacing was taken as 270mm
resulting in three columns of finite elements between stirrups being un-reinforced. This
last beam represents the worst case scenario in beams with shear reinforcement since the

maximum spacing between stirrups is commonly taken as 300mm (BS8110).

The analysis of both BL1 and BL1b showed that the numerical predictions were very
similar using either discrete or smeared embedded reinforcement elements. The load-
deflection curves obtained (Figure 3.7) were identical for the multi-fix model, while for
the total strain models only small deviations were observed at loads near failure. The

overall performance of each model is discussed in further detail in chapters 5, 7 and 8.
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Figure 3.7: Load-deflection curves for beam BL1 using grid and discrete reinforcement

Although the aim of this analysis was to investigate the difference in using grid vs.
discrete embedded reinforcement elements, two aspects must be highlighted in Figure 3.7.

Firstly, the discrepancy for early load stages between numerical and experimental data, is
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due to the fact that beam BL1 was pre-cracked, which is not considered in the NLFEA.
Secondly, the ultimate load predicted in the multi-fix model in this case was highly
influenced by the concrete strength assumed for the elements near the plate. This was not
observed in the numerical predictions using Total Strain models. For the analysis shown
in Figure 3.7 using the multi-fix model, the concrete strength of the elements near the
plate was factored by 1.5. This approach, which is further discussed in section 3.5.3, was
needed in some of the models developed to avoid premature failure of these elements.

This allowed to assess stresses and crack patterns at loads near experimental failure loads.

Lastly, the only significant difference observed between predictions using grid or discrete
reinforcement embedded elements was regarding the geometry of the cracks. In the FE
models with grid shear reinforcement the cracks had a slightly curved path (Figure
3.8.b.1), which is due to the smearing of the tensile stresses provided by the grid. This
curved crack path predicted was more noticeable in the total strain models, especially for
intermediate loading, when higher realignment of principal stresses took place. Using
discrete reinforcement elements eliminates this problem since the stirrups are positioned
at discrete intervals rather than being smeared within the elements. Hence a polygonal
type of crack path is predicted, which agrees better with experimental evidence (Figure
3.8.a). Furthermore, the exact location of the crack becomes clearer as shown in Figure

3.8.c. 0.65P \l/

1000 R
=

im
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a) Experimental (BL1)

c.1) Discrete (P=750kN)

Figure 3.8: Predictions of crack pattern for multi-fix model using grid and discrete reinforcement
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It can be concluded from the previous analysis that both smeared and discrete types of
reinforcement elements can be used to model beams failing in shear, as long as the stirrup
spacing complies with design standards. However, the second option (discrete elements)
tended to give in general more realistic crack pattern for intermediate loadings. Therefore,
the discrete reinforcement was preferred over the grid option for the models developed in

this work.

3.4.2 Reinforcement bars crossing interface elements

So far, reinforcement elements have been assumed to be embedded in plane stress mother
elements only. Additional considerations regarding the normal and shear stiffness must be
made if the reinforcement is embedded in interface elements. This situation arises at
discrete cracks crossed by reinforcement bars. As described by Maekawa et al. [52] or
Soltani et al. [90], several phenomena related to dowel action and bond-slip effects take
place at the crack where it is crossed by reinforcement (Figure 3.9). Bond stresses are
highly influenced by deterioration of the concrete surrounding the reinforcement bar due
to splitting and crushing of the concrete. Furthermore, if the reinforcement is skewed with
respect the shear plane, the deterioration length increases due to spalling of the concrete

near the reinforcement bar at the crack (Soltani et al. [90]).

Shear force

Flaking of

concrete \ /
Axial g

force
Dowel /i
action

Figure 3.9: Local effects of reinforcement bars crossing cracks; Left — Push-off test PG3 tested by
author; Right — Local effects according to Soltani et al [90].

As described by Walraven & Reinhardt [46], cracks crossed by embedded reinforcement
have a different behaviour than when restrained by un-bonded or external reinforcement.
This is due primarily to the reduced crack width immediately near the embedded
reinforcement bar, which results in secondary diagonal cracking and an additional strut

mechanism (Figure 3.10). On the other hand, externally reinforced cracks and un-bonded
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(smooth bars) have a constant crack width, which results in shear forces to be transmitted

by aggregate interlock action only since the diagonal strut is no longer present.

These different shear transmitting mechanisms that are present in cracks crossed by
embedded reinforcement are difficult to take into account accurately in FE modelling.
Several analytical models have been developed in order to simulate these mechanisms in
a realistic manner. An example is the model proposed by Walraven and Reinhardt [46]

(Figure 3.10.c).

a) un-bonded bar b) deformed bar c)
Figure 3.10: Local mechanism at cracks with embedded reinforcement according to Walraven and
Reinhardt [46]; a) constant crack widths for un-bonded reinforcement bars; b) secondary struts (S)
with diagonal cracking in the vicinity of deformed reinforcement bars; c) shear transfer
mechanisms along crack due to aggregate interlock (F;,, Fi), secondary struts (S), dowel action

(F,) and normal stiffness from reinforcement bars (F)

In DIANA, aggregate interlock action is modelled using interface constitutive
relationships, which are described in section 3.2.2. The secondary strut mechanism
illustrated in Figure 3.10.b, was not considered in the NLFEA carried out in this work. In
DIANA, the normal and shear components introduced by the reinforcement bar, which
refer to Fy and F; in Figure 3.10.c, are estimated in terms of the free length (/;) parameter,

according to Figure 3.11.

l.ﬁi"'___""'I\ Ny k”:l‘s : k[:2ls.

Note: the thickness of the interface element (/) does not have to be equal to /j
Figure 3.11: Estimation of stiffness per unit area in the normal and transverse direction of

reinforcement element, which crosses an interface element (according to DIANA)
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Additionally, reinforcement elements crossing interfaces are integrated in DIANA using a
single Gauss point with normal and shear dof in the same directions as the interface
elements and not along the reinforcement. The thickness of the interface elements is
unimportant; in this work A=0.2mm. In order to estimate the free-length parameter,
yielding of the stirrup reinforcement was assumed to occur at a crack opening of 0.4mm
(l=150mm). This assumption was based on experimental evidence shown in chapters 4

and 6.

Although the free-length parameter can be estimated from observed crack openings as
shown above, the value assumed in DIANA for the dowel action stiffness (k,) (Figure
3.11) seems highly questionable. To illustrate this, three different load-deformation
models for dowel action were applied (Millard & Johnson [91], Walraven & Reinhardt
[46], He & Kwan [92]), see Figure 3.12. These models, which are based on traditional
beam over elastic foundation problem, provided very similar predictions for a single T8
stirrup bar (see parameters used in models in Figure 3.12). In addition, MC90 formula for

dowel action was consistent with the previous three models; P, (MC90)=12.8kN.

" Parameters:
2=~ —=2 e D =8mm (A=50,24mm2)
10 E,=200GP
= a N=A.fy/2 fee=40MPa
2 ® ' /,=550MPa
N 2 ——— Millard & Johnson e =0.1mm (MC90)
/ 2 Walraven & Reinhardt a=13 (MC9O)
Y F=1 (Millard & Johnson)
-—--- He & Kwan )
2 Note: results for no Results shown for no axial
0 axial tension N=0 e DIANA tension ( NZO), unless stated

0.0 o‘.5 1‘.0 1‘.5 2‘.0 2‘.5 310 315 4‘.0 4‘.5 5.0
Sliding [mm]

Figure 3.12: Load-deformation response of dowel according to different analytical models

A perfect-plastic behaviour is assumed in He & Kwan’s model (Figure 3.12) based on
experimental work carried by Dei Poli et al. [93], Dulacska [94] and Vintzeleou &
Tassios [95]. On the other hand, Millard & Johnson’s model assumes an elastic behaviour
up to 40% of the ultimate load. The initial stiffness of the dowel action predicted by both
models was identical and considerably lower than Walraven & Reinhardt’s model, which
appears to be too stiff. However, for slips greater than 0.1mm, the three models provided
similar predictions. Results in Figure 3.11 are shown for no axial tension. However,

experimental evidence provided by Eleiott [96] showed that the dowel stiffness can
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considerably lower when axial tension is applied. This is shown for Millard & Johnson’s
model (Figure 3.11) for an axial stress of half the yielding capacity of the bar. Walraven
& Reinhardt’s model included a reduction factor to take into account for this, which

provided similar answers as Millard & Johnson’s curve.

According to these analytical models shown in Figure 3.12, the constant stiffness
assumed in DIANA, which was estimated using the free-length parameter obtained from
crack opening considerations (/; =150mm), seems excessive. According to these three
models, which were applied for normal crack widths and reinforcement bar sizes used for
stirrups, a more reasonable value for the k/k, ratio would seem to be 1/10. Increasing
parameter /; to optimise the dowel action stiffness would result in excessevily large

normal deformations at the interface element.

Possible alternatives to embedded reinforcement elements could include using spring
elements with user-supplied material constitutive equations (Eierle & Schikora [97]) or
truss elements. Either option is not straight-forward since firstly, the mesh would have to
be adapted to the shear reinforcement and secondly, constitutive equations would need to
be developed for the element crossing the interface. This was not considered to be within
the main scope of this project and so an alternative solution was adopted. As described in
chapters 7 and 8, the value of the shear stiffness assigned to the interface elements due to
pure aggregate interlock was decreased in order to account for the excess stiffness
provided by the shear reinforcement. This compensation would have to be larger in beams
with lower stirrup spacing. The aim was to provide overall shear stiffness that would be
realistic in view of the experimental and analytical results from the push-off tests shown
in chapter 4. This approach is less numerically demanding than using spring elements or

truss elements with very short lengths.
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3.5 Other aspects related to NLFEA

3.5.1 Mesh considerations

The finite element meshes generated in this work consisted of triangular and quadrilateral
isoparametric plane stress elements with quadratic interpolation (6 and 8 nodes
respectively); refer to Figure 3.13.a and b. Linear interpolation elements were avoided for
the non-linear analysis, as recommended by DIANA [71]. A default Gauss integration of
2x2 for the quadrilateral elements and 3-point area integration schemes were adopted. On
the other hand, in order to model discrete cracking, line interface elements with a 6-node
and a S5-point Newton-Cotes integration were used (Figure 3.13.c). As reported by
Feenstra et al. [53], numerical oscillations can occur in interface elements with small
thicknesses unless a Newton-Cotes quadrature is used. Alternatively, lumped interface
elements could be applied, although the stiffness matrix would be similar (Feenstra et al.
[53]). Triangular plane stress elements were introduced in the meshes to provide a
transition in the geometry from the quadrilateral elements to the inclined interface

elements, see Figure 7.34.

o el Ll el b

a) b) )
Figure 3.13: Types of elements used in FE meshing (adapted from DIANA [71]); a) Triangular
element (CT12M); b) Quadrilateral element (CQ16M); c) Line interface element (CL12I) with 5-

point Newton-Cotes integration scheme

The FE meshes generally used in the models were uniform, as shown in Figure 3.7, with a
number of divisions of around 10 for the height of the beam. This resulted in element
sizes of around 50mm. This mesh density was of a similar magnitude as models
developed by other authors (Vecchio & Shim [98], Kotsovos and Pavlovic [72], Pimentel
[89] or Feenstra et al. [99]). In order to provide numerical results which are independent
of the size of the elements, a regularization technique must be applied. As described in
section 3.3, this is achieved in DIANA by using the crack bandwidth (%) concept. The

constitutive models are formulated based on the fracture energy released in the element
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after reaching the tensile strength, which guaranties the objectivity of the results as long

as the total fracture energy is kept constant.

The main shortcoming of this approach occurs for coarse discretisations or large
unreinforced concrete structures, where the values of 4 could be large enough to produce
a snap-back in the constitutive model used for tension. This snap-back behaviour will
occur if the maximum value of the tangent stiffness of the softening curve, which
generally takes place at the start point of the curve, is greater than the Young’s modulus
of the material. According to softening curves shown in Figure 3.3, this limitation is more
critical for the Hordyk’s curve than for a linear relationship with the same Gy value. From
the Hordyk’s expression shown in Figure 3.3, the value of the ultimate strain (&, ckqu)
can be written in terms of the fracture energy (Gj), crack bandwidth () and tensile

strength (f;), as shown in equation (3.9).

Gf
gnn,ck(ult) = 5136? (39)

t

The minimum value of the ultimate strain (&, ck(uiy|min) for which the slope of the curve at
the starting point becomes greater than £ in the Hordijk’s model is given by equation
(3.10). Imposing &, ckuiy) > Em,ckuinlmin yields to equation (3.11), which provides the

maximum value of 4,,,, for which snap-back behaviour will occur.

&

nn,ck(ult) |min

_6.957.0¢ ... (3.10)
E

EG,
.. (3.11)

2
t

h<h_ =0.739

If a linear softening curve was assumed, coefficients 5.136, 6.957 and 0.739 in equations
(3.9) to (3.11) should be changed to 2, 1 and 2 respectively. Normal values used in this
work include G~0.1N/mm, £=30000MPa and f=3.8MPa, which leads to values of /.,
equals to 150mm and 400mm for the Hordijk and linear curves respectively. This clearly
shows two important aspects of these models. Firstly, the Hordijk relationship is much
more restrictive than a linear softening and secondly, element sizes assumed in the
author’s models were free of this snap-back behaviour (A~50mm). This work does not
include cases where /#>h,,., although in such situations, there are three possible

alternatives. The first two would be decreasing either the effective tensile strength or the
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value of 4, in order to satisfy the energy balance in the system (Bazant and Oh [80]).

Thirdly, the fracture energy could be increased.

Although the strain-stress relationships used in the models (section 3.3) were defined
using fracture energy and crack bandwidth concept, which provide a level of objectivity
of the results to mesh refinement, two additional comments can be made. Firstly, it is well
documented that the predictions of the crack patterns are influenced by the type of mesh
discretisation used, where cracks tend to form in the direction of the finite element sides.
This “mesh-induced directional bias”, which was investigated by authors such as Rots
[100], Rots & Blaauwendraad [66] or Rots & Borst [101], can result in stiff predictions or
convergence difficulties. This problem can be mitigated by refining the mesh, although as

stated by Lie & Zimmerman [102], it cannot be fully overcome.

One last aspect with regards to the crack bandwidth concept, which was raised by
Pimentel [73], refers to the implicit assumption of constant strains along the bandwidth.
This assumption, which is shown in Figure 3.3, would seem consistent with strain fields
found in finite elements with a linear interpolation and not in a quadratic interpolation
element. In this other case, regularization techniques based on the non-local theory, in
which the strains are assumed to change along the specimen, would seem more consistent
than the crack band concept. Although these types of models can provide useful
information of the strains at the fracture zone, the size of the elements required would be

very small.

3.5.2 Solution procedures for non-linear systems

In order to solve the system of non-linear equations in the NLFEA, a conventional
incremental-iterative procedure was applied. For the iterations a traditional Newton-
Rapson was generally adopted. An energy norm was used for the converge criteria, with a
tolerance value of 1% for the type of solver used, refer to Figure 3.14. The value assumed
for the tolerance, which was obtained from Khwaounjoo et al. [103], seemed to be
adequate for the cases investigated and the strength of beams analysed was not generally
overestimated. On the contrary, divergence occurred in some cases at very low loads
(around 30-50% of the ultimate load). These numerical difficulties seemed to be related
more to the smeared cracking model and type of failure, rather than to the tolerance value
assumed for the norm. This was confirmed by changing the tolerance in some of the

analysis performed.
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Figure 3.14: Energy norm converge criteria for iteration (adapted from DIANA [71])

As discussed in section 3.5.3, a large concentration of stresses around the edge of the
loading plates seems to be responsible for the premature failure in some of the FE models
shown in chapters 7 and 8. In other cases, a converged solution was obtained up to loads
near the experimental failure load. In general, the total strain models had a more robust
behaviour from a numerical perspective, although in some cases a spurious post-peak
response was obtained. This is discussed further for each particular model in chapters 5, 7
and 8. In the multi-fix model, on the other hand, the iterative process diverged at loads
near the failure load obtained experimentally. This problem has already been reported by
Pimentel [73] in similar NLFEA using the multi-fix model. In the shear panels modelled
in chapter 4 using plasticity models, this was overcome by changing the type of solver at
load steps just before failure from Newton-Rapson to a Constant solver. The Constant
solver uses the same stiffness matrix for each iteration, which is estimated from the
previous increment. Although this method is very robust, it was not effective for more

complex models such as beams, which had a larger number of elements.

Finite element models that included discrete cracking had an even more problematic
numerical stability. As discussed in section 3.2.2, the load steps had to be reduced quite
considerably when using interface elements. In models with smeared cracking only, the
load/displacements increments generally used were around 10% of the ultimate
load/displacement, while models with discrete cracking the steps had to be reduced down
to 1-2% the ultimate load/displacement. Constant solver provided unrealistic answers in
models with interface elements, especially if crack dilatancy models were applied, since

the algorithm could not handle the asymmetry in the stiffness matrix.
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For the incremental algorithm in the solver, both load and displacement controls were
applied. The latter was faster and was generally used in the NLFEA of simply supported
beams. Load control, which was applied to the analysis of continuous beams, can also be
efficient, especially if an arc-length method is implemented. This algorithm adapts the
steps size depending on the results in the current step, allowing to capture snap-back
behaviour as good as in displacement control. Therefore, it was not surprising that the
load control with arc-length method applied to the simply supported beams resulted in
similar answers as using a displacement control. Finally, adaptive loading was also
investigated for the analysis of some of the FE models, which faced numerical
difficulties. This analysis was helpful in order to estimate a load step size, which balanced
accuracy and numerical stability. However it did not overcome the numerical difficulties
in those models with a high concentration of stresses near the edges of the loading plates.

This concern is further discussed in next section.

3.5.3 Modelling of loading plates

Boundary considerations can have a significant effect on the numerical performance of
FE models. Load can be applied in testing by means of different arrangements of loading
platens, rollers or rockets. Depending on this arrangement vertical/horizontal
displacements and rotation can be restrained at these points. In addition, load can be
applied directly to the specimen as an edge load (point load in plane stress problems) or
as a pressure load (bearing plate). However, it is frequent to see in FE modelling that
loads are assumed to be point loads irrespective of the type of loading plate used. This
assumption can be questionable in some cases, such as short span beams, where the size
of the bearing plates can have a significant influence in the shear behaviour (see chapter
7). According to these considerations, it seems surprising the general lack of detailed

information in the literature concerning the modelling of loading points in FEA.

A clear example of the importance of modelling loading plates accurately was seen in the
international shear panel test contest (Collins et al. [104]) in which the winner entry was
Dr. Vladimir Cervenska. As recognized by Cervenska (Walraven [105]), one of the key
aspect in order to obtain accurate predictions using NLFEA, was to include in the model
aspects related to how the load was transferred from the complex set of hydraulic jacks

into to the panel.
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In the NLFEA of beam tests carried in this work, loading plates were included in the FE
mesh, assuming a perfect nodal connectivity (Figure 3.15) with the same thickness as the
platens used in the test. In load control, a uniform pressure load was applied to the plate,
which seemed consistent with the test arrangement shown in chapter 6. Similar results
were obtained using displacement control. An equal value of the vertical displacement
was forced to all the nodes at the top of the plate when using displacement control.
However, for the relatively thick plates used in the analysis similar results were obtained
by imposing vertical displacement at the central node only, see Figure 3.15. b (top). At
the supports, pin rotation allowed by rollers was simulated by constraining vertical

displacements at the central node of the plate, as shown in Figure 3.15.a.

u/ Enhanced strength ﬁ AN - ) |
[

]

- T

a) Pressure load b) Point load: (top) normal; (bottom) thin plate

Figure 3.15: Loading plates considerations in NLFEA; a) Pressure load; b) Point load (normal and
thin loading plates)

Although this approach for modelling the loading plates seemed consistent with the
experimental setup, a large concentration of stresses was generally obtained at the edge of
the loading plate as shown in Figure 3.15.b (top). As discussed in previous section, this
concentration of stresses resulted in a premature failure in some of FE models at loads of
around 30-50% the ultimate failure load. In order to overcome this problem, the concrete
strength of the elements in this region was increased (Figure 3.15.a). Although this
approach was practical to assess deflection, strains, crack patterns and relative
displacements at loads near failure, the ultimate load predicted was highly dependent on

the values assumed for the enhanced concrete strength of these elements.

This concrete strength enhancement in elements near the loading plate could be justified
based on the lateral confinement provided by the steel plates, which is not taken into
account in the NLFEA (Vecchio & Shim [98]). However, this confinement seems rather

difficult to consider using simple two-dimensional models; more refined 3D NLFEA
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would be required. Alternatively, in the two-dimensional FE models developed by
Vecchio & Shim [98], a small amount of “out-of-plane reinforcement” (p.=5-2.5%) was
introduced into the elements near the loading plate, similar to those shown in Figure
3.15.a. According to Vecchio & Shim [98], this allowed for some enhancement of both
strength and most importantly ductility of these elements. Other alternatives, such as
introducing an interface layer between the load plate and the concrete, would seem

problematic since the friction at the interface would have to be estimated.

The local high stresses under the loading platen predicted by the FEA are influenced by
the flexural stiffness of the plate. As shown in Figure 3.15.b, decreasing the thickness of
the loading plate while concentrating the load to the central node, results in a more
uniform stress distribution under the plate. In addition, the numerical sensitivity to this
localization of stresses seemed to be different depending on the material model assumed
for the concrete in the NLFEA. From the author’s experience using Total Strain and
Multi-fix smeared crack models, the latter tended to be more sensitive to the stress
concentration around the edge of the plate than Total Strain models. The situation
worsened when discrete cracks, which extended to the edge of the load plate, were

introduced into the mesh.

To the author’s knowledge up to date, experimental evidence is not available from beam
tests regarding stress development at different points under loading plates. The NLFEA
seem to suggest that stresses tend to localized at the edges while strut-and-tie modelling
assume that the stresses are constant. In the beam tests carried by the author, cracks that
form near the edge of the loading plates (see Figure 3.16) could have indicated a certain

level of stress concentration in this region, although experimental data is not available.

Figure 3.16: Cracks at the edge of the loading plate observed in short span beam (Beams A, refer

to section 6.3)
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3.6 Conclusions

Several alternative approaches are available to model cracking in reinforced concrete
structures using NLFEA. The most commonly used smeared and discrete crack models in
NLFEA are reviewed in this chapter. Smeared cracking models offer a simpler approach
than discrete crack models since mesh modifications are not required. Rotating crack
models, such as the MCFT, can provide accurate predictions for large number of cases.
However, the co-axiality principle assumed between strains and stresses does not apply to
other cases where crack slip and shear transfer along the cracks is predominant (Vecchio
[29], Maekawa [52]). In such cases, fixed crack models might seem more suitable,
although shear retention factors, which are uncertain to evaluate, must be applied. Hybrid
solutions between rotating and fixed crack models, such the multi-directional fixed crack
model (Rots et al. [68]), can partially overcome these difficulties. Although the choice of
crack inclination (rotating, fixed or hybrid) assumed in the NLFEA can have an influence
on the accuracy of the predictions, more important to this seems to select consistent

values for the parameters used for each model. This is the main shortcoming of NLFEA.

From a comprehensive study of the different models available, two smeared cracking
models were finally adopted in this work; Total Strain (rotating and fixed crack) and
Multi-directional fixed crack models. Tension softening and compression strain-stress
relationships used in the FE models are given in terms of the fracture energy and crack
bandwidth in order to guarantee mesh-independent results. Fracture energy in tension (Gy)
was estimated from MC90 formulas, while for compression, an estimated value of 100G,
was assumed. For the descending branch in tension, either linear and Hordijk curves were
used, while in compression, parabolic relationship proposed by Feenstra [82] was
adopted. Compression softening due to transverse strains was taken into account in the
total strain models using Vecchio & Collins [25] softening curve. This softening
relationship was not applied in the multi-fix model, instead the concrete strength was
decreased by a constant factor. The use of the softening curve [25] in the total strain
model with a fixed crack is questionable since this relationship was originally derived for
rotating crack models, where the slip is completely ignored. The performance of these
models is further discussed for the analysis of shear panels and beam tests in chapters 5, 7

and 8.

Two discrete cracking models were reviewed. First model (Discrete Crack Model)

assume both constant shear stiffness after cracking and uncoupled normal-shear stresses.
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The second model included crack dilatancy relationships with a variable shear stiffness
and normal/shear stresses interdependency. Although the later assumptions are more
realistic for aggregate interlock behaviour (see chapter 4), comparable results can be
obtained using both models, if proper calibration of the aggregate interlock stiffness is
provided. Severe numerical instabilities can be obtained using crack dilatancy models,
due to asymmetry in the stiffness matrix (Feenstra et al. [53]). Numerical solvers such as

the “constant stiffness” algorithm seemed to be inefficient to handle these situations.

Steel reinforcement is usually modelled in FEA using discrete or smeared (grid)
embedded elements. The NLFEA of a continuous beam in which the stirrup spacing was
increased up to 300mm, showed that numerical predictions were very similar using either
type of elements. Reinforcement elements crossing discrete cracks require additional
considerations regarding normal and shear stiffness introduced to the interface mother
element. Local phenomena related to bond-slip, dowel action or secondary diagonal struts
can be difficult to implement in FE modelling. It has been shown that the simplified
approach assumed in DIANA using normal values of the free-length parameter can lead
to extremely stiff predictions of the dowel action. If using this method, the shear stiffness
assigned to the interface elements should be reduced in order to account for the excess in

dowel stiffness assumed.

Ultimately, numerical predictions from NLFEA can be influenced by other considerations
such as mesh generation, numerical solvers used or modelling of the loading plates.
Although these issues are not within the main scope of this work, the consequences of the
assumptions made regarding these points were investigated. The numerical difficulties
faced in the NLFEA of the shear critical reinforced concrete beams were expected, due to
their brittle behaviour, especially for high-strength concretes and large depths. Moreover,
the concentration of stresses around the elements near the loading plates resulted in a
premature failure in some of the FE models shown in chapters 7 and 8. In order to
overcome this problem, the concrete strength of these elements was enhanced. The
selection of a proper numerical solver and incremental-iterative algorithm is also critical
in obtaining converged solutions. Even so, in many of the NLFEA this was not possible
and the iterative process diverged at loads near failure, especially when using the multi-
fix smeared crack model. These numerical difficulties using smeared and discrete
cracking models are well documented in the literature and clearly show the need of

performing hand calculations in addition to NLFEA.
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4.1 Introduction

Aggregate interlock at concrete cracks is a complex phenomenon since it involves several
shear resisting mechanisms in which normal and shear stresses interact. As the crack
slides, it tends to open due to overriding of the aggregates particles against each other,
which is known as “crack dilatancy”. Normal stresses are introduced at the crack face, if
the widening of the crack is constrained by embedded or external reinforcement. In
addition, the shear stiffness decreases as the crack gets wider due to contact lost between

crack faces.

Although the fundamentals of aggregate interlock may seem straightforward, the
analytical solutions to model this behaviour are complex and often produce significant
discrepancies with experimental results. As discussed in chapters 2 and 3, this is due to
the large number of secondary aspects involved, which may not be considered in the
model; typical examples are dowel action, localized stresses around embedded bars,
tension stiffening of the concrete, normal stiffness introduced by the reinforcement or
uncertainties in the crack roughness. Moreover, cracks that form in real concrete
structures have additional uncertainties related to variable conditions of loading, creep
and shrinkage, which introduce complex stress fields that are difficult to assess.
Therefore, the attempt of estimating the normal and shear stresses directly at cracks that

form in reinforced concrete structures seems unrealistic.

In order to have a better understanding of the stresses transmitted at the crack, a common
approach is to isolate the crack in a simple test configuration so that a good control of the

variables mentioned above is achieved. Push-off tests, such as the one shown in Figure
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4.1, 1s a widely recognized procedure for assessing shear and normal stresses at reinforced
cracks. In general, a push-off test consists of two stages; firstly, the specimen is pre-
cracked and then the load is applied vertically (Figure 4.1) so that the entire shear force

applied is transmitted along the crack plane.

South Side

Shear Plane |

Transverse

Reinforcement !

| . N
! b
P < 750kN

Figure 4.1: Left- Typical push-off test arrangement; Right- Test carried by the author

Many of the analytical models described in chapter 2, were developed using experimental
data obtained from push-off tests similar to the one shown in Figure 4.1. Early
experimental work by Mattock et al. [106], Walraven & Reinhardt [46] or Hamadi [107]
was carried to validate shear friction equations, which were provided in the codes to

design concrete joints or interfaces.

This chapter describes the experimental results of seven push-off tests carried out by the
author. These tests were required in order to assess the magnitude of the normal and shear
stresses carried at cracks of specimens where the aggregate had fractured in comparison
with others where the crack went round the aggregate. In addition, the results obtained for
shear stresses are interpolated for different values of crack opening and slip, in order to
extrapolate the results to cracks measured in beam tests, which are described in chapters
6. Lastly, the experimental data is compared with different analytical models, which are
used in chapters 7 and 8, to validate the values of the empirical parameters assumed in the
models. These figures are also compared with traditional values recommended by the

codes.
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4.2 Experimental results

4.2.1 General aspects

A total of seven push-off tests were carried out by the author using the same concrete as
in beams B described in chapter 6. The specimens were cast in two groups; one group
made with limestone aggregate concrete (PL2, PL2b, PL3 and PL4) and another group
made with normal gravel aggregate (PG2, PG3 and PG4). Similarly as in beams B, the
limestone aggregate fractured completely at the crack unlike the gravel, where the crack
went round the aggregate. The aim was to investigate the relationship between aggregate
interlock and relative crack displacements (opening and sliding) in order to extrapolate
the results to the beam tests. The crack area (H,, X w,.,, see Figure 4.1) was kept similar to
that in beams A and B in order to correlate the results with both types of tests. In addition,
the size of the specimens was designed to be similar to those used by other authors, as

shown in Table 4.1, in order to facilitate the comparison between tests results.

[mm] | Mattock Hamadi | Walraven | This work
Ref. [106] | Ref. [107] | Ref. [46]
H 660.4 700 600 700
Her 304.8 350 300 350
b 355.6 300 400 300
w 177.8 150 120 165
Wer 177.8 120 120 135

Note: For notation refer to Figure 4.1; Area of the crack = H,,. X w,,

Table 4.1: Specimen dimensions in push-off tests carried by different researchers

As explained in previous section, the specimens were pre-cracked by applying a lateral
edge load. Once the crack had formed, the specimen was loaded vertically until failure
along the crack plane (see Figure 4.1). The peak load was reached without much damage
of the specimen; hence the specimen was un-loaded and re-loaded two more times. The
two additional cycles provided useful information about the influence of changing the

initial crack width on the aggregate interlock action.

The stirrups crossing the crack were embedded in the concrete in all specimens. Stirrups
T8 were used, which had a yielding strength of 550MPa; see section 6.2.1 for further
details. Specimens were labelled according to the number of stirrups crossing the crack
plane as shown in Figure 4.2. The reinforcement layout provided showed to be sufficient
to avoid local failure of the corbel in all specimens except for PG4. This undesired

behaviour of specimen PG4 was due to the strength obtained in mix 4 used in specimens
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PG, which was significantly lower to the concrete strength assumed in the design.
Fortunately, failure of the corbel did not occur for the rest of specimens PG and so only
data from PG4 was neglected. A replicate of specimen PL2 was made in order to test the

loading rig and testing procedure; this specimen is denoted as PL2b.
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a) PG2, PL2 (p,=0.42%)  b) PG3,PL3 (p,=0.64%)  c¢) PG4, PL4 (p, =0.85%)

Note: /. (PL)=53.11MPa and £, (PG)=31.7MPa; refer to mixes 3 and 4 (section 6.2.2)
Reinforcement steel: £,(T8)=550MPa and f,(T16)=600MPa

Figure 4.2: Reinforcement layout in push-off specimens (dimensions in mm)

The load was applied at the top through a loading plate and a spherical seating at the
centre (Figure 4.3), which allowed for free rotation of the top half. A layer of grout was
provided between the specimen and bearing plates. The lateral displacements were
released by the use of mini-rollers placed between the plates at the support (Figure 4.3).
The test was carried in displacement control with increment of 0.1mm for the first cycle

and 0.2mm for the second and third cycles. The load rate was 0.l mm/min.

Figure 4.3: Left — Top loading plates and spherical seating; Right — Release of horizontal

displacements at the bottom support by using mini-rollers
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Splitting (pre-cracking) of specimens

In order to generate the crack along the plane of interest, the specimens were rested on
one side and loaded with an edged load by using a steel wedge as shown in Figure 4.4. A
spherical seating was used at the top plate to distribute the load. The initial crack widths
obtained were around 0.1-0.3mm, as shown in Table 4.2 with small variations along the
crack plane. The worst deviations in wy were found for specimens with lesser number of
stirrups as shown in Table 4.2. These variations in the readings were found mainly
between faces of the specimen and not between top and bottom of the crack plane.
Nevertheless, this slight asymmetry in the crack plane tended to decrease as the specimen
was loaded in the vertical direction. Soon after the vertical load was applied, readings of

the crack opening at both sides became very similar.

Figure 4.4: Pre-cracking of push-off specimens (Left — Top view; Right — Bottom view)

4.2.2 Manufacture and curing

The specimens were cast in wood moulds simultaneously to beams B, which are
described in chapter 6. The concrete used for specimens PL and PG relate to mixes 3 and
4 respectively, which are fully described in section 6.2.2. The concrete was poured in the
direction perpendicular to the crack plane in three batches to assure similar vibration
conditions of the concrete near the crack plane. Good compaction of the concrete was
achieved by casting the specimens on a vibrating table. Once the top surface was levelled,
the specimens were covered with polythene sheets until stripping the moulds two days
after casting. The curing conditions for the push-off specimens and their respective

control cubes and cylinders were identical as beams B, refer to section 6.5.2.
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4.2.3 Instrumentation
The load and total deflection were monitored by the load cell and displacement transducer
incorporated in the loading rig. Six additional LVTDs displacement transducers (#1 to #6)

were placed at different location (see Figure 4.5) to assess the general response of the

specimen.
o)
\#35)
NS
T 150 /
| %— 5 || %
/#' 1\ . 7 R TN .
\ ) S o ofllo Gee (#2) o L ol[{lo | o -
NS 8 \——.\ \P 2 \_/ Hi [mm)] D) e0 0
H:li g | o oo 1 ooetoos |
s /"-\ u
Nl o o0 ><i/ st u] .D |:|. o r;
;\t o o {68\ T — o §.|:| D‘i o :rl
f/-_q\\ o " / \. e /) ™~ w
|#3:‘ = ;‘\FD O D'kag/o [#4" o °%||["° o "
N4 o - - S :
[ﬂ 75]75)75) | &

II/ # 6\ \ 0 Photogrammetric target
| ® Cross Demec

‘\__’/ I o Ilz}or?iunt;]j ‘].:;'emec

South side North side

Figure 4.5: Instrumentation used in push-off tests

Digital photogrammetric surveying

Alternatively to traditional displacement measurements taken by LVTDs, digital
photogrammetric surveying was carried out. This relatively new technique, which is
based on image processing, allows to obtain information of displacements in the x-y
directions at several points (targets) of the specimen. These readings were used to obtain
the crack opening and sliding at four different heights of the crack. The computer
software required to analyse the digital photographs was developed and calibrated by
McCarthy & Tsang [108], from the Department of Environmental and Civil Engineering
at Imperial College London. The programme was written in the LabVIEW platform. The

results were compared with LVTD, Demec and strain gauge readings.

Digital photogrammetry is a recent method, although it has been applied in the past for
testing beams, see Jauregui et al. [109], Ortlepp et al. [110] or Lee & Al-Mahaidi [111].
The level of accuracy depends on many factors, as explained by McCarthy and Tsang
[108], which are related with the system setup: resolution, field of view, working

distance, sensor and depth of field. Other factors such as contrast, perspective and
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distortion optical effects can introduce errors in the image processing analysis. The
maximum errors observed in this work using digital photogrammetry were around
0.03mm. Although this tolerance might be acceptable for displacements, it is not accurate

enough to estimate strains.

The primary function of image processing is to track given patterns (targets) and assign
them coordinates relative to fixed reference points. The targets consisted of dark circles of
7mm diameter, which were printed on a white background (13mm square) in order to
provide sufficient contrast. For each camera it was necessary to provide four reference
targets, which were fixed to plastic rulers located at the left and right ends of the picture,
see Figure 4.1. The horizontal and vertical distances between these reference points were
around 450mm and 370mm respectively. The moving targets were arranged in an
orthogonal grid with 75mm spacing, as shown in Figure 4.5, which was placed at both
north and south sides of the specimen. Two digital cameras were used, one at each side, in
order to measure the crack opening and sliding at four different levels of the crack for
each side. Digital pictures were taken manually at each load step. Adequate lighting was
provided by two halogen lamps and the working distance between the camera and the

specimen was around 500mm for both cameras.

Crack opening and sliding measurements

Several types of crosses were used (Figure 4.5) to measure the crack opening and sliding
at different heights of the specimen. In this work three different monitoring systems were
used in the cross; crosses of demec discs, LVTDs and photogrammetric targets. The
gauge length of the Demec and LVTDs was 150mm, while the grid of photogrammetric

targets was 75x75mm.

In order to calculate the crack opening and sliding, independently of the system used,
cross readings were taken between two pair of points, which form a cross so that one
point of each pair is on the same side of the crack (see Figure 4.6). This simple procedure
has been applied in the past by authors such as Hamadi [107], which derived the
following equations in order to obtain the crack opening (A4) and sliding (Av) from the

cross readings.
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Vertical Real
Crack | Crack

7' Ahg= Crack Opening

N

Avg = Crack Sliding

a) Push-off test b) Beam test

Figure 4.6: Obtaining relative crack displacements through cross Demec/LVTDs readings

From the geometry of the cross shown in Figure 4.6, the length between points 1-1" (/)
can be written in equation (4.1). After deformation, points 1’ and 2’ move to 1°” and 2’
respectively. The length between 1-1°" can be written as in equation (4.2). Squaring both
sides of equations (4.1) and (4.2) and subtracting the second one from the first one leads
to equation (4.3). In the last step, second order terms are neglected. In the same manner

for points 2-2’, within a distance /’, equation (4.4) can be obtained.

1=~k +1° L (40)

[+ Al =)(h+ ALY +(v+Av) .. (4.2)
2IAI = 2hAh + 2vAv .. (43)
2I'AI' = 2hAh - 2vAv .. (4.4)

Finally, from equations (4.3) and (4.4) and assuming /=/’, the sliding and opening of the
vertical crack can be obtained, see equation (4.5) and (4.6) respectively. In this work the
crack opening and sliding are usually referred to as w and s respectively. However for

equations (4.1) to (4.6), Av and A/ have been used for consistency with Hamadi’s

notation.
Av = L(Az —Al') ... (4.5)
2v
An=L (Al +AI') ... (4.6)
2v

In the push-off tests, the cross nails were placed with points 1 and 2 aligned vertically, as

shown in Figure 4.6. However, shear cracks that were measured in beam tests presented
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in chapter 6 were not vertical. In this case, cracks were generally oriented 45° with respect
the horizontal line and therefore the cross was placed so that the line defined by 1-1” was
vertical and line 2-2° horizontal. In cases where the crack orientation was exactly 45°,
equations derived by Hamadi (4.5 and 4.6) still applied. However in many other cases
where the crack was flatter than 45°, equations (4.5 and 4.6) were modified to take into
account the deviation angle (&) with respect the 45° plane, refer to Figure 4.6.b. Equations
(4.7) and (4.8) allow to obtain the crack opening (Ah,) and sliding (Av,) along the actual
plane of the crack. The deviation angle « is considered positive in the clockwise

direction, in other words if the crack is flatter than 45° and 1-1" is vertical.

Av, =cosa.Av—sina.Ah ... (4.7
Ah, =sina.Av+cosa.Ah ... (4.8)

Only demec readings could be used to estimate the initial crack displacements due to the
type of loading required for pre-cracking the specimen (see Figure 4.3). Once the
specimen was uplifted in its final position before testing, demec discs on the south side
were removed and replaced by nails, which were needed for the cross of LVTDs
(transducers #6 to #9 in Figure 4.5). On the north side, the Demec discs were kept and
used for taking readings during the test. Additional discs had been previously attached on
the north side at six different heights (H;), as shown in Figure 4.5, to obtain horizontal
strain readings at the several levels, including at the reinforcement. These readings were

compared with strain gauge readings described in next section

Strain gauges
Two strain gauges were placed in one leg (top and bottom) on each stirrup where the

crack crossed the stirrup, see section 2.4.4. Two extra strain gauges were placed in
specimens P2 and P3, at top and bottom of the stirrup leg, far from the crack plane. The
aim was to assess the distribution of strains along the stirrups. Lastly, two additional
strain gauges were attached in PL2, on the other leg of one of the stirrups, in order to

study possible asymmetric behaviour between north and south sides.
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4.2.4 Results

Summary of experimental results

Table 4.2 summarizes the experimental results obtained for the seven push-off tests.
Results are shown for specimen PG4, although premature failure occurred at the corbel in
this case, hence these results were neglected. The crack opening and sliding at the peak
load (Wpear, Spear) are given in Table 4.2 for each cycle; measurements were taken from the
LVTD crosses placed on the south face. On the other hand, the initial crack width (wy)
was obtained from averaging readings from the four Demec crosses placed on the both
sides of the specimen; the maximum standard deviation (S.D) obtained was 0.14mm
(Table 4.2). For the second and third load cycles, the initial crack width was estimated

from the two crosses placed on the north side.

) S.D Tpeak Wpeak Speak

Specimen | Cycle [mm] | [mm] | [MPa] | [mm] | [mm]

PG2 1 0.273 | 0.148 | 3.67 | 0.65 0.93
2 0.714 | 0.108 | 3.46 | 0.79 1.46
3 0.877 | 0.043 | 331 | 0.92 2.02
PG3 1 0.081 | 0.039 | 491 | 0.51 0.60
2 0.395 | 0.082 | 4.72 | 0.68 1.00
3 0.628 | 0.080 | 4.45 | 0.92 1.64
PG4* 1 0.237 | 0.088 | 5.14" | 047" | 0.46"
2 0.359 | 0.060 | 4.70" | 0.54" | 0.62"
3 0.386 | 0.232 | 4.09" | 0.65" | 0.82"

PL2 1 0.132 | 0.051 | 4.85 0.36 0,29
2 0.296 | 0.043 | 4.52 0.48 0.57
3 0.705 | 0.091 | 3.85 0.93 1.61
PL2b 1 0.093 | 0.068 | 5.82 0.24 0.20
2 0.491 | 0.098 | 4.76 0.57 0.67
3 0.711 | 0.146 | 4.48 0.75 0.98
4 0.804 | 0.169 | 4.40 0.85 1.15
PL3 1 0.123 | 0.043 | 5.55 0.37 0.40
2 0.380 | 0.044 | 5.17 0.47 0.71
3 0.545 | 0.066 | 4.76 0.61 1.16
PL4 1 0.120 | 0.024 | 7.10 0.38 0.50
2 0.418 | 0.021 | 6.63 0.52 0.89
3 0.766 | 0.090 | 6.03 0.85 1.77

Note: ‘Specimen PG4 had a premature local failure, results are not taken into consideration

Table 4.2: Summary of push-off test results
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Relative crack displacements

Figure 4.7 shows the crack opening and sliding history of the specimens during the three
load cycles; results are shown for the top LVTD cross. The crack path (AW-AS) was very
similar for gravel and limestone specimens with an average crack opening-sliding ratio
(ow/ds) for the first two load cycles of around 0.5. These results are consistent with
Walraven & Reinhardt’s [46] tests using normal gravel aggregate. In addition, the crack
dilatancy formula suggested in MC90 (w=0.6.52/ %) is in excellent agreement with
experimental data from PG and PL specimens, as shown in Figure 4.7. According to this
analytical expression, the ow/os ratio is only dependent on the crack sliding; crack slips of

0.1, 0.5 and 4mm relate to ow/os ratios of 0.86, 0.5 and 0.25 respectively.
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Figure 4.7: Relative crack displacements and shear stresses in push-off tests
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Figure 4.7 (Cont.): Relative crack displacements in push-off tests

The relative crack displacements required to obtain the maximum shear stress were larger
for the gravel specimens than for the limestone ones, which had a more brittle behaviour.
An interesting aspect that can be seen in Figure 4.7 is the post-peak behaviour of the
specimens. In the tests, once the maximum value of the shear stress was reached, the load
started decreasing down to around 70% of the peak value at around 7mm slip. This
reduction was similar for both PG and PL tests. The peak values obtained at the different
cycles followed the same load curve, similarly as in Walraven & Reinhardt’s [46] tests, in

which the time interval between cycles was as long as months.

Lastly, the shear stiffness at the crack during the first load cycle was similar for
specimens PL2, PL3 and PG3, as shown in Figure 4.7. The shear-slip response was in
good agreement with Hamadi & Regan’s model (see section 2.5.2) using 4=5.4N/mm’
and w from MC90 formula. As shown in Figure 4.7, specimens PL4 and PG2 had

different stiffness compared to the remaining specimens. The lower stiffness observed in
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PG2 was probably due to the larger initial crack width obtained, see Table 4.2. However,
the stiff response of specimen PL4 could not be explained by lower values of wy. Hence it
is questionable whether this was due to dowel action or influence of normal stresses in the

shear sfiffness for highly reinforced cracks.

Crack opening and sliding variations along the height of the crack

In general, readings obtained from the LVTD, Demec and photogrammetric crosses had
an excellent agreement with each other as shown in Figure 4.8. Only in particular cases,
such as south face of specimen PL2 (see Figure 4.8), photogrammetric readings presented
some oscillations; readings taken on the other side of the specimen did not presented such
oscillations. Two important aspects were observed from these measurements. Firstly, the
crack opening and sliding were fairly constant along the crack. Secondly, the difference in
initial crack widths between north and south sides, which was obtained in the pre-
cracking of the specimen, was mitigated during loading so that near failure these readings

were almost equal.
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Figure 4.8: Crack opening and sliding measured at different heights (specimen PL2)
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Global deflections and post-failure behaviour of specimens

As shown in previous section, both halves of the push-off specimen had a relative
displacement with respect to each other due to opening and sliding at the critical crack. In
addition, both halves had a joined global displacement due to bending of the corbels, as
shown in Figure 4.9; measurements were taken from side transducers (#1-4) and
photogrammetric targets (see Figure 4.5). Near failure, sliding at the crack became
predominant and the overall rotation of the specimen due to bending of the corbels

remained constant, which corresponds to sector A-B in Figure 4.9 (left).
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Figure 4.9: Kinematics of specimen PL2b. Left- rotation of specimen; Right- global displacements

(squares- OkN, circles- 70kN, triangles- 250kN between A and B)

During the tests, only minor cracking occurred at the corbels. These small flexural cracks
formed at around 100kN at symmetrical points as shown in Figure 4.1 (right). The width
of these cracks was constant during the test and had no influence on the results, except in

specimen PG4, where they became critical.

In the last cycle, specimens were subjected to very large crack displacements. The crack
sliding was around 7 to 10mm. The type of failure obtained in this cycle was different for
each specimen. In PL2 at a 6.7mm sliding, one of the stirrups fractured. On the other
hand, spalling of the concrete cover around the crack occurred in specimen PG2. The
concrete cover spalled out at the top or bottom of the strut in the limestone specimens

PL3 and PL4 for crack slidings greater than 6mm.
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Strains in stirrups

According to Demec and strain gauge readings at the level of the reinforcement shown in
Figure 4.10, stirrups started to yield at the end of the first load cycle, when the crack
opening was about 0.4mm (Table 4.2). In general Demec readings were similar to each
other and had a good correlation with strain gauge data, which provide slightly larger
strains. Strain gauges readings of the top stirrup in specimens PL2 and PL3 were

significantly large, which could have been due to flexure at the corbel.
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Figure 4.10: Strain at shear reinforcement of push-off specimens (1* Cycle)
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Figure 4.10 (Cont.): Strain at shear reinforcement of push-off specimens (1% Cycle)

In the second and third load cycles, the load-strain curve followed a similar path as in the
first loading as shown in specimen PL2 (Figure 4.10). Once the peak load was reached,
strains increased considerably reaching maximum values of around 7-10%o at the end of

the third load cycle. Strain gauges started to fail usually by the end of the second cycle.

In general, strains recorded at different stirrups of the same specimen were similar.
Moreover, strains recorded at both legs of the stirrup in specimen PL2 (SG5-6 & SG7-8)

were also similar.

Strain gauges placed 100mm away from the crack plane in specimens P2 and P3,
provided values which were almost zero as shown in Figure 4.10. A relationship between
strain gauge and demec readings can be estimated from compatibility conditions along the
stirrup. The demec strain is an average measurement over a gauge length of 150mm. If
the strain distribution along the stirrup is assumed to be parabolic from maximum at the
crack to zero at 100mm from the crack, the ratio between the maximum strain (i.e.
reading provided by strain gauge) and demec reading would be 1.12. If the strain
distribution is assumed linear this ratio would be 1.5. These figures seem consistent with

the differences between demec and strain gauge readings shown in Figure 4.10.
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4.3 Interpolated shear stress curves for correlating push-off
and beam test data

4.3.1 General aspects

In order to estimate the shear stresses transmitted along cracks in beams tested by the
author (see chapters 7 and 8), the experimental results from the push-off tests described in
section 4.2 are extrapolated. As mentioned earlier, this was possible due to three main
aspects which were considered in the design of both types of tests. Firstly, same concrete
was used for beam and push-off specimens. Secondly, the area of the crack and shear
reinforcement ratio crossing it was similar. Thirdly, the crack openings measured in both

types of tests were of similar magnitude.

On the other hand, two main drawbacks are found, which complicate the correlation
between beam and push-off test data. The first difficulty faced is that the position of the
stirrups is skewed with respect the crack plane in the beam tests while in a push-off test
the stirrups are perpendicular to the crack plane. The efficiency of stirrups crossing the
crack increases with decreasing the angle between the crack plane and the stirrup in the
direction of the sliding, as shown in Figure 4.11 (Maekawa et al. [52]). This increase in
the shear capacity has been observed in push-off tests carried by authors such as

Walraven & Reinhard [46] or Maekawa et al [52].
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Direction of reinforcement 0 (degree)

Figure 4.11: Influence of the angle of stirrups relative te crack plane in shear strength of push-off

tests (adapted from Maekawa et al. [52])

In the beam tests performed in this work, the inclination of the stirrups relative to the
crack plane varied from 60° for the flattest shear cracks to 45°. As an order of magnitude,
the increase in strength from perpendicular to 45° orientated stirrups is around 30%

according to tests carried by Walraven & Reinhardt [46]. In their tests, the ow/os ratio
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was approximately equal to 1 and the shear reinforcement ratio was 0.56%, which is
similar to specimens P2 and P3 tested in this work. The results obtained by Walraven &
Reinhardt are broadly consistent with Maekawa’s findings shown in Figure 4.11, despite

the reinforcement ratio in these latter tests was almost double (1.27%).

The second drawback in correlating push-off and beam test data is related to the
differences in loading and stress fields produced at each type of test. As discussed in
chapters 7 and 8, the crack opening and sliding ratio ow/os in a push-off test (ow/ds~0.5,
see section 4.2.4) is considerably lower than in a beam test, which can vary from 3 to 1.5
depending on the geometry and type of loading. According to Walraven & Reinhardt
[46], the inclination of the stirrup in relation with the crack plane does not seem to have
an important effect on the ow/ds. The difference in ow/ds between both types of tests
seems to be related more to the type of loading and to the fact that the crack in a push-off
test can slide freely while in the beam tests this movement is restraint by the longitudinal
reinforcement. The question could be raised of whether the crack opening and sliding in
beams would be uniform as in a push-off test. The experimental results shown in chapter
6 showed that the crack opening and sliding measured in the beams tested did not change
significantly along the crack and so shear stresses were extrapolated directly from the

push-off test data.

4.3.2 Interpolated curves

The experimental data from the three load cycles was used in order to generate an
interpolated 3D surface (w—s—7) for each push-off test, see example in Figure 4.12 for
specimen PG2. The interpolated surfaces were used to estimate the shear stresses at
cracks in the beams tested for the measured crack displacements (w, s), see chapter 7 and
8. The results from the three load cycles were treated separately, as shown in Figure 4.12,
with the only difference that the initial crack width increased from one cycle to the next
one. The crack slip was taken as zero at the end of each cycle, in order to measure relative
crack slip values. The peak shear stresses relate to the 1 cycle. The different crack paths
(ow/os ratio) obtained in push-off and beam tests, which were discussed earlier, are also

illustrated in Figure 4.12.

The interpolated surfaces were generated using the built-in algorithm in MATLAB called
“nearests”, which is based on a Delaunay triangulation using Qhull joggle option (see

Barber et al. [112]). These surfaces seem valid for values of w and s up to around 1.5mm,
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above which more experimental data would be required. However, the values obtained of

w and s in the beam tests were within this range and so additional test data does not seem

necessary.
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Figure 4.12: Example of interpolation surface for push-off test PG2

The results obtained for all the push-off tests are shown as contour plots in Figure 4.13 in

which the contour lines relate to different crack openings. These curves are used in

chapters 7 and 8 to estimate the shear stresses transmitted along cracks measured in the

beams tested in shear.
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Figure 4.13: Shear stresses for different crack widths derived from interpolated surfaces
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Contour plots, which are shown in Figure 4.13, seem sensible for crack slips greater than
around 0.2mm for which shear stresses decreases as the crack width increases. For small
values of crack sliding (s<0.2mm) and large crack openings (w>0.8mm) the interpolated
surface is no longer representative of the experimental data, as shown in Figure 4.12.
However, the crack slip obtained experimentally in beam tests were generally larger than

0.3mm, so curves shown in Figure 4.13 were still applicable.
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4.4 Estimation of cohesion and friction parameters

Shear friction relationships, which are usually given in the form of Coulomb failure
criteria (7= C+uo), are used in design codes such as EC2 or ACI-318 to obtain the shear
capacity of contact interfaces between two concrete surfaces. The cohesion factor (C) is
generally given as a function of the tensile strength of the concrete and the friction (x)
depends exclusively on the roughness of the interface (see Table 4.3). Such equations are
used in the design of construction joints, although it could also be extrapolated to crack
interfaces in reinforced concrete beams. Although the formulation can be easily
implemented in other methods, such as variable inclination strut method or strut-and-tie

models (see chapters 7 and 8), the results are highly dependent on the values assumed for

Cand pu

As shown in Table 4.3, there is a large inconsistency between the values of C and u
recommended by different design codes. In order to apply the shear friction formula in the
analysis of reinforced concrete beams carried in chapters 7 and 8, parameters C and u
were estimated from the push-off test data. This was possible due to the similarities
between cracks in push-off and beam tests carried by the author, which are discussed in

further detailed in section 4.3. The values of C and x obtained are shown in Table 4.3.

Reference Surface Cohesion (C) | Friction (1)
Rough 0.625fuu 0.70
EC2 Smooth 0.486f 0.60
Very smooth 0.347ﬁ,k** 0.50
ACL-318 Monolithically 2.75 MPa 1.4
(for NW concrete) Rough 2.75 MPa 1.0
Medium - 0.6
Rough 0.25(f. )" 1.4
Climaco and Regan Medium 0.25(f. )" 0.9
Smooth 5 MPa 0.7
. Natural gravel 0.25(f. )" 0.7
Hamadi and Regan | ¢ - hded Clay | 0.25(7.)2 0.3
Gravel (PG) 1.20 MPa 1.06
Interpolation of (f- =31.7MPa) (~0.41 £2) ’
push-off tests Limestone (PL) 2.50 MPa 0.95
(f. = 53.1MPa) (~0.63 f.,) '

Notes: fox = 0.21(f.)** for f,x< 50MPa
™ = 1.48In[14,,/10] for 90 < £, < 50MPa

Table 4.3: Cohesion and friction parameters according to design codes and experimental work
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Figure 4.14 shows the linear regression of the experimental data that was carried to
estimate C and g; results are presented for the ultimate loads obtained at the first cycle,
where the crack widths at failure were between 0.4 and 0.6mm. The shear stresses were

normalized by conventional factor f, %°.
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Figure 4.14: Estimation of cohesion and friction parameters from experimental data

It is important to note that the shear friction formulas described above assume that the
shear strength is not influenced by the crack width. This assumption seems to agree with
experimental data from Hamadi & Regan [19] of specimens with large normal stresses
(greater than around 1MPa), which is the case of specimens PG and PL. In addition, work
carried by these authors also showed that the initial crack widths required in order to
obtain a significant reduction in the shear strength were very large (wy~0.9mm) compared
with values commonly seen in push-off tests. Similar conclusions can be drawn from
interpolation curves derived in section 4.3 (Figure 4.13), where maximum values of the
shear stresses remained almost constant for different values of w, up to crack openings of
around 0.6mm. The initial crack widths measured at beams tests carried in this work were
of similar magnitude as those obtained in the push-off tests, which were around 0.1-
0.3mm. All of this supports the idea that the values of C and x obtained from the push-off
tests, which are shown in Table 4. 3 and Figure 4.14 are not highly influenced by this

assumption made in the shear friction model.

The cohesion estimated from the linear regression was in good agreement with EC2
recommended values (Table 4.3). However, the friction factor obtained in PG and PL

specimens were larger than the highest values suggested in EC2, which relate to rough
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cracks. According to ACI-318 or Climaco & Regan’s [113] classification, the friction
estimated from the push-off tests corresponded to a medium-rough type of surface (u=

0.9-1).

It is noteworthy that the friction of both limestone and gravel specimens was comparable,
despite that in the former case the aggregate fractured completely at the crack. The large
value obtained for y in specimens PL was unexpected in view of previous test data of
lightweight aggregate specimens where the friction was as low as 0.3 (see Hamadi and
Regan [19]); ACI-318 provisions for light-weight aggregate recommends using a factor of
0.75 to be applied to & The interpolated values obtained for the gravel specimens are of
course approximate, since only two data points were available. However, in the limestone
specimens, the three data points seem to have a good correlation factor for the linear fit

(R?=0.95), as shown in Figure 4.14.

A possible explanation for the large value of 4 obtained in the limestone specimens could
be due to friction at a macro-level as shown in Figure 4.15 (right). Similar conclusions
were obtained by Walraven & Al-Zubi [9] from their beam tests using lightweight
aggregate, in which the aggregate particles fractured completely at the crack. The shear
performance of their beams was similar to equivalent beams made of normal aggregate

concrete.

a) Gravel specimen (Crack level) b) Limestone specimen (Macro-level)

Figure 4.15: Crack roughness in gravel and limestone specimens
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4.5 Comparison of experimental results with analytical models
In previous section, the experimental results were examined using the traditional shear
friction formula, which can be used to estimate the ultimate shear load carried at the
crack. As discussed in chapter 2, there are many other models, which can be used to
assess the shear stress development at the crack as a function of the relative crack
displacements. Four of these models, which are defined in section 2.5.2, were applied to
investigate their performance using the experimental data presented in this chapter. The
models which were investigated were originally proposed by Walraven & Reinhardt [46],
Hamadi & Regan [19], Gambarova & Karakog [48], and Li et al. [49]. In Figures 4.17 to

4.18 these models are denoted with the name of the first author.

The crack opening and sliding measured from the top cross of LVTDs were used in order
to obtain the shear stresses (7) at the crack shown in Figures 4.16 and 4.17, which relates
to the first load cycle. The normal stresses (o) were estimated from the mean strains
measured in all stirrups measured at the crack plane, except for specimen PG3, where

strain gauges failed at early load stages and so demec readings were used instead.

In order to apply the linear aggregate interlock model proposed by Walraven & Reinhardt
[46], concrete cube strengths of 30.4MPa and 60.3MPa were used for the PG and PL
specimens respectively. Cylinder strengths were used for the rest of the models (Figure
4.2). Modified equations for light-weight aggregate concrete propossed by Walraven &
Reinhardt [46], were also investigated. The shear stresses were clearly underestimated

using these modified equations, which are denoted as Walraven (LWT) in Figures 4.16

and 4.17.
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Figure 4.16: Experimental and predicted shear/normal stresses (specimens PL)
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Figure 4.16 (Cont.): Experimental and predicted shear/normal stresses (specimens PL)

The shear friction model predictions shown in Figures 4.16 and 4.17, were obtained using
optimal values for C and g shown in Table 4.3. In Hamadi & Regan’s [19] model, the
aggregate interlock stiffness (k) was taken as 5.4MPa, as suggested by the authors for
gravel concrete. The results obtained using this value of & were acceptable for the

limestone specimens, although for specimens PG parameter & seemed to be overestimated

(see Figures 4.16 and 4.17).

The different models provided similar answers for specimens PL. However this was not
the case for specimens PG, where models proposed by Hamadi & Regan [19] or Li et al.
[49] produced much higher shear stresses than the rest of the crack dilatancy models. In
addition, the models tended to underestimate the shear stresses of the push-off specimens
for crack slips lower than around 0.2-0.3mm. On the contrary, the shear stress was
overestimated at the end of the first load cycle (s~0.5-0.7mm), especially using formula

proposed by Li et al. [49] (see Table 4.4).
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Despite the large differences in the formulations proposed by Gambarova & Karakog [48]
and Walraven & Reinhardt [46] discussed in chapter 2, the models produced very similar
answers for the first cycle, see Figures 4.16-4.18. These two models produced reasonable
predictions of the shear stresses at the end of the first cycle, as shown in Table 4.4.
Normal stresses predicted by these two models, were again similar to each other.
However, the normal stresses predicted were lower than the experimenta values (~25%);

worse predictions were obtained for specimens PL3 and PL4 (~35%)).
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Note: Normal stresses obtained experimentally in PG3 are between lower and upper bound given by Demec
readings (factors between 1 and 1.5, as discussed in section 4.2.4)

Figure 4.17: Experimental and predicted shear/normal stresses (specimens PG)

Lastly, aggregate interlock provisions from MC90 were also examined. As discussed in
section 2.4.2, crack dilatancy formula (w=0.6.5"") recommended in MC90 had an
excellent agreement with experimental data obtained in this work. Equations for
estimating the shear stress carried at the crack are also provided in MC90. These formulas
assume that for crack slips (s) up to 0.lmm 7 is proportional to the crack slip. This

assumption seems reasonable, in view of the results shown in Figure 4.18. For values of s
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greater than 0.1mm, 7 is assumed to follow a polynomial relationship (fourth grade) up to
2mm, where the ultimate shear stress is predicted (refer to section 2.5.2). The shear
stresses estimated with the MC90 formulae are compared with experimental data from the
first load cycle in Figure 4.18. The predictions seem sensible, although shear stresses are
slightly overestimated at the end of the first cycle. The 7.q./7car ratio obtained for each
analytical method shown in Table 4.4, improved with increasing the number of stirrups.
As shown in Table 4.4, MC90 along with Walraven & Reinhardt [46] and Gambarova &

Karakog’s [48] methods provided the most accurate predictions.
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Figure 4.18: MC90 shear stress predictions compared with experimental data

Tcalc/ Tpeak

. Wpeak Speak Tpeak
Specimen [mm] | [mm] | [MPa Refl | Ref2 | Ref3 | Ref4 | MCY0

PG2 0.65 0.93 3.67 1.25 2.38 1.27 2.45 1.42
PG3 0.51 0.60 4.91 0.98 1.54 0.97 1.64 1.06

PL2 036 | 0,29 4.85 1.41 1.35 1.51 1.79 1.27
PL3 037 | 0.40 5.55 1.38 1.29 1.36 1.66 1.24

PL4 0.38 0.50 7.10 1.15 1.14 1.11 1.44 1.19
Ref. 1- Walraven & Reinhardt Mean 1.23 1.54 1.24 1.80 1.24
Ref. 2- Hamadi & Regan SD 0.18 0.49 0.21 0.39 0.13

Ref. 3- Gambarova & Karakog COV 143 31.9 17.0 21.5 10.6
Ref. 4- Maekawa & Okamura

Table 4.4: Experimental and predicted values of the peak shear stress at the end of the first cycle

The predictions from the analytical models worsened for the second and third load cycles,
where the relative crack displacements were larger. All the models showed a reduction in
the stiffness due to crack widening from one cycle to the next one (see Figure 4.19).

However, the predicted shear stiffness reduction seemed to be excessive compared with

134



Chapter 4 — Push-off Tests

the experimental data, especially for the models proposed by Walraven & Reinhardt [46]
or Gambarova & Karakog [48]. Regarding shear stress predictions, only model suggested
by Gambarova & Karakog’s [48] seemed to provide reasonable answers for such large

crack displacements (s>1mm), see Figure 4.19.

In view of these results, it seems questionable whether the analytical models are suitable
for crack sliding greater than around 1mm. However, the maximum crack slip measured
in the beams tested by the author, was around 0.5mm and so the use of these models in
analysing beam test seems reasonable. According to the results shown in this section, for
values of s lower than 0.2mm, Hamadi & Regan [19] and Li et al. [49] models provided
accurate predictions. For crack sliding between 0.2 and 0.75mm, Walraven & Reinhardt
[46] and Gambarova & Karako¢ [48] seem to provide more realistic predictions. For
simplicity, the linear aggregate interlock relationship proposed by Walraven & Reinhardt
[46] and the model presented by Hamadi & Regan [19] were applied in this work for the

analysis of the beam tests (see chapters 7 and 8).
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Figure 4.19: Experimental and predicted values of the shear stress at the three load cycles

Contribution of dowel action

The contribution of dowel action to the shear strength of the specimens was investigated
using the Millard & Johnson’s [91] model. This formula, which was applied in section
3.4.2, is based on a traditional solution of a beam resting on elastic foundation. The model
gives slightly lower values compared to MC90 formulae in this case, although the
difference in shear stresses is lower than around 30%. From this analysis, it was
concluded that contribution of dowel action was negligible, as shown in Figure 4.18.

Walraven & Reinhardt [46] reached a similar conclusion on the basis of their test results.
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4.6 Conclusions

Push-off tests are commonly used in order to study the stresses transmitted along concrete
cracks by means of aggregate interlock. This testing arrangement is practical since the
entire load applied is transferred through a pre-cracked surface of which both geometry
and amount of shear reinforcement crossing it is known. In addition, relative crack
displacements (w-opening; s-sliding) can be monitored easily by using traditional
measuring crosses. The experimental results presented in this chapter show a good
agreement between relative crack displacements obtained using crosses of Demec,
LVTDs and digital photogrametric targets. Readings were taken at different levels of the
crack, showing similar values of w and s along the crack. The initial crack widths
obtained after pre-cracking the specimens were somewhat different along the crack.
However, the results seem not to be influenced by these small variations of the initial
crack opening since at early load stages the values of w had levelled out considerably at
both sides of the specimen. The contribution of dowel action to the shear strength of the

specimens tested was negligible.

Push-off tests carried by the author using gravel and limestone aggregates showed that
considerable shear stresses could be transmitted through the crack in the limestone
specimens. This was surprising since the limestone aggregate had fractured completely at
the crack in these specimens. In addition, the friction parameter x estimated from linear
regression of the experimental data according to the shear friction formula (7 = C+uo),
was very similar between the gravel and limestone push-off tests («~ 1.0). The estimated
value of the friction coefficient was considerably larger than those usually obtained
experimentally for light-weight aggregate (# = 0.3, Hamadi & Regan [19]) or those

recommended in EC2 for very smooth surfaces (= 0.5).

Finally, the crack path (ow/ds ratio) was similar for both gravel and limestone specimens.
The average ow/os was around 0.5 at the first cycle, at which the peak shear stress was
obtained. This value is in good agreement with Walraven & Reinhardt [46] test data and
MC90 crack dilatancy rule (w=0.6.s2/ %) in which the dw/8s ratio decreases from 0.5 to
0.25 at crack slips of 0.5mm and 4mm respectively. Push-off tests carried by Walraven &
Reinhardt [46] using light-weight aggregate showed a much lower value of ow/ds of
around 0.25 for the entire test. From these considerations, it can be concluded that

limestone specimens had an unexpected level of “roughness” or friction considering that
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the aggregate had fractured completely at the crack. This might have been due to friction

at a macro-level.

The main drawbacks of extrapolating push-off test data for analysing cracks in beam tests
have been investigated. The experimental data obtained from the Push-off tests has been
used to generate interpolation curves, which were used to estimate the shear stresses at
similar cracks formed at beams tested by the author. The peak shear stresses predicted by
these curves seem to be independent of the crack width up to values of w of around
0.6mm. This is consistent with the assumption made in shear friction formulas, which
seems reasonable according to experimental data provided by Hamadi & Regan [19]
amongs others. The cohesion parameter used in the shear friction formula was obtained
similarly as parameter x. In this case, the estimated cohesion was in good agreement with
EC2 recommended values. Both estimates of C and u are used in chapters 7 and 8§ for the

analysis of the critical shear cracks in beam tests.

The shear and normal stress development at the crack, which was obtained
experimentally, was compared with predictions from five different crack dilatancy models
proposed by Walraven & Reinhardt [46], Hamadi & Regan [19], Gambarova & Karakog
[48], Li et al. [49] and MC90. The shear stresses were generally underestimated for low
values of the crack slip (s<0.2mm). However, analytical models tended to overestimate
the shear stress for values of the crack opening and sliding measured experimentally at
the peak load. According to the experimental data provided, this was worse for the
formula based in the contact density theory developed by Li et al. [49]. The rough crack
model proposed by Gambarova & Karakog [48] provided very similar predictions as the
linear aggregate interlock relationship suggested by Walraven & Reinhardt [46]. Due to
their simple formulation, the linear aggregate interlock relationship and model presented
by Hamadi & Regan [19] were finally adopted for the analysis of shear cracks at the beam
tests (chapters 7 and 8). The predictions of the shear stresses in the push-off tests using
these two models seemed sensible for crack slips up to around 1mm. This was acceptable
for the analysis of cracks at beam tests, since the crack slips measured in this case were
usually lower than 0.5mm. Formulas included in MC90 had similar level of accuracy as

the two models finally adopted in this work.
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5.1 Introduction

The study of rectangular reinforced concrete membrane elements, which are subjected to
in-plane shear and axial stresses, is commonly believed to be relevant to the prediction of
the shear strength of beams. Considerable experimental data is available from previous
tests on shear panels by investigators such as Vecchio & Collins [8] or Hsu [114]. As
recognized by these researchers, shear panel tests are more difficult to carry out than
regular beam tests, since they require a special rig that is capable to synchronize a large
number of actuators as shown in Figure 5.1. On the other hand, the experimental data
obtained from shear panel test is far easier to interpret than beam test data. This is due to
the fact that the biaxial state of stresses in the panels shown in Figure 5.1 is totally
isolated from other aspects such as bending stresses or dowel action of the flexural

reinforcement that can occur in normal beam tests.

Rigid links Links

e Jack

Figure 5.1: Shear panel tests (adapted from Vecchio & Collins [8])
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In this chapter, two main concerns related to shear panel tests are investigated; namely
compression softening and aggregate interlock action. Compression softening due to the
presence of transverse strains to the main struts was first reported by Vecchio & Collins
[115]. Aggregate interlock on the other hand, has been generally studied using pure shear

tests such as push-off tests, which are described in chapter 4.

A group of 64 shear panel test were selected from an experimental database of 102 tests,
which was gathered by Bentz et al. [32], in order to study these two parameters. The
predictions of the ultimate failure load, deflection-load response and strut inclination
using the Modified Compression Field Theory are compared with different non-linear
finite element models, which include both fixed and rotating smeared crack approaches.

These smeared crack models are described in chapter 3.

The ultimate failure load was also predicted using simple truss approaches, which are
suggested in EC2. In addition, a simple analytical discrete crack approach is presented,
which is referred to in this work as “crack slip model”. This approach was developed by
the author and applies constitutive equations for aggregate interlock, which have been
previously been validated against push-off test data shown in chapter 4. Subsecuently, the
crack slip model is applied to continuous beams in chapter 8, in order to estimate relative

crack displacements and shear stresses transmitted along shear cracks.
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5.2 Database of experimental results

A large database of experimental results from shear panel tests have been gathered by
Bentz et al. [32]. This database includes tests from five different testing machines in four
different research laboratories, adding up to 102 tests. However, in this study only shear
panels without axial load and with shear reinforcement in both orthogonal directions were
investigated. In addition, specimens tested by Vecchio & Collins [8], which had an edge
type of failure or were poorly cast were neglected since in some cases it is not clear

whether this lead to a premature failure. These specimens are PV1, 5, 7, 8, 9, 14, 30.

Two cases for pure shear were investigated; shear panels equally reinforced in both
directions (r=pyf.,/pf,»=1) and panels with a predominant reinforced direction x (r
=pyfu/pfi>1), which are referred to as Case I and II respectively. Tables 5.1 and 5.2,
summarise all the specimens considered, which add up to 32 panels for Case I & II
respectively. The 64 panels examined were tested by eight different researchers (Vecchio
& Collins [8], Yamaguchi et al. [116], Andre [117], Kirschner [118], Porasz &
Beidermann [119], Vecchio et al. [120], Pang & Hsu [121], Zhang & Hsu [122]).

A distinction is made between cases I and II since both types of panels have a
considerably different performance. As shown in Figure 5.1 (left), in Case I panels, the
inclination of the strut @ remains constant and equal to 45°. In such cases only concrete
softening due to transverse strains is expected. In addition, the shear along the 45° crack is
zero and no crack slip will occur. On the other hand, in Case II panels, the compressive
strut will rotate as shown in Figure 5.2 (right). Hence aggregate interlock will be
mobilized in addition to compression softening. This strut realignment results on normal

and shear stresses at the crack by means of aggregate interlock.
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Figure 5.2: Crack pattern in shear panels; Lefi— Case I, PV27; Right— Case II, PV19 (adapted from
Collins et al. [104])
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CASE I (r=1) Tcalc/Ttest | Tcalc/Ttest | F.M
fc' pxfxy | pyfyy Ttest *
Author Panel a (MPa] | [MPa] | [MPa] r [MPa] 1- MCFT | 2-Truss EC2
Vecchio & PV2 6 235 0.77 077 10 1.15 0.68 0.67 yield
Collins PV3 6 266 318 318 10 3.06 1.05 1.04 yield
PV4 6 266 249 249 10 290 0.89 0.86 yield
PV6 6 298 476 476 10 4.56 1.05 1.04 yield
PV16 6 217 1.89 189 1.0 2.15 0.89 0.88 yield
PV27 6 205 791 791 10 6.36 1.04 0.89 crush
Yamaguchi S-21 20 19.0 16.18 16.18 1.0 6.46 1.12 0.82 crush
et al. S-31 20 302 16.18 16.18 1.0 8.46 1.25 0.94 crush
S-32 20 308 12.88 12.88 1.0 8.62 1.15 0.94 crush
S-33 20 314 10.11 10.11 1.0 8.16 1.16 1.01 crush
S-34 20 346 798 798 10 727 1.10 1.10 yield
S-35 20 346 492 492 1.0 564 0.87 0.87 yield
S-41 20 387 17.51 17.51 1.0 12.00 1.05 0.82 crush
S-42 20 387 1751 17.51 1.0 12.77 0.98 0.77 crush
S-43 20 41.0 17.51 17.51 1.0 11.89 1.10 0.86 crush
S-44 20 41.0 1751 17.51 1.0 1230 1.06 0.84 crush
S-61 20 60.7 17.51 17.51 1.0 15.18 1.11 0.91 crush
S-62 20 60.7 17.51 17.51 1.0 15.78 1.10 0.87 crush
S-81 20 79.7 17.51 17.51 1.0 1594 1.09 1.02 crush
S-82 20 79.7 17.51 17.51 1.0 1594 1.09 1.02 crush
Andre TP4 9 232 9.18 9.18 1.0 8.12 0.92 0.78 crush
TP4A 9 249 9.18 9.18 1.0 872 0.88 0.77 crush
KP4 20 230 877 877 10 690 1.06 0.91 crush
Kirschner SES 10 259 22,14 22.14 1.0 8.03 1.12 0.87 crush
& Collins
Porasz SE14 10 604 2280 2280 1.0 18.12 0.97 0.76 crush
& Beidermann
Pang & Hsu A2 19 413 551 553 10 562 0.99 0.98 yield
A3 19 41.6 800 799 10 7.90 1.02 1.01 yield
A4 19 425 1401 1403 1.0 11.90 1.03 0.89 crush
Zhang & Hsu VAl 13 95.1 530 533 1.0 647 0.96 0.82 yield
VA2 13 982 9.78 982 1.0 10.11 0.97 0.97 yield
VA3 13 946 1633 1637 1.0 1542 1.06 1.06 yield
VA4 13 103.1 24.63 2464 1.0 22.68 1.00 0.80 crush
Total 32 1- MCFT 2- Truss EC2*
max value= 20 103.1 24.6 24.6 Mean 1.03 0.90
minvalue= 6 19.0 0.8 0.8 SD 0.11 0.10
COV % 10.62 11.58

Note: a= maximum aggregate size; r =p,f.,/ oy
FM= predicted failure mode: “yield” = yielding of reinforcement in x and y directions
“crush” = strut crushing
*Truss EC2 = both rotating and fixed approaches provide identical answers (6=45°)

Table 5.1: Experimental database of shear panels equally reinforced in both directions (Case I,

=1)
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CASE II (r>1) Tcalc/Ttest Tcalc/Ttest | F.M

fc' xfx f Ttest 2- Truss EC2 3- Truss EC2

Author Panel a [MPa [FI)VIP:] ﬁ\i;’;’] r [MPa] 1- MCFT (rotating) (fixed)
Vecchio & PVI10 6 145 494 276 1.8 3.92 0.94 0.94 yield 0.98 yield
Collins PV11 6 156 421 3.07 14 3.5 1.02 1.00 yield 1.01 yield
PV12 6 160 840 120 7.0 3.14 0.92 0.97 crush 1.43 crush
PV19 6 190 820 213 39 399 1.05 1.05 yield 1.29 yield
PV20 6 196 823 263 3.1 431 1.08 1.08 crush 1.26 crush
PV21 6 195 820 392 21 507 1.10 1.02 crush 1.06 crush
PV22 6 196 820 641 13 6.08 1.02 0.88 crush 0.89 crush
PV26 6 213 816 466 1.7 533 1.14 1.08 crush 1.10 crush
Andre TP1 9 221 9.8 460 20 5.5 1.09 1.02 crush 1.05 crush
TP1A 9 256 918 458 20 5.63 1.12 1.15 yield 1.22 yield
KP1 20 252 877 438 2.0 554 1.12 1.12 yield 1.19 yield
Kirschner SE1 10 425 1437 4.68 3.1 6.76 1.11 1.21 yield 1.41 yield
& Collins SE6 10 400 1437 1.60 9.0 3.76 1.05 1.28 yield 2.12 yield
Porasz SE11 10 70.8 14.01 446 3.1 6.58 1.20 1.20 yield 1.40 yield
& Beidermann SE12 10 759 1323 455 29 744 1.04 1.04 yield 1.20 yield
SE13 10 80.5 3253 926 3.5 1199 1.22 1.23 crush 1.37 crush
Vecchio et al. PA1 10 499 10.00 429 23 6.29 1.06 1.04 yield 1.14 yield
PA2 10 430 10.06 430 23 6.24 1.06 1.05 yield 1.15 yield
PHS2 10 66.1 19.70 2.18 9.0 6.15 0.88 1.07 yield 1.78 yield
PHS3 10 584 19.70 432 46 8.18 1.01 1.13 yield 1.47 yield
PHS8 10 559 1970 643 3.1 10.79 0.98 1.04 crush 1.21 crush
PCl 10 25.1 825 4.09 2.0 4.94 1.19 1.17 yield 1.25 yield
Pang & Hsu Bl 19 452 551 253 22 416 0.99 0.90 yield 0.97 yield
B2 19 44.1 800 556 14 644 1.04 1.04 yield 1.05 yield
B3 19 449 800 256 3.1 458 1.06 0.99 yield 1.15 yield
B4 19 448 1405 255 55 533 1.09 1.12 yield 1.56 yield
BS 19 428 1401 552 25 7.58 1.12 1.16 yield 1.29 yield
B6 19 428 14.01 830 1.7 9.84 1.05 1.05 crush 1.08 crush
Zhang & Hsu VBI1 13 982 978 530 1.8 7.86 0.99 0.92 yield 0.96 yield
VB2 13 976 1633 527 31 947 1.05 0.98 yield 1.14 yield
VB3 13 1023 26.61 532 50 10.13 1.11 1.17 yield 1.58 yield
VB4 13 969 814 262 31 504 1.03 0.92 yield 1.07 yield
2- Truss EC2 3- Truss EC2

Total 32 1- MCFT et (fixed)

max value= 20 1023 3253 926 9.0 Mean 1.06 1.07 1.26
minvalue= 6 145 421 120 1.3 SD 0.09 0.10 0.27
COV % 8.14 9.59 21.76

Note: a= maximum aggregate size; r =p,f.,/p /sy

FM= predicted failure mode: “yield” = yielding of reinforcement in x and y directions
= strut crushing while yielding in the y direction

Table 5.2: Experimental database of shear panels with a predominant reinforced direction x (Case

IL, >1)

“CI'llSh”
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5.3 Analytical modelling of shear panel tests

As discussed in chapter 2, several analytical methods for predicting the shear response of
reinforced concrete members subjected to two-dimensional stress states have been
proposed. Some of these methods such as the Modified Compression Field Theory
(Vecchio & Collins [8]) or the Unified Theory of Reinforced Concrete (Hsu [114]), were
derived from experimental data provided by shear panel tests. These theories, which are
either based on a rotating or fixed crack concept can provide predictions of the full load-
deformation response. On the other hand, plasticity truss approaches, which are also
discussed in chapter 2, can be used in order to predict the ultimate failure load of the
shear panels. In this section, the predictions of the ultimate shear strength of shear panels
shown in Tables 5.1 and 5.2 using the MCFT and truss approaches suggested in EC2 are
compared. The basic assumptions made for each method are discussed in the following

sections.

5.3.1 Modified Compression Field Theory

The fundamentals of the MCFT are described in detailed in section 2.3. The predictions
of the shear strength using the MCFT shown in Tables 5.1 and 5.2, were obtained by
Bentz et al. [32] using software Membrane 2000 in order to solve the full set of equations
given in section 2.3. The equation applied for the softening of the concrete in
compression relates to early formula provided in Vecchio & Collins [8], see equations
(2.9, 2.10) . In tension, latest version given by equation 2.13 was used in Bentz et al. [32]
analysis. The strain at which the concrete crushes is assumed to be 0.002 and the
aggregate size (a) was taken as zero for concrete strengths greater than 70MPa, as
discussed in section 2.3. As shown in Bentz et al. [32] the predictions using the full set of
equation defined in the MCFT were similar to those using the simplified approach, which

is suggested in the Canadian code.

A preliminary analysis was carried by the author using the MCFT for shear panels tested
by Vecchio & Collins [8]. This analysis was carried out before Bentz et al. [32] results
were available to the author and were obtained using a spreadsheet. In this analysis the
actual crushing strain of the concrete was used and the softening curve for compression
adopted was the A(1993). In addition, the tension softening used corresponded to early
formula given in the MCFT. Despite these differences with respect Bentz et al. [32]

analysis, identical results were obtained to those shown in Tables 5.1 and 5.2.
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5.3.2 Simple truss approaches

A simple truss model can be used to predict the shear strength of the panels. Two
different alternatives can be adopted: rotating or fixed crack approach. In neither of these
two methods the contribution of the tensile stresses in the concrete is taken into account.
In addition, the stresses at the crack are not limited, which can result in the shear capacity

being overestimated.

Rotating crack truss

The rotating crack truss model can be derived by considering equilibrium of the panel

shown in Figure 5.3, thus obtaining equations (5.1) and (5.2).

D=o0,.cosd ... (5.1)

r =Dsinf=—2c .. (5.2)
’ cotd+tand

where D = diagonal compression force; o, = normal strut stress; €= strut inclination

T Xy [ 1 |
) T
Cay Txy tan6 i Ty /I Vpxﬁy' tan®
T - |
) © Py-fry
R
Ty

Figure 5.3: Rotating crack truss approach for shear panels; Left— Global forces; Right—

Equilibrium of local stresses

The angle of the crack is assumed to be equal to & in the rotating crack model and
previous cracks are considered to be inactive. The crack is assumed to be stress-free as

shown in Figure 5.3 (right).

Two types of failure modes are considered. Firstly, assuming that reinforcement bars in
both x and y directions yield at failure, equilibrium conditions yield to equations (5.3) and

(5.4).

p.-fy-tanf =1 ... (5.3)
p,-f, =7, tan ...(54
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Substituting (5.3) into (5.4), the inclination of the strut & and the ultimate shear stress can

be obtained as shown in equations (5.5) and (5.6) respectively.

ang= |Prn .. (5.5)

px 'f'cy
z-xy = V px '.fxy 'py 'fyy e (56)
For Case I where r=1 and 8=45°, equation (5.6) can be simplified to z,=pf, and o.=21,.

The second failure mode considered is yielding in the weak direction y combined with
concrete crushing. The ultimate shear stress and strut angle can be found for this failure
mode by substituting equation (5.2) into (5.4) for Guma. and solving for € and 7, hence

obtaining equations (5.7) and (5.8). According to EC2, Gumar= Vf = 0.6(1-7./250)f...

T, =p,.f,-cotd ... (5.7

Ucmax _py'fyy
Py fw

cotd = ... (5.8)

where p,f,,<0.50;

Fixed crack truss

An alternative approach is to adopt a fixed crack truss model in which the normal stresses
on the crack equals zero at failure and that the shear retention factor S is constant. As
shown in Figure 5.4, the fixed model needs shear stress (7.,) acting along the crack to

maintain equilibrium, which does not limit the shear stress since S is assumed to be

constant.

| 1 1
Ty | |

A Ty
Ty T xy Ter

1 Ty 45° / px-j;cy
= l
- - -
T, Py-Sry

Figure 5.4: Fixed crack truss approach for shear panels; Lefi— Global forces; Right— Equilibrium

of local stresses
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The same failure modes were considered as in the rotating crack truss models. For a 45°
initial crack shown in Figure 5.4 applying equilibrium conditions and assuming yielding

of reinforcement in both directions, equations (5.9) and (5.10) are obtained for 7, and 7.

r :px'j;cy+py'fyy
xy 2
2

to= Aoty =t =P (5.10)

...(5.9)

Failure mode which combines crushing of the strut while yielding of the reinforcement
bars in the weak direction is again obtained from substituting equation (5.2) into (5.4) for

@=45°. This yields to equations (5.11) and (5.12).

Ucmax
T, :T ...(5.11)
Tcr = \/E'(Txy _py 'fyy) (512)

where Guma(EC2) = vf; = 0.6(1-£,/250)f;.

It can be easily demonstrated that for panels equally reinforced in both directions, the
rotating or fixed crack approaches provide identical solutions. In addition, the critical
value of pf)/ V. which divides both failure modes investigated (rebar yielding and strut
crushing) is 0.5 for panels in Case I (see Figure 5.5). This is in agreement with Bentz et
al. [32], in which the shear stress in this type of panels is generally assumed to be equal to
of, until a ceiling value of 0.25f, (~0.5v£.). For panels with one predominant
reinforcement direction the line that divides both types of failure according to the simple
rotating truss model suggested in EC2 is defined by p,f,/( %’-p)fyy)ZI, as shown in Figure
5.6.

Typical examples of a crushing type of failure are shown in Figure 5.1 and 5.2 (left) for
specimens PV20 and PV27 respectively. Figure 5.2 (right) shows the failure of panel
PV19 due to yielding of reinforcement in both directions. As shown in Tables 5.1 and 5.2,

both types of failure mode observed agreed with the predicted failure mode.
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5.3.3 Results: MCFT vs. Simple truss approaches

The predictions of the shear strength using either the MCFT or simple truss approaches
are summarised in Tables 5.1 and 5.2 for Cases I and II respectively. Despite secondary
aspects such as potential slippage between loading platen and panel or bond-slip between
reinforcement bars and concrete are neglected, accurate predictions were obtained using

both MCFT and the simple truss approaches described in previous section.

For Case I panels, both rotating and fixed truss approaches provided identical results. In
addition, MCFT and simple truss predictions for panels which failed due to yielding of
the reinforcement were identical, as shown in Figure 5.5. However, panels which were
predicted to be limited by crushing of the strut, the shear strength obtained experimentally
lay between MCFT and truss predictions (Figure 5.5). This is in agreement with the
model assumptions since the truss model neglects the tensile strength of the concrete. It is
noteworthy that although the predictions from the simple truss approach were
conservative, the results can be considered acceptable with a mean 7.4/ 7. ratio of 0.90

and a coefficient of variation of 11.6% (see Table 5.1).
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Figure 5.5: Comparison between MCFT and simple truss predictions for panels equally reinforced

in both x and y directions (Case )

As shown in Table 5.2 and Figure 5.6, the fixed crack approach overestimated the shear
strength of the panels with predominant reinforcement in one direction (Case I1). Worse
predictions were obtained for panels with both low pf,, stresses (~2MPa) and large
values of 7 (greater than 5). In these panels, the strut rotation would be highest. Hence, the
fixed truss model becomes less accurate since it does not impose a limit on the shear

transmitted at a crack. On the contrary, the MCFT limits the shear carried at the crack
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depending on the crack opening and type of aggregate, which seem to provide more
accurate predictions than the simple fixed crack truss model, as shown in Figure 5.6. The
simple rotating truss model provided similar predictions to the MCFT as shown in Table
5.2 and Figure 5.6, regardless of the type of failure mode predicted. This is remarkable

considering the large differences between the formulations.
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Figure 5.6: Predictions of ultimate shear strength of panels in Case [ (r=1)

In panels where strut rotation was expected, the MCFT provided larger values of the
angle @ than those predicted using the rotating truss model, as shown in Figure 5.7 for
specimens PV12, PV18, PV19 and PV20. The reason behind this is that unlike the
MCFT, truss models neglect the tensile strength of the concrete.
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Figure 5.7: Development of strut inclination according to MCFT and truss approach
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The influence of changing the aggregate size on the MCFT predictions was investigated
in panels with a predominant reinforced direction. Four panels were selected from Table
5.2 (PHS2, SE12, SE13, VB3) which had concrete strengths from 66.1MPa to 102.3MPa.
According to the MCFT the shear stress along the crack surface v.; was governed by the
threshold value v, in these panels. As discussed in section 2.3, the value of v
depends on the concrete strength, crack opening and aggregate size. The shear strain-
stress curves for these panels are shown in Figure 5.8. Point A labelled in Figure 5.8,

represents the load at which v,; is limited to Veings.
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Figure 5.8: Predicted shear strain-stress curves for high-strength concrete panels with

predominant reinforcement in the x direction; influence of aggregate size assumed

As shown in Figure 5.8, the influence of reducing the aggregate size using the MCFT was
insignificant, although the prediction of panels with £, greater than 70MPa was slightly
improved by taking a equal to zero. The ultimate strength reduced slightly when
decreasing the aggregate size a, from the maximum diameter of the coarse aggregate to

Z€ro.
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The types of failure predicted by the MCFT and rotating truss model were identical for
panels SE12 and SEI13. The former was predicted to fail by yielding of both
reinforcement bars x and y since p,f.,/( lfc’-p)fyy)ZO.48<1, while the latter was expected to

failed by strut crushing combined with yielding of the reinforcement in the y direction,
P/ (Ve -pf)=1.38>1.

On the other hand, panels PHS2 and VB3, with intermediate values of pf.,/( lfc’-pyfyy)
equal to 0.73 and 0.85 respectively, the predicted failure mode from the MCFT and
rotating truss model were different. According to the MCFT, panel PHS2 would fail due
to crushing of the strut while in VB3 yielding of both reinforcement bars would occur.
The results shown in Figure 5.8 suggest that the MCFT failure mode prediction seems
more sensible than the rotating crack approach for panel VB3 but not in panel PHS2,

where the MCFT tends to underestimate the ultimate shear strength.
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5.4 Non-linear finite element modelling of shear panels

5.4.1 General aspects

In this section, some of the smeared cracking models commonly used in non-linear finite
element modelling, which are described in chapter 3, were used in order to predict the
shear response of panels in pure shear. One of the aims of this analysis was to find
whether similar predictions to the MCFT could be obtained using other types of smeared
cracking models. Moreover, the analysis was used to validate these smeared crack models
against simple shear stress state scenarios before implementing them into more complex

FE models for the analysis of short span and slender beams (see chapters 7 and 8).

The NLFEA was carried out using DIANA with an incremental-iterative solution
technique (fixed size increment steps and Newton-Raphson solver for the iterations).
Similarly as Vecchio [123], shear panels were modelled using a single 4 noded element
(Figure 5.9) since both stress and material conditions were homogeneous throughout the
member. The accuracy of the predictions was comparable to that obtained by authors such
as Broo et al. [124], in which a more complex mesh was adopted. Point loads were

applied at the nodes (Figure 5.9) to simulate the constant shear stress state at the panel.

J P P Concrete strain-stress curves for NLFEA
Y fr— T p (refer to section 3.3)

: : e Compression:
Symmetrical parabola (Hognestad)

e Compression softening:

: : A(1993) or constant reduction factor

] P e Tension:

Equation 2.13

Figure 5.9: Finite element mesh of shear panels in pure shear (4 noded element with linear

interpolation and Gauss integration) and concrete strain-stress curves assumed in the NLFEA

The steel reinforcement was modelled using an embedded smeared grid, although discrete
embedded reinforcement elements provided identical results in this case. A perfect plastic
Von Misses constitutive law was adopted for steel. Two types of smeared crack models
were investigated for concrete: total strain (rotating and fixed crack) and multi-directional

fixed crack model; for full detail of these models refer to section 3.3.

In order to obtain comparable results with the MCFT, equivalent constitutive equations

(see Figure 5.9) and parameters were provided for each procedure. Therefore similar
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solutions were expected from this analysis. To consider compression softening due to
transverse strains, Vecchio & Collins [25] formula (see Figure 2.6) was applied in the
total strain models via the built-in algorithm (VC1993) included in DIANA. In the multi-
fix model different reduction factors were applied to study this effect. In general, the

shear retention in the total strain fixed and multi-fix models was taken as 0.1.

5.4.2 Summary of results

Case I: Shear panels with equally reinforced directions

As mentioned in section 5.2, panels with equal amounts of reinforcement in both x and y
directions are only subjected to compression softening due to transverse cracking. Two
representative cases are shown here which relate to panels PV27 and PV6 (Vecchio &
Collins [8]); crushing of the strut was critical for panel PV27 while yielding of the

reinforcement was expected for panel PV6, as shown in Table 5.2.

The types of failure modes were satisfactory reproduced both FE models investigated as
shown in Figures 5.10 and 5.11. However, important remarks regarding parameters
assumed in the models must be made. Looking at panel PV27, in which the softening of
concrete in compression governed the shear behaviour, it can be seen that neglecting this
effect can lead in some cases to a clear overestimation of the shear strength. Moreover, it
can result in the prediction of a different failure mode, as shown in Figure 5.10 (right). In
Case I panels, total strain models using either a fixed or rotating approaches provided
identical predictions. Another important aspect, which was discussed in section 3.3, is
that the Poisson ratio (v) must be taken as zero in the total strain models; otherwise the

shear strains are clearly overestimated in the element, as shown in Figure 5.10 (right).

7 , 10
— — — — — — — Ixperimental __ 9 No Softening considered
5 /c\ °]
/G
= L __ _ _ Experimental
2 4 61
S 51
£ 5l — MCFT 4
§ 5 —— Simple Truss | | 3 - — Tot Strain V=0.2
»n , —— Tot Stramv=0 | | 2 1 Multi-fix- No Soft.
1 PV27 . .
Multi- fix 1 — Tot Strain- No Soft
0 \I T T T T O T T T T
0 3 6 9 12 15 0 3 6 9 12 15
Shear strain [0/00] Shear strain [0/00]

Note: Compression softening factors assumed (/eff) — multi-fix model v/, ; total strain 93) see Figure 2.6

Figure 5.10: FE predictions of panel PV27; Left— Valid models; Right— Incorrect assumptions
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As shown in Figure 5.10, similar predictions were obtained using the multi-fix, total
strain, MCFT and simple truss approaches. In the multi-fix approach, the strength of the
concrete was reduced by conventional plasticity “effectiveness” factor v= 0.6(1-f; /250)f.
(EC2). As discussed in sections 2.3 & 3.3 this “effectiveness” value, which provided
sensible predictions for this particular case, is considerably lower than the reduction
factors proposed by authors such as Reineck [40]. It is questionable whether it is realistic
to use the same concrete reducing factors for single elements in pure shear and elements
found in dense meshes with more complex biaxial stress states since previous cracks can

influence the strength of the struts.

Panel PV6 was predicted to fail due to yielding of the reinforcement, as shown by the
strain-stress curve in Figure 5.11 (left). As reported by Hsu [125], in such types of panels
NLFE models tend to overestimate the yield strength since the increment of stresses in the
reinforcement at the crack is not considered. Similar problem is obtained in Case II panels
in which failure is due to yielding of reinforcement bars in both directions, see Figure
5.11 (right). In this work, a sensible prediction of these shear panels was obtained by
reducing the yield strength of the reinforcement bars by a factor of 0.75, as shown in
Figure 5.11. MCFT or simple rotating truss models provided more accurate predictions
than the NLFEA for panels governed by yielding of the reinforcement. An alternative
method to reducing the yield strength of the reinforcement would be modifying the

tension softening curve for concrete, although both approaches are approximate solutions.

N Mulfi-fix Simple Truss ulti-fix
6 1 Simple Truss & Experlmental

Total Strain 4
/o e

e e i FT I A A
V Experimental \/ MCFF

Tot. Strain

Shear stress [MPa]

fy*=0.75fy 2 fy*=0.75fy
; Ve —Tot Strain | | 1 1 { — Tot Strain Rot
| PV11 ,
Multi- fix Muilti-fix
0 T T T T 0 F . : ‘ :
0 3 6 9 12 15 0 3 6 9 12 15
Shear strain [o/00] Shear strain [0/00]

Note: Total strain rotating and fixed models provided identical predictions for both panels
Figure 5.11: FE predictions of shear panels in which yielding of reinforcement was critical; Lefi—

Panel PV6 (Case I); Right— Panel PV 11 (Case II); refer to Table 5.1 and 5.2 respectively
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Case 1I: Shear panels with predominant reinforcement in the x direction

The predictions for the Case II panels, which were governed by crushing of the strut
while yielding of the reinforcement in the weak direction, were similar using either NLFE
total strain models or MCFT (Figure 5.12). On the other hand, multi-directional fixed
crack model tended to overestimate the ultimate strength if same reduction factor v=
0.6(1-f. /250)f. used for Case I panels was applied. This seemed to worsen for panels with
larger strut rotation, such as PV12 (» =7). The results using this model are referred to as

“Multi-fix” in Figure 5.12.

The considerably larger level of softening adopted by the MCFT, which had a reduction
strength factor of around 0.45, provided more accurate predictions for these panels
compared to using the effectiveness factor v= 0.6(1-f./250)f.. As shown in Figure 5.12,
the predictions of the multi-fix model can be improved for these panels by assuming this
reduction factor of 0.45 for f, in combination to reducing S by 0.75, as discussed in

previous section; the results are denoted as “Multi-fix (modified)” in Figure 5.12.

6
O 4 o
_ 5 4 Simple Truss
g e Simple T -
2 4 | w\ - 3 i impie 1russ A
— MCFT T -
= —— Tot Strain Rot 2
@ i A —— Tot Strain Rot
5 9] i — Tot Strain Fix
z 2 Experimental . —— Tot Strain Fix
Zay ﬁ B Multi-fix 1] O Multi-fix
PV20 : .
O— Multi-fix (modified) | T [__PV12 O Multi-fix (modified)
0 ! T T T T 0 A T T T T
0 3 6 9 12 15 0 3 6 9 12 15
Shear strain [o/00] Shear strain [o/00]

Note: Reduction of concrete strength in “Multi-fix” model of v/,
In Multi-fix (modified) concrete strength and yield strength of y-reinforcement has been factored by
0.45 and 0.75 respectively

Figure 5.12: FE predictions of Case II panels failing due to crushing of the strut while yielding of
the reinforcement in the y direction; Lefi— Panel PV20 (r =3.1); Right— Panel PV12 (r =7)

In view of these results it seems that total strain models are more suitable to simulate
shear panels with large reorientation of stress fields than the multi-directional fixed crack
approach. Surprisingly, both rotating and fixed total strain models provided comparable
results. However, this was not the case if the shear retention factor in the total strain fixed
crack model was increased from 0.1, which was the initial value adopted in the NLFEA.

Figure 5.13 shows the increase in the ultimate strength due to increasing shear retention
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factor S in the total strain fixed models. The increase seems to be larger for panel PV12
since larger strut realignment took place. The value of £ equal to 0.1, which is commonly
adopted in the NLFE models developed in this work, provided optimal predictions as

illustrated in Figure 5.13.

1.6
1.4
1.2
1.0 —
0.8 1
0.6 -

Vcalc(NLFEA)/Vtest

0.4
NLFEA

0.2 1 Total Strain Fixed
0.0 T T T
0 0.2 0.4 0.6 0.8 1

Shear retention (3 )

Figure 5.13: Influence of shear retention factor assumed in NLFEA using total strains fixed crack

model (panels PV20 and PV12)
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5.5 Discrete crack approach: Crack slip model

In order to assess the influence of neglecting the stresses at previous cracks, a discrete
approach using a crack slip model has been derived by the author. The model assumes
that the shear strength can be limited by shear transfer across cracks. As recognized by
Vecchio [29], models such as the Disturbed Stress Field Model (DSFM, [29]), in which
the crack slip is taken into account directly, are numerically demanding. Hence, several
simplifications were adopted in the discrete model presented in this section to keep the
analytical model practical. Whilst simple, the approach seems rational and can provide
sensible predictions. Moreover, the crack slip model can be implemented with few
modifications to study the development of crack displacements and stresses in continuous

beams as shown in section 8.3.3.

5.5.1 General assumptions

The crack slip model is a discrete approach in which strains are obtained in terms of
relative crack displacements i.e. slip (s) and opening (w), neglecting deformation within
the concrete for a first estimation. A single square element is isolated from the crack with
a size of L=S¢/(2sin6), as shown in Figure 5.14. The furthest point of the element from the
crack corresponds with the location of the maximum tensile stress i.e. midpoint between

two consecutive cracks.

B 1 L B
> I\l S07 §in45° cosd5° -
,/ ’/ ,' +
i ,,’ e Smx Smy
. - ’ Oncr
e ,” Txy
,,’( iZt ,,' ,,’ Osx-Asx
TN Note: S, Sy crack spacin
- E?’ « Omxs Omy . P g
; X ,/| parameters defined in
e 7 il MC90 (see section 2.3) Oy Asy

Figure 5.14: Crack slip model; Left— Isolated element; Right— Equilibrium at the crack

Only pure shear conditions are considered, without axial tension nor compression. In this
section, the formulas are derived by imposing compatibility and equilibrium conditions at
cracks, which have an inclination of 45° (Figure 5.14). This is the general case of cracks
that form at early load stages in a shear panel or in the web of a simply supported beam.
In section 8.3.3, these formulas are generalized for different crack inclinations, in order to
apply them to continuous beams, where the shear cracks were considerably flatter than

45°.
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5.5.2 Equilibrium and compatibility conditions
The strains generated in the element for a given relative displacement w (crack opening)

in the local r-direction, see Figure 5.15 (left), are given by equations (5.13) to (5.15).

grcr =\/§}L and gdcr =0 (513)
}/cr :grcr _8dcr = grcr (514)
=Y and g, =Y ... (5.15)

& cr [~ g
“ 2L 2L

where 7-d are local crack directions, L=S4\2, w = crack opening, s = crack slip, and
tension is considered positive. Crack spacing Sy is estimated as shown in Figure 5.14,
assuming that crack parameters s,,, and s,,, are 1.5 times the maximum distance between

reinforcement bars (Vecchio & Collins [8]).

- 2

N

( S%{i

Figure 5.15: Strains generated due to normal and shear relative crack displacements; Lefi—

N

Opening relative displacement (w); Right— Slip relative displacement (s)

In the same manner for a relative displacement s in the d-direction, see Figure 5.15

(right), the strains obtained for this case are given by equations (5.16) and (5.17).
grcr:gdcrzycrzo (516)

S —S
gxcr:ﬁL and 8ycrzﬁ (517)

Unlike the simple truss approaches, which are described in section 5.3.2, the crack is no
longer stress free. The shear and normal stresses can be calculated by considering

equilibrium in the element (Figure 5.14), which yields to the following expressions:

Oy T Ty =T+ 0P, ... (5.18)

Opr + 7, =0,.0, T, ... (5.19)
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The normal and shear stresses at the crack (o, %) in equations (5.18) and (5.19), can be
written in terms of the crack opening and slip, using any of the formulations based on the
deformation theory, which are described in chapter 2 (section 2.5.2). Five of these models
were validated in section 4.5, using push-off test data obtained in this work. In view of the
results presented in chapter 4, the linear aggregate interlock relationship (Walraven &
Reinhardt [46]) was finally adopted for the crack slip model. This constitutive equation
for aggregate interlock has also been adopted in other discrete crack approaches, such as

the already mentioned DSFM (Vecchio [29]).

In equations (5.18) and (5.19), the steel stresses oy, and o, can also be written in terms of
the crack slip and opening, as shown in equations (5.20) and (5.21). Term E, in
equations (5.20) and (5.21) is the enhanced value of the Young’s modulus for steel, which
takes into account the contribution of cracked concrete to steel strength (tension
stiffening). In order to estimate E,, approach proposed by Hsu [114] for embedded
reinforcement could be used or alternatively a derived value for E, from the MCFT. For
simplicity, an approximate value of 1.5 times E; was finally adopted, where E;

=200000MPa.

. _ w S i
o,=mm| f E | —=—+—=— ... (5.20
e =min) Sy (ﬁ.L ﬁ.LJ_ (5.20)
. [ w S
o,=mm| f E | ————— .. (5.21
” _f” ‘(ﬁ.L ﬁ.L]_ (5-21)

where E;, = enhanced value of Young’s modulus (=1.5Ey), f,,—f,, = yield strength of

reinforcement bars in the x—y direction

The crack opening and sliding can be solved numerically implementing equations (5.13)
to (5.21) into a spreadsheet. The inclination of the principal compression stress & can be
calculated from Mohr’s circle knowing points A(os.0y, 7y) and B(oy,p0y, -7y, as shown in

equation (5.22).

2
c, -0 c, -0
cot9=; 4 X+\/[ ? XJ +4 .. (5.22)

where o; =00 and o, =00,
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5.5.3 Crack slip model predictions of shear panel tests

The discrete crack slip model described in previous section was applied to estimate the
shear response of panels tested by Vecchio & Collins [8], see Table 5.2. Despite the
initial assumptions made, the results are quite favourable, especially for panel PV20,
where the predictions of the shear strains seem even better than those given by MCFT, as

shown in Figure 5.16.
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Figure 5.16: Predictions for shear response of panel PV20; MCFT, Crack slip and Truss models

The predictions of the ultimate strength obtained using the crack slip model were
reasonable for the eight panels investigated, as shown in Figure 5.17. However a slightly
larger coefficient of variation was obtained (11.8%) compared with MCFT and simple
truss rotating model, which had a COV of around 7%. The results for ultimate loads,

crack displacements and inclination of strut at failure are also shown in Figure 5.17.
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Figure 5.17: Crack slip model predictions of shear panels tested by Vecchio & Collins [8]
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The shear strain-stress curves of panels PV19 and PV12 are shown in Figure 5.18. These

panels have considerably less reinforcement in the y direction than panel PV20 shown in

Figure 2.16. The shear strength of panel PV12 was underestimated using the crack slip

model or MCFT. As mentioned in section 5.4.1, this panel had a significantly greater

value of r =pf,,/p,f,,=7 compared with the remaining panels, in which r ranged from 1.5

to 4. The larger strut rotation expected in this panel was in agreement with the lower strut

angle #shown in Figure 5.17 for PV12.
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Figure 5.18: Shear strain-stress predictions using MCFT and crack slip model (PV19 and PV12)

The predictions of the shear response using the crack slip model are not realistic for early

load stages as shown in Figures 5.16 and 5.18. This is due to the fact that in the crack slip

model the un-cracked state was not taken into consideration. As discussed in chapter §,

this assumption is equivalent to assuming that the specimen is pre-cracked in shear.
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5.6 Conclusions

Although shear panel tests are complex in terms of execution, the experimental data
obtained is considerably easier to interpret than results gathered from traditional beam
tests. A pure shear stress state in the concrete member can be attained in these panel tests,
which can be helpful to obtain a better understanding in the contribution to shear

behaviour of aggregate interlock and compression softening due to transverse cracking.

The extensive database gathered by Bentz et al. [32] of experimental results from several
researchers, shows that MCFT can predict accurately the response of shear panels in pure
shear. Moreover, the simplified MCFT formulas proposed by Bentz. et al. [32] can also
be used in order to assess the ultimate strength by simple hand calculations. The
alternative simple truss models presented in this chapter, which are based on either a
rotating or fixed crack concept, can provide equally accurate strength predictions for
panels with the same reinforcement in each orthogonal direction. On the other hand,
panels with one predominant reinforced direction (Case II) only the simple rotating truss
approach provided accurate predictions, which are comparable to those obtained using the
MCEFT. The inclination of the strut was found to be steeper using the MCFT than the

rotating truss model in the panels investigated.

Two types of failure modes were usually observed, which referred to yielding of the
reinforcement or crushing of the strut. In Case II panels, the crushing of the strut occurs in
combination with yielding of the reinforcement in the weak direction, which is followed
by a stress fields rotation and mobilization of the aggregate interlock action. In general,
the predicted failure mode was identical for MCFT and simple truss approaches, which

was in agreement with experimental evidence.

The influence of changing the aggregate size (a) in the MCFT predictions of the shear
panels constructed with high-strength concrete was insignificant. Nevertheless, reducing a
from the maximum diameter of the course aggregate to zero for concretes with f. greater
than 70MPa, as recommended in the Canadian code, gave a slight improvement in the
predictions. However, no information regarding the type of aggregate used or whether it

had fractured at the crack was available for the panels studied.

It has been shown that the response of shear panels can also be predicted carrying a
NLFEA using a single element mesh, in which some of the smeared crack approaches

described in chapter 3 were adopted (Total strains and Multi-directional fixed crack
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models). Despite the different formulations applied in each of these smeared crack
approaches (fixed/rotating, total strain/strain decomposition with plasticity), comparable
predictions can be obtained to MCFT, if equivalent parameters and constitutive strain-
stress relationships are provided. The NLFEA showed the importance of adopting
consistent values for the different parameter required in the models, such as the Poisson
ratio (v) or shear retention factor (f). Optimal predictions using the total strain fixed crack

model were obtained using values of v=0 and £=0.1.

The results from the NLFEA of shear panels indicated that compression softening due to
transverse strains must be taken into account in order to obtain reasonable predictions.
The predictions of Case II panels, in which failing was governed by concrete crushing,
were in general more accurate using total strain models, which are formulated in a similar
fashion as the MCFT, than the multi-fix model. The strength of these panels was slightly
overestimated using the multi-fix model which was surprising since a considerably low
reduction factor for the concrete strength was applied (1f.). However, the same
“effectiveness” factor applied to similar panels with equal amounts of reinforcement in
both orthogonal directions, showed to be adequate using the multi-fix model. It remains
questionable whether this low constant factor is suitable for this case only or it can be
applied to more advanced stress state conditions. The strength of panels failing due to
yielding of the reinforcement was overestimated by the NLFE models. This was expected
since the increase of stresses in the reinforcement at cracks is not considered; a reduction
factor for the yield strength of 0.75 was found to provide reasonable predictions. An

alternative method would be to modify the tension softening behaviour of the concrete.

Lastly, the discrete crack slip model presented in this chapter shows a simple whilst
rational approach to assess the limit case where the behaviour is governed by shear
stresses along cracks. More sophisticated models such as the DSFM [29], have been
developed, in which the crack slip is also taken into account. Despite the large number of
simplifications adopted in the model presented here, reasonable predictions of the shear
strain-stress response were obtained for the panels investigated. The ultimate shear
strengths were similar to those obtained using both MCFT and simple truss approaches,
although a slightly larger COV was observed. Once the model had been validated for the
particular case of shear panels in pure shear, the model was adapted for estimating

stresses and displacement at critical shear cracks at webs of continuous beams (section

8.3.3.).
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6.1 Introduction

This chapter summarises the experimental results and testing methodology of 22 beam
tests carried out by the author in the Heavy Structures Laboratory at Imperial College
London. The experimental results are discussed in further detail and compared with
analytical/numerical predictions in chapters 7 and 8. The main goal of these tests was to
investigate the influence of aggregate fracture on shear strength of reinforced concrete
beams for different types of loading. Tests included beams with and without shear
reinforcement. Shear span to effective depth ratios (a/d) of 1.5 and 3.5 were investigated,
which relate to short span and slender beams respectively. The different tests series are
summarised in Table 6.1. Previous experimental data was available in the literature
regarding slender beams without shear reinforcement focusing on the type of aggregate
(see Regan [4]); hence this type of test was chosen as the starting point of the
experimental programme. Beams B0 were designed using a similar geometry and load

configuration as tests carried out by Regan [4], which included beams with different types

of aggregate.

Beams a/d | Stirrups? | Type of Loading
AGO; ALO 1.50 no Simply supported
AG2, AG3, AG4; AL2, AL3, AL4 | 1.50 yes Simply supported
BGO1, BG02; BLO1, BL02 3.46 no Simply supported
BG1, BG2; BL1, BL2 3.52 yes Continuous beam
CBI1, CB2; CAl, CA2 3.52 yes Continuous beam
DB1; DA1 3.68 yes Simply supported

Note: Beams A and B- prefix “G” stands for gravel and “L” limestone aggregate concretes
Beams C and D- (gravel aggregate concrete); prefixes “A” and “B” stands for steel class (stirrups)

Table 6.1: Summary of experimental work (beam tests)
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Beams A and B were constructed in pairs using two types of aggregate (gravel and
limestone); which are denoted as “G” and “L” respectively. The crack surfaces in the
limestone specimens were smooth due to splitting of the course aggregate at the crack.
The main parameters investigated in beams C-D, which were cast using normal gravel
aggregate, were the amount of shear reinforcement and the class of steel used in the
stirrups. Beams B-C were loaded with a point of contra-flexure while the remaining
beams were simply supported. Beams C-D were not included in the original test
programme. However, the undesired concrete strength variations obtained in beams B and

the interest of studying the effects of the type of loading, motivated testing beams C-D.

6.2 Material properties

6.2.1 Reinforcement

The reinforcement used for manufacturing beams A and B was hot-rolled round deformed
high yield steel bars (T). Two samples of each bar diameter (§mm and 25mm) were tested
to calculate the yielding strength. The yield strength, which was obtained using the 0.2%
offset rule, was found to be different for the T8 bars and T25 bars, 550MPa and 580MPa

respectively. The stress-strain diagrams are plotted in Figure 6.1.
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Figure 6.1: Stress-strain diagrams for T8 and T25 reinforcement bars

Beams C and D were constructed using 10mm diameter stirrups, with either class A or B
steel, according to EC2 classification. Both types of steel had similar yield strength
(,=600MPa) but class A had a more brittle behaviour (Figure 6.1).

The amount of reinforcement provided in the beams was designed using EC2 and BS8110
to avoid flexural and local failures. The design was verified by performing a non-linear

finite element analysis, which corroborated that longitudinal reinforcement, would not

164



Chapter 6 — Beam Tests

yield for the design concrete strength assumed. Sufficient anchorage length was provided

with straight bars adding in each end four extra stirrups spaced 120mm.

6.2.2 Concrete

Beams A and B were designed for a cylinder concrete strength of 60MPa, although
several deviations from this target were obtained due to errors from the Readymix
suppliers. Beams C and D were designed for a cylinder concrete strength of 40MPa. Two
types of course aggregate were used for beams A and B; namely normal gravel and
limestone aggregates. The “normal gravel” referred to in this work corresponds to marine
pebbles or bench gravel, which has a siliceous nature. This type of aggregate is obtained
from natural gravel pits, which are commonly found in Southern England. On the other

hand, limestone aggregate is a crushed stone from a carbonated rock.

Special attention was paid when designing the concrete mixes to optimise the concrete
strength at which the limestone aggregate would fracture at the crack while in the gravel
specimens the crack went round the aggregate. Several trial mixes were tested in the lab
before casting the definite specimens in order to assess the concrete strength at which
only the limestone aggregate would fracture completely. A slump test of 180mm was set
as target due to the high workability required for the short span beams with stirrups,
which were cast vertically. Brazilian splitting test showed that for the limestone concrete
with cylinder strengths as low as 50MPa the limestone aggregate fractured. In the gravel
aggregate concrete, only a small fraction (~30%) of the aggregate fractured, which in

general corresponded to sandstone particles (white aggregates in Figure 6.2 left).

Figure 6.2: Crack surfaces of cylinders after Brazilian test (Left- gravel; Right- limestone)

The final mix designs are summarised in Table 6.2. Although the mix design was

identical for mixes 1 and 3, the concrete strength was slightly different for both mixes, as
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shown in Figure 6.3. In addition, the concrete strength varied considerably for mixes 3
and 4, even though the only difference between the mixes was the type of coarse
aggregate. The low strength observed in mix 4 might have been due to insufficient water

content required in the mix for hydration.

xﬁ‘;;’;‘;z‘lt_;‘li‘l‘:ss Mix1 | Mix2 | Mix3 | Mix4 | Mix5
(kg/m’) [06/03/07] | [22/03/07] | [01/08/07] | [08/08/07] | [08/05/08]
CEM1425R 400 350 400 400 390
GGBS - Slag 100 87.5 100 100 -
Coarse aggregate | limestone gravel limestone gravel gravel
10mm gravel - 1051 - 1051 940
10mm limestone 1051 - 1051 - -
Marine sand 610 670 610 610 750
CSP313 RMC 4.32 2.6 4.32 4.32 2.34
Microsilica” 40 35 40 40 -
Water 140 138 140 140 200

Notes: Proportions given in dry aggregate
Mixes 1 and 2 = Short span beams (beams A) + Slender beams without stirrups (beams B0)
Mixes 3 and 4 = Slender beams with stirrups (beams B) + Push-off tests
Mix 5 = Slender beams with stirrups (beams C and D)
+ Microsilica is given in proportions of dry weight

Table 6.2: Mix designs used for beam and push-off specimens

The concrete strength was obtained by crushing cubes (100mm) and cylinders (4”
diameter and 10 height), which were cured in under two different conditions: water (20°)
and air exposed with same temperature and moisture conditions as the test specimens.
The compressive strength development over time was also monitored as shown in Figure
6.3. Compressive strengths adopted in the analysis (chapter 7 and 8) related to cylinders
which were cured in water and crushed around the day of the test. The tensile strength of
the concrete was obtained by splitting cylinders (6” diameter and 9” height) in a standard

Brazilian test arrangement.

Table 6.3 summarises the results of all the control specimens for mixes 1 to 5. In all
cases, the specimens were tested well after 28 days, where the strength had reached the
plateau shown in Figure 6.3. Mixes 1 and 2 were used for casting the short span beams
and slender beams with no stirrups while 3 and 4 were used in slender beams with stirrups

as well as the push-off test. Lastly, mix 5 was used in beams C and D
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— MIX 1
£ —— MIX 2
= MIX 3
S —O0— MIX 4**
&
K= MIX 5

Days

Note: Mix 4** - cube strength was excessively low (cylinder strengths seemed more realistic)

Figure 6.3: Cube strength development (f..) over time (Mixes 1 to 5)

Mix 1 (Limestone) Mix 2 (Gravel)
Avg. Surf. Dried Density 2352 kg/m’ 2302 kg/m’

Compression Curing | Num. | f." [MPa] | Num.| f."" [MPa]

air 3 65.27 3 90.76

Cube [100mm] water | 2 78.56 3 90.38

. o air 3 54.43 3 84.67

Cylinder [4"x 10"] - 0 oier T3 68.44 3 80.20
Tension Curing | Num. | f., [MPa] | Num.| f., [MPa]

. L air 3 3.72 3 4.16

Cylinder [67x9"] —ier T3 4.86 3 5.67

, E, E,

E-value Curing | Num. [GPa] v | Num. [GPa] 1%
Cylinder [4” x 10"] air 1 3497 | 0.20 1 42.61 | 0.16
Comp. over time Curing | Num. | Day fe | Num. | Day fe

water 1 7 48.36 1 7 63.55
water 1 14 60.32 - - -
1
Cube [100mm] water | 1 28 7013 | 1 28 | 84.07
water 2 87 | 77.47 1 68 90.22

Notes: 'Mix 1: values relate to day 133 after casting (testing of beams AL)
BLO01-BL02 were tested on the 87 and 89 day respectively

""Mix 2: values relate to day 104 after casting (testing of beams AG)
BGO01-BGO02 were tested on the 68 and 70 day respectively

Table 6.3: Material properties obtained from control specimens
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Mix 3 (Limestone) Mix 4 (Gravel)
Avg. Surf. Dried Density 2330.70 kg/m’ 2059.24 kg/m’
Compression Curing | Num. | f." [MPa] | Num. | f.”" [MPa]
air 2 60.21 2 31.70
Cube [100mm] water 3 60.30 3 30.37
poorly | 2 41.64 2 23.22
. " " air 3 49.66 3 32.50
Cylinder [4"x 101 1™t |3 53.11 3 31.70
Tension Curing | Num. | f.' [MPa] | Num. | f. [MPa]
. "y o air 3 3.48 3 2.53
Cylinder [6"x 9] ™ ater | 3 3.79 3 2.80
E-value Curing | Num. [GE};a 7 1% Num. [GEI;a 7 v
Cylinder [4" x 10"] air - - - 1 27.21 | 0.17
Comp. over time Curing | Num. | Day /e Num. | Day fe
water 1 5 37.5 1 7 20.08
water 1 14 | 52.18 1 15 | 22.46
Cube [100mm] water 2 29 55.81 1 28 27.67
air 2 120 | 59.68 2 126 | 31.69
water 3 120 | 61.21 3 126 | 32.27
Cylinder [4" x 10"] water 3 120 | 55.05 3 126 | 33.66
Cylinder [6" x 9"] water 3 120 | 55.13 3 126 | 27.04

Notes: 'Mix 3: values relate to day 57 after casting (testing of beams BL)
PL specimens were tested around 120 days after casting

“"Mix 4: values relate to day 64 after casting (testing of beams BG)
PG specimens were tested around 126 days after casting

Mix 5 (Gravel)
Avg. Surf. Dried Density 2331.09 kg/m’
Compression Curing | Num. | f." [MPa]
air 3 56.15
Cube [100mm] water | 2 55.55
Tension Curing | Num. | f.." [MPa]
Cylinder [6" x 9"] water 3 3.16
Comp. over time Curing | Num. | Day fe
water 1 4 34.56
water 1 7 41.07
Cube [100mm] water 2 14 46.45
water 2 28 51.99
water 2 62" | 57.84

Notes: 'Mix 5: values relate to day 50 after casting (testing of beams C)
"Mix 5: beams D were tested around 60 days after casting

Table 6.3(Cont.): Material properties obtained from control specimens
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The ratio between cube and cylinder strength (f.”/ f..) was different for each mix and
varied between 0.83 and 0.95. This variation justified testing cylinders in addition to
cubes. EC2 and BS8110 apply cylinder and cube strengths respectively, so this approach
seemed more accurate than using a constant conversion factor. The need of testing
cylinder and cube control specimens for high strength concretes has been raised by

authors such as Larrard et al. [126].

Mix 4 had significant anomalies regarding cube strengths with a f.”/ f.. ratio of 1. This
mix had reduced density (11% lower than the rest) due to air entrapment. The Poisson
ratio was similar for all mixes (v = 0.20-0.18). Low values of v could have explained the
higher value for f.”/ f;. ratio according to Larrard et al. [126], but vin mix 4 was similar to
the other mixes. In order to obtain further information about the real uniaxial strength of
mix 4, cylinders with a different size (6 by 9”), which are usually used for Brazilian
tests, were crushed in compression. The results are shown in Table 6.3 and had a good
correlation with the 4” diameter cylinder strengths. Hence, cube strengths for mix 4 were

neglected in the analysis of specimens made with mix 4.

Another important aspect that was observed while testing the control specimens was the
influence of proper curing of cube specimens. Air cured cube specimens for mix 1 had a
significantly lower strength (15%) in comparison with the water cured ones, as shown in
Table 6.3. This was not consistent with the rest of the mixes, where air and water cured
specimens had similar strengths. The reason for this discrepancy in cube strengths in mix
1, was most likely due to poor curing during first days. Additional cubes were tested for
mixes 3 and 4 that were intentionally poorly cured under normal room conditions without
keeping good moisture levels. The results for these poorly cured cubes (see Table 6.3)
showed strength reductions up to 30%, which is even larger than those observed for mix

1.
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6.3 Short span beams (Beams A)

6.3.1 General aspects

A total of 8 short span beams (beams A) were tested, which were 3m long and had a shear
span to effective depth of 1.5. The beams were simply supported and were loaded
monotonically at midspan. The clear shear span to effective depth ratios (a,/d) in all the
specimens were 1.12 and 1.04 for the left and right spans respectively, since different
plate sizes were used for each support; plates were 125mm and 200mm as shown in
Figure 6.4. The aim of using different plate sizes was to study the influence of the bottom
node geometry on the strength. In addition, failure was encouraged in the span with larger

a,/d ratio, which had more instrumentation.
Four cases of transverse reinforcement were tested, see Figures 6.4 and 6.5:
1. Specimens AG0, ALO: no web reinforcement (p, = 0%)
2. Specimens AG2, AL2: four T8 stirrups (p, = 0.22%)
3. Specimens AG3, AL3: six T8 stirrups (o, = 0.34%)
4. Specimens AG4, AL4: eight T8 stirrups (o, = 0.45%)

The beams had a central span of 1320mm, measured between centrelines of the supports.
Rollers were placed under the bearing plates to allow horizontal displacements and
pinned rotation. The thickness of the bearing plates were 75mm for the left plate, 65mm
for the right plate and 30mm for the loading plate in order to assure an uniform stress

distribution under the plate.

120 120 120 120 210 120 120 120 120
\ 135_ 2120
i
t
Stirrups T8 d4={437.5

=g h=500

[ 1 l o o —_—T

[ 1 =25 q
i SNyms

125
590 | 1320 590
£o00

Figure 6.4: General dimensions of short span beams (Beams AG0 and ALO)
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250 230 230 2350

[

Beams AG2 and AL2

150_150__205 205 _150_150

Beams AG3 and AL3

100100100 205 205 100100100

Beams AG4 and AL4

Figure 6.5: Position of stirrups in beams AG2 to AG4 and AL2 to AL4

The longitudinal reinforcement consisted of two layers of two T25 each (o = 3.32%) in
order to avoid flexural failure. Two T20 bars were placed on the top to hang the stirrups
as shown in Figure 6.5. Four extra stirrups were placed every 120mm at the ends of the
beams to provide adequate anchorage. Four beams (ALO-AL4) were cast using mix 2
with limestone aggregate concrete (see section 6.2.2). Mix 1, which had gravel aggregate,

was used for the remaining beams (AGO to AG4).
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6.3.2 Manufacture and curing

The beams were cast vertically in wood moulds in groups of four (AG0-AG4 and ALO-
AL4), see Figure 6.6. Two internal vibrators were used to compact the concrete. The
control cubes and cylinders were vibrated on a standard vibrating table. All specimens

were covered with polythene sheets until stripping of the moulds as shown in Figure 6.7.

The control specimens were taken out of the moulds the following day while the beams
were stripped two days after casting. The beams were then covered with wet Hessian and
polythene sheets, which were watered weekly to keep adequate moisture levels for proper

curing. The control cubes and cylinders were cured as described in section 6.2.2.

Figure 6.7: Gravel aggregate concrete beams before stripping (AG0-AG4; BOL1-BOL2)
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6.3.3 Instrumentation

A 2500kN capacity load cell was allocated under the hydraulic jack, see Figure 6.8, to
record the total load and another one (1000kN capacity) was placed under the right
support to assess any possible asymmetries in the rig. Deflections, strains and relative

crack displacements were monitored in the beams using:
1. Linear variable displacement transducers (LVTDs)
2. Demec readings (150mm and 250mm Demec gauges)
3. Strain gauges at the reinforcement bars (transverse and longitudinal)

Global displacements

A total of 7 LVTDs were placed at the beam to monitor global deflections as shown in
Figure 6.8. Transducers #1 and #2 recorded the vertical deflection at the centre point
relative to the supports and floor respectively. Out-of-plane deflections were measured
with LVTD #3. Transducers #4 and #5, which were placed at 480mm from the centre in
both spans, were used to record vertical deflections near the plate relative to the ground,
see Figure 6.8. Finally, the beam rotation at the support was measured by LVTDs #6 and
#7 placed at the left end of the beam.

FAILURE
o o ‘| CRACK |' o o
g o
— I\” 7)' 305
S 1
™ Frame uSed
8 - —F=r to measure defl.
) — . relative 10 supports
TN —
— ] (#6) &
g N I
5
o |_| o AN\
(#4) (#2)
L - A
480 L 480 T~ Load Cell

Figure 6.8: Position of LVTDs in the short span beam tests

Strains at the centre section and direct strut

The horizontal strains at the central section were obtained at six points using Demec
gauges. Two of these points corresponded with the longitudinal reinforcement as shown

in Figure 6.9.a.
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One grid of 150mm Demec targets was placed with the purpose of monitoring
longitudinal and transverse strains along the direct strut of the left span (a,/d of 1.12). In
order to make direct comparisons between different specimens, the grid shown in Figure
6.9.a for the direct strut (line AB), which was obtained from the strut-and-tie model of the

beam without stirrups, was kept constant for all the beams.

Strains in the reinforcement bars

In addition, Demec targets were placed to control strains at every stirrup, see Figure 6.9.b.
The strains of the longitudinal reinforcement were also recorded, (Figure 6.9.a). The
readings from the Demec gauges could be compared in some specimens with readings

from strain gauges located at the same position as the centroid between two Demec

targets.
] 590
a)
s + *
1
b)

Figure 6.9: a) Demec grid used to obtain strains at the central section (hollow marks) and direct

strut (filled marks); b) Demec grid used to obtain strains in the stirrups

Beams AGO, ALO, AG3 and AL3 were instrumented with strain gauges as shown in
Figure 6.10. Strain gauges 1 to 10 were placed in pairs at bottom and top of the same
reinforcement bar to take flexure into account. The main objective of these measurements

was to assess the strain distribution along the longitudinal reinforcement, verified Demec
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readings and detect any potential yielding of the reinforcement steel. Strain gauges 11 to
16 were only placed on one side of the stirrup. Readings 11, 13 and 16 corresponded to

points near the critical crack while points 12, 14 and 15 were far from this crack.

215 176 272

217

b)

Figure 6.10: a) Strain gauges for beams AGO0 and ALO; b) Strain gauges for beams AG3 and AL3

Relative crack displacements

The predominant crack was studied in terms of its relative displacements: opening and

sliding. Three methods were applied:
1. Grid of Cross Demec gauges
2. Cross LVTDs
3. Microscopic ruler (crack opening only)

The first two methods were also used in the push-off tests presented in this work; see
section 4.2.3. Additionally, the measurements obtained from the crosses were compared
with simple visual readings using a microscopic ruler with a precision of 1/26mm. In
general, readings using Demec, LVTDs and visual methods were in very good agreement.

Although the cross LVTDs seems the most optimal procedure, since it provides
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continuous readings, the other methods were also found very useful due to their simplicity

and reliability.

The cross Demec targets (250mm gauge) were placed before testing to cover the area
where the main crack was most likely to appear, see Figure 6.11, which is along the line
that connects the inner edges of the loading and support plates. On the other side of the
beam, two LVTDs crosses (150mm length) were placed on the critical shear span as
shown in Figures 6.8 and 6.12.

FAILURE
CRACK

Figure 6.12: Cross LVTDs used on one side of the beam
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6.3.4 Results

Summary of experimental results

Table 6.4 summarises the experimental results obtained for the short span beams. With
the exception of beams AG4 & AL2, failure occurred on the span with higher a,/d ratio.
In addition, the ultimate load for beam AL2 exceeded the one for AL3, which was not
expected. In Table 6.4, &, is the measured deflection at failure under the loading plate
relative to the supports; P, and P,; are the loads at which the critical shear crack

appeared and at failure respectively.

p s . a,/d O cnr P, P, .
Beam [D{Pa] [Nﬁ’a] stirrups (cri:i/cal) (m 121 1wy [kl\llt] Failure
AGO | 80.20 550 0 1.12 2.37 250 | 651.53 Sh. Prop
AG2 | 80.20 550 2T8 1.12 3.84 300 | 1126.05 | Sh. Comp.
AG3 | 80.20 550 3T8 1.12 4.37 200 | 1309.21 | Sh. Comp*
AG4 | 80.20 550 4T8 1.04 4.57 300 | 1414.20 | Sh. Comp*
ALO | 68.44 550 0 1.12 2.87 230 | 731.01 | Sh. Comp.
AL2 | 68.44 550 2T8 1.04 3.95 400 | 1063.79 | Sh. Comp.
AL3 | 68.44 550 3T8 1.12 3.68 173 961.46 | Sh. Prop.
AL4 | 68.44 550 4T8 1.12 4.21 270 | 1204.39 | Sh. Comp.

Note: Failure: Sh. Prop. — Shear Proper; Sh. Comp. — Shear Compression; Sh. Comp ™ - Shear Compression
and longitudinal reinforcement near yielding

Table 6.4: Summary of experimental results of short span beams (Beams A)

Type of Failure and Crack pattern

All beams failed in shear, although the type of failure was slightly different for each
specimen. Beams AGO and AL3 had shear proper type of failure with the main diagonal
crack crossing the direct strut from early load stages. This crack connected the inner
edges of loading and support plates. On the other hand, beams that failed in shear
compression, the diagonal crack was slightly flatter and did not extend to the ends until
near failure, where the concrete under loading plate crushed completely. In beams AG3
and AG4, the longitudinal reinforcement started to yield near failure, which was due to

crushing of the direct strut (shear compression failure).

Cracks were measured in each span at both sides (North and South) showing symmetrical
results. Several parallel cracks to the main diagonal crack were observed, especially as the
number of stirrups was increased. Angles between the main diagonal crack with respect to
the longitudinal reinforcement were steeper for the shear span with smaller a,/d as

expected.
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AGO

AG2

AG3

AG4
Figure 6.13: Crack pattern in the gravel short span beams (North side)
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ALO

AL2

AL3

AL4
Figure 6.14: Crack pattern in the limestone short span beams (North side)
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Secondary shear cracks (see circle mark in beam AG4, Figure 6.13), which ran parallel
and below the main diagonal crack, originated almost simultaneously to the formation of
the main diagonal crack. These cracks, which extended to the bottom into flexural cracks,
relate to the indirect strut that fans out from the top node to the bottom of the stirrups.
Flexural cracks formed in all cases after the shear cracks had developed. In general two
stages were observed; one first stage around 400kN where first flexural cracks formed,
and one second stage around 600kN where old flexural cracks propagated to the top and
new flexural cracks originated. In all cases the main diagonal crack was independent from

these flexural cracks.

Load-deflection curves

Vertical deflections were very small, between 2 and Smm. Figure 6.15 shows the load-
deflection curves for beams AG and AL, taken from transducer 1 (Figure 6.8). The out-
of-plane deformations measured were negligible (<0.1mm). This confirmed that the

loading was applied correctly without no-eccentricity in the out-of-plane direction.

1600

1400

1200

1000

800

Load [kN]

0 1 2 3 4 5

Deflection at centre of beam [mm] Deflection at centre of beam [mm]

Note: deflections given at the centre of the beam, measured relative to frame

Figure 6.15: Load-deflection curves for short span beams

The horizontal displacement and rotation of the beam were monitored at the end of the
shear span (a,/d of 1.12) using transducers #6 (top) and #7 (bottom), refer to Figure 6.8.
Figure 6.16 shows the global displacements with respect to the middle height fibre of the
beam. The horizontal displacement is considered positive outwards the centre of the beam
and rotation of the plane is positive for sagging and negative for hogging. An interesting
aspect that can be highlighted from end displacements shown in Figure 6.16, is the
different behaviour in beams AG4 and AL2 after reaching the ultimate load in

comparison with the rest of the specimens. The horizontal displacement and the rotation
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measured in AG4 and AL2 kept increasing after reaching the ultimate load, which is

opposite to the rest of the beams where the displacements changed direction. This trend

confirms that failure occurred in the shear span with a,/d of 1.04 in beams AG4 and AL2

and agrees with general kinematics described in Figure 6.17.
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Note: Horizontal displacement (H) and rotation (see Figure 6.17 for sign criteria)

Figure 6.16: End movements of beams AG and AB
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Figure 6.17: General kinematics of short span beams after failure
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Strains at central section

The strains at the central section of the beam, which were measured with the Demec
gauges, are shown in Figure 6.18 for AG and AL beams. The measurements are compared
with readings from the strain gauges 7-8 and 5-6 for beams A0 and A3 (Figure 6.10). In
general, the readings from the Demec gauge were slightly larger (10%) than those
obtained from strain gauges, which could be due to bond-slip between the concrete and
reinforcement. However, in beam AG0O Demec and strain gauge readings are almost
identical (Figure 6.18). The oscillations of strains along the height obtained with the
Demec gauge, especially at the bottom of AG3 and at 150mm from the bottom in AL3,

were due to crack bypassing the Demec gauge, as shown in Figure 6.13 and 6.14.
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Figure 6.18: Strains at the central section of the beam AG and AL
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Figure 6.18 (Cont.): Strains at the central section of the beam AG and AL

Strains in stirrups

The stirrups yielded (£=2.75%o) before failure as shown in Figure 6.19. The Demec
gauge readings shown in Figure 6.19 are average values in the sector where the main
diagonal crack crossed the stirrup and therefore where strains reached their maximum
value. The strains in the stirrups increased more rapidly after the main diagonal had
originated. The readings recorded at sectors of the stirrup that were not crossed by the
main diagonal crack were negligible. This was confirmed by strain gauges 12 and 15
(Figure 6.10), which were placed at the stirrup away from the diagonal crack. In general
the strains were slightly larger in stirrups at middle shear span than nearer the supports.
The stirrups of the right span (a,/d=1.04), which are drawn as dashed lines in Figure 6.19,
did not yield except for AG4 and AL2, where this span was critical. In general, Demec

readings were consistent with the data obtained from the strain gauges.

183



Chapter 6 — Beam Tests

900
a0 ] L] o
7 S3B 7 ‘
700 +— |— —%‘ _
v —+—SI(C)
600 +—— —— |—<£ —| —=—S2(B)[] g m
— 1
AN IR X ael =T i
= - —o— S4(C /84(C
S 400 - E’ ‘ ‘ ‘ — © o (JF + —o= SO
= i S1 S2 S3 s4 S1 S2 S3
300 &Sl( SZ(B)‘ A - - - . ‘ & = - " .-
' . L] L] - A
200 14— — 1B AN o
l I 1 I B . .
100 C+ : C I . : I T
0 £ | | | | | | | | | | ; T T T 1
00 05 10 15 20 25 30 35 40 4500 05 10 15 20 25 30 35 40
Strain [o/00] Strain [0/00]
a) Beam AG2 b) Beam AL2
1400 1000
$4A)p §‘6(C) FS5(B) ‘ S2(B)
1200 e L R — .
—a—SI1(C) || 800 +—— P& 7# —f —f —
1000 —e—S2(B) | oA —a—SI1(C)
— —s—S3(A) ‘s —e—S2(B)
Z 800 —o— sa) || 000 TREF T —=—S3(a)
= —o— S5(B) & F - O - S4(A)
< I ' G2 AL3
5 600 —n— S6(C) 400 3 'g —o— S5(B)
400 SIS2S3__.S45586 | | SIS2S3._. 845586 |2~ S6©)
Al 2 B AT]] FTl \ \
A..[ I 200 L SN S I
200 B 1l B!l I ‘ ‘
0 1 1 : : 0 ‘ : 1 1 ] : :
20 00 20 40 60 80 100 120 140 00 10 20 30 40 50 60 70 80 90
Strain [0/00] Strain [o/00]
c) Beam AG3 d) Beam AL3
1400 1200
| $2(C) S1(C) ‘ S3 BL N
1200 +—— 1000 4
‘ —e—5SI1(C)
1000 - SIC) || —a—S2(B)
Z —&—S2(B) —
2 800 - — — S3B) | —o—S4(A)
=} 600 - —o— S5(B)
g 600 - | @y —0— S6
S - < - S5(B) (B)
400 S7S8 - - - S6(B) || 400 - —n— S7(B)
B —n— S7(C) — S8(C)
200 ¢ ! ‘—0— S8(C) || 200 ‘
" 'S384  S5%6
0 o T T T 54 T = T T T 0 [L T T T T T
00 10 20 30 40 50 60 70 80 00 10 2.0 3.0 40 5.0 6.0
Strain [o/00] Strain [0/00]
e) Beam AG4 f) Beam AL4
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Figure 6.19: Strains at critical section of stirrups for AG and AL beams
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Strains in the longitudinal reinforcement

The tensile strains in the longitudinal reinforcement bars are shown in Figure 6.20. The
experimental data suggest that the longitudinal steel started to yield (£=2.90%o) at failure
only in beams AG3 and AG4. The readings from the strain gauges, which are available
for beams Al and A3, show a more uniform profile than the Demec gauge readings
(Figure 6.20). However in several points both readings were very similar. The variations
in the Demec readings seem to be related with flexural cracks crossing the Demec gauge.
The relatively low strains obtained with the Demec gauge at the central section of AG3
were not consistent with Demec readings in adjacent sectors. This suggests that strain
gauge readings seem more realistic than the Demec readings for the central section of

beam AG3.
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Notation: SG# — strain gauge at load # (kN)

Figure 6.20: Strains of longitudinal reinforcement in beams AG and AL
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Notation: SG# — strain gauge at load # (kN)

Figure 6.20 (Cont.): Strains of longitudinal reinforcement in beams AG and AL
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Figure 6.20 (Cont.): Strains of longitudinal reinforcement in beams AG and AL
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The strains obtained by the strain gauges in beams AO were uniform along the
longitudinal rebar and drop to zero on the outer side of the bearing plate (Figure 6.21).
For beams with three stirrups the strains increased slightly at the first sector of the rebar
near the inner edge of the plate but were constant for the rest of the rebar (Figure 6.20). In
beam AG3, strain gauges 3/4 placed at the centre of the critical shear span recorded same
readings as strain gauges 5/6 located at the centre of the beam. Unfortunately for beam
AL3, the readings were influence by strain gauge 3, which was faulty during the test, and

a direct comparison with AG3 could not be made.
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Note: AO- strain gauges 1,2 at the anchorage zone had values close to zero
AO- strain gauges 5,6 were faulty during test
ALS3- strain gauge 3 was faulty during test (readings of strain gauge 4 are shown)

Figure 6.21: Strain readings from strain gauges at longitudinal reinforcement bars
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Strains at direct strut (longitudinal and transverse)

Figure 6.22 shows the longitudinal and transverse profiles of the compressive strains of
the direct strut according to the Demec grid described in Figure 6.9. The origin of the
longitudinal section corresponds to the bottom node (point A, Figure 6.9) and the
transverse section is measured at 375mm from this origin. The transverse profiles
generally had the maximum value at the centre line of the direct strut. This is true for all
beams except for ALO and AL3 where the maximum was at the reading below the centre

line. The reason behind this was that for beams ALO and AL3, this sector was crossed by

a shear crack (Figure 6.14).
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Figure 6.22: Longitudinal strains along direct strut (transverse and longitudinal sections)
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Figure 6.22 (Cont.): Longitudinal strains along direct strut (transverse and longitudinal sections)
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Figure 6.22 (Cont.): Longitudinal strains along direct strut (transverse and longitudinal sections)
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Relative crack displacements

The crack opening (w) and sliding (s) near failure are shown in Table 6.5 and Figure 6.23.
These results refer to the shear span with a,/d of 1.12, which was critical for all the beams
except for AG4 and AL2. In some specimens the readings from the Demec/LVTD crosses
were influenced by additional shear cracks that formed at later load stages. Table 6.5
summarises the number of cracks that went through each cross and the deviation « from
the 45° reference plane with respect the longitudinal reinforcement. In Figure 6.23,
measurements from crosses of targets, which were only crossed by one crack, are
highlighted in red. Readings from crosses where three points of the cross of targets were

at the same side of the crack were ignored.

As shown in Figure 6.23, crack opening was the predominant mode over crack sliding.
The relative crack displacements were very similar for both gravel and limestone
aggregate concrete beams. The ow/ds ratio was almost linear and very similar for all
beams, regardless the type of aggregate used. The average value for ow/ds was around 3.
Beams AG4 and AL2 had a larger ow/os ratio due to the fact that failure occurred on the

other shear span (a,/d of 1.04) hence crack sliding was not mobilized.

(a) TOP (b) BOT. (c) TOP (d) BOT.
DEMEC DEMEC LVTD LVTD
Distance from bottom | 339.33mm 162.5mm 243.72mm 87.5mm
Wrailure | Stailure (24 o (04 o
Beam Cracks | .- | Cracks | .. | Cracks | .- | Cracks
[mm] | [mm] [] [] [] al]
AGO | 1.229 | 0.57@ 1 3 2 8 1 8 2 6-17
AG2 | 1.40° | 0.56© 1 4 2 2 1 2 - 3
AG3 | 1.229 [ 0.40® | 1 2 3" 6 1" 4 2" 17
AG4 [ 1.039]0.129] 2 0 2" 8 1 3 2 2
e E——
ALO | 1.15® ] 0.41@ 1 11 1" 16 0 - 2" 15
AL2 | 1.359(0.289 3 5 2 23 1 4 1 11
AL3 | 1.309 | 0.45@ 1 7 2 1 2 6 2" 11
AL4 | 0.949 (0319 1 6 3 5 1 5 2 7
Note- ' Three points on one side of the crack (readings are neglected)

*In beam AG3 only one crack went through the cross until load 730kN
- Beam AG?2 had a faulty transducer at the bottom cross
>0 for cracks flatter than 45°

Table 6.5: Summary of relative crack displacements near failure, number of cracks going through

the Demec/LVTD crosses and deviation « with respect the 45° plane
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Figure 6.23: Crack opening (w) and sliding (s) in beams A

193

1.6 AGO ~’7 — il
\T\ Peak load
124— — E— —
08 +— - — — —1 ——
‘ ‘ —a—TOP DEMEC
=—TOP LVTD
0.4 4 _— «’7 7‘ —4— BOT DEMEC - -
——BOTLVTD
00 T T T T
0.0 0.2 04 0.6 0.8 1.0
s [mm]
ol +—=F —1
"/Jf Peak loa
124— —— —— — — 1
08 +— — ___|—=—TOPDEMEC | |
‘ —TOP LVTD
—=— BOT DEMEC
= S
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
s [mm]
T ]
16 ‘ ‘
S S
08 47— \’\ T
Note: Demec readings valid
0.4 4 ‘ until 700kN, where a second
diagonal crack formed.
00 | ‘ | |
0.0 0.2 04 0.6 0.8 1.0
s [mm]



Chapter 6 — Beam Tests

T TT ' TTT] " ]
1400 1
| | kel | s ]
1200 . Crack Failure on the other span
Clpsin;
> 1000 — — M L 12
22 o —=— w TOP DEMEC T __— Crack closmg after peak load
T 800 — ‘ ~ —+—s TOP DEMEC E r
=) ()
—wTOP LVTD z i
——s TOP LVTD
400 __| ® VISUAL- TOP DEMEC = TOP DEMEC
[ [ 1 ‘ 04 - - <'7 | I
200 ‘ ‘ AG4 — TOP LVTD
‘ ‘ Failure on the other span ‘ ‘ ‘ ‘
0 T T T T T 1 1 1 T 0.0 T } } }
-02 00 02 04 06 08 10 12 14 16 18 20 0.0 0.2 04 0.6 0.8 1.0
Crack opening (w), sliding (s) [mm] s [mm]
d) Beam AG4 (P, =1414.20kN)
TTT] T T T T 1
600 .
S e e
. 11 |
E 400 __ | —=—wTOP DEMEC E LT — I -
= —+— s TOP DEMEC £
< =
g 300 __| @ VISUAL-TOPLVID 2
~ A VISUAL- TOP DEMEC |
200 T
N =T
N S O B —

-02 00 02 04 06 08 10 12 14 16 18 20
Crack opening (w), sliding (s) [mm]

e) Beam ALO (P, = 731.01kN)

0.6 0.8 1.0

ST T ]
1000 | A AL2
‘ ‘ /j/ Crajk 16 +— Failure on the other span ‘7 —’» —_—
Closing \
800 | | | Crack
—=— w TOP DEMEC ing|
z ——sTOPDEMEC || = 121 Closin 7
Z g
E 600 —wTOPLVID | E ‘ "= TOP DEMEC
g —— s TOPLVID : s | —1oPLVTD |
400 Jﬁ — |7 WBOTLVID | ' ——BOTLVTD
— s BOTLVID ‘ ‘
© VISUAL-TOP LVTD|
| i G
200
| AL2
‘ Failure on the other span ‘
O T T T T T 1 1 1 T 0 0 ‘ ‘ ‘
02 00 02 04 06 08 10 12 14 16 18 20 0.0 0.2 04 0.6 0.8 1.0

Crack opening (w), sliding (s) [mm]

f) Beam AL2 (P,; = 1063.79kN)
Figure 6.23 (Cont.): Crack opening (w) and sliding (s) in beams A
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Figure 6.23 (Cont.): Crack opening (w) and sliding (s) measured in beams A

The crack opening of AG4 and AL2 was similar than the rest of the beams, although the
diagonal crack at the shear span of a,/d=1.12 closed after reaching the peak load (Figure
6.23). In the shear span with an a,/d ratio of 1.04 the relative crack displacements were
monitored only with two Demec crosses. The values recorded for w and s (refer to Figure
6.24) were approximately half of those obtained at the other shear span with a w/s ratio
equal to 3, which is similar to the other shear span. The main diagonal crack in the shear
span with a,/d of 1.04 was steeper, with values of o generally lower than in the other

shear span.
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Figure 6.24: Crack opening and sliding in the a,/d 1.04 shear span of beams A

In general there was a good agreement between Demec and LVTD readings, as shown in
Figure 6.23. Crack openings were validated by visual readings, marked as circles in
Figures 6.23 and 6.24, which were in excellent agreement with the other types of
measurements. In beam AG3 (Figure 6.23.c), the visual readings agreed with the values
obtained from the Demec gauges until a load of 700kN. At this load, a new diagonal
crack formed, which caused the previous crack to remain with a constant w as the new
crack got wider. This explains the difference between the values of w measured by the
Demec gauge and optical ruler in beam AG3, since the former included both cracks while

the later only included the original crack.

Visual local readings of the main diagonal crack of beam AL4 at different points, showed
that the crack opening was constant through the height of the beam (Figure 6.25). The
readings were in good agreement with the results provided by the top LVTD and Demec
crosses, as shown in Figure 6.23. Only visual reading 3, located at the stirrup, provided
lower values of w. Closer examination of the crack showed that the reading in point 3
were influenced by a secondary crack that had formed near the stirrup, see Figure 6.25.
Similar secondary cracks to the one shown in Figure 6.25, were found in other beams at
points where the stirrups crossed the shear cracks. Visual readings of the crack opening

should be avoided in such local points.
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Figure 6.25: Crack opening of main diagonal crack of AL4 at different beam heights (North Side)
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6.4 Slender beams without stirrups (Beams B0)

6.4.1 General aspects

Four slender beams without transverse reinforcement, which are denoted as beams BO,
were designed and tested by the author to fail in shear. Two of these beams (BGO1 and
BGO02), were cast using normal aggregate concrete. The remaining two beams (BLO1 and
BL02) were made of limestone aggregate concrete. The beams were cast using the same
concretes as for the short span beams, i.e. mix 1 for BGO beams and mix 2 for BLO

beams, see section 6.2.2 for further details.

Beams B0 were all identical and were loaded at the centre span as shown in Figure 6.26.
The cross section was the same as for the short span beams except for the longitudinal
reinforcement, which consisted of 2T20 bars (o, = 1%), see Figure 6.26. The amount of
longitudinal reinforcement provided was sufficient in order to avoid flexural failure. The
shear span to effective depth ratio a/d was 3.46 to avoid any shear strength contribution

due to arching action.
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Figure 6.26: Slender beams without stirrups (Beams B0)

The central span was 3200mm long, measured between centrelines of the supports. The
same rollers supports as for the short span beams were placed under the bearing plates to
allow horizontal displacements and pinned rotation. The thickness of the bearing plates

were 75mm for the left plate, 65mm for the right plate and 30mm for the loading plate.
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6.4.2 Manufacture and curing
The beams were cast at the same time as the short span beams. The same procedure
described in section 6.3.2 applies for the manufacture and curing of the slender beams

without stirrups.

6.4.3 Instrumentation
The instrumentation consisted of two load cells (1000kN), one placed under the hydraulic
jack and the other located under one support, in order to assess any potential asymmetries

in the rig. Vertical and side displacements were monitored using LVTDs transducers.

A total of seven LVTDs transducers were applied, see Figure 6.26: six (#1-6) for
measuring the vertical displacements along the beam and one (#7) to control side
displacements at the centre. Transducers #1-3 measured deflections relative to the

supports, while transducers #4-6 took measurements relative to the floor.

6.4.4 Results

Summary of experimental results

The type of failure was similar for all beams, regardless the type of aggregate used; all
beams had a very brittle behaviour. Identical specimens BG01/BG02 and BLO1/BL02 had
very similar failure loads as shown in Table 6.6. Flexural cracks formed at early load
stages of around 50% of the ultimate load. Failure occurred suddenly at P,; when the
diagonal shear crack developed from a previous flexural crack. The deflection under the

loading plate (Oenre) given in Table 6.6 was measured relative to the support.

f‘cy f;l Y2 ad o centre P crflex P, ult
[MPa] | [MPa] | [%] [mm] [kN] [KN]
BGO1 | 80.20 580 1 3.46 4.14 56.2 122.63 | Diag. Tens
BG02 | 80.20 580 1 3.46 4.70 50.0 126.22 | Diag. Tens

|

BLO1 | 68.44 580 1 3.46 3.58 50.0 93.72 | Diag. Tens
BL02 | 68.44 580 1 346 | 4.27 50.0 108.14 | Diag. Tens

Beam Failure

Table 6.6: Summary of experimental results of slender beams without shear reinforcement

(Failure: Diagonal Tension)

199



Chapter 6 — Beam Tests

Type of Failure and Crack pattern

The first flexural cracks that formed were completely vertical and reached in most cases
the middle height of the beam. As the load was increased, the outer flexural cracks turned
into flexural-shear cracks, which were inclined towards the centre of the beam at the top

and were shorter than the central flexural cracks, see Figures 6.27 to 6.30.

The type of failure was the same for all the beams and corresponded to a typical brittle
shear failure (diagonal tension failure) along the main shear crack. The critical crack
initiated at a previous flexural-shear crack and propagated suddenly to the load and
support plates (Figure 6.27). The main diagonal crack reached the support plate through a
horizontal splitting crack, which formed due to the loss of bond and dowel action along

the longitudinal reinforcement.

Figure 6.27: Diagonal tension failure along main shear crack (Beam BLO1)

The beams failed in either shear span, BGO1/BLO1 on the right span and BG02/BL02 on
the left span from north side, which showed a good symmetric arrangement in the loading
rig. After removing the top halve of the beam the crack surfaces showed two different
types of roughness (Figure 6.28). In the limestone concrete specimens the aggregate
fracture while the crack only went through a fraction of the aggregate for the gravel
specimens, as shown in Figure 6.28. An estimated figure of the percentage of the gravel

aggregate that fractured at the crack surface is 30% (£5).
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Figure 6.28: Crack surfaces: Leff- Limestone aggregate beam; Right- Gravel aggregate beam

Despite the difference in roughness between the limestone aggregate and gravel aggregate
surface cracks, the geometry of the main diagonal crack was similar for all the beams, as
shown in Figures 6.28 and 6.29. The only minor difference between limestone and gravel
specimens, which is illustrated in Figure 6.29, was that the angle between the longitudinal
reinforcement and the first section of the main diagonal crack was larger for the limestone

beams than for the gravel aggregate beams.

c00

BGO1 122.63 KN
BG02 126.22 KN
BLO1 93.72 KN

BLOI BLO2 108.14 KN

Figure 6.29: Relative position of main shear cracks (beams B0)
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BGO1 (North Side)

BGO2 (South Side)

BLO01 (North Side)

BL02 (South Side)

Figure 6.30: Crack pattern of slender beams without stirrups
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Load-deflection curves

The deflections under the load plate relative to the supports were between 4 and Smm at
failure (Figure 6.31). All beams had similar stiffness until failure. The deflections
measured by the LVTDs relative to the floor were slightly higher than those measured
relative to the support, which indicated that a bedding in settlement occurred at early load
stages. At failure the difference between readings taken relative to the supports and floor

was around 20-30%.

140

120 -

100
= BGO1
7
2 807 — BGO2
=
g 60 — BLO1
)

BLO2

N
o
I

20 A

Deflection at centre [mm]
Figure 6.31: Deflections at the centre of the beam, relative to the support
The deflections at quarter points were approximately half as at the centre (Figure 6.32),

with a symmetrical response with respect the centre line. Lateral deflection, monitored by

transducer #7 (refer Figure 6.26) were negligible throughout the test.

140 120 ‘ ‘ ‘
120 4 100 4
i Cel*tre

100 +
__ 80 + ‘ ‘
Z
2 804
= 60 4 BLO02 B
S 604 BLO02 1/4
= BGO2 1/4 40 ] — BGO2 Y4

40 £ — —— | ———BG02 3/4|—

A

0 T T T 1 1 O 1 T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Deflection relative to support [mm] Deflection relative to support [mm)]

Figure 6.32: Vertical deflections relative to the supports at quarter points for BG02 & BL02
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6.5 Slender continuous beams with stirrups (Beams B and C)

6.5.1 General aspects

A total of eight continuous beams (beams B and C) with a shear span over effective depth
ratio a/d of 3.52 were tested (Table 6.7). The main parameter investigated in beams B was
the type of aggregate used; “G” for gravel and “L” for limestone. In beams C, the width
of the beam was increased from 135mm used for beams A and B to 160mm. The diameter

of the stirrups was 10mm as opposed to 8mm, which was used in beams A and B.

Concrete | f. fu f b n s D

Sect.6.2.2 | [MPa| | [MPa] | [MPa] | [mm] | stirrups [mm] [%o]
BG1 Mix 3 31.70 | 580 550 135 10 T8@150 | 0.50
BG2 Mix 3 31.70 | 580 550 135 16 T8@90 | 0.83
BL1 Mix 4 53.11 580 550 135 10 T8@150 | 0.50
BL2 Mix 4 53.11 580 550 135 16 T8@90 | 0.83

Beam

CB1 Mix 5 49.35 580 600 160 5 10@300 | 0.33
CB2 Mix 5 49.35 580 600 160 7 10@200 | 0.49
CAl Mix 5 49.35 580 600 160 5 10@300 | 0.33
CA2 Mix 5 49.35 580 600 160 7 10@200 | 0.49

Table 6.7: Material properties and shear reinforcement at the critical span

An identical two point loading arrangement was used in tests B and C, in order to obtain a
point of contra-flexure within the shear span as shown in Figure 6.33.a. This load
arrangement gives rise to the bending moment distribution shown in Figure 6.33.b. This
load configuration produced high shear forces, and minimised the hogging and sagging
bending moments at critical sections. Another advantage of introducing a point of contra-
flexure was that the shear resisted by the compressive zone at the head of the shear crack
was eliminated with the result that the beam was loaded in pure shear rather than flexural-

shear as in a simply supported beam.
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Loading Beam
Load Cell (1000KN) @ Knucklq bessing %,KM‘W bearing _
- - (G- 2 PTFE layers o o
 — — —
|20 | 2bo |
T =
- Specimen g TR* | U37.5
200 stlrrups 1
i il 1= 500
Ty e
= w0l
f— T
Critical Zone %
[F AN
~N4T25
570 660 ‘ 770 ‘ 770 | 660 ‘ 570 Note* beams C:

b=160mm and 10mm stirrups
4000

a) Testing rig and cross section of beams

a60mm 770mm 77 0mm B lmm 660mm 770mim 77 O Gamm
Ma ()
0.35P 0.35P
0.3P ‘ 0 /
Ma =0.35P x 0.66 Ma (+)
b) Shear Force Diagram Bending Moment Diagram

Note: Beams C were 4500mm long instead of 4000m shown in (a) for beams B. This leads to 820mm
overhangs as opposed to 570mm in beams B shown in (a)

Figure 6.33: Loading arrangements: a) Testing rig and cross section of beams; b) Shear force and

bending moment diagrams

The short shear spans had an a,/d ratio of 1.05 and a shear force equal to 35% of the total
load. However, they were not critical since they had larger shear reinforcement ratios plus
strength was enhanced by arching action. The stirrups provided in the short spans in
beams B were 2 leg stirrups of T8 every 90mm and 60mm for Bl and B2 beams
respectively (Figure 6.34). An additional 2 stirrups for B1 and 3 stirrups for B2 were
placed at the centre of each short shear span as shown in Figure 6.34, to strengthen these
regions. In beams C, the spacing between stirrups in the short shear spans was half that in

the critical span.

The arrangement of longitudinal reinforcement in beams B and C was similar to that used
in Beams A except that two layers of two T25 each were placed at the top of the beam
(Figure 6.33.a). This symmetrical arrangement of longitudinal reinforcement allowed the
beam to resist the anti-symmetric bending moment distribution, shown in Figure 6.33.b,

without yielding of the longitudinal reinforcement bars.
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Bundled stirnups
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Figure 6.34: Spacing between stirrups in beams B and C

The specimens were supported on the rollers used for beams A and BO that allowed
rotation and horizontal displacements. The loads were applied through a loading beams.
The concrete beam was restrained longitudinally at the cantilever loading point and
released laterally at the other end using two PTFE layers under the central loading plate,
see Figure 6.33.a. The forces were transmitted to the testing beam through knuckle
bearings in order to allow rotation of the loading beam, although the deflection of the
cantilever and centre load points were expected to be very similar. All the loading and

support plates in contact with the testing beam were 200mm long.

The loading beam, which consisted of a universal column 305x305x240 (S355) had a
total dead load of 720kg. The dead load of the loading beam was not transmitted to the
supports of the testing beam evenly, due to the position of the loads. Instead, 80% of the
self weight of the loading beam was taken by the support nearer the cantilever end.

However, the dead load of the loading beam was negligible compared with the total load
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applied and therefore the internal stresses is well represented by the diagrams shown in
Figure 6.33.b. This was confirmed by the load readings from the load cells, which were

set to zero after the loading beam was placed on top of the testing beam.

Beams B and C were pre-cracked and then loaded monotonically to failure, as opposed to
beams B0 and A, which were taken directly to failure. Pre-cracking the specimen was
necessary in order to place the instrumentation around the critical crack since the exact

location of this crack was uncertain a priori.

6.5.2 Manufacture and curing

Due to the large amount of reinforcement provided in beams B, the specimens were cast
horizontally, (Figure 6.35). Beams B were cast in two groups of two (BG1/BG2 and
BL1/BL2) and vibrated with a standard 1” head vibrator. Beams C were cast vertically
(Figure 6.35) along with beams D. The control cubes and cylinders were cast and cured in
the same manner as for beams B0 and A, see section 6.2.2. Same methods were adopted

for curing the specimens as for beams B0 and A.

Figure 6.35: Cast of beams B (left) and beams C-D (right)

6.5.3 Instrumentation

In order to control that the load was applied correctly, three load cells were used, as
shown in Figure 6.33.a. First one, which had 2500kN capacity, was located under the
hydraulic jack to monitor the total loading. The second and third load cells (1000kN
capacity) were placed at the cantilever load point and right support; both readings should
be equal to 35% of the total load.
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In a similar manner as in the short span beams (beams A) deflections, strains and relative

crack displacements were monitored using different methods:
1. Linear variable displacement transducers (LVTDs)
2. Demec readings (150mm Demec gauge)
3. Strain gauges at the reinforcement bars (only at longitudinal reinforcement bars)
4. Digital photogrammetric surveying

Digital photogrammetric surveying

Digital photogrammetric surveying, which is based on digital image processing, was
introduced for beams B and C tests and provided useful information of global
displacements. This monitoring technique was also used in the push-off tests, see section
4.2.3 for further details. The computer software required to analyse the digital
photographs was developed and calibrated by McCarthy & Tsang [108]. Similarly as in
the push-oft tests, experimental results were compared with more conventional methods

(LVTD, Demec and strain gauging).

The setup for the photogrammetric surveying consisted of four digital cameras, which
were placed on the north face of the beam as shown in Figure 6.36. Cameras 2 and 3 (C2,
C3) covered the critical shear span while C1 and C4 captured both extreme short shear
spans. The working distances for each camera were 880mm, 750mm, 850mm and 915mm
for C1, C2, C3 and C4 respectively. The height measured from floor to lens was 900mm.

In beams C, only the critical shear span was monitored using photogrametric targets.

Critical span
Ref'l Ax 4 Ref'3 AX5 s Ref5 Axs; Ref7 Axyy Ref9

Beam B1 f2 f6 Ref 8

a) Beams B

C3

Note- Cameras used: C1 — FyjiFilm FinePix S5500 (4MG); C2 — Canon PowerShot S70 (7.1MG); C3 —
Sony Cybershot DSC-F707 (SMG); C4 — Olympus mju 410 (4MG)

Figure 6.36: Test setup for digital photogrammetric surveying
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245 150 300

lisol—

b) Beams C
Note-Cameras used: C2 — Canon PowerShot S70 (7.1MG); C3 — Sony Cybershot DSC-F707 (SMG)

Figure 6.36 (Cont.): Test setup for digital photogrammetric surveying

The grid of moving targets was an orthogonal regular grid throughout the entire beam
with 75mm spacing for beams B and 150mm for beams C (with a 25mm cover), refer to
Figure 6.36. The fixed referenced targets had horizontal spacings of 780-750-680-680mm
for cameras C1 to C4 respectively, while the vertical distance between the reference
points was around 450mm. Digital pictures were taken manually at each load step for
both pre-crack and normal loading stages. Even though adequate lighting was provided by
five halogen lamps, which produced uniform white light, the lighting conditions changed

from one test to another due to unavoidable light variations in the laboratory.

Global displacements

The photogrammetric survey was complemented with traditional LVTDs measurements
to monitor global displacements of the beams. A total of 7 LVTD transducers were placed
in the beam, (Figure 6.37). Transducers #1 and #3 were placed under the central loading
plate and measured vertical displacements relative to the supports and floor respectively.
LVTD #7 measured relative vertical displacements to the supports at the central section of
the critical shear span. Side deflections were controlled by transducer #2, which showed
that the out-of-plane displacements were negligible. The vertical movement at the
cantilever end was measured relative to the floor by transducer #4. Similar as in beams A,
two transducers (#5,6) were place at simply supported end to calculate horizontal and end
rotation movements.

Critical Zone
770 770

— A1 50mm

| —
.’ 'G 3) LDJ
p—y

(Joss
LVTDs

@ D}_

N
e/

Figure 6.37: Position of LVTD transducers in beams B and C
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Strains at sections of maximum bending moments and in the reinforcement bars

The horizontal strains were measured with a Demec gauge at sections of maximum
bending moments at five different heights (Figure 6.38). The Demec grid located at the
critical shear span, shown in Figure 6.38, allowed to measure the strains in the stirrups
and longitudinal reinforcement. Although the centroid of the reinforcement did not
coincide exactly with the position of the Demec targets in the longitudinal reinforcement
(Figure 6.38), the distance between them was negligible. Similar happened with some
stirrups in beams B2. The extreme short span beams were also instrumented with Demec
targets in order to assess the strains along the outer longitudinal reinforcement and at two

central stirrups.
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Figure 6.38: Demec grids- a) Beams B1; b) Beams B2 (strain gauges); c) Beams C1; d) Beams C2

In addition, 10 strain gauges were attached to the longitudinal reinforcement in beams B2,
as illustrated in Figure 6.38.b. The purpose was to control the maximum tensile strains
(strain gauges 1-2) and confirm readings at the centre of the critical shear span, where the
bending moment is zero (strain gauges 3-10). The strain gauges were placed in pairs, one

on top and the other on the bottom of the reinforcement bar, to take flexure into account.
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Relative crack displacements

The crack opening and sliding were monitored using three different methods, similarly as
in beams A (see section 6.3.3): crosses of Demec targets, crosses of LVTDs and crosses
of photogrammetric targets. The first two methods were effective, while the
photogrammetric approach only provided reliable answers in some specimens with large

crack widths (beam BL1).

The dense demec grid shown in Figure 6.38.a and b for beams B allowed monitoring
several of the initial and main shear cracks without knowing their location a priori.
However, this process was time consuming and a simpler mesh was adopted for beams C
(Figure 6.38.c and d); additional demec crosses were attached to beams C once the shear
cracks had formed. On the other side of the beam (South side), three crosses of LVTDs
(70mm gauge length) were placed after pre-cracking the specimen at different levels of
the critical cracks and other shear cracks (Figure 6.39). Only two crosses of LVTDs were

available for beams C.

Figure 6.39: Cross of LVTDs placed after pre-cracking the beam (South Side, BG1)
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6.5.4 Results

Summary of experimental results

Table 6.8 summarises the most important experimental values obtained for beams B and
C. Beams failed in either strut crushing or excessive straining of the stirrups; the type of
failure is described in further detailed in next section. In all the beams the stirrups yielded
at failure. The longitudinal reinforcement remained in the elastic range and the overall

asymmetrical behaviour (deflections and reactions) was satisfactory reproduced.

In Table 6.8, 5*ce,m is the vertical deflection measured relative to the floor, under the
central load point at the ultimate load (P,;). P., is the total load at which the first shear

crack was observed and P,,,; the load at which the beam was unloaded.

*

.ﬁ" pvfw 5centre Pcr Punl Pult Shear
[MPa] | [MPa] | [mm] | [kN] [kN] [kN] Failure
BGI | 31.70 | 2.73 5.29 300 550 950.63 Shear-comp.*
BG2 | 31.70 | 4.55 5.43 300 600 1074.13 | Crack widening*
BL1 | 53.11 | 2.73 4.90 400 500 1169.09 | Crack widening
BL2 | 53.11 | 4.55 6.02 300 700 1593.93 Shear-comp.

e ————————————————————————————————————————————————————

CBl | 4935 | 1.96 3.14 400 500 1029.34 | Crack widening
CB2 | 4935 | 294 5.99 450 900 1429.02 | Crack widening
CAI | 4935 | 196 | 4.23 400 500 979.85 | Crack widening
CA2 | 4935 | 294 | 4.76 450 1000 1395.54 | Crack widening

Beam

Note: ~ Failure of these beams was accompanied with bond cracking

Table 6.8: Summary of experimental results of Beams B and C

Crack pattern and type of failure

The crack pattern at early and middle stages of loading was similar for all beams and only
the development of these cracks near failure was different. At early load stages (around
300kN) initial shear cracks formed, which were oriented 45° or steeper, and formed a
clear fan shape from the loading points. These cracks are labelled as cracks 1 in Figure
6.40. At higher loads, pure flexural cracks started forming under the points of maximum
bending moments (cracks 3 in Figure 6.40). Two main shear cracks (cracks 2), which
were flatter than shear cracks 1 (around 35°), formed at intermediate loading. At this load
stage, the beam was unloaded and instrumentation was placed around cracks 2. In beams
with larger number of stirrups (beams B2), cracks 2 were smeared out into several closely
spaced parallel cracks, see Figure 6.41 and 6.42. The crack pattern of the critical shear

span of beams B and C is given in Figures 6.41, 6.42 and 6.49.
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Figure 6.40: Typical crack pattern in beams B and C (beam CA2)
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Figure 6.41: Crack pattern of beams B at critical span
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Figure 6.42: Crack pattern of beams C at critical span

The crack pattern in the short shear spans was similar to those described in section 6.3.4

for the short span beams. However, these cracks did not become critical in beams B-C.

It is important to highlight that the inclination and position of the cracks were very similar
in the limestone (BL) and gravel (BG) beams as shown in Figure 6.41. The only
difference was that a larger amount of cracks appeared in the limestone beams compared
with the gravel ones. At failure, beams BG had a splitting type of crack along the

longitudinal reinforcement, which initiated at the start of the shear crack (around the point
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of contra-flexure), see Figure 6.41. In the literature this is often denoted as “bond failure”,
although this term is subjective since it can occur in combination with other types of shear

failures.

In beams CA1, CBI1 and BL1, which had the lowest stirrup indexes, failure was due to
excessive straining of the stirrups crossed by the main diagonal crack, which is denoted as
“crack widening” in Table 6.8. At failure, the diagonal crack extended to the loading
point and started widening quite considerably. The load reached its peak value and

remained constant for a short period of time as the crack got wider.

Beams CA2/CB2 had a similar behaviour but several shear cracks got wider
simultaneously (Figure 6.42) as opposed to one in beams Cl and BL1. Well after
reaching the failure load, new cracks formed at top and bottom of the beam along the
flexural reinforcement and in many cases the concrete cover was push out. This was very
explosive for beams CA1 and CA2 since many of the stirrups crossed by the critical crack
fractured at this stage, see Figure 6.43. The concrete cover was pushed out in some cases
due to failure of the anchorage length of the stirrups. The anchorage of the stirrups was
staggered in order to avoid weak points but it remains questionable whether this could
have had an influence on the ultimate load. It is noteworthy that the failure loads of beams

CB were very similar to their equivalent beams CA.

Figure 6.43: Left- necking of stirrups; Centre- fracture of stirrup; Right- spalling of concrete cover

due to anchorage failure of stirrups

Beam BG2 and BL2 failed due to shear-compression. Once the ultimate load was reached
in beam BL2, the diagonal strut split in the out-of-plane direction. This led to spalling of
the concrete at the top and bottom and detaching of the lateral walls of the beam from the

main core (Figure 6.44). On the other hand, beam BG2 the strut split at the level of the

215



Chapter 6 — Beam Tests

reinforcement in a typical horizontal bond crack. This was confirmed by two additional
cracks, which were observed at top and bottom faces of the beam (Figure 6.44). These
cracks ran longitudinally at middle of the width of the beam and were located

immediately above/below the horizontal bond cracks with similar length.
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Figure 6.44: Post-failure cracks: Lefi- beam BL2; Right- beam BG2

Load-deflection curves
The maximum vertical deflections (~6mm) were registered under the two loading points,

which were very similar to each other as expected. The deflections at the cantilever
loading point were slightly lower (10-30%) than those measured at the central loading
point, see Figure 6.45. The deflections shown in Figure 6.45 are given relative to the floor

for beams B in order to compare the results with deflections at the cantilever loading

point and photogrammetric targets.

1200
—— BG1-Cantilever
——BGI-C. Load
1000 -
o BGI- C. Load (PHOTO)
—a— BGl- Centre (PHOTO)
z 800 1 —— BG2- Cantilever
= — BG2-C. Load
g 0007 0 BG2- C. Load (PHOTO)
3 400 —o— BG2- Centre (PHOTO)
200 -
0d

0o 1 2 3 4 5 6 7 8 9 10

Deflection [mm]

Note: deflections are measured relative to the floor

Figure 6.45: Vertical displacements of beams B at loading points and centre of critical span
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BLI1-Cantilever
———BLI-Centre
——BLI1-C.Load

BL2- Cantilever
——BL2-Centre
——BL2-C.Load

Load [KN]

\
0 1 2 3 4 5 6 7 8 9 10

Deflection [mm]

Figure 6.45 (Cont.): Vertical displacements of beams B at loading points and centre of critical
span

It is important to highlight that the curves shown in Figures 6.45 and 6.46 correspond to
loading once the beams had already been pre-cracked and therefore the change in stiffness
at early load stages is not reflected. The LVTD readings were in good agreement with
photogrammetric measurements, which are shown as dots in Figure 6.45. Deflections at
the centre of the critical span were small in both beams B and C (see Figures 6.45 and

6.47), except for beam BG2 where they were similar to the ones at the cantilever end.

Beams with fewer amount of stirrups (beams C and BL1) had a load plateau near failure,
as shown in Figures 6.45 and 6.46. Beams CB had a slightly higher ductility than beams
CA, although the difference was not significant.
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0 0 2 4
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Note: deflections are measured relative to the frame

Figure 6.46: Vertical displacements of beams C at central loading point and centre of critical span
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The

overall kinematics of the beams can be clearly seen in Figure 6.47, which was

obtained from the photogrammetric analysis. The horizontal and end rotation, given by

tran

scal

sducers #5 and 6, confirmed the values shown in Figure 6.47 (deflected shape is

ed by 50). The horizontal displacement (/) and end rotation for beams B are shown in

Figure 6.48. Results for beams C are not shown in Figure 6.48 for clarity, although the

data followed the same path for H and end rotation and so can be easily extrapolated

using their ultimate load. Lastly, the out-of-plane deformations, measured by transducer

#2, were negligible (<0.1mm) as for beams A and B0.
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Figure 6.47: Global displacements of beam BL2 at failure (1500kN)
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H and Rotation in beams C followed the same path as beams B, results can be extrapolated using the
corresponding ultimate load

Figure 6.48: Horizontal displacement and rotation of simply supported end (beams B)

Figure 6.49 shows the photos taken from the beam test inmediatly before failure. As

explain in next section the position of the cracks had an effect on Demec readings.
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Figure 6.49: Photogrammetric monitoring in beams B and C
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1

CB

CAl

CB2

CA2

Figure 6.49: Photogrammetric monitoring in beams B and C
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Strains at sections with maximum bending moments

The horizontal strains, which were measured with the Demec gauge, at points of
maximum bending moments are shown in Figure 6.50 and 6.51 for beams B and C
respectively. The experimental data showed that the longitudinal reinforcement did not
yield in any of the beams. The maximum compression strain recorded was 1.5 %o in BL2.
In many cases, the demec readings at the outer reinforcement were relatively low
compared with the rest of the cross section. This was confirmed by strain gauges available
in beams B2, which provided slightly higher values than the demec gauges. Similarly as
in beams A, the oscillations in the strain profiles were due to crack bypassing the demec
gauge readings; see circle mark in Figure 6.49 for beam BG1 and corresponding strain
readings in Figure 6.50. Beams C showed more uniform strain profiles (Figure 6.50).
According to the experimental data shown in Figure 6.51 the depth of the neutral fibre in

beams C was around 150mm.
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Figure 6.50: Horizontal strains at sections of maximum bending moments (beams B)
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Figure 6.50 (Cont.): Horizontal strains at sections of maximum bending moments (beams B)
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Figure 6.51: Horizontal strains at sections of maximum bending moments (beams C)
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Figure 6.51 (Cont.): Horizontal strains at sections of maximum bending moments (beams C)
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Strains in stirrups

According to the demec gauge readings, the stirrups had the maximum strains at the level
where they were crossed by the main shear cracks (Figure 6.52). For beams B, refer to
Figure 8.33. Three readings were taken per stirrup, which relate to sectors A to C (top to
bottom); results are shown for the sector with highest strains, which is highlighted. All the
central stirrups in beams B and C yielded at failure (Figures 6.52 and 8.33). However the
strains were lower in beam BG2, which had the highest stirrup index. In BG2, only
central stirrups S5, 6, 7 and 9 seemed to yield. The yielding strain of the stirrups was

2.75%o and 3%o for beams B and C respectively.

In all cases, the first stirrup in the shear span nearest to the loading plate was significantly
less effective than the other stirrups in the shear span (Figure 6.52 and 8.33). This effect
was most significant in beams B, where the outer stirrups were close to the supports. The
stirrups in the short spans did not yield in any of the beams tested, with maximum strain

values of 2.45 %o, although this is an average value so the peak may have been greater.
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Figure 6.52: Maximum strains in stirrups in the critical shear span (beams C)
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Figure 6.52 (Cont.): Maximum strains in stirrups in the critical shear span (beams C)
The variation of strain along the stirrup was dependant on the number of shear cracks
crossing the stirrup. In beams with larger p, ratios, stirrups at the centre of the critical
span, which were crossed by at least three shear cracks, had an uniform strain distribution
as shown in Figure 6.53. In stirrups closer to the supports, the strains began to localize

more towards the compression head.
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Figure 6.53: Strain distribution along stirrups in beams CB (strains in %o)
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Strains in the longitudinal reinforcement

Figure 6.54 shows the strain distribution along the longitudinal reinforcement, between
centre lines of the bearing plates at the critical span, which was provided by the Demec
gauge. The readings had high fluctuations along the reinforcement bar, especially near
failure at the inner layers. Again, these oscillations were due to the presence of cracks

crossing the Demec gauge.

In spite of the scatter in the Demec readings shown in Figure 6.54, the results were fairly
symmetrical with respect to the top and bottom layers. According to experimental data
shown in Figure 6.54, the longitudinal reinforcement working in tension extended a
length of around 270mm from the point of contra-flexure (M=0 at 770mm from the centre

line of the support, Figure 6.54). This length was consistent in all beams tested.
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Figure 6.54 (Cont.): Strains in the longitudinal reinforcement (Demec gauge readings)
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The experimental data from the strain gauges, which were placed in beams B2 (Figure
6.55), seemed to be more representative than readings from the Demec gauge. The values
recorded by the strain gauges under the central loading point (SG 1-2) were around 40%
larger than those obtained from the Demec gauge, as shown in Figure 6.55. However, the

strains remained on the elastic range, even for the most heavily loaded beam BL2.
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Figure 6.55: Strains in the longitudinal reinforcement in beam B2 (strain gauge readings)
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Relative crack displacements

Figures 6.56 and 6.57 show the crack opening and sliding obtained experimentally for
beams B and C respectively. The results, which relate to the loading after the beam had
been pre-cracked, are divided into two groups according to the type of crack; namely
crack 1 and 2 (refer to Figure 6.40). Crack 1 refer to the steeper cracks that formed at the
extremes of the shear span, while cracks 2 corresponded to the flatter shear cracks that
formed at later load stages. Only Demec readings with one crack going through the
Demec cross were considered. Sliding is taken as positive when the block below the crack

moved downwards with respect the block above.

The predominant mode (opening or sliding) of the cracks varied depending on the type of
crack and loading stage. At early load stages, the cracks that formed at the pre-cracking
stage reopened, hence the predominant mode was opening over sliding. The ratio (ow/ds)
at this stage varied between 3 and 4, see Figures 6.56-6.57. Once the load reached the
point at which the beam was unloaded at the pre-cracking stage, the ow/ds ratio
decreased. In the majority of the cases, the sliding increased significantly and the ow/ds
ratio became closer to 1.5. The largest crack widths at the critical crack were recorded in
beams C (~1.25mm). In general, crack widths were around 0.75-1mm near failure.
Measurements of crack opening and sliding showed fairly constant values along the
cracks, as shown in Figures 6.56 and 6.57. These results, along with data from the Push-
off tests, were applied in order to estimate the shear stresses transmitted at the cracks by

means of aggregate interlock (see section 8.3.3).

In general, visual readings taken with the microscopic ruler had an excellent agreement
with Demec and LVTD measurements, as shown in Figures 6.56 and 6.57. In addition,
readings from the photogrammetric analysis were used to assess the crack opening and
sliding. Although the results were reasonable in some beams (see BL1 in Figure 6.56),
large oscillations of these measurements along cracks were obtained in many others.
These results were unrealistic in many cases and were inconsistent with neither visual nor
LVTD data, which showed much more uniform values. This inaccuracy in the
photogrammetric measurements was not observed in the push-off tests shown in chapter
4. This suggests that errors were probably induced due an excessive working distance
between the camera and the beam, which was required on the other hand in order to cover
the entire shear span. Beam BL1, in which the results were acceptable, the grid of targets

was dense (75mm) and the crack widths were considerably wide.
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Figure 6.56: Crack opening and sliding in beams B
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Figure 6.56 (Cont.): Crack opening and sliding in beams B
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Figure 6.57: Crack opening and sliding in beams C
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Figure 6.57 (Cont.): Crack opening and sliding in beams C
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6.6 Slender beams with stirrups (Beams D)

6.6.1 General aspects

An additional two beams (beams DBl and DAI1), which contained same shear
reinforcement ratio and type of stirrups as beams CB1 and CA1, were tested in order to
assess the influence of the type of loading in the shear response. Beams D were simply
supported, as beams B0, and so two additional T25 reinforcement bars at the bottom
(refer to Figure 6.58) were required to avoid yielding of the flexural reinforcement. The
central span was 3040mm long (a/d=3.68), measured between centrelines of the supports.

The loading and support plates used were identical as for beams C.
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Note: Sect 2 is placed at a distance of 425mm (~d=412.5mm) from the edge of the loading plate
Sect 3 is placed at the centre of the shear span; Sect 4 is 245mm from the centre of the support

Figure 6.58: Slender beams with stirrups (Beams D)

Beams D were cast along with beams C using the same concrete, refer to mix 5 in section
6.2.2. The main geometrical/material properties and experimental results of beams D are

summarised in Figure 6.58 and Table 6.9.

f‘f, f;l Yo pv-f;v o centre P Py Py
[MPa] | [MPa] | [%] | [MPa] | [mm] [KN] [KN] [kN]
DAI | 49.35 580 4.46 1.96 14.87 200 400 622.74
DBI1 | 49.35 580 4.46 1.96 13.84 200 400 598.43

Beam

Note: deflection at peak load O, is given relative to the floor

Table 6.9: Summary of experimental results of slender beams with shear reinforcement

6.6.2 Manufacture and curing
Same procedure described for beams C (see section 6.5.2) applies for the manufacture and

curing of the slender beams with stirrups.
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6.6.3 Instrumentation

Similarly as in beams B0, load was monitored by two load cells (1000kN), one placed
under the hydraulic jack and the other located under one support. Vertical displacements
were recorded at centre and quarter points of the length of the beam with respect the
supports, using a similar frame as in beams B0 (see Figure 6.26). In addition, deflections
at the centre of the beam were measured relative to the floor. Lastly, two transducers were
placed at the end of the beam to measure horizontal displacements and rotation similarly

as in beams A, B and C (see Figures 6.8 and 6.37).

A grid of Demec discs was used (see Figure 6.58) to measure horizontal strains at several
levels of the beam. Measurements include several sections along the beam (refer to Figure
6.58); central section of the beam (Sect 1), section at a distance from the edge of the
loading plate approximately equal to the effective depth (Sect 2), central section of the
shear span (Sect 3) and section near the supports (Sect 4). Strains in the longitudinal
reinforcement were also monitored with the Demec gauge. Crack opening and sliding
were measured in a similar manner as in beams A, B and C; Demec and LVTD crosses
were placed after pre-cracking the specimens (see Table 6.9 for load at which beam was

unloaded P,,).

6.6.4 Results
Type of failure and crack pattern

Equally as in beams C, the ultimate loads in beams DA and DB were very similar to each
other (see Table 6.9). Failure in beams D was due to excessive straining of the stirrups
crossed by the critical crack in a similar fashion as beams C. Stirrups fractured in both

beams DA1 and DBI1.

The crack patter was rather different in beams D compared with beams B or C, which was
expected due to the interaction between bending and shear. The crack patterns of beams
DA1 and DBI are shown in Figure 6.59; thin lines represent cracks that formed after
reaching the ultimate load. First shear cracks to appear (200-300kN), had an inclination
with respect the longitudinal reinforcement of around 45°. At loads near failure (500-
550kN) these steep cracks were either crossed by new flatter shear cracks or they
extended towards the supports with a much flatter angle (Figure 6.59). The presence of
flatter cracks crossing previous steeper cracks indicated a clear strut reorientation to

mobilize more stirrups. It is well documented in beam tests found in the literature that
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new cracks can cross previous shear cracks due to this strut reorientation. However this

was not observed in any of other beam tests carried in this work (beams A, B and C).
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Figure 6.59: Crack pattern in beams D
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Load-deflection curves

The load-deflections curves shown in Figure 6.60, were almost identical for beam DA
and DB1, reaching a maximum deflection at the centre of around 13mm. These values are
around three times larger those obtained with similar shear forces in beam C1, which had
a point of contra-flexure. The measurements taken relative to the floor in beams D were
similar to those taken relative to the frame. Vertical deflections at quarter points were

around half the values at the centre.
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Figure 6.60: Vertical displacements of beams D (loading after pre-cracking the specimens)

Similarly as in beams A (see Figure 6.17), the end displacements (horizontal and rotation)
measured experimentally, clearly showed which shear span was critical. Beam DB1 failed
at the shear span where the transducers were placed, and so the horizontal displacements
changed sign at failure. This indicated that once the beam started failing, the block above

the critical crack started moving inwards, as opposed to outwards during normal loading.
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Figure 6.61: End displacements (horizontal and rotation) of beams D
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Strains at different sections along the beam

The horizontal strains measured at different heights and sections of the beam were similar

for beams DB1 and DA, as shown in Figure 6.62. The results are shown at different

sections of the critical shear span (Sect 1 to 4, according to Figure 6.58). The critical

crack formed at a distance approximately equal to the effective depth of the beam,

measured from the edge of the loading plate. The maximum compression strains

registered at the centre of the beam were 2%o. In tension, the maximum strains obtained at

the lower reinforcement layers were near the yielding point. The horizontal tensile strains

at section of almost zero bending moments were around 0.75-1%o.
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Strains in stirrups

Stirrups at the centre of the shear span yielded at failure. In both beams DA1 and DB1
several stirrups that were crossed by the critical shear crack fractured; for example stirrup
S8 in beam DB1 (see Figure 6.63). The strain readings from the Demec gauge at the
critical shear span (Figure 6.63) indicated that the outer stirrups were less effective,
similar as in beams A, B and C. The results are plotted for the sector of the stirrup that

was crossed by the main shear crack and hence had the highest strains.
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Figure 6.63: Maximum strains in stirrups in the critical shear span (beams D)
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Strains in the longitudinal reinforcement

Again, strain readings along the longitudinal reinforcement taken with the Demec gauge
had large oscillations especially at the centre of the shear span (see Figure 6.64). This was
worse in beam DBI1 than in beam DAI1, where the results seemed more realistic. As

mentioned earlier, the strains were near the yielding point at the centre of beam DA1.
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Figure 6.64: Strains in the longitudinal reinforcement (Demec gauge readings)

Relative crack displacements

The crack opening and sliding at different shear cracks are shown in Figure 6.65 for both
shear spans. Only Demec readings with one crack going through the Demec cross were
considered and again sliding was taken as positive when the block below the crack moved

downwards with respect the block above.

Similarly as in beams B and C, the crack opened more rapidly at early load stages until
the same load at which the beam was unloaded was reached. Again, the ow/os ratio after
the pre-cracking load was reached was generally around 1.5 and decreased down to 1 at
failure, as shown in Figure 6.66. The magnitude of the crack widths was similar as in
beams C1 (0.75-1mm at failure). Measurements were validated by visual readings taken

with the optical ruler.
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Figure 6.65: Crack opening and sliding in beams D at critical and not critical shear spans
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Figure 6.66: Crack opening and sliding variations in beams D

6.7 Conclusions

Valuable experimental data has been obtained from a total of 22 beam tests regarding
ultimate loads, strains, crack patterns and opening/sliding of shear cracks. Tests consisted
of several series which covered a wide range of shear reinforcement ratios, geometries
and load arrangements; tests included short span and slender beams (with and without
stirrups) and continuous beams with stirrups. Although all beams failed in shear, several
types of shear failing mechanisms were observed depending on the beam slenderness,

shear reinforcement ratio and concrete strength.

As expected, the crack pattern was significantly different between these beam series. The
critical shear cracks in the short span beams and continuous beams remained independent
from flexural cracks, which was not the case for the simply supported beams. Shear
cracks that formed near failure crossed previous 45° shear cracks in the simply supported
beams with stirrups. However, this did not occur in identical beams loaded with a point of
contra-flexure. The critical shear crack remained stable until failure in all beams tested,
except in the slender beams without stirrups, where failure occurred immediately after the

main diagonal crack formed.

Geometrical aspects, such as the size of the bearing plates or exact location of the shear
reinforcement, were found to be critical in many of the beam tests. These parameters,
which are in many cases not reported by researchers, can have an influence on the

ultimate load if they are not detailed properly. The relative position of the stirrups can be

243



Chapter 6 — Beam Tests

critical since stirrups nearer the supports are less effective than those placed at the centre
of the shear span, as shown by the strain readings obtained experimentally. On the other
hand, the different size of the bearing plates used at the supports of the short span beams
tested, showed that failure can be forced in one of the shear spans by increasing the size
of one plate from 125 to 200mm. Lastly, the experimental results from the control
specimens tested showed the relevance of testing cylinders in addition to cube specimens,

since the transformation factor between them was not constant, as assumed in practice.

The type of aggregate used had a significant influence on the crack roughness. Aggregate
fractured at cracks in beams made with limestone aggregate (f. =68MPa and 53MPa),
which resulted on much smoother cracks than equivalent beams made with gravel
(f.=80MPa and 31MPa), where the crack went round the aggregate. This occurred in
beams independently of the load arrangement and amount of shear reinforcement used in
the test. The consequences of aggregate fracture on the shear stresses transmitted along
cracks in the beams, is studied in chapters 7 and 8 in light of data (crack opening and

sliding) provided by the push-off and beam tests.

In general, crack opening (w) was predominant over crack sliding (s). However, the ow/ds
ratio was considerably larger in short span beams (ow/ds=3), independently of the type of
aggregate used. In general the ow/os ratio in slender beams with stirrups was around 1.5.
Crack opening readings at different heights of the beam indicated that the crack width

was fairly uniform along its length, especially once the crack had fully developed.

Measurements taken in the tests were validated using different techniques, combining
conventional with more innovative methods, such as digital photogrammetry. Strains
were measured with either strain or Demec gauges. Both types of measurements were in
good agreement in most of the cases. However, measurements along the flexural
reinforcement were highly influenced by the presence of flexural cracks resulting in large
oscillations in the Demec gauge data. Visual readings of the crack openings were
consistent with the experimental data from either Demec or LVTDs crosses. Digital
photogrammetry was found to be a useful tool since it allowed to measure deflections at
several points of the beam. Measurements had an excellent agreement with traditional
LVTDs placed along the beam. However, this method was not accurate enough in order
to neither obtain reliable readings for strains nor relative crack displacements, due to the
large working distance required. Although digital photogrammetry still has considerable

margin for improvement, the results shown in this work look quite promising.
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CHAPTER 7 - Analysis of Short Span Beams

7.1 Introduction

There are many instances, in the design of concrete structures, where loads are applied
within 2d of the supports. Typical examples include corbels, pile caps, hammerhead piers,
deep beams and short span beams. Early experimental and analytical work by Kani [127],
Zsutty [128] and Regan [129] showed that the shear strength of reinforced concrete beams
is highly influenced by the location of the load with respect the support. It was observed
that shear strength increases significantly due to arching action when loads are applied
within approximately twice the beams effective depth of the support. Design codes such
as BS8110 allow for arching action by increasing the basic shear strength of the concrete
by a factor 1/4 equal to 2d/a,, where a, is the clear shear span and d is the effective depth
as defined in Figure 7.1. EC2 adopts the alternative approach of reducing the component

of shear force due to loads applied within 2d of the support by the factor f.

Considerable experimental work has been carried out over the past 50 years into the shear
behaviour of RC beams, with particular emphasis on slender beams with shear span to
effective depth ratios (a,/d) higher than 2 and on deep beams with a,/d lower than 1. Short
span beams with a,/d ratios ranging from 1 to 2, have been studied to a lesser extent.
Early work by Clark [130] and Zsutty [128] provided the first empirical formulations for
short span beams, which failed in diagonal tension type of failure, that led to design

equations used in the ACI codes.

The behaviour of short span beams is significantly different from normal and deep beams.
In short span beams the diagonal crack forms independently of the flexural cracks and

remains stable until failure. The diagonal crack typically runs in a straight line from the
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inner edges of the loading plates (see Figure 7.1). Shear strength and ductility can be
enhanced by adding transverse reinforcement. Vertical stirrups have been shown to be
more efficient than horizontal links for a,/d larger than 1 (Kong & Robins [131]). Design
codes usually recommend that horizontal stirrups are used in beams with a,/d less than
0.5. Vertical stirrups increase the shear strength if they cross the diagonal shear crack and
are considered effective for design purposes if placed within the central three quarters of

the clear shear span a,.

T~
/
-

Enhancement factor (EC2) f=av/2d ‘ ‘ Load

lies (Effective Stirrupsy

. i < /
NREALEN o a
g S g
. ¥ P
B 4. k . B 7 O

Roller Support

Figure 7.1: Typical crack pattern in short span beams (Beam AL3)

Two main load paths are commonly distinguished in short span beams with stirrups (see
Figure 7.1) as discussed by Walraven & Lehwalter [132], Marti [133], Regan [129],
Schlaich & Schaffer [35]. Firstly, a proportion of the load is transmitted directly from the
loading plate to the support through a direct strut (Strut I). The second load path is the
truss mechanism provided by the stirrups (Strut II-stirrups—Strut III). The main
uncertainty is the percentage of load that is carried by each load path since the system is
statically indeterminate. In addition, the influence of aggregate interlock and how the load
is transmitted through the crack is unclear. The sensitivity of the shear strength
predictions of short span beams to parameters such as the size of the bearing plates,
concrete cover to the flexural reinforcement and anchorage length depends significantly

on the method of analysis.

In this chapter, several design methods for short span beams with and without stirrups that
are available in MC90, BS8110 and EC2 are investigated. A simple strut-and-tie model

(STM) is presented to estimate the shear strength of short span beams which gives a good
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correlation with experimental results. The STM model for short span beams is consistent
with the EC2 recommendations for strut-and-tie models. The model is also shown to give
reasonable predictions of the failure load of short span beams reinforced in shear with
externally-bonded carbon fibre reinforced polymer sheets (CFRP). The influence of the
crack development into the effective strength of the direct strut is investigated, along with
the consequences of aggregate fracture. The analytical results from the STM models are
compared with the experimental results of beams A and numerical predictions from the

author’s non-linear finite element models (NLFEA).
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7.2 Short span beams without transverse reinforcement

Transverse reinforcement is often not required for strength in short span beams due to the
enhanced shear strength provided by arching action. The entire load is transferred to the
support in a direct strut as shown in Figure 7.2 in beams where stirrups are not provided.
Despite the simplicity of the strut-and-tie model (STM) shown in Figure 7.2, there are
several uncertainties in terms of load redistribution after the diagonal crack has formed. In
addition, although the assumptions made in the strut-and-tie model in terms of geometry
and effectiveness material strength factors are practical for design purposes, they are a

tark tation of the real behaviour.
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Figure 7.2: Strut-and-tie model for a short span beam without stirrups
According to Regan [129], two major types of failure can occur in short span beams:

1. Shear-compression failure: due to crushing of the diagonal strut over the inclined

crack.

2. Shear-proper failure: the diagonal crack runs straight from the inner edges of the

support to the loading plate, separating the beam into two parts.

Other types of failure are related to local effects such as bearing failure or loss of dowel
action following the developments of a crack along the flexural reinforcement adjacent to
the support. Local failures can be avoided by providing sufficient bearing length at the

support/loading plates and sufficient anchorage length respectively.
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7.2.1 Existing design methods

The design method suggested in EC2 and BS8110 for short span beams without
transverse reinforcement is a sectional method based on empirical formulations. All shear
resisting components such as shear at the compression zone, aggregate interlock and
dowel action are assessed in one single term V4., which represents the shear strength of
the beam without transverse reinforcement. V.. is given by the empirical equations (7.1)
and (7.2) below in EC2 and BS8110 respectively. Equations (7.1) and (7.2) take into

account size effects, dowel action, shear resisted in the compression zone and concrete

strength.
Ve (EC2) = 0.18(100.p, £, )" .(1 +./200/d )bd .. (7.1)
Ve (BS8110) = 0.27.(100.p, 1., ) (400/d ) bd .. (72)

where p) = Ay/(bd) ; for = cylinder strength; £, = cube strength; d = effective strength; and
b = width of the member.

BS8110 takes into account the increase in strength due to arching action by increasing
Vra by an “enhancement” factor equal to 2d/a, where d is the effective depth and a, is the
clear shear span. EC2 adopts an alternative approach of reducing the design shear force

by f~a,/2d.

EC2 permits the use of the strut-and-tie method for designing short span beams as an
alternative approach to its empirical formula. This raises the question whether to apply
strut-and-tie provisions or Veuancea for design since both approaches can produce

significantly different solutions.

7.2.2 Proposed Strut-and-Tie model

The simple strut-and-tie model shown in Figure 7.2, which is similar to that proposed by
Vollum & Tay [134] amongst others, was used by the author to estimate the strength of
short span beams without stirrups. The stresses in the nodes were assumed to be non-
hydrostatic, hence the normal stresses at each face were different. The dimensions of the
bottom node are defined by the bearing length /, and the concrete cover c. In addition, the
width of the direct strut was estimated from the geometry of the bottom node. The strut-
and-tie model is applicable to beams with either one or two symmetrically placed

concentrated loads.
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In the strut-and-tie model shown in Figure 7.2, expression (7.3) is obtained from stating

equilibrium at the top node.

P=4f btan 9% .. (13)

. . [, .(2 - n,p) . .
=d—-a .tanf and a =a — ; nj, = number of loading points (1 or 2).

where -
The load P is the total load applied so the shear force V' is equal to P/2 for both cases of
one and two loading points. The notation £, and f;,, refers to the concrete strength at the
bottom and top nodes while f., and f., correspond to the concrete strength of the strut at
the top and bottom respectively (refer to Figure 7.2). These concrete strength values were
taken from the latest EC2 draft and were compared with previous recommended values

suggested in MC90 or Collins & Mitchell [11], see Table 7.1.

Method Uncracked (top) Cracked (bottom)

STM-MC90 Sest =fent = 0.85(1-fc/250) fer | fesp = fenr = 0.6(1-fc1/250).fox

STM-Collins” Sost = fomt = for fosh = fonp = for/(0.8+170.£,%)
Strut without transv. tension Strut with transv. tension
est = Je " = 0.6(1-£.4/250).1.
STM.EC2 Sest = fex Sesb (1-fc/250).fex
Node (C-C) Node (C-T)
ent = (1-fei/250).fer fenv = 0.85(1-4/250) 1ok

Note: * &= g+(g+0.002).co’ @ where &, is the strain in the tie (Collins & Mitchell [11])

Table 7.1: Concrete strengths applied in the STM

In order to solve for P and @ in equation (7.3), an additional equation is needed. This
relationship is obtained from the failure mode taken into account. Six different modes of
failure were considered in order to obtain the shear strength. However, the critical failure
mode was in most cases crushing in the strut (Mode 2). The failure modes examined are

listed below:
Mode I: Flexure.

B =24,.f, tan0 .. (7.4)
Mode 2: Crushing in strut at bottom node.

P, =2(l,.sin” @+ c.sin 26).f. , b .. (7.5)
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Mode 3: Crushing at rear face at the bottom node.

P, =4c.f, , b.tand ... (7.6)

Mode 4: Bearing failure at bottom node.
P,=2f1b .. (7.7)

Mode 5: Crushing in strut at top node.

1 S A b.sin® @
P, = 2("’Pf.sin2 0+ sin 29].b.fm = o s .. (7.8)
2 2 1-7et cos* @
cnt
Mode 6: Bearing failure at top node.
F,=n,f,.1lb .. (7.9)

Iterating for different values of &, a converged solution is found for each failure mode that
satisfied both equation (7.3) and the corresponding mode of failure constraint (7.4 to 7.9).
From the three references shown in Table 7.1, only EC2 distinguishes between an
effective concrete strength for the strut and nodes. If the concrete strengths suggested by
MC90 or Collins & Mitchell’s [11] formula are applied, Mode 5 coincides with Mode 6.
This can be seen clearly by taking f.;; = f.,, in equations 7.8 and 7.9. The proposal by
Collins & Mitchell [11] relates the concrete strength of the strut to the tensile strain of the
tie in order to satisfy compatibility of deformations at the bottom node. A converged
solution similar to STM-MC90 prediction was obtained using the softening model

suggested by Collins & Mitchell [11].

The critical failure mode predicted by the three methods investigated varied as shown in
Tables 7.2 to 7.4. In general, the governing failure mode predicted by STM-EC2 was
Mode 2, which corresponds to strut crushing at the bottom node. On the other hand, Mode
3 (failing of the rear face of the bottom node) was critical in STM-MC90 and STM-
Collins approaches. This type of failure mode is generally neglected by the codes and no
check is required as long as the reinforcement anchorage length is sufficient. Neglecting
Mode 3 in the STM-MC90 approach results in identical results to STM-EC2 since Mode
2 becomes critical in both; on the other hand the STM-Collins predictions showed a slight

improvement, as shown in the next section.
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According to STM, failure is governed by the bottom node. As reported by Vollum & Tay
[134], it is not clear whether this is consistent with experimental evidence since failure
generally occurs by crushing of the concrete at the top node. In addition, it is debatable
which value of the effective concrete strength should be used for the strut at the top node.
No solution is generally found for Mode 5 (strut crushing at the top node) using EC2
concrete strengths shown in Table 7.1. This can be explained by solving analytically
equations (7.3) and (7.8). A cubic relationship F(zan6) is obtained, see equation (7.10), in
which R is the ratio between f../f..; assumed. The roots of equation (7.10) provide the
solution to the problem; at least one root is a real number. However, depending on the
coefficients of the cubic equation, the root can become negative. This is usually the case

for R>1 using normal values of /,, a and d (see Figure 7.3).

RIt
F(tand) = tan® 0 — C{tan2¢9+(1—R+n1’; . j.tan@— d*(l—R) ... (7.10)
a a a

As discussed earlier, for MC90 and Collins & Mitchell’s [11] formulas, Mode 5 is
equivalent to Mode 6 (bearing failure at top plate) since R=1. On the other hand, the value
of R in EC2 according to Table 7.1 would be 1/vwhere v=(1-f;+/250); R values of 1.2 are
obtained for concretes of 40MPa. As discussed earlier, these values of R can be
problematic and only cases with very small load plates would lead to a solution in the
STM (see Figure 7.3). In addition, it is debatable whether the same strut effective factor
should be used for the top and bottom nodes (R=0.6). This alternative interpretation
would generally leads to a solution as shown in Figure 7.3. Results using this alternative

approach are discussed in next the section.
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Note: Beam BI-1 tested by Mathey & Watsein [135] (/,=/~=89mm, a*:610mm, fu=25.8MPa)
Figure 7.3: Converged solutions in STM for Mode 5 (strut crushing at the top node)
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7.2.3 Performance of existing design methods compared to proposed
strut-and-tie model (Experimental validation)

A total of 104 beams without stirrups, from fourteen different researchers [130-132, 134-
146] including the authors (see Tables 7.2 to 7.4) were analysed using the design methods
described in sections 7.2.1 and 7.2.2. The majority of the beams studied corresponded to
short span beams (67) although 15 deep beams with a,/d<l and 9 more slender beams
with a,/d>2 were included in the analysis in order to verify the range of validity of the

design methods. Results are summarized in Tables 7.2, 7.3 and 7.4 (3.=1).

The strut-and-tie methods (1-3 in Tables 7.2-7.4) were found to be more accurate than the
sectional approaches described in section 7.2.1 (4-5 in Tables 7.2-7.4). In addition, the
EC2 recommended values for the effective concrete strengths in the STM, provided better
estimates of the ultimate strength than the MC90 and Collins & Mitchell [11] approaches,

which gave more conservative results.

av/d <1 Pcalc/Ptest | F.M Pcalc/Ptest

d | b | f | pl | Ptest | 1-STM- | 2-STM- | 3-STM- 5

Author Beam Javid| | immy [P | %) | v | EC2 Mc90 | Coliins |* EC?| Bssi10
Walraven VI 069 160 250 18 152 330 | 0.64 M6| 0.76 M4| 093 M2| 0.77 | 0.78
& Lehwalter V022 072 360 250 20 113 540 | 0.85 Mé| 0.87 M2| 093 M2| 082 | 0.78

V511 0.73 560 250 20 1.12 700 0.90 :M2| 0.85 iM2| 097 M2| 0.88 0.82
V411 0.73 740 250 19 1.10 730 1.18 M2 1.12 iM2| 1.25 ‘M2| 1.05 0.96
V211 0.73 930 250 20 1.08 1010 | 1.07 iM2| 1.01 iM2| 1.13 ‘M2[ 0.92 0.83

Smith 0A0-44 0.67 305 102 20 1.93 280 0.78 :M2| 0.74 {M3| 0.83 |M3| 0.74 0.71
& Vantsiotis 0A0-48 0.67 305 102 21 1.93 272 0.82 :M2| 0.78 :M3| 0.87 M3| 0.77 0.73
Tan et al 1I-1/1.00 0.85 443 110 78  2.58 510 1.33 M2| 1.28 M3| 1.54 M3| 0.73 0.75
Kong S-10 0.83 216 76 23 1.75 220 0.56 \M2| 0.46 M3 - - | 0.44 0.42
D-10  0.83 216 76 24 1.75 238 0.52 :MI1| 0.44 M3 - - | 041 0.39

S-15 0.52 343 76 28 1.10 416 0.45 :M2| 0.41 {M4 - - | 048 0.45

D-15 0.52 343 76 28 1.10 474 0.40 M2| 0.36 M4 - - | 042 0.40

Oh H4300 094 500 130 49 1.56 675 0.92 :MI| 0.80 iM3| 0.86 M2| 0.51 0.48
& Shin N4200 0.54 500 130 24 1.56 530 0.82 1M2| 0.82 iM3| 1.02 M2| 0.89 0.83
H4200 0.54 500 130 49 1.56 802 1.00 iM2| 0.99 iM3| 1.15 ‘MI| 0.75 0.70

Clark DO-1 0.94 390 203 26 098 443 0.90 :MI1| 0.88 :M1| 090 MI1| 0.69 0.65
DO0-3 0.94 390 203 26 0.98 446 0.89 iMI1| 0.88 :M1| 0.90 MI1| 0.68 0.65

Tan & Lu 1-500/0.5 0.34 444 140 49  2.60 1700 | 0.48 :M2| 0.39 iM4| 0.81 MS5| 0.41 0.62

1-500/0.75 0.62 444 140 43 2,60 1400 | 0.47 :M2| 0.42 M4| 0.68 M3| 0.38 0.39

1-500/1.0 0.90 444 140 37 260 1140 | 045 M2| 042 M3| 049 M3| 0.31 0.32

Zhan & Tan 2DB35 095 314 80 27 1.25 170 0.79 iM2| 0.72 |M4| 0.82 ‘M2| 0.66 0.63
2DB50 0.93 459 80 32 1.15 271 0.73 1M2| 0.72 iM2| 0.77 iM2| 0.58 0.55

2DB70 0.92 650 80 25 1.28 311 0.66 :M2| 0.66 iM2| 0.75 {M2| 0.65 0.60

2DB100 092 926 80 31 1.26 483 0.74 :M2| 0.74 iM2| 0.82 iM2| 0.60 0.53

3DB35b 095 314 80 27 1.25 170 0.79 \M2| 0.72 iM4| 0.82 :M2| 0.66 0.63

3DB50b 0.94 454 115 28 1.28 334 0.80 1 M2| 0.78 {M4| 0.85 {M2| 0.66 0.62

3DB70b 0.93 642 160 29 1.22 721 0.69 iM2| 0.69 M2| 0.75 :M2| 0.56 0.52

3DB100b 0.94 904 230 29 120 1344 | 0.84 :M2| 0.80 iM4[ 0.87 M2| 0.57 0.51

1-STM- | 2-STM- | 3-STM- 5
Total = 8 EC2 Mc90 | cotins |* FC?| Bssi10
maxvalue= 095 930 250 78 260  Mean| 0.77 0.73 090 | 0.64 | 0.62
minvalue= 034 160 76 18 098 sp| 023 0.23 021 | 018 | o0.16

COV %| 2952 31.10 2284 | 2859 | 2631

Note: FM — Critical failure mode (M1- flexure, M2- crushing in strut at bottom node, M3- crushing at rear
face at the bottom node, M4- bearing failure at bottom node, M5- crushing in strut at top node, M6-
bearing failure at top node

Table 7.2: Summary of analysis of experimental data of beams without stirrups (a,/d <1)
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2 >av/d >1 Pcalc/Ptest | F.M Pcalc/Ptest
d b fc' pl Ptest | 1-STM- | 2-STM - | 3-STM - 5-
Author Beam |av/d (mm] | (mm] [ [MPa]| %] [kN| EC2 MC90 Collins 4-EC2 BSS110
Mathey BI-1 1.29 403 203 26 3.05 626 | 0.64 {M2| 0.58 M3| 0.55 M3| 0.46 0.50
& Watsein BI-2 1.29 403 203 23 3.05 621 0.59 {M2| 0.54 {M3| 0.50 iM3| 0.45 0.49

BII-3 1.29 403 203 22 1.88 524 0.67 iM2| 0.61 M3| 0.54 :M3| 0.5l 0.49
BIl-4 1.29 403 203 27 1.88 626 0.67 {M2| 0.60 ‘M3| 0.53 :M3| 0.46 0.43
BII-5  1.29 403 203 26 1.85 577 0.70 {M2| 0.64 M3| 0.56 :M3| 0.49 0.46
BII-6  1.29 403 203 26 1.85 581 0.70 iM2| 0.63 ‘M3| 0.55 :M3| 0.49 0.46
BIV-7  1.29 403 203 25 1.86 582 0.66 {M2| 0.60 iM3| 0.53 :M3| 0.48 0.45
BIV-8 129 403 203 25 1.86 608 0.65 {M2| 0.59 M3| 0.52 :M3| 0.46 0.44
BV-9  1.29 403 203 24 1.16 448 0.83 iM2| 0.75 :M3| 0.60 :M3| 0.52 0.49
BV-10 1.29 403 203 27 1.16 537 0.79 iM2| 0.72 iM3]| 0.57 :M3| 0.46 0.43
BVI-11  1.29 403 203 26 1.17 448 0.90 {M2| 0.81 ‘M3| 0.65 :M3| 0.54 0.51
BVI-12 129 403 203 26 1.17 537 0.75 {M2| 0.68 M3 | 0.55 iM3| 0.45 0.43
BV-13 129 403 203 23 0.75 445 0.81 iM2| 0.73 M3| 0.54 :M3| 045 0.43
BVI4  1.29 403 203 27 0.75 448 094 :M2| 0.85 iM3| 0.61 iM3| 0.47 0.45
BVI-15 129 403 203 26 0.75 359 1.13 iM2| 1.02 iM3]| 0.73 ‘M3| 0.58 0.55
BVI-16  1.29 403 203 23 0.75 371 0.97 iM2| 0.88 ‘M3| 0.64 :M3| 0.53 0.51
Moodey et al II-24a  1.14 533 178 18 272 592 0.71 {M2| 0.54 ‘M3| 0.50 :M3| 0.54 0.56

Im-24b  1.14 533 178 21 2.72 605 0.79 iM2| 0.61 ‘M3| 0.56 :M3| 0.55 0.57
IM-25a 1.14 533 178 25 3.46 534 1.05 {M2| 0.80 ‘M3| 0.76 :M3| 0.66 0.71
m-25b  1.14 533 178 18 3.46 578 0.71 {M2| 0.54 iM3]| 0.51 :M3| 0.54 0.58
IM-26a 1.14 533 178 22 425 841 0.60 :M2| 046 :M3| 0.44 iM3| 0.40 0.43
Im-26b  1.14 533 178 21 4.25 792 0.61 {M2| 0.46 M3| 0.45 :M3| 0.42 0.45
M-27a  1.14 533 178 22 272 694 0.72 i M2| 0.55 iM3| 0.50 iM3| 0.49 0.50
M-27b  1.14 533 178 23 272 712 0.74 {M2| 0.57 ‘M3| 0.52 :M3| 0.49 0.50
-28a 1.14 533 178 24 346 605 0.89 M2 0.68 M3| 0.64 iM3| 0.58 0.62
I-28b  1.14 533 178 23 3.46 681 0.76 iM2| 0.58 M3| 0.55 :M3| 0.51 0.54
IM-2%9a 1.14 533 178 22 425 778 0.65 :M2| 0.50 iM3| 0.48 iM3| 0.44 0.47
IM-29b  1.14 533 178 25 425 872 0.65 {M2| 0.50 M3| 048 ‘M3| 041 0.44
Walraven V311 1.25 930 250 16 1.69 735 0.76 {M3| 0.54 M3| 0.53 :M3| 0.80 0.72
Lehwalter V321 1.25 930 250 16 1.69 778 0.71 {M3| 0.51 {M3| 0.49 iM3| 0.75 0.67

V322 125 930 250 14 1.69 752 0.66 {M3| 0.47 M3| 046 M3| 0.75 0.67

V811 125 160 250 19 1.90 281 0.81 iM2]| 0.73 M4]| 0.58 :M4| 0.54 0.55
Leonhardt et al. 2 1.10 270 190 21 2.07 531 0.52 {M2| 048 :M3| 042 iM3| 041 0.40
Placas R4 1.99 272 152 34 1.46 302 0.51 iM2| 0.48 M3| 0.28 :M3| 0.34 0.33
RS 1.99 272 152 34 097 169 0.92 iM2| 0.86 iM3| 0.46 M3| 0.53 0.51
R6 1.99 272 152 34 1.46 249 0.63 iM2| 0.59 M3| 0.34 :M3| 041 0.40
1 1.14 180 100 44 223 137 1.05 ' M2| 0.83 :M3| 0.95 M3| 0.74 0.76
2 1.14 180 100 44 223 201 0.71 iM2| 0.56 iM3]| 0.65 :M3| 0.50 0.52
3 1.14 180 100 44 1.26 145 0.99 iM2| 0.78 M3| 0.79 :M3| 0.60 0.59
4 1.28 160 100 44 251 161 1.19 M2 1.12 iM3]| 0.88 :M3| 0.50 0.55
7
8
9

Vollum & Tay

1.14 180 100 25 223 135 0.66 {M2| 0.52 ‘M3| 0.61 :M3| 0.62 0.64

1.14 180 100 25 223 165 0.54 {M2| 0.43 M3| 0.50 :M3| 0.51 0.52

1.14 180 100 25 223 178 0.50 iM2| 0.39 iM3]| 046 M3| 047 0.48

10 1.21 180 100 25 223 180 0.39 {M2| 0.37 M4| 038 :M2| 0.44 0.45
11 1.21 180 100 25 223 134 0.52 iM2| 0.50 M4| 0.51 :M2{ 0.59 0.61
12 1.21 180 100 25 223 133 0.53 iM2| 0.51 M4| 0.51 :M2| 0.59 0.61
Reyer de Ortiz 1 1.10 363 150 51 1.80 560 0.82 :M3| 0.59 :M3| 0.54 iM3| 0.50 0.48
2 1.24 363 150 36 1.80 440 0.75 iM2| 0.57 iM3]| 0.52 :M3]| 0.50 0.48
3 1.38 326 150 32 206 310 0.89 iM2| 0.69 M3| 0.56 :M3| 0.59 0.57
3B 1.38 326 150 49  2.06 580 0.67 {M2| 0.52 M3| 0.43 :M3| 0.36 0.35
4 1.38 326 150 33 2.06 490 0.84 {M2| 0.78 ‘M3| 0.57 :M3| 0.38 0.36

Smith 0C0-50 1.16 305 102 21 1.93 232 0.69 ‘M2| 0.60 :M3| 0.52 iM3| 0.51 0.49
& Vantsiotis 0B0-49 1.16 305 102 22 1.93 298 0.56 {M2| 0.49 M3| 0.42 M3| 0.41] 0.39

0D0-47 1.75 305 102 20 1.93 148 0.75 iM2| 0.64 M3| 041 ‘M3| 0.53 0.50
Chen et al 1-500/1.5 1.46 444 140 42 2.60 680 0.60 i M2| 0.52 iM3| 0.44 iM3| 0.33 0.34

2-1000/1.5 1.53 884 140 39 2.60 940 0.78 iM2| 0.74 ‘M3| 0.61 :M3| 0.39 0.38

3-1400/1.5 1.55 1243 140 44 260 1380 | 0.76 :M2| 0.75 iM3| 0.62 iM4| 0.36 0.35

4-1750/1.5 1.56 1559 140 43 2.60 940 1.32 M2 1.22 M4| 1.03 :M4| 0.64 0.60

Tan et al I-1/1.50 141 443 110 78  2.58 370 1.34 {M2| 1.18 M3| 1.05 :M3| 0.60 0.62
Clark BO-1 1.72 390 203 24 098 242 098 :M1| 0.96 :M1| 0.71 iM3| 0.67 0.63
B0-2 1.72 390 203 24 098 188 126 {MI1| 1.24 Ml1| 0.68 :M3| 0.86 0.82

BO-3 1.72 390 203 24 098 256 0.92 iMI1| 091 MI1| 0.77 :M3| 0.63 0.60

CO0-1 1.33 390 203 25 098 349 0.85 {MI1| 0.84 iMI| 1.00 :M3| 0.61 0.58

C0-3 1.33 390 203 24 098 334 0.89 iMI1| 0.87 ‘Ml| 0.72 :M3| 0.63 0.59

De Cossio et al. L1 141 252 152 21 336 232 | 090 M2| 0.67 M3| 047 M3| 056 | 0.6l
Sagaseta AGO  1.12 438 135 80 333 652 | 127 M2| 1.10 M3| 1.21 iM3| 053 | 057
& Vollum ALO  1.12 438 135 68 333 731 | 1.04 iM2| 090 M3| 096 M3| 045 | 049
1-STM - | 2-STM - | 3-STM - 5.

Total = 67 EC2 MC90 cottins |+ F€2| Bss110
max value= 1.99 1559 250 80 4.25 Mean 0.79 0.68 0.59 0.52 0.52

minvalue= 1.10 160 100 14  0.75 sp| 021 0.20 0.18 0.11 | 0.10

COV %| 26.08 29.85 29.98 | 20.83 | 19.83

Table 7.3: Summary of analysis of experimental data of beams without stirrups (2> a,/d >1)
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av/d >2 Pcalc/Ptest | F.M Pcalc/Ptest

d | b | f | | Ptest | 1-STM- | 2-STM- | 3-STM- 5
Author Beam Javid| 1| (mm) | (MPa) [501 KN | EC2 Mc90 | Coltins |+ FC?| Bssi10
Clark AO-T 211 390 203 22 098 178 | 113 (MI| 1.11 Ml| 0.71 M3]| 072 | 072
A02 2.1 390 203 26 098 216 | 094 MI1| 093 M1] 0.68 M3| 0.63 | 0.63

De Cossio L2 241 252 152 22 336 151 | 090 M2| 070 M3| 031 M3| 061 | 067
& Siess L2a 241 252 152 37 336 160 | 128 MIl| 1.06 M3| 047 M3| 068 | 0.75
L3 342 252 152 28 336 107 | 1.17 M2| 095 M3| 028 M3| 094 | 1.03

L4 443 252 152 26 336 102 | 088 M2| 073 M3| 0.15 M3| 095 | 1.05

L5 543 252 152 28 336 102 | 0.78 M2| 0.66 M3| 0.10 M3| 098 | 1.08

Sagaseta BGO  3.01 465 135 80 100 124 | 1.66 MI| 141 M3| 055 M3| 130 | 122
& Vollum BLO 3.0 465 135 68 1.00 101 |2.04 M1| 1.59 M3| 0.60 M3| 152 | 143
1-STM- | 2-STM- | 3-STM - 5
Total = 9 EC2 Moo | conins |+ EC?| Bssi10
max value = 543 465 203 80 336  Mean| 1.20 1.02 0.43 093 | 095

minvalue= 2.11 252 135 22 0.98 SD| 041 0.32 0.23 031 | 027

COV %| 34.46 31.30 5323 | 3376 | 28.86

Note:  Results for beams BG0 and BLO are averaged values from B0-1 and B0-2 beams
Table 7.4: Summary of analysis of experimental data of beams without stirrups (a,/d >2), where

STM is no longer valid

Mode 5 (crushing of the strut at the top node) was not considered for the predictions of
STM-EC2 shown in Tables 7.2 to 7.4, since converged solutions were rarely found. As
discussed in previous section, this was due to the assumed f./f..; ratio (Table 7.1). The
alternative option of taking same effective strength (0.6 /%) for the top and bottom of the
strut, provided rather conservative predictions; mean value of P.y/Pr.s=0.57 and a
coefficient of variation (COV) of 16% for beams with a,/d=1-2. This suggests that using
the bottom node geometry in order to assess the strut width is sensible since it is simpler
and provides better predictions than using the geometry of the top node, which is not

totally defined from geometric considerations.

As discussed in previous section, Mode 3 (failure of the rear face of the bottom node) was
only critical in STM-MC90 and STM-Collins approaches. If this mode is neglected,
STM-MC90 provides identical solutions to STM-EC2. The predictions from the STM-
Collins approach neglecting Mode 3, improved slightly from those shown in Tables 7.2 to
7.4; an average value of P.,/Py.s equal to 0.65 and a coefficient of variation of 28% was

obtained for beams with a,/d=1-2.

Even though the strut-and-tie predictions were in general more reasonable than those
provided by empirical formulas (7.1) and (7.2), a large scatter was observed in the STM
predictions of short span beams without stirrups. The average value for P,/Pies: using the
STM-EC2 for the 67 beams analysed was 0.79, although the coefficient of variation was
26.6% and the ultimate load was overestimated for several beams such as beam AGO (see
Table 7.3). The EC2 empirical method provided results which were more conservative

than the STM (average P ui/Prs: = 0.52) but had a slightly lower COV equal to 21.1%.
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Very similar results to the EC2 empirical formula were obtained using the BS8110
formula, although the cube strength had to be estimated in most of the cases from cylinder
tests. Unless cube strengths were available a conversion cylinder-cube strength factor of

0.8 was assumed.

The main reason for the large scatter in the STM predictions was that the effective
concrete strength assumed in the direct strut was most likely overestimated in some
specimens. It appears that beams, which exhibited a particularly lower strength such as
beam AGO tested in this work, the strength of the direct strut was highly influenced by the
position of the diagonal crack. Beams with a shear proper type of failure in which the
diagonal crack crossed the direct strut completely can exhibit a reduced strength, see
further discussion in section 7.5.2. An interesting example is shown for beams AGO and
ALO in which the first specimen failed at a lower ultimate load than second one even
though the concrete was 17% stronger. The position of the main diagonal crack in beam
ALO allowed the direct strut to sustain higher loads than AGO in which the direct strut
was crossed completely by the diagonal crack since early load stages. The development of
the main diagonal shear crack depends on factors such as the initial state of stress (creep
and shrinkage) or load history. These parameters that affect the crack development are
difficult to have control over them and justify the use of empirical based formulas such as

EC2 formula (7.1).

The previous analysis was carried out with a material factor of safety (y.) of 1.0. Despite
the large scatter observed in the strut-and-tie models, predictions are considered to be safe

for beams with a,/d between 1 and 2 and concrete strengths up to SOMPa.
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Figure 7.4: Performance of EC2 and STM methods for short span beams without stirrups

(1<a,/d<2)
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The use of the material safety factors in the STM can compensate for the uncertainties in
the effective concrete strength assumed as shown in Figure 7.4, leaving a reasonable
margin for safety. The overall factor of safety (FOS) provided by EC2 can be estimated as
2.14, assuming dead load equal to live load (1.35+1.5)/2=1.42 and a material factor of
safety for the concrete of 1.5. The FOS for ACI and CSA standards are 1.87 and 2.12
respectively (Collins et al. [12]). Using STM-EC2 approach in beams with a,/d between 1
and 2, the maximum value for P../P:s; was 1.34, which still allows for a FOS of 1.58
according to EC2 provisions. Similar margins of safety were obtained using STM-Collins
approach, although the predictions became more conservative with increasing a,/d, as

shown in Figure 7.4.

All the design methods that were examined, showed a very similar performance for the 15
deeper beams with a,/d<1 than for beams with a,/d between 1 and 2. This similar
performance was unexpected since some of the beams had a,/d ratios as low as 0.34. On
the other hand, the results for more slender beams with a,/d>2 using the STM-EC2 model
were not satisfactory since an even larger scatter in the results was obtained than for
beams with a,/d between 1 and 2. In some cases such as beams B0 tested by the author,
which had high concrete strength (80MPa) and depth of 462mm, the overall FOS

obtained was almost zero when using STM-EC2 method (see Figure 7.5).

25

I I I
FOS(ECZ)L,M | | EC2 A STM-EC2 © STM-Colins |
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‘ De Cossio and Siess (1960)
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S X

| | | | N
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e | | |
© o
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25 3.0 35 4.0 4.5 5.0 55
av/d

Figure 7.5: Shear strength predictions for slender beams with a,/d>2 (refer to Table 7.4)

The poor performance of the STM for more slender beams was expected since the

diagonal crack restricts quite considerably the formation of the direct strut for such
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geometry (Muttoni & Schwartz [147]). It is widely accepted that for a/d>3.0, sectional
approaches provide more accurate predictions than strut-and-tie models. Surprisingly, the
predicted strength of some of the slender beams analysed with a,/d up to 5.5 using STM-
EC2 was near the experimental value (Figure 7.5). However, these beams, which were
tested by De Cossio & Siess [146], had significantly low values of d and f.. As shown in
Table 7.4, the ultimate strength of the slender beams is generally overestimated using
strut-and-tie models STM-EC2 and STM-MC90, as opposed to the STM-Collins
approach, where the strength is clearly underestimated. The softening model suggested by
Collins & Mitchell [11] seemed inadequate for such beams since the high transverse
tensile strains induced in the strut by the tie result in an excessive reduction in concrete

strength.

The empirical formulas provided more sensible results than STM models, which seems
reasonable since equations (7.1) and (7.2) were originally calibrated for slender beams.
The enhancement factor £ was limited to 1 for beams with an a,/d larger than 2 as
specified in EC2. The accuracy of these empirical formulas regarding f., d and the type of

aggregate, is discussed in more detail in chapter 8.

Demerit Point Classification

The different design methods investigated for short span beams with a,/d between 1 and 2
were compared with each other using the “Demerit Point Classification” system proposed
by Collins [148]. This simple approach is based on assigning marks (DP- Demerit Point)
to each range of Pj.s/P.q. This marking system has been used by other researchers, such
as Cladera [24] amongst others, to compare shear design provisions given by different
codes. The total demerit point score is obtained by summing the products of the
percentage of specimens within each range of Pj.s/P.q by the demerit point (DP) for that
range, see Table 7.5. Predictions within the range of Pj.s/P.4;c=0.85-1.30 are considered
appropriate and so DP equals to zero. Predictions within the unsafe region are penalized

more intensively than those on the conservative side (refer to Table 7.5).

The demerit point classification for the short span beams (a,/d=1-2) without stirrups is
shown in Table 7.5 and Figure 7.6. As expected, the strut-and-tie models had the lowest
value of DP compared to EC2 and BS8110 approaches, which had a large number of

specimens on the conservative side (see Table 7.5).
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STM- | STM- STM-

Piest/Pcalc av/d: 1-2 pP | EC2 | MC90| Coliins | FC? | BS8IO
<0.5 Extremely dangerous 10 0 0 0 0 0
0.5-0.65 Dangerous 5 0 0 0 0 0
0.65-0.85 Low safety 2 7 4 1 0 0

0.85-1.30 Appropiate safety 0 36 24 13 3 1
1.30-2.00 Conservative 1 54 55 58 52 52
>2.00 Extremely conservative 2 3 16 27 45 46
TOTAL DP| 75 97 115 142 145

Table 7.5: Demerit point classification for short span beams
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1 1 av/d:1-2 | . — ]
: 40 min: 1.10
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Figure 7.6: Demerit point classification of beams without stirrups for different design methods: a)
DP of beams with a,/d =1-2; b) Results obtained by Cladera [24] for slender beams using EC2 and
Response 2000; c¢) Results obtained in this work for short span beams using EC2 and STM

approaches
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It is of interest to compare the results with those obtained by Cladera [24] for more
slender beams with a/d between 2.5 and 7.4, using EC2 and Response 2000. The total
value of DP obtained by Cladera using EC2 was less than half the one obtained in this
work for short span beams. This difference in the total value of DP reflects the excessive
level of conservatism in EC2 method for short span beams, as shown in Figure 7.6. These
results suggest that there is still some margin for improvement in the f factor used in

EC2.

Although the Demerit Point Classification system proposed by Collins [148] is a practical
approach to compare the performance of different design methods it can be argued that
the approach does not reflect the differences in material and load factors used in the
codes. According to the author this method seem suitable for comparing the accuracy of
different design formulas, but it can be misleading if margins of safety are to be
compared, since the Py /P.q. ratio applied for the comparison does not consider any
factors of safety. For example, the high DP mark obtained using the BS8110 method (see
Table 7.5), which is due to an excessive level of conservatism, does not reflect that the
material factor of safety used in BS8110 is considerably lower (.=1.25) than the other
codes examined (y=1.5/1.54 for EC2/CSA codes). This difference might be compensated
by lower load factors of safety but again this is not reflected in DP mark. A more rigorous
comparison including safety factors is not always straightforward, as shown in sections
7.3.5 and 8.3.2, especially for beams with stirrups since partial factors of safety are
applied to concrete and steel separately. As discussed in chapter 2, the assumptions made

regarding V. and V; vary significantly according to the design method used.

A possible alternative is suggested by the author, which consists of modifying the
Demerit Point Classification system proposed by Collins [148] by using parameter P,./Py
instead of Pyes/P.qc, Where P, is the design strength, including material and load factors.
Table 7.6 shows a possible scoring scenario proposed by the author. The limits for the
different ranges proposed shown in Table 7.6 seem reasonable, although they are open to
discussion. These ranges of P,.,/P; were obtained from multlipying the original values
of P../P; suggested by Collins [148] by a constant factor of around 1.75, which was
estimated from overall factors of safety used in CSA for slender beams with stirrups (see
section 8.3.3). For members without stirrups the factor of 1.75 used to obtain the critical

values of P../P; shown in Table 7.6, could be increased since the material factors are
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generally higher for such instances. For simplicity, same ranges of P,./P; were finally

adopted for both cases of beams with and without shear reinforcement.

As shown in Table 7.6, the demerit mark obtained by the BS8110 method using the
modified demerit point system becomes lower than for EC2, which results from the lower
material factors of safety assumed, as discussed earlier. The results shown in Table 7.6
were obtained assuming j equal to 1.5 and 1.25 for EC2 and BS8110 methods
respectively. In addition, dead load was assumed to be equal to live load, which results on
load factors of 1.42 and 1.5 for EC2 and BS8110 respectively. Results from the STM-
Collins approach are not shown since the method combines formulas from two different
codes, i.e. strength at the nodes from STM provisions according to EC2 and Collins &

Mitchell [11] formula for the effective strength of the strut.

STM Sectional
Ptest/Pd av/d: 1-2 DP Sgg;- EC2 | BSS110
<1.0 Extremely dangerous 10 0 0 0
1.0-1.15 Dangerous 5 0 0 0
1.15-1.5 Low safety 2 0 0 0
1.5-2.3 Appropiate safety 0 19 0 1
2.3-3.5 Conservative 1 63 16 39
>3.5 Extremely conservative 2 18 84 60
TOTAL DP| 99 184 158

Note: P, design load using material and load factors (DL=LL; %,,;~=1.42/1.5 and y. =1.5/1.25 for
EC2/BS8110 design codes)

Table 7.6: Modified Demerit Point Classification by using overall factors of safety
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7.3 Short span beams with transverse reinforcement

Transverse reinforcement should be provided in short span beams in cases when the
applied shear force is greater than Vz,.. The shear strength and ductility of short span
beam specimens is increased by vertical shear reinforcement. Design codes provide
nominal shear reinforcement in order to assure ductile behaviour. EC2 defines a minimum
shear reinforcement ratio of Py, = 0.08f00'5/fy. On the other hand BS8110 requires a
minimum design shear resistance provided by the links of 0.4N/mm? if the applied shear

stress is larger than half of the shear resisted by the concrete (v.=Vzq ./bd).

The load transfer mechanism in a short span beam with stirrups becomes statically
indeterminate internally due to the additional load path provided by the transverse
reinforcement. Following EC2 recommendations, only stirrups placed within the central
three quarters of the clear shear span (a,) were considered to contribute into the shear
strength, which are denoted as “effective” stirrups. It is convenient to define the amount
of transverse reinforcement in short span beams in terms of the stirrup index
SI=nA.f,/(bh ﬁ), where n = number of effective stirrups, 4, = area of steel provided by
each stirrup, f, = yield strength of steel, b = width, /& = height, f. = cylinder strength of

concrete.

7.3.1 Existing design methods
MC90

One of the earliest formulas for estimating the force carried by vertical stirrups for point
loads near the supports was provided by Schlaich et al. [35] and was also included in the
model code MC90. Expression (7.11), which also takes into account axial tension, is a
linear interpolation of the shear carried by the stirrups (F),), between the borderline cases
F,,=F, fora/z=2,and F,,= 0, for a/z=0.5. If a/z>2 the beam is considered to be outside
the short span beam behaviour range while in the other boundary case, a/z>0.5, the entire

shear force is carried by the direct strut.

Fo=2427l . (7.11)
3-Ny, | F

where F), is the shear carried by the stirrups, F' is the total shear, a is the distance between
centre load points, z is the lever arm which is taken as 0.9 times the effective depth and

Nsq 1s the axial tension (positive for tension).
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It is noteworthy that equation (7.11) is only dependent on a/z and not the stirrup index S/,
which is inconsistent with the experimental results presented in sections 7.3.5.
Furthermore, the lever arm z is assumed constant in equation (7.11) and independent of

SI, which seems to be unrealistic.

Standard Truss (BS8110 and first draft of EC2)

BS8110, as well as earlier drafts of EC2, proposes a design method for short span beams
based on a traditional truss approach (V.+V;) with a concrete (V.) and steel (V)
components. The concrete component V., which is estimated from equations (7.1) or
(7.2), is enhanced by factor 2d/a, in order to take into account arching action. EC2 limits
this factor to a maximum of 4, which corresponds to cases where a,/d equals to 0.5. In
short span beams, the stirrups contribution ¥ is calculated as n4,,f,. For the analysis of
the experimental database equation (7.1) is adopted in the calculations and referred to as

(Ve+Vy) method.

An alternative approach to the standard truss method is to calculate the enhanced concrete
component using a strut-and-tie model with no stirrups, instead of empirical equations
(7.1-7.2) and then add the Vs term. In this work this is referred to as the V.(STM)+V;
method. The shear strength calculated in this manner is clearly overestimated, especially
for higher values of S/, since the contribution of the direct strut, which is assumed

constant and equal to V.(STM), appears to reduce as the S/ increases.

EC2

The approach suggested in EC2 for designing short span beams consists of reducing the
component of shear force due to loads applied within 2d of the support by a factor g =
a,/2d. This shear reduced value is limited by the yielding capacity of the stirrups located
in the effective shear span. In the analysis of the experimental database of short span
beams using EC2 approach presented in section 7.3.5, the strength of the beam was taken

not lower than the strength of the beam without stirrups obtained from equation (7.1).

263



Chapter 7 — Analysis of Short Span Beams

7.3.2 Proposed Strut-and-Tie model

Short span beams can be considered as a discontinuity region, thus EC2 allows short span
beams to be designed using the strut-and-tie method (STM). The sensitivity of the
predictions from the STM and the other design methods described in the previous section,
to geometrical and material properties differ significantly. The STM is a transparent
approach but various assumptions need to be made regarding the geometry of the nodes,
the width of the struts and the concrete strength. The predictions of strut-and-tie models
are dependent on these assumptions in addition to geometrical parameters such as the

length of bearing plates and the concrete cover to the main tensile reinforcement.

The strut-and-tie model for short span beams presented in this section is consistent with
the recommendations for STM made in EC2. The models are applicable to symmetrically
loaded beams with either one or two point loads. The bearing stress under the loading and
supporting plates were limited to /., and 0.851f., respectively as recommended in EC2
for compression-compression (CC) and compression-tension (CT) nodes in strut-and-tie
models. The nodes were assumed to be non-hydrostatic and the bearing stress was
considered constant under the plate. The previous assumptions are consistent with the
strut-and-tie model suggested in section 7.2.2 for short span beams without shear

reinforcement.

The load paths in the strut-and-tie model proposed for short span beams with stirrups
consist of a direct strut (strut I) and a truss system (strut II-stirrups-strut III), as shown in
Figure 7.1. In order to simplify the problem of internal statical indeterminacy, the stirrups
were assumed to yield at failure. This assumption is justified by the experimental work of
Clark [130], Regan [149], and the author amongst others for beams with a stirrup index
(S]) up to at least 0.1.

The strength of strut I is affected by the diagonal crack and transverse tensile strains
induced by the stirrups crossing it. Strut II, which is equilibrated by the stirrups, is
affected by flexural cracks that decrease its strength. The third compressive stress field,
strut III, is fan shaped like strut II, but the concrete in this region is essentially uncracked.

The geometry of the strut-and-tie model is defined in Figure 7.7.

In the strut-and-tie model, A is the fraction of the shear force taken by the direct strut

(strut I) defined in equation (7.12). The remaining fraction of the load (1-4) is taken by

the stirrups ZT T, , where Ty; is tensile force carried by each stirrup assuming it has
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yielded (T’s;=Ay,f;) and n is the number of effective stirrups. In a similar manner, £ is the
fraction of the total tensile force 7 transmitted to the bottom node by the direct strut (7y),

see equation (7.13).

2 n
P—Oﬂ”Zﬁg ... (7.12)

T, =BT ... (7.13)

The geometry of the bottom node is defined once A and f are known, since the other

dimensions are given; namely length of the bearing plate (/) and 2c¢ (see Figure 7.7).
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Figure 7.7: Strut-and-tie model definition for short span beams with vertical shear reinforcement

(example for one point loading and two stirrups; n;,=1 and n=2)

The tensile force in the reinforcement at the bottom node (7) can be divided into two
components 7= T; + Ty, where T; is the force transmitted by the indirect strut III and T}
is force transmitted by the direct strut. Both components are given by the equations (7.14)

and (7.15). Equation (7.13) can be written in terms of T; and Ty, see equation (7.16).

T, =Tg.) cotg) ... (7.14)
1
Q:ﬁ.WWZQ ... (7.15)
l_ﬂ 1
I, _ 1, ... (7.16)
B 1-p
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where ¢ = angles to the horizontal made by lines drawn from the top of each stirrup i to
the bottom node as shown in Figure 7.7, and = angle of the centreline of the direct strut

to the horizontal.

Stresses at the rear face of the top node are assumed to be plastic (f..~=Vf.q), which is
consistent with the strut-and-tie model presented for beams without stirrups. Hence the
inclinations of the struts #and ¢ can be written in terms of the geometry, 7; and T}, as

shown in equations (7.17) and (7.18).

v )/
cot = 2 - 4T /pz . (7.17)
h—cﬂ—(m]

2(n—i)+1.(

' 2n
cotg = - ... (7.18)
h_zﬁw(
2n

where a, = clear shear span, n;, = number of loading points at the top of the beam (1 or 2),
Iy—1, = length of bottom—top bearing plate, # = height, ¢ = distance to centroid of
longitudinal reinforcement, f.,, = concrete stress at the top node, n = number of stirrups, b
= width, i = stirrup number, S; = distance from stirrup to rear face of the top node, C; =

vertical distance from top of the beam to start of centreline of indirect strut III at stirrup i.

For simplicity, the top boundary of strut III was assumed to be linear in order to estimate

C;, see equation (7.19). This assumption has no significant effect on the angle ¢ .

C - T a,—S +ln,/2
l bﬂnt . aV

... (7.19)

So far only geometric relationships and equilibrium at the nodes have been considered.
Similarly as in the STM without stirrups, an additional condition must be considered from
the mode of failure in order to obtain the ultimate load. Two failure modes were
considered in the estimation of the ultimate load; namely crushing of the direct strut and
failure at the bearing plates. The ultimate load was taken as the lowest value
corresponding to these modes of failure. The critical failure mode in the majority of the
beams studied was crushing of the direct strut. In addition, the tensile force 7 in the
longitudinal reinforcement must be verified to be lower than the yielding capacity to

avoid flexural failure.
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The strength of the direct strut is governed by the product of its cross-sectional area and
the effective concrete strength. In general good predictions were obtained using the
effectiveness factor 0.6v defined in EC2, where v=(1-£.+/250). The effectiveness factor
accounts for the reduction in concrete compressive strength due to transverse tensile
strain. Alternatively, as discussed for short span beams without stirrups, Collins &
Mitchell [11] suggested a value for the effective concrete strength of the strut related to
the strain in the longitudinal reinforcement. This alternative model was also investigated

and compared with EC2 recommended value; results are discussed in detail in section 3.4.

In general, good predictions were obtained for the ultimate load if the width of the strut

(Wsiue) Was estimated from the geometry of the bottom node, see equation (7.20).

w,,.., =AM, sin@+2cfcosb ... (7.20)

Limiting the stress in the strut to 0.6vf.; and imposing vertical equilibrium at the bottom

node leads to equation (7.21).

1/11' T, = (44, sin® 0+ cBsin20)b.0.61f, .. (721)

- 1

The system of non-linear equations (7.14 to 7.19 and 7.21) presented can be used to solve
for P or A, in design or analysis of short span beams respectively. However, as in most
of strut-and-tie models, in order to find a converged solution an iterative process is
required. In the following section an iterative algorithm is presented to solve this system

of equations in a simple manner, which could be easily implemented in a subroutine or

spreadsheet.
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7.3.3 Simplified strut-and-tie model: design and analysis equations

The strut-and-tie model for short span beams is defined in its most general form by the
system of equations given in previous section, which takes into account the spacing of the
vertical reinforcement. In practice, stirrups are distributed uniformly and centred with
respect the clear shear span. The system of equations (7.14 to 7.19 and 7.21) can be
simplified for this particular case where the resultant of the stirrups is located at the centre
of the clear shear span. Failure is assumed to occur due to crushing of the direct strut
assuming the strut width from the geometry of the bottom node. The stresses under the

loading and supporting plates must be limited to vf.; and 0.85 v/, respectively.

Firstly, equation (7.16) can be written in terms of the inclination of the direct and indirect
struts reaching the bottom node to assure uniform stresses at the rear face of the bottom

node. The previous relationship can be written as shown in equation (7.22).

A cotg
(1-2) (1-p) cotd .. (7.22)

In the simplified strut-and-tie model, the resultant of the stirrup forces is placed at a
distance S; equal to (/.n;/2+a,/2) and C 1’ = T{/Zbﬁ;m, refer to Figure 7.7. Equation (7.18)

can be simplified into equation (7.23)

cotf = 1 a+ (1+ /”t)le'

2
h—(1+,6’)c—2bf

... (7.23)

Lastly, the value of £ can be obtained from the failure mode assumed given by equation

(7.21), which results in equation (7.24).

C,(1+cot? 6)- 11,
2c.cotl

23T,

(1-2)0.6.1f, b

B=

... (7.24)

where C, =

Equations (7.22 to 7.24) above can be used along with equations (7.14, 7.15, 7.17), in the
following iterative algorithm where A; and coté, are solved. In order to ease the iterative
process, it is recommended to take initial guess values (0<Ay<I and cot ) ~a,/d) so that f;

estimated in the first step is positive.
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Step 1: Estimate 4; and cot6;
Step 2: Calculate g,
G (1+cot? 6, )- 4l

A Ty
B = >0 where C, = 1
2¢.cotf), (1-2,).0.6.f, b

Step 3: Calculate tensile forces T,-’ and T,

cotg = M.cot 6,
ﬁi(l_;ti)
, , n 2{ n
T, =c0t¢i.ZTSi. and T, =1—.cot6.ZTSi
1 - 1

Step 4: Calculate values for step i+1

A= cot@.(h—cp - C,)—a, where C, = T +T,/2
[, lt.nlp bf.
bl
2 4

COt¢i’+1 =1_ av+(1+ﬂﬁ+1)l;"

h=(1+ 8 Je——1
T

cotd,, =cotg,,.

/Ii+1 (1 - :Bi )
Step 5: Check for convergence

if |4,,, > tolerance and ‘cot 0., —cotd,| > tolerance go back to Step 1

_/11'

otherwise go to Step 6
Step 6: Calculate solution
2> T,
2.7 - Pi-2,.)

A o N
Analysis : P=—! for Design : A, = 7’“) with ZT G=———"*
1 21, 7 2

i+1
if A;+,<0 Change section size, f.q4, [, or [, (stirrups might not yield)

if A;+/>1 No stirrups required (provide minimum quantity of shear reinforcement)
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In the analysis of experimental data shown in sections 3.4 and 3.5 the use of either the
most general STM formulation for short span beams with stirrups or the simplified
version described above, give very similar answers. The simplified STM model provides
good predictions of the ultimate strength although it is not valid for high stirrup indexes,
where A becomes almost zero. As described in next section, this is due to the fact that for
high S7 the direct strut disappears and the strut-and-tie model do no longer applies. In
addition, the assumption of yielding of the stirrups can be questionable for such large

values of SI.

Stirrup index at the limit case in the STM, where the direct strut vanishes (A=0)

In order to calculate limit case A =0 in the STM, in which the direct strut vanishes
completely, the infinitesimal strut width can be written as shown in equation (7.25). Ratio
Of)/o is obtained from differentiating equation (7.22) and substituting A=0 and /=0, see
equation (7.26).

ow=0Al, sin@ +2cof.cosd ... (7.25)

8 _1-p* cotd cotd
oA 1-1* cotgp cotg

... (7.26)

Similarly as in equation (7.21), if the stress in the strut is limited to 0.6vf.; and vertical

equilibrium is stated, this results in equation (7.27).

2
[, +2c¢ COtt ;
co
=2l ———10.6b .. (7.27
1+cot’ @ Ve (7.27)

max

If =0 and £=0 subsequently 7; =0 and so expressions for cot¢, cot6 and T; can be

simplified as shown in equations (7.28).

cotp = a,+1, cotf=—L . T :I;.cot% ... (7.28)

|
2 h—c—A/2° h—A

i

where A =

cnt

A simple approach to solve for P, would be iterating for A in equations (7.27) and
(7.28) until 7}’=Pmax/2.cot¢’. The entire shear force is taken by the stirrups (4= 0), so
STnqx can be defined as P,,./(2bhf.q). By solving equation (7.27) and (7.28) it can be seen
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that the results obtained for S7,,,, are independent of 5. This would also be the case for the
concrete strength f.4, if parameter S/, was defined in terms of vf.;,. However, this is not
usually the case and so values of S/, defined in this manner have to be corrected by a

factor of vto account for different concrete strengths (see Figure 7.8).

According to equations (7.27) and (7.28) the main parameters influencing the magnitude
of SI,... at which the direct strut vanishes, are purely geometrical (a,, Iy, h, ¢). A
parametric analysis was performed for beams AG (a,/d=1.13, f.;,~80.2MPa, SI,,,,=1.20),
in order to investigate the relevance of each of these parameters separately. As shown in
Figure 7.8, ST, reduces as a,/d increases, although the rate varied depending on which
parameter was modified. For example, changes in the length of the bearing plates were
found to have a significantly larger effect on S/, than increasing the clear shear span
while keeping d constant. Increasing the total height of the specimen, while keeping the

d/c ratio constant, had a similar effect as decreasing a,, as shown in Figure 7.8
0.20

I T
Parametric analysis beams AG
(fcd = 80.2MPa; av/d=1.13)

o 0.12 - ,
“ | |
B | o ‘
St T
1 l | —o— Clear span (av)
0.04 -~ SR —— - - --}| —o— Clear span (fcd = 40MPa) |
| " || —°— Plate length (Ib)
! ! | —X— Height (h), constant d/c=7
0.00 1 ; \ \ \
0.50 0.75 1.00 1.25 1.50 1.75 2.00

av/d
Note: Additional parameter in AG: a,=660mm, #=500mm, /,=125mm

Figure 7.8: Parametric analysis of SI,, (A=0) for different values of a,/d in beams AG, by
changing clear shear span (a,), length of the bearing plate (/,) and height of the beam (/)

Although the proposed STM is only applicable for beams with S/<S1,,., normal values of
the stirrup index (see section 7.3.5) are in most of the cases bellow this threshold value.
Only specimens with either a,/d ratios close to 2, low concrete strengths, small bearing
plates and large number of stirrups can produce values of the stirrup index large enough
to have A=0. In such instances, it is also questionable whether all stirrups would yield at

failure.
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7.3.4 Experimental evidence

A database was gathered from previous experimental work [129, 130, 134, 137, 140, 150-
154] in order to validate the strut-and-tie model and compare its performance with
existing design methods for short span beams. Only beams failing in shear were included
in the database, neglecting specimens with a flexural failure or local failure at the
supports. The type of failure mode generally reported was shear-compression and shear-
proper (diagonal tension). However in many instances it was not specified which type of
shear failure prevailed and only a “shear” failure was reported. Several difficulties were
observed in developing a reliable database since in many cases important information was

not reported.

Bearing plates
Firstly, the importance of the bearing plates has often been neglected. Many researchers

omitted to give the size of the bearing plates, which is required in the STM. Furthermore
some beam tests have been carried out using rollers for the supports, see section 7.3.6.
These tests were excluded from the main database to avoid possible deviations due to
bearing failure under the rollers. According to these considerations it seems questionable
whether the widely used a/d ratio, where a is the distance measured between the
centrelines of the load and support, should be applied to classify beam test results. In
slender beams the size of the bearing plates becomes less relevant since the failure
mechanism is located away from the supports. In addition, the difference between a/d and

a,/d is smaller in slender beam than in short span beams.

Shear reinforcement ratio

The second difficulty in developing the database was that the shear reinforcement ratio
(pw) was given in some references in terms of the distance between stirrups (s) without
giving the exact position of the reinforcement bars. This can lead to errors when
calculating the ultimate strength since the value of p, defined in terms of s does not
consider whether the stirrups are effective or not, i.e. the stirrups crosses the main
diagonal crack. In order to avoid misinterpretation of the data of short span beams, it is
recommended that p, is given in terms of the area of stirrups located within the clear

shear span (a,).
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Lateral stability

An additional aspect which must be considered when gathering experimental data on
short span beams is the slenderness in the out-of-plane direction (h/b~4, I/b~20) of the
specimens tested. The question arises of whether lateral stability could have had an
influence on the results. Kotsovos & Pavlovic [155] have argued that for very slim cross-
sections the stresses induced by unintended out-of-plane action may have a significant
effect on the beam strength, being out-of-plane actions the primary cause of size effects.
The most slender beams included in the database were near the boundary limit
recommended by EC2, which separates cases where second order effects should be
considered. However, the nominal shear strengths of the most critical beams according to
EC2 recommendations on lateral stability were no lower than the average values, which

suggest that lateral effects were unimportant in the beams analysed.

Further evidence is provided by recent work carried by Zhang & Tan [140] who
investigated out-of-plane deflections (o) as a possible source for size effect in deep beams
(a/d=0.95). Their most slender specimens were 1000mm high with a slenderness ratio of
(h/b=12.5, I/b=37.5), which is considerably more slender than the remaining specimens
implemented in the database. Measurements of the out-of-plane deflections showed
relatively small values (&/h around 2:10000), which are similar to the lateral deflections
measured in beams A with (h/6=3.7, [/b=9.8). Zhang & Tan [140] concluded from their
experimental work that unintended out-of-plane actions have an insignificant effect on
shear strengths “under a properly-controlled testing environment”. In the author’s
opinion, a clearer line should be established to distinguish cases where out-of-bound
deflections can become critical. As pointed out by Zhang & Tan [140], the 4/b ratios
observed in tests could range from 0.5 (Kani [156]) to around 10 in most general cases

and up to 67 (Kong et al. [157]).

Type of aggregate

Lastly, information is seldom if ever given on either the type of aggregate or whether it
had fracture. These uncertainties, which can have an influence on the roughness of the
crack surface, motivated the experimental work carried for beams A and are further

discussed in section 7.5.
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7.3.5 Performance of existing design methods compared with proposed
STM model (Experimental validation)

Ultimately, the experimental database used to validate the strut-and-tie model proposed
for short span beams with stirrups consisted of 143 beams of which 47 had an a,/d ratio
between 1 and 2. The performance of the methods suggested in MC90, BS8110 and EC2
was also examined. The results of the 143 beams analysed from [129, 130, 134, 137, 140,
150-154] are summarised in Tables 7.7(a)-(b)-(c), for which material factors of safety has

been taken as 1.

The clear shear span to effective depth ratio (a,/d) of interest was between 1 and 2,
although some beams with a,/d out of this range were also included in order to assess the
accuracy of the methods for boundary cases, refer to Tables 7.7(b) and (c). The majority
of the beams included in the database had bearing plates at top and bottom of equal
lengths (/.n;/2l, = 1). A few cases were investigated with /..n;,/21, ratios around 0.5 and
1.5. For either cases the STM predictions did not differ much from beams with /,.n,/21, =
1. The influence of the 2//(l.n;,) ratio was only noticeable in beams with /.n;,/2[, >1.5,
especially for beams without stirrups, where the predictions were slightly conservative

since the width of the strut was estimated from the geometry of the bottom node.

According to Table 7.7(a) the simple strut-and-tie model provided more accurate
predictions of the ultimate strength of short span beams with stirrups than the other design
methods considered. The performance of the strut-and-tie model was very similar using
both the simplified and more general formulation, which takes into account the actual
position of the stirrups. The actual position of the stirrups relative to the clear shear span
was only known in 119 beams out of the 143 beams shown in Tables 7.7. An average
value of P u/P.s: of 0.91 and coefficient of variation of 10.9% for a,/d between 1 and 2
was obtained using the general formulation for the STM. Equally, the values for P, ;./Pres
and their coefficient of variations were 0.83 (26.5%) for a,/d <1 and 1.37 (27.3%) for a,/d
>2.

As shown in Table 7.7(a) for beams with 2>a,/d >1, the predictions of the strut-and-tie
model using either Collins & Mitchell’s [11] formula or EC2 effective concrete strength
of the direct strut, were very similar. However for values of a,/d outside this range, the

predictions of the two models were somewhat different, as shown in Tables 7.7(b) and

().
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2 >av/d >1 Pcalc/Ptest Pcalc/Ptest | F.M
d b fc' Ptest Ve-STM
+ STM-EC2 | STM-Colli
Author Beam |av/d (mm] | (mm]| [MPaj S1 [KN] MC90 | Vet+Vs +Vs EC2 ollins
Lehwalter V3511/3 1.25 560 250 17 0.154 970 0.73 1.19 1.17 1.30 - - - -
Regan J6 1.57 272 152 32 0.046 292 0.32 0.89 1.13 0.58 | 0.87 | M2 0.71 M2

J10 1.10 272 152 32 0.031 272 0.30 0.99 1.25 0.66 | 1.05 i M2 0.99 M2

17 1.10 272 152 40  0.054 530 0.34 0.74 0.94 0.68 | 0.72 | M2 0.70 M2

J19 1.10 272 152 35 0.028 366 0.22 0.75 0.98 0.51 | 0.84 : M2 0.78 M2

120 1.10 272 152 35 0.028 320 0.25 0.86 1.14 0581 097 { M2 0.91 M2

18 1.68 254 152 34 0.029 370 0.16 0.59 0.94 034 [ 0.81 : M2 0.64 M2

Tan E-1.62-3.23 1.30 463 110 51 0.042 440 0.45 0.96 1.30 0.83 ] 1.06 : M2 0.92 M2
Tan et al II-2N/1.50 1.41 443 110 78 0.052 670 0.53 1.00 1.40 0941 1.10 i M2 1.08 M2
1I-2S/1.50 1.41 443 110 78 0.066 800 0.56 | 0.98 1.32 099 { 099 : M2 1.00 M2

Vollum 5 1.14 180 100 44 0.058 220 0.40 | 0.92 1.11 0.81] 0.83 : M2 0.84 M2
& Tay 6 1.14 180 100 44 0.115 250 0.70 1.21 1.38 1.42 ] 0.87 i M2 0.93 M2
Clark Bl-1 1.72 390 203 23 0.065 558 0.35 0.87 1.11 0.59] 0.83 : M2 0.71 M2

B1-2 1.72 390 203 25 0.060 513 0.38 | 0.96 1.26 0.64 ] 095 : M2 0.81 M2
B1-3 1.72 390 203 24 0.064 570 034 | 0.86 1.10 0.57 ] 0.82 i M2 0.70 M2
Bl1-4 1.72 390 203 23 0.065 536 036 | 091 1.16 0.61] 086 | M2 0.74 M2
B1-5 1.72 390 203 25 0.062 483 0.40 1.02 1.32 0.68 ] 099 : M2 0.84 M2
B2-1 1.72 390 203 23 0.109 602 0.54 1.12 1.34 0911 090 i M2 0.81 M2
B2-2 1.72 390 203 26 0.096 644 0.50 1.06 1.31 0.85] 0.90 : M2 0.81 M2
B2-3 1.72 390 203 25 0.101 670 0.49 1.01 1.24 0.81] 0.84 : M2 0.76 M2
B6-1 1.72 390 203 42 0.036 759 026 | 0.70 1.11 0431 091 i M2 0.72 M2
Cl1-1 1.33 390 203 26 0.039 555 029 | 0.83 1.14 0511 095 { M2 0.84 M2
C1-2 1.33 390 203 26 0.038 622 026 | 0.74 1.04 0.45] 0.86 : M2 0.76 M2
C1-3 1.33 390 203 24 0.042 492 0.33 0.92 1.24 0571 1.02 i M2 0.90 M2
Cl-4 1.33 390 203 29  0.035 572 028 | 0.83 1.20 0.50 | 1.01 { M2 0.88 M2
C2-1 1.33 390 203 24 0.064 580 042 | 094 1.20 0731 092 : M2 0.85 M2
C2-2 1.33 390 203 25  0.061 602 0.40 | 0.92 1.19 070 | 0.92 i M2 0.84 M2
C2-4 1.33 390 203 27 0.056 576 042 | 097 1.30 0.73 ] 1.01 { M2 0.92 M2
C3-1 1.33 390 203 14 0.072 447 036 | 0.92 1.00 0.63] 0.75 : M2 0.72 M2
C3-2 1.33 390 203 14 0.073 401 0.41 1.02 1.10 0.70 | 0.83 i M2 0.79 M2
C3-3 1.33 390 203 14 0.073 376 0.43 1.09 1.18 0.75 ] 0.89 | M2 0.85 M2
C4-1 1.33 390 203 24 0.041 619 026 | 0.74 1.00 0.46 | 0.82 : M4 0.76 M2
Co6-2 1.33 390 203 45 0.022 848 0.19 | 0.61 0.94 039 ] 094 | M2 0.84 M2
C6-3 1.33 390 203 45 0.023 870 0.19 | 0.59 0.92 038 ] 091 : M2 0.81 M2
Co-4 1.33 390 203 48 0.021 857 0.19 | 0.61 0.94 0391 097 : M2 0.86 M2
D1-6 1.66 314 152 28 0.029 349 0.19 | 0.68 1.10 0411 095 | M2 0.73 M2
D1-7 1.66 314 152 28 0.029 358 0.18 0.66 1.08 0.40 | 094 | M2 0.72 M2
DI1-8 1.66 314 152 28 0.029 372 0.18 0.64 1.03 038 ] 090 : M2 0.69 M2
E1-2 1.74 314 152 30 0.080 444 042 | 0.95 1.31 0731 096 | M2 0.82 M2

Kong S5-4 1.64 292 250 89  0.011 953 0.12 | 0.53 1.05 035] 1.14 : M2 0.83 M2
& Rangan S5-5 1.40 292 250 89  0.008 1147 | 0.09 | 0.45 0.94 034 ] 1.04 : M2 0.81 M2
Sagaseta AG2 1.13 438 135 80  0.020 1126 | 0.18 0.50 0.94 035 0.82 | M2 0.84 M2
& Vollum AG3 1.13 438 135 80  0.031 1309 [ 0.23 0.52 0.89 0451 0.73 | M2 0.77 M2

AG4 1.13 438 135 80  0.041 1414 | 0.28 0.56 0.90 056 ] 0.71 : M2 0.75 M2
AL2 1.13 438 135 68  0.024 1064 [ 0.19 | 0.51 0.92 0371 0.79 | M2 0.80 M2
AL3 1.13 438 135 68  0.036 961 0.31 0.68 1.14 0.61] 092 : M2 0.95 M2
AL4 1.13 438 135 68  0.048 1204 | 0.33 0.64 1.00 0.65] 0.77 : M2 0.81 M2

Ve-STM

Total = 47 MC90 | Vce+Vs Vs EC2 | STM-EC2 | STM-Collins
max value= 1.74 560 250 89  0.154  Mean| 0.33 0.82 1.12 0.62 0.90 0.82
min value= 1.10 180 100 14 0.008 SD| 0.14 0.20 0.15 0.23 0.10 0.09
COV %] 42.16 | 24.12 | 12.96 | 37.66 11.03 11.05

Note: STM-EC2 — using simplified formulas (section 3.3)
FM - Critical failure mode (M1- flexure, M2- crushing in strut at bottom node, M4- bearing failure
at bottom node, M6- bearing failure at top node)

SI=nAf;/(bh ;)
“-* STM not applicable (1<0)

Table 7.7(a): Summary of experimental database of short span beams with stirrups (2>a,/d>1)
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av/d<1 Pcalc/Ptest Pcalc/Ptest | F.M
d b fc' Ptest Ve-STM .
+ STM-EC2 | STM-Coll
Author Beam |av/d (mm] | [mm]| [MPa S1 [KN] MC90 | Vet+Vs Vs EC2 ollins

Lehwalter V411/3  0.75 740 250 19 0.083 1330 | 0.63 1.02 1.06 1231 0.60 : M6 [ 0.60 M6
V411/4  0.75 740 250 16 0.049 934 0.45 1.09 1.07 0901 0.74 i M6 [ 0.74 M6
S511/3  0.75 560 250 18 0.087 1064 | 0.60 | 0.99 0.96 1.18 1 055 { M6 [ 0.55 M6
V511/4  0.75 560 250 18 0.038 930 0.29 0.84 0.80 0581 0.62 : M6 [ 0.62 M6
V022/3  0.75 360 250 18 0.085 760 0.56 [ 0.96 0.92 1.10 ] 050 i M6 [ 0.50 M6
Vv022/4  0.75 360 250 17 0.033 634 024 [ 0.82 0.74 0.64 ] 057 : M6 | 0.57 M6
V7113 0.75 160 250 17 0.066 414 0.37 0.82 0.66 0731 039 : M6 | 0.39 M6
V71174 0.75 160 250 18 0.027 414 0.16 | 0.68 0.53 056 | 0.41 : M6 | 0.41 M6
W511/3  0.75 560 250 20 0.079 1160 | 0.55 0.93 0.93 1.08 1 056 : M6 [ 0.56 M6
V5113 0.75 560 250 17 0.092 1004 | 0.63 1.04 0.99 1251 055 i M6 | 0.55 M6
V2511/3 025 560 250 16 0.034 1050 | 0.40 | 0.89 0.64 0741 049 | M6 [ 0.49 M6
W2511/3  0.25 560 250 21 0.025 1196 | 0.35 0.84 0.68 071 ] 055 : M6 [ 0.55 M6
Regan J15 0.64 272 152 33 0.015 412 0.15 0.87 0.93 076 ] 085 : M2 | 1.01 M2
Tan D-1.08-2.15 0.76 463 110 48 0.022 540 0.27 0.80 1.15 058 1.07 i M2 | 1.12 M2
C-0.81-2.15 0.49 463 110 51 0.021 806 024 [ 0.75 0.95 0.60 ] 086 : M2 | 1.01 M2
C-0.81-3.23 0.49 463 110 44 0.024 800 0.25 0.72 0.87 0591 078 : M2 | 0.92 M2
B-0.54-2.15 0.22 463 110 56 0.019 936 0.31 0.66 1.01 053 091 i M2 | 1.30 M4
B-0.54-3.23 0.22 463 110 46 0.023 890 0.33 0.66 0.94 053] 083 i M2 | 1.18 M4
B-0.54-4.30 0.22 463 110 54 0.020 1000 | 0.29 0.61 0.93 0491 083 : M2 | 1.19 M4
Tan et al. II-2N/1.00 0.85 443 110 78 0.039 1040 | 0.38 0.68 0.97 076 1 0.78 i M2 | 0.93 M2
1-2N/0.75 0.56 443 110 56 0.072 1520 | 047 0.62 0.72 084 ] 050 : M2 [ 0.54 M4
Kong 1-10 082 216 76 22 0.194 180 1.03 1.42 1.54 1.08 1 092 : M2 | 1.07 M2
etal. 2-10 0.82 216 76 20 0.078 200 0.35 0.76 0.84 0741 0.66 | M2 [ 0.69 M2
1-15 052 343 76 21 0.131 328 0.90 1.05 0.95 093] 054 i M2 | 0.58 M4
2-15 052 343 76 23 0.046 280 0.39 0.88 0.78 083] 061 : M2| 0.73 M4
1-20 038 470 76 21 0.099 380 1.06 1.00 0.85 1.10 | 0.46 : M2 - -
2-20 038 470 76 20 0.040 432 0.35 0.64 0.49 056 037 : M2 | 042 M4
1-25 030 597 76 25 0.068 448 1.14 | 093 0.77 1.35] 0.44 : M2 - -
2-25 030 597 76 19 0.034 448 0.43 0.66 0.46 054 033 | M2 - -
1-30 025 724 76 22 0.065 478 1.30 [ 0.90 0.68 1.35] 036 : M2 - -
2-30 025 724 76 19 0.027 498 0.47 0.64 0.42 0.52 ] 030 : M2 - -
De Pavia G33S-12 0.50 203 76 20 0.061 169 0.34 1.09 0.89 0991 080 : M2 | 0.89 M2
etal. G33S-32 050 203 76 20 0.060 203 0.28 0.96 0.74 083 ] 0.67 i M2 [ 0.79 M2
Clark DI-1 094 390 203 26 0.039 602 0.36 [ 091 1.24 0.66 | 1.05 : M2 [ 1.06 M2
DI1-3 094 390 203 25 0.041 513 0.42 1.06 1.39 078 1.16 i M2 [ 1.19 M2
D2-1 094 390 203 24 0.063 580 0.56 1.09 1.38 1.03 | 1.07 i M2 | 1.12 M2
D2-2 094 390 203 26 0.059 624 0.52 1.03 1.34 096 1.05 : M2 | 1.09 M4
D3-1 094 390 203 28 0.072 790 0.55 0.98 1.23 1.01 | 093 : M2 | 0.97 M4
D4-1 0.94 390 203 23 0.110 624 0.87 1.31 1.55 1.60 [ 1.03 i M2 | 1.03 M2
Zhang IDB35bw 095 313 80 26 0.066 199 0.58 1.03 1.13 1.02 ] 081 : M2 | 0.83 M4
& Tan IDB50bw 0.94 454 115 27 0.061 373 0.63 1.10 1.21 1.10 ] 096 i M4 | 0.96 M4
IDB70bw 0.93 642 160 28 0.059 854 0.54 | 091 1.01 094 074 : M2 | 0.84 M4
IDB100bw 0.94 904 230 29 0.065 1550 | 0.68 1.05 1.27 1.18 ] 075 i M2 | 0.90 M2

Total = 43 MC90 | Ve+Vs Vc_ﬁ]’I;M EC2 | STM-EC2 | STM-Collins
max value= 0.95 904 250 78 0.194  Mean| 0.50 0.90 0.94 0.87 0.70 0.81
min value= 022 160 76 16 0.015 SD| 0.26 0.19 0.27 0.27 0.23 0.26
COV %] 52.31 | 20.57 | 29.11 |31.34 33.51 32.22

Note: STM-EC2 — using simplified formulas (section 3.3)
FM - Critical failure mode (M1- flexure, M2- crushing in strut at bottom node, M4- bearing failure
at bottom node, M6- bearing failure at top node)

SI=nAyf,/(bh 1)
“- STM not applicable (1<0)

Table 7.7(b): Summary of experimental database of deep beams with stirrups (a,/d <1)
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av/d >2 Pcalc/Ptest Pcalc/Ptest | F.M
d b fc' Ptest Ve-STM .
Author Beam av/d {mm] | [mm] | [MPa] S1 [KN] MC90 | Ve+Vs Vs EC2 | STM-EC2 | STM-Collins
Clark Al-1 2.11 390 203 25 0.082 445 0.49 1.25 1.54 0.84 | 090 M6( 086 M2
Al-2 2.11 390 203 24 0.086 418 0.52 1.32 1.61 090 | 092 M6 - -
Al-3 2.11 390 203 23 0.086 445 0.49 1.24 1.50 0.84 | 0.86 M6 - -

Al-4 2.11 390 203 25 0.082 489 0.44 1.14 1.40 0.77 | 0.82 M6 - -
D2-6 2.14 314 152 30 0.110 337 0.62 1.47 1.85 1.12 | 125 M2 - -
D2-7 2.14 314 152 28 0.114 315 0.67 1.57 1.96 1.20 1.31 M2 - -
D2-8 2.14 314 152 26 0.124 337 0.62 1.46 1.78 1.12 | 1.17 M2 - -
D4-1 2.14 314 152 27 0.089 337 0.47 1.19 1.53 0.84 | 1.07 M2| 0.86 M2
D4-2 2.14 314 152 26 0.095 337 0.47 1.18 1.49 0.84 1.04 M2 - -
D4-3 2.14 314 152 22 0.110 330 0.48 1.19 1.43 085 097 M2 - -
D5-1 2.14 314 152 28 0.058 292 0.36 1.05 1.44 0.64 | 1.10 :M2| 0.82 M2
D5-2 2.14 314 152 29 0.056 315 0.33 0.98 1.37 0.60 1.06 :M2| 0.78 M2
D5-3 2.14 314 152 27 0.060 315 0.33 0.97 1.33 0.60 | 1.01 {M2| 0.76 M2

Sarsametal.  AS2-N  2.07 235 180 39 0.022 379 0.12 0.55 0.84 033 | 072 M2| 045 M2
AS2-H  2.07 232 180 76 0.011 402 0.11 0.59 1.18 038 | 1.08 iM2| 0.64 :M2
AS3-N  2.07 235 180 40 0.032 398 0.17 0.63 0.91 032 0.75 iM2| 050 M2
AS3-H  2.07 235 180 72 0.018 398 0.17 0.70 1.23 0.39 1.06 M2| 0.67 M2
BS2-H 2.07 233 180 74 0.011 447 0.10 0.53 1.04 034 | 094 M2| 059 M2
BS3-H 2.07 233 180 73 0.017 456 0.15 0.61 1.11 034 | 096 M2| 0.63 M2
BS4-H 2.07 233 180 80 0.021 414 0.22 0.78 1.36 0.40 1.16 M2 0.79 M2
CS2-H  2.07 233 180 70 0.012 494 0.09 0.47 0.92 031 ]| 083 iM2| 053 M2
CS3-H 2.07 233 180 74 0.017 494 0.14 0.56 1.02 031 | 090 iM2| 0.60 M2

CS4-H 2.07 233 180 76 0.022 441 0.20 0.72 1.25 0.37 1.06 M2[ 074 M2
Kong S1-1 2.16 292 250 64 0.020 457 0.26 1.01 1.88 0.53 1.68 iM2| 1.06 @ M2
& Rangan S1-2 2.16 292 250 64 0.020 417 0.28 1.10 2.06 0.58 1.84 iM2| 1.16 (M2

S1-3 2.16 292 250 64 0.020 412 0.29 1.12 2.08 0.59 | 1.86 M2 1.17 M2
S1-4 2.16 292 250 64 0.020 556 0.21 0.83 1.55 0.43 1.38 iM2| 0.87 @ M2
S1-5 2.16 292 250 64 0.020 507 0.23 0.91 1.70 048 | 1.51 iM2| 095 M2
S1-6 2.16 292 250 64 0.020 448 0.26 1.03 1.92 054 | 1.71 ‘M2| 1.08 :M2
S2-1 2.16 292 250 73 0.010 521 0.14 0.74 1.50 048 | 1.50 iM2| 0.89 M2
S2-2 2.16 292 250 73 0.010 465 0.15 0.82 1.68 0.54 | 1.68 M2| 099 M2
S2-3 2.16 292 250 73 0.017 507 0.23 0.93 1.71 050 | 1.62 M2| 1.02 :M2
S2-4 2.16 292 250 73 0.017 439 0.27 1.07 1.98 0.58 | 1.87 iM2| 1.18 M2
S2-5 2.16 292 250 73 0.021 564 0.25 0.91 1.61 046 | 1.49 M2 097 M2
S3-1 2,15 297 250 67 0.013 418 0.21 0.94 1.36 056 | 1.74 M2| 097 M2
S3-2 2.15 297 250 67 0.013 356 0.24 1.10 1.60 0.66 | 2.04 M2| 1.15 M2
S3-3 2.15 293 250 67 0.013 457 0.19 0.89 1.76 0.54 1.66 M2( 1.01 M2
S3-4 2.15 293 250 67 0.013 350 0.25 1.16 230 071 | 216 M2| 131 M2
S3-5 2.16 287 250 67 0.013 593 0.14 0.68 1.48 0.41 1.34 iM2| 0.84 M2
S3-6 2.16 287 250 67 0.013 566 0.15 0.71 1.55 0.43 1.41 M2| 088 M2
S4-1 229 524 250 87 0.015 708 0.30 1.16 2.01 0.60 | 1.71 M2| 120 :M2
S4-2 227 428 250 87 0.014 1146 | 0.14 0.58 1.11 032 097 iM2| 0.65 M2
S4-3 220 332 250 87 0.015 487 0.29 1.15 2.15 0.61 | 2.10 ‘M2| 135 M2
S4-4 2.16 292 250 87 0.014 516 0.23 0.94 1.70 052 | 1.74 M2| 1.10 :M2
S4-6 2.02 198 250 87 0.012 406 0.17 0.81 1.38 0.49 1.84 M2| 1.09 M2
S5-2 240 292 250 89 0.017 520 0.25 1.02 1.66 052 | 1.64 M2| 1.02 M2
S5-3 2.16 292 250 89 0.014 488 0.24 1.00 1.80 0.55 1.86 iM2| 1.18 M2
S8-1 2.16 292 250 75 0.010 544 0.13 0.71 1.48 0.47 1.49 M2( 090 M2
S8-2 2.16 292 250 75 0.013 502 0.19 0.86 1.69 0.51 1.66 ‘M2| 1.03 M2
S8-3 2.16 292 250 75 0.017 619 0.19 0.76 1.44 0.41 1.37 iM2| 0.87 M2
S8-4 2.16 292 250 75 0.017 532 0.22 0.89 1.68 0.48 1.60 M2| 1.02 M2
S8-5 2.16 292 250 75 0.020 578 0.24 0.89 1.62 0.45 1.50 iM2| 098 M2
S8-6 2.16 292 250 75 0.023 568 0.29 0.99 1.72 054 ] 157 M2| 1.04 M2

Ve-STM

Total = 53 MC90 | Vet+Vs Vs EC2 | STM-EC2 | STM-Collins
max value= 2.40 524 250 89 0.124 Mean| 0.27 0.94 1.55 0.57 1.37 0.91
min value = 2.02 198 152 22 0.010 SD| 0.14 0.25 0.33 0.21 0.39 0.22
COV %| 52.25 | 27.06 | 21.03 | 36.88 28.30 23.86

Notes: *STM-EC2 — using simplified formulas (section 3.3)
FM - Critical failure mode (M1- flexure, M2- crushing in strut at bottom node, M4- bearing failure
at bottom node, M6- bearing failure at top node)

SE=ndsf/(bh f.)
“- STM not applicable (1<0)

Table 7.7(c): Summary of experimental database of beams with stirrups (a,/d >2)
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It is noteworthy that EC2 and standard truss (V.+V;) predictions for beams with 1<a,/d<2,
had a considerable scatter with a coefficient of variance of 37.7% and 24.1% respectively.
These values are significantly larger than those obtained using the strut-and-tie models
proposed (COV=11%). The reason behind this large scatter is related to the stirrup index
SI. The predictions of the standard truss and EC2 methods were highly dependent to the
stirrup index, as shown in Figure 7.9. The results obtained using MC90 formula and
alternative method V.(STM)+V, showed a similar trend to the standard truss and EC2
methods. However, the shear strength was clearly underestimated using MC90 formula as
opposed to the alternative method V.(STM)+V, where the strength was clearly

overestimated.

1.60

2 MC90

*: ************ o Vc+Vs

| % V(STM)+Vs
®EC2
ASTM-EC2

+ STM-Collins

Pcalc/Ptest

”””””” Mean - COV.

MC90 0.33-42.2%
,,,,,,,,,,,, Vc+Vs 0.82-24.1%
Vc(STM)+Vs 1.12 - 13.0%
EC2 0.62 - 37.7%
STM-EC2 0.90 - 11.0%
STM-Collins 0.82-11.1%

0.20

Note: refer to data in Table 7.7(a)

Figure 7.9: Performance of design methods of short span beams (1<a,/d<2) with stirrups; namely
MC90 formula, standard truss (V,.+V,) method, alternative standard truss (V.(STM)+V;) method
and strut-and-tie method (STM)

The performance of the suggested strut-and-tie model was independent of SI due to the
fact that the fraction of load taken by the direct strut (1) decreases as SI increases. The
reduction of the contribution of the direct strut as S/ increases predicted by the strut-and-
tie model was in agreement with experimental evidence (see Figure 7.10). Softening
models, which are commonly used in strut-and-tie modelling, have a similar philosophy
since the effective concrete strength of the struts is reduced by transverse forces
introduced by stirrups. The direct strut in the STM model developed by the author shown

in Figure 7.7 becomes steeper as the stirrup index increases resulting in an increase of
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strength. The increase in strength due to this reorientation of the direct strut is possible in
the STM model up to a certain value of S/=SI,,,. where A becomes 0 and the direct strut
vanishes. As described in section 7.3.3, this limit case is dependent on the geometry of the
specimen (mainly /, and a,/d). As shown in Figure 7.10, only one beam out of 143
investigated, had a stirrup index greater than SI,.., so this shows that vanishing of the
direct strut is not generally a problem and so the proposed STM is applicable to the
majority of the cases. Usual values of SI,,, ranges from 0.1 to 0.2 depending on the

concrete strength (factor v) and main dimensions of the beam.

0.25 ‘ | 0.25 r : : :
. Vne = (Vtest-Vs)/(vfed.bh) | | | |
0.20 Aﬁ —= p— 020 + - e b o
. | " L, | |
0.15 * "—‘ — “77 0.15 "o om0 : :
X 4 e . - - RS | . |
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0.05 ‘ ‘ 0.05 1 ! | | (Lehyvalter
| | A
0.00 * ‘ * 0.00 : : : :
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Figure 7.10: Influence of stirrup index in: a) Nominal shear carried by the direct strut (V,,.), beams

with 1<a,/d<2; b) Beams where A=0 due to SI>S1,,,.

Although not much experimental data is available of short beams with S7 higher than
0.10, the results shown in Figure 7.9 suggest that EC2 and standard truss approaches can
produce predictions on the unsafe side for large values of SI. However, the two beams
shown in Figure 7.9, which have the highest P,,;/Py ratio using the EC2 method, were
only 6 and 10% below the maximum applied shear force allowed in EC2 (0.5bd0.6 ;).
Hence, the worse P.,/P.s could be extrapolated to be somewhere around 1.5, while for
the lowest SI analysed P.u/Prss Wwas as low as 0.4. As described in section 7.2.3, EC2
allows for an overall factor of safety (FOS) of 2.14, assuming DL=LL and a material
factor of safety for concrete of 1.5. This implies that the FOS can vary from 5.35 for
beams with low S7 to 1.43 for beams with S7 up to 0.15. This large variation of the FOS
seems rather inconsistent, although the predictions are on the safe side. On the other hand,
the strut-and-tie model proposed, which is consistent with EC2 specifications, the FOS is
fairly constant; FOS,,;,=1.88 for SI=0.01 and FOS,,;=2.38.
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The influence of the clear shear span to effective depth ratio (a,/d) on the performance of
the design methods is shown in Figure 7.11. All design methods captured the increase in
shear strength as a,/d decreases. However, the STM using EC2 was more sensitive to
variations of the inclination of the direct strut, which resulted from changes in a,/d, than
the rest of the methods. As shown in Figure 7.11, for a,/d ratios lower than 1, with a very

steep direct strut, the STM models tended to underestimate the strength.

2.50 :
Mean - COV.(%)
avd<1 | avd:1-2| avd>2 Kong & Rangan| * Vc+Vs
VcHVs 0.90-206 | 0.82-24.1 | 0.94-27.0 A /
EC2 087-313 | 062-376 | 0.57-36.9 2 * EC2
2.00 1| sTm-EC2 0.70-335 | 0.90-11.0 | 1.37-28.3
STM-Collins 0.81-32.2 0.82-11.0 | 0.91-23.8 A A A STM-EC2
o STM-Collins
S 1 ) S
8
=9
~
]
S
A 1.00 -
0.50 - 2 , .
0.00
0.00 . 2.50

av/d
Figure 7.11: P,y/Pes; variation with a,/d for (V,+V}), EC2, STM-EC2 and STM-Collins methods

Again, the large scatter shown in Figure 7.11 for EC2 method is due to variations in S7,
which extends to beams with a,/d up to 2.5. The coefficient of variation remained
constant with a,/d for EC2 and (V.+V;) methods, while for the strut-and-tie models COV
was significantly lower for beams with a,/d between 1 and 2. Standard truss (V.+V5)
predictions had a fairly constant performance with a,/d, and the scatter in the data was

primarily due to changes in SI. EC2 method became less conservative with decreasing

a/d.

According to Figure 7.11 the strength of the beams seemed to be overestimated using the
STM-EC2 approach for a,/d larger than 2, which might be due to the reduced angle
between the direct strut and the tie. It is widely accepted that strut-and-tie models are not
suitable for such configurations since the transverse strains induced in the strut would be
excessive. However, there is a large number of beams with a,/d slightly larger than 2 for

which the STM model still provided reasonable answers, see beams from Clark [130]
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(ayd =2.14; a/d=2.43) or Sarsam & Al-Musawi [154] (a,/d=2.07; a/d=2.5) in Table
7.7(c). On the other hand, the strength of beams tested by Kong & Rangan [152] with a,/d
equal to 2.2 (a/d=2.5) were clearly overestimated using the strut-and-tie model. It is
questionable whether the low strengths obtained in Kong & Rangan’s tests were simply
related to their a,/d ratio. Unless further experimental data of beams with a,/d close to
2.5-3.0 is provided, it seems reasonable and consistent with design codes to recommend
the limit of a,/d of 2 for the STM using EC2 effective strength. The rather unsafe
predictions using STM-EC2 method for beams with a,/d larger than 2, could be mitigated
by using Collins & Mitchell’s [11] formula, which seems to provide more accurate
predictions for beams with a,/d between 2.0 and 2.5. However, Collins & Mitchell’s [11]
formula can become rather conservative for larger ratios of a,/d, which worsens for beams
without stirrups (see section 7.2.3) since the direct strut in the STM become even flatter.
This is not problematic, since for such instances sectional models govern over STM

predictions.

Demerit Point Classification

In order to compare the performance of the different shear design methods for the three
ranges of a,/d investigated (see Figure 7.12), Collins [148] “Demerit Points (DP)
Classification” approach was applied, in a similar manner as in section 7.2.3. Results are

shown in Figure 7.12 and Table 7.8.

400 ‘
E MC90 e
350 1 Ove(STMy+Vs | [
6: 300 i DVC+VS ,,,,,,,,, %,, ,,,2,6,2,,,
S) WEC2 |
g 207 mstMEC2 T E
E 200 + . STM-Collins |- ________ :L,; _ __
= | |
S 150 t g - R . —
= | | ® DP-EC2=136
& 100~ 9 } (Cladera 2002)
50 & _ . 1 i | a/d: 2.5-5.0
| | DP-Resp.2000=26
0.25-0.92 1.10-0.74 2.02-2.40 (Cladera 2002)
av/d<1 av/d: 1-2 av/d>2  a/d: 2.5-5.0
Range of a v/d

Figure 7.12: Demerit Points classification of shear methods according to Collins [148] for

different ranges of a,/d (beams with stirrups)
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Ve(STM STM- STM-
Ptest/Pcalc av/d<1 DP ME90 | VetVs S-Vs ) EC2 EC2 Collins
<0.5 Extremely dangerous 10 0 0 0 0 0 0
0.5-0.65 Dangerous 5 0 0 5 2 0 0
0.65-0.85 Low safety 2 2 5 16 14 0 11
0.85-1.30 Appropiate safety 0 12 67 53 40 42 45
1.30-2.00 Conservative 1 28 28 19 42 37 34
>2.00 Extremely conservative 2 58 0 7 2 21 11
TOTAL DP| 149 37 88 86 79 76
Ve(STM STM- STM-
Prest/Pealc il L =2 pp | Moo |vervs| VRN B | T | Cotins
<0.5 Extremely dangerous 10 0 0 0 0 0 0
0.5-0.65 Dangerous 5 0 0 0 0 0 0
0.65-0.85 Low safety 2 0 4 38 4 0 0
0.85-1.30 Appropiate safety 0 0 53 62 15 89 65
1.30-2.00 Conservative 1 13 40 0 47 11 35
>2.00 Extremely conservative 2 87 2 0 34 0 0
TOTAL DP| 187 53 77 123 11 35
Ve(STM STM- STM-
Prest/Pealc R pp | Moo |vervs| VUM B | TR | Cotins
<0.5 Extremely dangerous 10 0 0 9 0 6 0
0.5-0.65 Dangerous 5 0 2 43 0 32 0
0.65-0.85 Low safety 2 0 15 34 2 21 13
0.85-1.30 Appropiate safety 0 0 55 13 17 38 62
1.30-2.00 Conservative 1 8 26 0 38 4 20
>2.00 Extremely conservative 2 92 2 0 43 0 4
TOTAL DP| 192 70 379 128 262 56

Table 7.8: Demerit point classification for beams with stirrups; refer to Tables 7.7(a)-(b)-(c)

The demerit point classification confirmed the strut-and-tie models to be the most suitable
approach for beams with an a,/d range between 1 and 2. However for the STM-EC2
approach, the value of DP increased considerably for a,/d>2, while STM-Collins model
provided a more uniform performance. The demerit point classification also showed that
MC90 and V.(STM)+V; approaches were not acceptable for being extremely conservative

for the former method or with low safety for the latter method.

Cladera [24] carried out a similar analysis for an experimental database of 124 beams
with stirrups and a/d ratio from 2.5 to 5.0, to study the performance of several design
standards (EHE, EC2, AASHTO, ACI11-5, ACI11-3 and Response 2000). In his analysis
using EC2, the sectional approach was applied as opposed to the simple method related
for short span beams applied here (see section 7.3.1), which takes into account the actual
amount of stirrups within the shear span. These two approaches provide very similar
answers for beams with a/d between 2 and 2.5 and low amount of shear reinforcement

(cot8=2.5). The total demerit score for EC2 (DP-EC2=136) obtained by Cladera [24] is
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similar to the one obtained in this work for beams with a,/d between 2 and 2.5, as shown
in Figure 7.12. The value of DP-EC2 obtained by Cladera [24] was the highest from all
the methods reviewed while the lowest demerit score was obtained using Response 2000
(DP-Resp.200=26). Cladera’s conclusions are further discussed with regards the analysis

of slender beams in chapter 8.

As discussed in section 7.2.3, the Demerit Point system does not reflect the influence of
the different material and load factors of safety used in design codes. Hence, it could be
argued that values shown in Table 7.8 are not representative in order to establish a
comparison in terms of safety by the different design methods. The modified Demerit
Point system classification proposed in section 7.2.3 was performed in which material and
load factors of safety were applied (see Table 7.9). Again, only approaches based on one
single design code were examined to apply consistent material and load factors of safety.
As shown in Table 7.9, both STM and V,.+V, methods, which are based on EC2 and
BS8110 codes respectively, had a fairly similar DP mark as in the original Demerit Point
method proposed by Collins [148] (Table 7.8). However, the mark obtained using EC2
was considerably lower. The improvement in the overall factors of safety in EC2 simple

formula was due to lower material factors used, since the design shear force is factored by

% only.
Sectional STM
Prest/Pd av/id: 1-2 DP Ve+Vs| EC2 [STM-EC2
<1.0 Extremely dangerous 10 0 0 0
1.0-1.15 Dangerous 5 0 0 0
1.15-1.5 Low safety 2 4 2 0
1.5-2.3 Appropiate safety 0 53 32 78
2.3-3.5 Conservative 1 36 38 22
>3.5 Extremely conservative 2 6 28 0
TOTAL DP| 57 98 22

Note: P, design load using material and load factors (DL=LL; yj,ai=1.42/1.5, y.=1.5/1.25 and % =1.15/1.15
for EC2/BS8110 design codes)

Table 7.9: Modified demerit point classification for short span beams with stirrups
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7.3.6 Other applications: CFRP reinforced beams

Fibre Reinforced Polymer (FRP) composites are commonly used to strengthen concrete
structures which have been subjected to structural damage, deterioration or changes in
their design loads. An example of such applications is the use of externally bonded
Carbon Fibre Reinforced Polymer CFRP sheets as shear reinforcement. Recent fib
publication [158] describes some of the research that has been carried out in the past on
CFRP used as externally bonded reinforcement. The strut-and-tie model described in
section 7.3.2 was adapted to estimate the ultimate strength of short span beams which had
been strengthened in shear using CFRP sheets to the full depth of the beam. In order to
validate the STM model, experimental data provided by Imran Bukhari was used. The
author is grateful to Bukhari for letting him include some of the experimental data in this

section, which has not been published.

According to researchers such as Bukhari et al. [159], Berset [160] or Uji [161] amongst
others, CFRP sheets have been shown to be efficient to increase the shear capacity of a
section providing an alternative solution to traditional steel shear reinforcement. Two
main challenges were faced in modelling Bukhari’s beams; namely idealized the CFRP
into equivalent ties and modelling the roller support in the STM. In addition, the a/d ratio
in the beams was close to 2, which is near the limit of range of validity of the STM model

for short span beams.

Idealization of CFRP sheets in the strut-and-tie model

The tensile stress assumed in the CFRP sheets at failure in the STM can be estimated on
the basis of the “effective strain” concept (&e). According to Taljsten [162], Triantafillou
[163] or Triantafillou & Antonopoulos [164] the tensile stress reached in the external FRP
at shear failure is lower than the tensile fracture strain (&;,=0.0015). The fraction R= &./&
is difficult to assess accurately and experimental formulas are commonly applied, which
are generally given in terms of the axial rigidity of the FRP (p£y) and the shear strength

of the concrete (]ZmZ/3

). However, there are design aids in which the axial rigidity of the
FRP is not taken into account, see Concrete Society Technical Report TR55 [165].
Current research is focused towards the development of improved design formulas to
estimate parameter R, although this is not the main concern of this work. In order to
illustrate the performance of the STM model developed, R was estimated taking the least

value given by TRS55 approach and empirical formula suggested by Bukhari et al. [159].
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The CFRP sheets were taken into account in the STM model as four “equivalent stirrups”,
which were located at quarter points along the length of shear span reinforced with CFRP
sheet, as shown in Figure 7.13. The shear contribution of each equivalent stirrup was
calculated as the effective area of each strip (see Figure 7.13) times the tensile stress
assumed for the CFRP. Only the CFRP sheet within the central three quarters of the clear
shear span was considered effective as assumed in beams with steel stirrups. This
assumption, which is consistent with EC2 design recommendations, seemed reasonable
since the strength of specimens C5, C8 and C9, which had a small amount of CFRP sheet

outside the central three quarters of the clear shear span, was not significantly

underestimated.
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i=4 32 1 i
] - I . Ti'/bf
Beam C-6 - )I’,tj,f’} Td /bf .y
07 N2 2P T Ti bl
n =1 ' \5\}‘&/: ¢ i/ l l ’//Z’///
d (-:]JT;lcpoimload) C?,/’/;’/;/ (9’5/’// '
LT | ‘/,cjs—/, /)\q)l
G | I~ P
! e | J
2cf3 Ll / c
@ o = Dispersion CFRP Si |
Ly ok engle (500 ({f— 0.34mm)
€

Figure 7.13: STM model for CFRP strengthened short span beam

Modelling of the roller support

Several assumptions had to be made regarding the geometry of the bottom node since the
specimens were supported on rollers (see Figure 7.13). In order to assess the accuracy of
these geometrical assumptions similar beam tests with vertical steel stirrups carried by
Shin et al. [166] were examined. The beams tested by Shin et al. [166] were also
supported on rollers and had an a,/d ratio of 1.5 and 2.0, which were similar to beams
tested by Buckhari. Beams which failed due to local crushing of the concrete at the
support were not considered in the analysis. The bottom node was modelled assuming an
equivalent bearing plate length /, . =2c.cota (see Figure 7.13), where « is the dispersion
angle measured from roller centreline to the flexural reinforcement relative to the

horizontal.
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An optimal value for the dispersion angle « equal to 48.9° was obtained from the analysis
of Shin’s 16 test results. In the STM a value of 50° was assumed, which was on the
conservative side. The average P.,/Ps ratio obtained for the 16 beams tested by Shin et

al. [166] using the STM was 0.98 with a standard deviation of 0.10.

Predictions of ultimate strength

The strut-and-tie model developed by the author provided reasonable predictions of the
shear strength of the six beams tested by Bukhari (Figure 7.14), which were strengthened
with externally-bonded CFRP to the full depth. The concrete strength was around 50MPa
and d was equal to 305mm. The average P.../Pi.s ratio for the six beams analysed was
1.03 with a standard deviation of 0.10. The STM predictions were accurate despite
specimens had a clear shear span to effective depth of 2, which is in the limit of validity
of the STM model. The ultimate strength was slightly overestimated for beams C6 and
C11, which was probably due to premature failure caused by debonding of the CFRP
sheets. Nevertheless, the STM provided safe estimations of the ultimate strength of all the

beams once standard material factors of safety were applied (.=1.5 and y=1.35).
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Note: (Left) The ultimate load was estimated using Khalifa, Triantafillou and Zhang’s empirical equations
for Vj; while V. was taken from the control beam without shear reinforcement

Figure 7.14: Left — Predictions of beams tested by Bukhari; Right — V. component estimated for

each method (V.=V .- V;using empirical approaches; V.=AV,,. for STM)

Alternatively, the ultimate strength of concrete beams that have been strengthened using
externally bonded CFRP sheets can be estimated using the more traditional superposition
method V.+V This approach, which is based on the classical truss model, requires the
contribution of the CFRP (V) to be estimated from statistical regression of empirical

data, see Khalifa [167], Triantafillou [163] or Zhang & Hsu [168] models. In addition, V.

286



Chapter 7 — Analysis of Short Span Beams

is assumed to be constant in the classical truss model, which is obtained generally from
the control beam without web reinforcement. As discussed earlier, the shear component
of the direct strut (V,=AVF) in the strut-and-tie model presented here, reduces as the stirrup

index increases.

In order to compare these assumptions the concrete component V. was obtained for each
method, as shown in Figure 7.14 (right). For design methods based on the superposition
concept, V. was estimated by subtracting the calculated V; from the ultimate shear
strength obtained in the experiments. The results obtained from this analysis showed that
the V. component decreased with increasing S/, as predicted in the STM (see Figure
7.14). Although the concrete component seemed to be overestimated in the
superimposition methods, the ultimate loads obtained were similar to the STM
predictions. This suggested that the reduction factor R derived empirically in the
superposition methods must compensate to some extent for this overestimation of the
concrete component. Moreover, in design cases V. has to be estimated using empirical
formulae such as the one described in section 7.2.1, which usually provide conservative

predictions as shown in Figure 7.4 using EC2 formula.
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7.4 NLFEA of short span beams

A Non-Linear Finite Element Analysis of beams A using different smeared cracking
elements was performed in order to validate the strut-and-tie model suggested for short
span beams. Once the smeared cracking models have been shown to be consistent with
the empirical data, interface elements were implemented into the mesh (see section 7.5.3)
in order to study the influence of aggregate interlock action at the main diagonal shear

crack.

The fundamentals of the NLFEA models applied in this section are described in more
detailed in chapter 3. For the preliminary analysis using only smeared cracking elements

the following three cracking models were examined:
1. Total Strain Fixed angle (Tot. Str. Fix)
2. Total Strain Rotating angle (Tot. Str. Rot)

3. Multi-directional fixed angle (Mult. Fix)

7.4.1 Description of NLFE models

Beams AG and AL were modelled with an orthogonal grid of 8-node quadrilateral plane
stress elements, as shown in Figure 7.15. The load was applied through a bearing plate
with displacement control equal in all the nodes at the top. Similar results were obtained
with a load control applying a pressure load on top of the plate. The beam was supported

on pin rollers which allowed for horizontal and pin rotation as shown in Figure 7.15.

Figure 7.15: Finite element mesh and boundary conditions of short span beam (beam AO0)

The material properties used in the finite element model are summarized in Table 7.10.
The Young’s modulus (E.) used in the model, along with the concrete compressive (f;)
and tensile (f.;) strengths were obtained experimentally whilst the remaining parameters
had to be estimated. The reinforcement was modelled as discrete embedded clements,

shown as dashed lines in Figure 7.15, with a perfect plasticity (Von Misses) constitutive
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model. In order to avoid stress concentrations at the loading points, the loading plates

were included in the model, which were assigned with a steel perfect plasticity material.

Concrete  AG AL Steel  Plates 078  Shear
reinf. Reinf.
E.[MPa] 42608 34969 | E,[GPa] 200 200 200
y 02%  0.2% y 0.3 0.3 0.3
£ [MPa] 57 49 | f,[MPa] 500 580 550
G/[N/mm] 0.113  0.101
£ [MPa] 802 684

Notes: * For the Total Strain models v=10
* An estimated value of G, = 100G, was assumed, where G, (MC90)=Gy,.(fon/fomo)"
Values of E,, f., f., and f, were obtained experimentally

Table 7.10: Material properties in the NLFEA of beams AG and AL

In all the models a Hordijk [79] softening curve, which is defined by G, was adopted for
tension and a parabolic relationship for compression, see chapter 3. In addition, the
compression softening algorithm from Vecchio and Collins (VC1993) was implemented
in the Total Strain models, while for the multi-fix model the concrete strength was not
reduced. Surprisingly, the strength of short span beams analysed using the multi-fix
model was not overestimated. As shown in section 5.4, the same did not apply for shear
panel tests. In the multi-fixed angle model a threshold angle value (&) was taken as 60°,
although in some of the gravel beams (AG3) with higher concrete strength o was
increased to 75 ° to avoid numerical instabilities. For the fixed angle model a constant

shear retention factor (f) of 0.1 was adopted.

The solver used in the increment-iterative procedure was a standard Newton-Raphson
with an energy based converged norm criteria, see chapter 3. The size of each
displacement increment was kept fixed to 0.Imm which provided a converged solution
within a few iterations. Only the multi-fixed crack model showed numerical difficulties
near failure which could not be overcome by using other types of solvers such a Quasi-

Newton (secant) procedure or the Constant method, described in chapter 3.

The size of the load/displacement increment had a minor influence on the ultimate load
predicted by the model. Increments in the ultimate load up to 10% were detected for cases
were an excessive step size was adopted. Adaptive loading algorithms in combination
with arc-length method, described in chapter 3 were also investigated. In order to

obtained optimal solutions the parameters required by these algorithms had to be
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modified for each beam and constitutive model. For simplicity fixed increment steps were

finally adopted, which provided reliable solutions.

7.4.2 NLFEA results and comparison with other design methods

In general the ultimate loads were predicted satisfactory by the NLFEA although several
assumptions were required regarding the tensile strength of the elements. The results of
the NLFEA are compared in Table 7.11 with the predictions from EC2 and proposed
STM design methods for short span beams with and without stirrups.

Vcalc/Vtesl

Viest NLFEA NLFEA NLFEA

Beam | BC2 [ STM U b0 Bk Tot. Rot  Mult-Fix
AGO 325.76 0.53 1.28 0.97 0.97 0.95
AG2 563.02 0.35 0.79 0.79 0.65 0.90
AG3 654.60 0.45 0.69 0.71 0.59" 0.82
AG4 707.10 0.56 0.66 0.70 0.67 0.53"
ALO 365.50 0.45 1.04 0.80 0.97 0.80
AL2 531.89 0.37 0.76 0.75 0.65 0.98
AL3 480.73 0.61 0.87 0.89 0.76 0.97
AL4 602.19 0.65 0.71 0.71 0.74 0.83
Mean 0.50 0.85 0.79 0.75 0.84
SD 0.11 0.21 0.10 0.15 0.14
COV % | 22.00 24.70 12.65 20.00 17.27

Note:  +Analysis stopped prematurely
NLFE results are shown for reduced values of f.,= 2.95MPa (AG) and 2.70MPa (AL)

Table 7.11: NLFEA prediction for beams A compared with EC2 and STM methods

The accuracy of the predicted failure load of the short span beams was improved if the
concrete tensile strength f;, was reduced in the NLFEA, unlike the slender beams without
stirrups where the converse was not always true. Reducing 1., to 2.95 and 2.70MPa for the
AG and AL series of beams respectively in accordance with the Bresler & Scordelis [169]
formula 0.33¢f.)"° was found to significantly improve the predictions of crack
development and ultimate load. These improvements were more noticeable in beams
without stirrups (A0). The load-deflection response became excessively stiff when the
measured values of f., given in Table 7.10 were used in the analysis. This over-stiff
behaviour arose since the principle shear crack in the NLFEA formed below the actual
position of the crack in the tests and had a break point in the middle where the slope

changed suddenly, as shown in Figure 7.16.
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Figure 7.16: Influence of tensile strength on crack pattern predicted in NLFEA

Variations in the shear retention factor £ assumed in the total fixed and multi-fixed
models were also investigated. As shown in Figure 7.17, the initial value assumed of 0.1
for the shear retention factor seemed to give best predictions. Higher values of £ of 0.2 or
0.4 incorrectly predicted a diagonal shear crack that was clearly above the one observed
experimentally, as shown in Figure 7.17. In addition the predicted shear crack was flatter

and the ultimate load was clearly over predicted.
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Figure 7.17: Influence of shear retention factor in NLFE predictions (beam AGO)

From the numerical analysis using the three smeared cracking models, the multi-fixed
model gave the best predictions, although the total strain models were more robust
numerically. The total strain fixed and rotating models provided very similar results to
each other due to the limited crack rotation within the shear span of short span beams.
The total strain models exhibited a spurious post-failure response due to the formation of
new cracks on top of the main diagonal crack near the loading plate, see Figure 7.18. The

latter cracks were similar to the ones observed in the experiments after the peak load had
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been reached. Good predictions of the load-deflection curves were obtained up to failure
for most of the beams. However in some specimens the ultimate load was underestimated
due to local failure of the elements near the loading plate. No attempt was made to
improve the predictions of the ultimate load since the primary aim of the analysis was to
investigate which of the smeared crack models was most suitable for implementation into
the combined smeared/discrete crack models described in section 7.5.3. To overcome this
premature failure, a possible approach is to strengthen the elements adjacent to the
loading plate, as shown in section 7.5.3. This could be justified by the confinement

introduced by the loading plate, which enhances the concrete strength in this region.
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Figure 7.18: Load-deflection response predicted by NLFE model in beam AL4 and post-failure

behaviour predicted in Total Strain Fixed model

Comparison between NLFE and STM predictions

An important aspect that needs to be mentioned is the difference in stress distribution
under the loading plates assumed in STM and NLFE models. The stresses under the load
plate were assumed constant in the strut-and-tie model. However, the non-linear-finite
element analysis suggested that there is a concentration of stresses at the edge of the
loading plate, as shown in Figure 7.19. The cracks which formed in the tests near the edge
of the loading platens at failure could indicate a certain degree of stress concentration in
that area, although additional experimental evidence is not available. The concentration of
stresses predicted in the FE model depended on the stiffness assumed for the loading
platen and smeared cracking model applied for the concrete. Considerations on modelling

of loading plates in FE are described in section 3.5.3.
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As a consequence of the concentration of stresses near the edge of the loading plate in the
NLFEA, a slightly steeper strut than the one predicted in the strut-and-tie model was
obtained, as shown in Figure 7.19. Even so, in particular cases such as in beam AL4 the
numerical predictions were in excellent agreement with the strut-and-tie model, where the

direct strut in both cases almost matched.

AGO I D — I

Figure 7.19: Principal compressive stresses predicted in the NLFEA (Mult. Fix) and
superimposition of experimental crack pattern and STM (beams AG0O and AL4)

The width of the direct strut is assumed to be almost constant in the strut-and-tie model.
This assumption was examined in the light of the numerical results from the NLFEA and
strain readings obtained from demec gauge reading in beams A (see Figure 6.8). Figure
7.20 shows the transverse profile of compressive strains at the middle cross section of the
direct strut, which was measured by the Demec gauge. The empirical results of the
compressive strains are compared with NLFE and STM predictions. The compressive
strains obtained in the NLFEA had a reasonable correlation with the experimental data,
although the ultimate loads predicted by the STM and NLFE were generally lower than
the experimental values. As expected, peak values for the compressive strains were
observed near the centreline of the direct strut. The gradient of strains along the transverse
section of the strut was slightly exaggerated in the NLFEA. In general, the widths
predicted for the direct struts in the STM of beams A varied from 170mm (A0) to around
90mm (A4). The maximum variation of the compression strains obtained experimentally
for the largest strut width obtained in the STM was around 35% of the peak strain. Hence
the strains along the idealized strut can be considered constant. The variation in the strut

width along the direction of the strut predicted by the NLFEA was negligible.
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Figure 7.20: Comparison of numerical and experimental strains at the main strut, variation along

transverse section

Tensile strains in shear reinforcement

The NLFEA predicted yielding of the shear reinforcement prior to failure, which was in
agreement with Demec and strain gauge readings, shown in chapter 6. The highest
stresses in the stirrups were predicted in the NLFEA at the level where the diagonal crack
originated, which is also in agreement with experimental evidence. Figure 7.21 shows the
strains measured by strain gauges 13 (at the crack) and 14 (90mm above the crack) at the
central stirrup of beam AG3 in comparison with numerical predictions. In the light of
these numerical and experimental results, the assumption made in the strut-and-tie model
regarding the force transmitted by the stirrups, which is determined by their yielding

strength, could be confirmed for beams A.
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Figure 7.21: Comparison of experimental and numerical predictions of strain developments of the

central stirrup at two different heights

A good agreement between experimental data and NLFE predictions of strains in stirrups
was also obtained at different heights of the stirrups. Figure 7.22 shows the strain
distribution along the stirrups measured in beams A3 using both demec and strain gauges
at the load step in which the last demec reading could be taken. The strain distribution had
maximum values where the main shear crack crossed the stirrup. Demec reading were
greater at this sector of the stirrup than NLFE and experimental values, which could be
due to bond-slip. As described in section 3.4.1, perfect bond between the concrete and
steel is assumed in the embedded reinforcement elements adopted in the NLFEA. In
addition, tension stiffening is modelled with residual tension in the concrete after
cracking, by means of the Hordijk [79] softening model. Although both of these
assumptions are not entirely accurate, predictions were sensible without having to

introduce interface elements to model bond more realistically

AG3 AL3
P=1100kN P =900kN
—— Demec —— Demec
—0—NLFEA —0— NLFEA

@ Strain Gauges @ Strain Gauges

Section

Note: failure loads for beams AG3 and AL3 are 1309kN and 961kN respectively
Figure 7.22: Variation of strains at different heights of the stirrups (beams AG3 and AL3)
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Tensile strains along the flexural reinforcement

The tensile strain in the flexural reinforcement (&) predicted by the NLFEA was slightly
smaller than the experimental values obtained from the strain gauges located in beams A0
and A3, as show in Figure 7.23. The strains predicted in the NLFEA remained in the
elastic domain in all the beams. However, in beams AG3 and AG4 the strain gauge and

Demec readings showed that the flexural reinforcement had started to yield near failure.
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Figure 7.23: Comparison of numerical and experimental tensile strains at centre (X=597mm) and

inner edge of support (X=0) for beams ALO and AG3

It is generally believed that the tensile strain along the flexural reinforcement of short
span beams is reasonably constant. A small gradient in the tensile strains was observed
from the strain gauge reading located along the flexural reinforcement, see Figure 7.24. In
the strut-and-tie model proposed by the author, the strains along the tie are constant only
in short beams without stirrups. According to the STM model, a reduced gradient in the
tensile strains is expected in short span beams with stirrups. In particular, in the STM
model suggested, where the position of each stirrup is considered, & is assumed constant
between each stirrup, as shown in Figure 7.24. The gradient in the tensile strains along the
flexural reinforcement predicted by the STM model was in good agreement with NLFEA

and empirical values for beams with stirrups.

In beams without stirrups the gradient could only be obtained empirically for beam AGO
due to a faulty strain gauge in beam ALO. Although the STM assumes a constant value of
&, the gradient observed in AGO was insignificant compared to the remaining beams. The
NLFEA predicted a gradient of & in beams without stirrups, which would develop only in

the third of the clear shear span nearest the support, as shown in Figure 7.24.
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This prediction is not consistent with the STM model, and it does not seem to agree with

the empirical results, although more information from additional data points along the

reinforcement would be desirable.
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Figure 7.24: Comparison of predicted and experimental gradient of tensile strains along the

flexural reinforcement from the inner edge of the support to the centre of the beam (beams A0 and
A3)
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7.5 Considerations of shear stresses transmitted at the main
shear crack

7.5.1 Experimental evidence

The early formation of the diagonal shear crack observed in short span beams, raises the
question of whether the shear that develops along the crack surface by means of aggregate
interlock can become critical. The limitation of shear carrying capacity of the shear crack
appears to be more critical in beams without stirrups since the additional truss load path
provided by the stirrups is not present. According to the experimental evidence provided
by beams A, the location of the critical shear crack with respect the direct strut can be
critical such as in beams AGO and AL3. Beam AGO failed at a lower load than beam
ALO, which had lower concrete strength and smoother crack surface. Furthermore, the
ultimate load of beam AL3 was lower than beam AL2, which had fewer stirrups. These
apparent contradictions could only be explained by the relative position of the diagonal
shear crack with respect the direct strut and could justify the large scatter detected in

experimental data of short span beams, especially for beams without stirrups.

The relatively large crack openings recorded compared with the sliding suggested that the
shear carrying capacity of the diagonal crack was limited. However, results from the
push-off test revealed that considerable shear stresses could still be transmitted, even for
cases where the aggregate fractured at the crack. In order to provide further evidence
about the shear developed at the diagonal crack, analytical and numerical methods were

performed, see sections 7.5.2 and 7.5.3.

The shear stresses at the diagonal crack (z.,) were interpolated from the push-off tests
using the crack opening and sliding recorded at failure. Unfortunately, only limestone
short span beams and push-off specimens could be correlated (see Table 7.12) due to their
similar concrete strengths. On the contrary, gravel concrete short span beams had a
considerably larger concrete strength compared to equivalent push-off specimens
(f.=80.2MPa as opposed to 31.7MPa) and so the correlation was dubious. The
interpolation surfaces (w-s-7.) obtained in section 4.3, were applied to both short span
and slender beams; beams A and B respectively. However, this approach seemed more
appropriate for beams B (see Chapter 8), which had a more similar ow/ds ratio to push-off
tests than beams A. In addition, the concrete used was the same for push-off tests and

beams B.
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Table 7.12 summarizes the results obtained for beams AL. The interpolated surfaces and

main drawbacks of this approach are described in section 4.3.

Test Interp.
Beam v=V/b,d w K rc,* s
[MPa] [mm] [mm] | [MPa] |
ALO 6.19 1.15 0.41 3.70 0.60
AL2 9.01 1.35 0.28 3.70 0.41
AL3 8.14 1.30 045 3.64 0.45
AL4 10.20 094 031 3.75 0.37

Note: * results interpolated from push-off tests (specimens PL); refer to section 4.3
- Relative crack displacements (refer to Table 6.5); readings shown for AL2 and AL4 were taken at
mid-depth by LVTD crosses, while for ALO and AL3 the readings relate to Demec cross at 340mm

from the bottom

- Results for beams AG are not shown due to the large difference in £, compared to push-off test data

Table 7.12: Interpolated shear stresses at the diagonal crack of beams AL

The shear transferred by the main diagonal crack is highly sensitive to the angle S

between the crack plane and the direct strut, as shown in Figure 7.25. As an order of

magnitude, the shear stresses estimated in beams A, which are shown in Table 7.12,

corresponded to values of fbetween 5° and 10°. Due to the irregularities in the profile of

the diagonal crack it seemed unreasonable to try to estimate the actual shear stresses at

each point at the crack. Although, average values of the crack inclination could be

assumed in order to obtain a mean value for z,,.
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Figure 7.25: Sensitivity of shear stresses at the crack (z.) to the angle £ between centreline of

direct strut and crack plane
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As shown in Figure 7.26, the inclination of the main crack was fairly parallel to the direct
strut for low-middle load stages in all beams A, except AGO and AL3. Near failure, a
crushing type of crack, which was steeper than the shear crack, originated under the
loading point. This shear-compression type of failure, which was common in all beams A
except AGO and AL3, allowed most of the load carried by the direct strut to be
transmitted above the main diagonal crack. However in beams AG0O and AL3 load was
forced to be transferred through the main diagonal crack since the direct strut was crossed
completely by the crack, which is usually referred to as shear proper failure, from early
load stages as shown in Figure 7.26. This restriction in the load path in beams AGO and
AL3 explained the lower strengths obtained experimentally, especially in AGO. The lower
strengths in beams AGO and AL3 are discussed in next section in the light of a modified

strut-and-tie model which incorporates a shear friction constraint at the critical crack.

first crack a) Shear Compression
fffffffffff second crack
at failure
ALO AG2
oy STM
o 2=0.76
B=0.83
AG3 AL4
ST™ ST™M
5. =0.66 i
p=0.75 B=0.63
b) Shear Proper
first crack ) P
——————————— second crack
AGO AL3
STM STM
B=1 A =0.63
B=0.72

Figure 7.26: Crack pattern in relation with direct strut in STM model (beams A)
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Considerations regarding the crack opening-sliding ratio (suggested relationship)

As mentioned earlier the crack opening-sliding ratio obtained experimentally was
relatively large (ow/ds~3) compared with in general the slender beams tested, as shown in
Figure 7.27. The difference is even larger with respect push-off tests, in which ow/ds is
well described by MC90 formula (w = 0.6s>?), as discussed in section 4.2.4.

The crack dilatancy observed in short span beams was consistent with NLFE predictions
obtained in section 7.5.3, which are also shown in Figure 7.27. According to most crack
dilatancy models, such large values of ow/ds result in very small shear stresses at the
crack, which could be considerably lower than those obtained from interpolating push-off
test data shown in Table 7.12. In order to illustrate this, Walraven and Reinhardt’s [46]
linear aggregate interlock model was used to estimate the minimum sliding (S,) required
to activate the shear stresses in the crack. This limit in crack slip S, was calculated for
each load taking the crack opening obtained in the experiment. The values obtained in the
experiments for sliding were lower than S, as shown in Figure 7.27, which indicated that

shear stresses at the crack according to this model were negligible.

CRACK OPENING [mm]
0.75 1.00 1.25 1.50
AGO Test
. AGO — AG2 Test
—_ ’ —e— AL3 Test
E \ |
E \ |
< 1
Z \
2 \
= 0.25 - ‘
« |
N4 |
Q |
: | z
© 038+ U BeamBCHE T YN )
| | \ Interpolated ‘
1 N * X Eqn. (7:29) |
0.50 ‘ A A :
WiIS=1 W/IS=3

Figure 7.27: Crack opening-sliding relationship for beams A compared with analytical models and

representative test results from slender beams and push-off tests (MC90)
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The ow/ds ratio in beams A could be estimated as 3 as shown in Figure 7.27. An
analytical expression was obtained for the crack dilatancy of beams A, from fitting
experimental data, as shown in Figure 7.28. A linear and parabolic fit were applied for
crack opening and sliding respectively. The formulas are valid up to a maximum opening
and sliding of 1.27mm and 0.5mm respectively. As shown in Figure 7.28, the fit
overestimated slightly the crack displacements for beam AL4. However this
overestimation was consistent for both w and s and so the overall crack dilatancy ow/ds
was not significantly different to the remaining beams considered for the curve fitting.

1.20

T T T T
: : l l
| | | |
———————— = . b — - — — — e e — —
| N_ I
| ; L
e e AGl
5 l l AG2
g K- SRR T —a—AL3
> 1 L ——AL4
| |
— A4 || OAOKBL - b + | —%—ALI
—%— ALl | — —, parab. fit
— — linear fit : 12 |
VIV, =0.55w+03—" [ (1-25)"f
0.00 ¥ ‘ ‘ ; 0.00 X ‘ ‘ 1 1
0.00 0.50 1.00 1.50 20 0.00 0.20 0.40 0.60 0.80 1.00
Crack opening w [mm] Crack slip s [mm]

Note: Only beams A considered which failed in same shear span (a,/d=1.12); refer to section 6.3.4
V/V,.ax Tatio between shear and ultimate shear load measured in the test

Figure 7.28: Curve fitting of crack displacements in beams A; estimation of crack dilatancy

Equating V/V,. in both equations obtained in Figure 7.28 leads to a simple relationship

between w and s given by equation (7.29).

5=0.5(1-v1-0.785.w) .(7.29)

Equation (7.29) fitted experimental data from beams A reasonably well, which also
seemed consistent with predictions from the NLFEA obtained in section 7.5.3 (see Figure
7.27). Nevertheless, equation (7.29) should only be considered as a reference, since it has
been derived for a particular beam geometry and concrete strength. Additional

experimental data would be required to obtain a more general relationship.
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Observations regarding the type of aggregate

One important aspect observed in short beams A was that the influence of aggregate
fracture seemed to be insignificant and design methods provided similar performances for
both limestone and gravel specimens. An interesting example is provided by the already
mentioned performance of beam AGO compared with ALO, where the former had higher
concrete strength and rougher crack surface and still failed at lower failure load than ALO.
In addition, it seemed clear that higher shear stresses must have developed along the main
crack in beam AGO than in ALO, since identical crack opening and sliding were measured

in both beams.

This example clearly showed that the position of the diagonal crack in beams A0 had a
more important role in this case than the reduction in the roughness of crack surface due
to fracture of the aggregate. Unfortunately, additional experimental evidence is not
available for beams with larger member depths in which the crack at failure would
probably be wider. For the beam heights tested (A~=500mm), the crack widths at the main
shear crack of the short span beam were around 1 to 1.25mm near failure, as shown in

Figure 7.27.

303



Chapter 7 — Analysis of Short Span Beams

7.5.2 Analytical predictions: STM with shear friction

In order to quantify the possible reduction in strength due to the influence of the diagonal
crack, the direct strut in the STM model can be idealized as a compression member
similar to a slant test specimen shown in Figure 7.29. It is widely accepted that a “shear
friction” relationship 7= C+uo (Coulomb failure criteria) can be applied to predict the

failure of slant tests with a preformed crack, see Climaco & Regan [113].

AGO
o 92' '/!1'02 . Experimental
% Repair crack !
ot ". h
o v Base
70019
r—
Rollers 0 |
102 B a

Figure 7.29: Idealization of direct strut to slant tests; example of slant test for £ =30° (adapted
from Climaco and Regan [113])

In the strut-and-tie model described in sections 7.2.2 and 7.3.2 the effective concrete
strength of the strut (f..;) was taken from plasticity as recommended in EC2, which
assumes a constant value of 0.61f.4. It has been shown that this effectiveness parameter
for the concrete provides in general good correlation with experimental data and only in a

few specimens such as beam AGO the strength could be overestimated.

An alternative approach to assuming a constant value of f..; would be limiting the
effective strength of the direct strut according to a shear friction relationship such as

equation (7.30).

1+cot’ S

. (shear — friction) = c.

...(7.30)

where f1s the angle between the strut and the crack plane f=o—6.

In this alternative approach, which is denoted as STM-(eqn.7.30), the inclination of the
diagonal crack (@) would have to be assumed. For beams A the angle of the crack & could
be taken directly from the tests (), as shown in Figure 7.30. Alternatively a reference

value for the inclination of the crack (a.s) can be estimated from the geometry of the
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beam a.r = a.tan(h/a,), refer to Figure 7.29. The value of o, was very similar to the
experimental one for beams AGO and AL3. Even though the reference value o..r=45.5°
provided a safe low boundary of the ultimate strength of the strut, the inclination of the
main diagonal crack was in some cases significantly flatter. As shown in Figure 7.30,
beam ALO presented two different crack inclinations and so it was dubious which angle
should be adopted in the analysis. The remaining beams had a more uniform profile and

so the value of was more certain than for beam ALO.

7,
VayZ
f$‘<\ Crushing

of concrete

Figure 7.30: Measurements of inclination of the main shear crack in beams A

The value applied in equation (7.30) for the cohesion (c¢) was taken as 0.625f, as
recommended in EC2. This estimated value for ¢ was similar to the one applied in the
shear friction approach for slender beams described in chapter 8. Similarly, the friction
used in equation (7.30) was taken as 1.06 and 0.95 for gravel and limestone beams
respectively. It must be highlighted that both ¢ and & assumed are approximated values
since the concrete strength of the push-off specimens used to obtain u (see section 4.4)
was different than in the beams A, especially for the gravel specimens. However, the
values assumed ultimately for equation (7.30) are in agreement with most design codes
and can be used to assess a reasonable boundary of the effective concrete strength of the
strut. The variation of the effective concrete strength given by equation (7.30) is shown in
relation to angle £ in Figure 7.31. For low values of S the concrete strength should be

limited to the uniaxial strength of the concrete f.,.
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Figure 7.31: Effective concrete strength (7. .5) according to shear friction model

As shown in Figure 7.32, the prediction of the ultimate strength of beam AGO was
improved by introducing equation (7.30), whilst a similar strength was obtained for beam
AL3 with larger SI. The shear friction constraint given by equation (7.30) becomes less
restrictive in the STM as the stirrup index increases, since the direct strut becomes steeper
and more parallel to the crack plane. Figure 7.32 illustrates the range where the shear
friction restriction can be critical in beams A. The prediction obtained from the STM with
friction model was variable depending on the inclination of the crack assumed. In general

the results were similar using either Qs OF yor.

The lower bound of the crack inclination of around 35°, which is shown in Figure 7.32,
corresponds to cases where the diagonal crack was almost parallel to the direct strut. In
such instances with high values of S/, equation (7.30) had to be limited by the uniaxial
strength f.4. The higher bound of the crack inclination shown in Figure 7.32 was taken as
55°, which relates to the steepest segment of the diagonal crack observed at the top, see
beam AG2 in Figure 7.30. Using this rather large value of « in the shear friction model
provided excessively low predictions, as shown in Figure 7.32. It seems unrealistic to
assume such a large value of « in the model since the crack at the top, which formed near

failure, is caused by crushing of the concrete rather than shearing.
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Figure 7.32: Predictions of STM with shear friction constraint at diagonal crack

In beam ALO, the strength predicted by STM-(eqn.7.30) using o was clearly

overestimated since the inclination of the crack was essentially parallel to the strut. On the

other hand for the remaining beams the predictions did not differ much from the original

strut-and-tie model suggested, as shown in Figure 7.32. The shear stresses predicted at the

crack by the STM-(eqn.7.30) approach varied between 3 and 4MPa, see Table 7.13,

which are in agreement with interpolated values from the push-off tests (Table 7.12). The

critical shear stresses predicted were slightly higher for beams AG than for beams AL,

which resulted from being the concrete strength of beams AG higher than in beams AL.

307



Chapter 7 — Analysis of Short Span Beams

STM-(eq. 7.30) s | STM-(eq. 7.30) e |  STM (0.61f,)

L

Beam | PP i | PP ity | Peac/Pa i
ALO 56.00° | 0.69 3.76 0.52 4.86" 1.04 6.08
AL2 4082 | 0.63 3.60 0.82 3.39 0.79 5.72
AL3 4500 | 0.78 3.55 0.79 3.53 0.92 5.80
AL4  39.00 | 0.68 3.51 0.97 3.29 0.77 5.89
AGO 4200 | 092 4.53 1.12 423 1.27 5.07
AG2 4315 | 0.67 4.34 0.76 4.18 0.82 4.74
AG3  47.00 | 0.64 427 0.59 438 0.73 4.87
AG4 4200 | 0.64 421 0.76 4.03 0.71 5.24

Note:  ar=45.43"

"High value of & assumed in the analysis. The crack was inclined 33° in most of its length see
Figure 7.32, which results on a 7., of 3.20 MPa with a P,;./P,.,, of 1.86
“1..= acotf/(1+cot’ §) where =0.6 /.y and B=as- 0

Table 7.13: Shear stresses estimated at the shear crack

It is significant to highlight that neither plastic nor shear friction solutions adopted in the
STM model so far take into account for size effects. Although there is not a general
agreement on size effects for short span beams, as discussed in section 7.6, the question
could be raised of whether it is reasonable to ignore the influence of larger crack widths
in STM predictions of large members. A possible solution would be to apply a different
shear friction formula in the STM, in which the crack width would be considered such as
the one used in the MCFT or Swiss design formulas for shear, which are based on the
Critical Shear Crack Theory. These formulas relate the critical shear to ()", crack width
and aggregate size. Moreover, this would also allow to take into account aggregate
fracture, by taking a=0 as proposed by Collins et al. [31, 32]. An example of this
alternative approach to equation (7.30) is shown in Figure 7.33, in which formula

proposed by Muttoni [170] was adopted.

As shown in Figure 7.33, the predictions using sensible values of w and a were not
dissimilar to those obtained using the shear friction approach. The strengths obtained
assuming that the aggregate had fractured (a=0) were around 40% lower than predicted

using a=10mm, as shown in Figure 7.33.
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Figure 7.33: STM with shear constraint at the crack using Critical Shear Crack Theory formulas
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The shear friction approaches described in this section are transparent and can be practical
to demonstrate the relative low strengths obtained for some of the specimens tested
(beams AGO and AL3). However, two main difficulties would arise if the STM-
(eqn.7.30) approach was to be used in a design basis. Firstly, the predictions are highly
influenced by the cohesion and friction parameters applied, which are in general difficult
to estimate in case experimental data is not available. Secondly, the position of the main
diagonal crack would have to be assumed. Although the reference angle a,..r could give a
good lower bound estimate for f. .4, it has been shown that the actual position of the crack
can varied significantly and so the strength could be clearly underestimated. The
parameters that can influence the position of the crack such as load history of initial stress
states are difficult to take into consideration. Lastly, size effects and crack widths are
neglected. As it has been shown, more elaborate shear friction relationships can be
implemented, which could account for additional aspects such as aggregate fracture.
However, crack widths would have to be estimated analytically increasing the level of

complexity of the model.

In conclusion, the STM suggested, which limits the concrete strength of the strut to
0.6vf.4, seems to be a more reasonable approach for design purposes than alternative
methods described in this section using shear friction formulas. As shown in section 8.3.3,
similar approaches can be adopted for more slender beams, in this case using a truss with

crack friction method.

309



Chapter 7 — Analysis of Short Span Beams

7.5.3 NLFEA predictions using combined discrete/smeared cracking
elements

In order to provide further evidence regarding the crack opening/sliding and shear stresses
of the main diagonal crack, a NLFEA, which combined smeared and discrete cracking,
was performed. Linear interface elements were introduced in the finite element mesh to
model aggregate interlock behaviour more accurately. For the remaining elements of the
mesh, smeared cracking models were applied, which had been previously validated in
section 7.4. For the interface elements several discrete cracking formulations, described in
chapter 3, were investigated, although a simple discrete crack model was finally adopted.
As shown in this section, the crack opening and sliding were satisfactorily reproduced by
the FE models, although several assumptions were necessary to find a balance between

realistic behaviour and numerical stability.

Definition of combined smeared/discrete NLFE models

Figure 7.34 shows the FE mesh used, which combined line interface elements with a
discrete crack model (line A—B) and smeared cracking model for the remaining elements.
As reported by Feenstra et al. [53] numerical oscillations can occur in interface elements
with small thicknesses that can be solved by applying Newton-Cotes quadrature elements.
Hence a 6-node and 5-point Newton-Cotes integration scheme interface elements were
applied. After the validation process of the smeared cracking models shown in section
7.4, the multidirectional-fixed smeared crack model was finally chosen for the concrete
elements. The reinforcement was modelled with embedded elements assuming perfect
bonding between the steel and the concrete. Especial considerations, which are discussed
below, had to be made regarding the normal and transverse stiffness of the reinforcement
elements crossing the interface plane. For the remaining elements, all material properties
for steel and concrete were identical to the NLFE models shown in section 7.4, see Table
7.10. Only few additional considerations on the smeared cracking models, which are
described below, were necessary in order to obtain a satisfactory combined performance

of the smeared and discrete cracking elements.

An initial analysis was made to investigate the effect of refining the meshes shown in
Figures 7.15 and 7.34, on the predicted response of the beams. In this analysis, the
interface elements were given a large value of f, to ensure that the discrete crack

remained closed. The other material properties were kept the same as in the previous
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analyses with only smeared cracking. The ultimate loads and stiffness of the specimens

were found to be similar for both the smeared/discrete and smeared crack models.

SMEARED CRACKING ELEMENTS

a2ty
AN |

INTERFACE ELEMENTS

T

Figure 7.34: FE mesh of combined smeared/discrete model for beam AL4

Considerations for the discrete crack model in the interface elements

In order to keep the model numerically stable, a simple discrete crack constitutive model
was initially adopted for the interface elements in which cracking was initiated when the
concrete tensile strength was reached. In this model, which is designated as “Discrete
Crack model” in chapter 3 (see section 3.2.2), the tensile and shear stresses were assumed
to be uncoupled in the open crack. A linear softening curve was used for cracked concrete

in tension once cracking had initiated.

In a preliminary analysis a constant shear retention factor of zero was assumed, which
provided reasonable estimations of the crack opening and sliding. However, as it is shown
in next section, this can result in high concentration of stresses at the ends of the discrete
crack (points A and B in Figure 7.34). Hence, a more realistic value of the aggregate
interlock stiffness after cracking (D7) was applied in further analysis, which was
estimated using simple formula suggested by Hamadi & Regan [19] (Dr=k/w). As shown
in section 4.5, this formula provided reasonable predictions of push-off tests carried in
this work; recommended value of £ =5.4MPa for gravel specimens given by Hamadi &
Regan [19] seemed also valid for limestone specimens tested by the author. For
simplicity, a constant value of Dy was adopted in the NLFEA, which was estimated for a
crack opening of 1.25mm. This value corresponds to average crack widths observed in
beams A near failure. According to these assumptions, the final parameters used in the

NLFEA are summarized in Table 7.14.
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Discrete D, D,
Crack Model | 1€ AL [N/'mm’] [N/mm’]
D;[N/mm’] | 213040 174840 | A0 0.00 432
Dy [N/mm’] | 88767 72850 | A2 1.80" 2.50"
fot [MPa] 2.95 2.00 A3 2.33 2.00
G/ [N/mm] 0.113  0.101 A4 3.50 0.82
Dy [N/mm’] 4.32 4.32

Note: D = elastic stiffness (I- normal; II- shear); estimated as D;= E/h and D;;= G/h where & = 0.2mm.
Dr=overhall shear stiffness; D, =dowel action contribution estimated by DIANA for given
J;=150mm, crack angle 45.43° and stirrup spacing; D,; = Dr—D,

In A2, D,, was taken as 0 for all interface elements except for adjacent elements to stirrups, for
which the values shown were applied

Table 7.14: Material properties of interface elements in NLFEA

Considerations for reinforced elements crossing the crack interface

The normal and shear stiffness of the reinforcement elements crossing the crack interface
were taken into account through the free-length parameter (/5), described in more detail in
section 3.4.2. The value of /; applied to the longitudinal reinforcement was taken equal to
0.2mm, which restrained the crack from opening and sliding at those local points. This
assumption was necessary for numerical stability reasons. However, the assumption
seemed realistic, since the shear crack observed in the experiments did not reach both top
and bottom ends until near failure. As discussed in next sections, the diagonal crack
propagation to top and bottom ends near failure was assigned to the smeared cracking

elements surrounding the interface elements.

A value of /5 of 150mm was assumed for the shear reinforcement crossing the interface
elements. This value of /; was estimated from the crack widths obtained experimentally at
which the stirrups began to yield (w~0.4mm). This preliminary guess allowed for a
constant slip to be obtained along the crack in most of the beams. As described in section
3.4.2, DIANA assumes that the tangential stiffness introduced by embedded
reinforcement crossing interface elements (D), which is attributed to dowel action, is
half the normal stiffness. The contribution of Dy, estimated in this manner is considerably
larger compared to analytical models developed from empirical data. Alternative
solutions are using truss or spring elements, as discussed in section 3.4.2, although they
can introduce several difficulties into the model. Hence, a simpler approach was finally
adopted, which consisted in reducing the value of the shear stiffness of the interface
elements after cracking (D, =Dr—Dga,) to account for the stiffness already provided by

embedded reinforcement elements, see Table 7.14.
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Beams with stirrups evenly distributed along the crack (A3 and A4) D,; was taken equal
for all elements, while for beam A2 D,; was only reduced in interface elements adjacent
to the stirrups. This was necessary in order to obtain an uniform shear stiffness along the
discrete crack. The values shown in Table 7.14 for the shear stiffness component D,
were estimated using DIANA’s formula (see section 3.4.2), which can be expressed in
terms of the free length parameter and shear reinforcement ratio defined along the crack
surface Dg,~=E/(2l;)pck. The shear reinforcement ratio px was estimated using the stirrup
spacing and crack angle for beams A3 and A4, where stirrups were evenly distributed. As
mentioned earlier, for beam A2 stiffness Ey/(2/;) was smeared out to the interface

elements adjacent to the stirrup.

Additional considerations for the smeared cracking models

The tensile strength of the interface elements had an important role in activating the
discrete crack. In order to ensure that the discrete crack would open in preference to
cracking in the smeared crack elements nearby, the tensile strength of the interface
elements was taken as around half that of the smeared crack elements. The reduced value
of f.,, which is suggested in section 7.4 for the smeared cracking elements, was not
necessary since the formation of the discrete crack had already been encouraged by
reducing the tensile strength of the interface elements. Therefore the tensile strengths

from the cylinder splitting tests were adopted in the smeared cracking elements.

A Hordijk [79] tension softening model was used for the smeared cracking elements in
beams with little shear reinforcement (beams A0-A2). As mentioned earlier numerical
difficulties were found in the beams with large number of stirrups crossing the crack
interface due to excessive local cracking of the smeared crack elements near the stirrups
at the level of the discrete crack (see Figure 7.34). This problem was overcome partially
by using a linear softening for tension in the smeared elements instead of the Hordijk
relationship [79]. In addition, the fracture energy was increased to 0.15 N/mm in the
smeared elements of beams with large amounts of stirrups to account for tension
stiffening effects. These modifications to the tensile behaviour of the smeared cracking
elements influenced the load at the initiation of the discrete crack and the numerical

stability of the analysis but not the ultimate load.
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NLFEA results for beams without stirrups

The numerical predictions of the crack opening w and sliding s (Figure 7.35) were in
excellent agreement with experimental results. In addition, the vertical deflections were
better predicted using the discrete/smeared model than the pure smeared crack model, as
shown in Figure 7.35. However, the ultimate strength of beam AGO was over predicted.
The numerical load-deflection curve indicated a change in stiffness at the load where
failure occurred (point A in Figure 7.35), which was due to the propagation of the
diagonal crack to the supports. The propagation of the main crack occurred though the
smeared cracking elements right next to the interface plane due to considerations of the

reinforced elements crossing the interface plane, which have been discussed previously.
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Figure 7.35: Comparison of numerical and experimental load-deflection curves and crack

opening/sliding of beam AGO

The predicted crack opening and sliding shown in Figure 7.35 relate to the interface
element nearest to the cross LVTD, which was located at mid-height of the beam. The
crack opening and sliding obtained experimentally from beam ALO, which are not shown
in order to simplify the figures, were very similar to those obtained from beam AGO.
Figure 7.36 shows that the crack opening and sliding predicted was reasonably constant
along the discrete crack that became active. Interface elements crossed by longitudinal

reinforcement remained inactive thus both crack opening and sliding were negligible.
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Figure 7.36: NLFE predictions of crack opening and sliding along interface plane

Close examination of the shear stresses predicted along the discrete crack that became
active in beam AGO (Figure 7.37), showed that the maximum values of 7., occurred at the
top of the crack. This maximum value of 7., at load point A was equal to 4.33MPa at
loads near failure, which agreed with the shear threshold value predicted by the STM-
shear friction model described in section 7.5.2. In order to establish a reasonable
comparison between the STM-shear friction model and the NLFEA, the reference crack
inclination angle (a,.r) was adopted in the STM (see Figure 7.29). The shear stress at the
crack predicted by the NLFEA at a load of 579kN, which corresponded to the ultimate
load according to the STM, was 3.85MPa as opposed to 4.34MPa obtained in the STM
(see Table 7.13).
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Figure 7.37: NLFE predictions shear stresses along active discrete crack compared with shear

friction threshold value

In view of these results it seems clear that since no shear limit was imposed at the

diagonal crack in the NLFEA, failure was governed by crushing of the strut rather than
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failure at the shear crack itself. Furthermore, the ultimate load predicted in the NLFEA
(922kN) was more consistent with the standard strut-and-tie prediction (830kN) than with
the experimental value (651kN) or the STM with shear friction approach. In addition, the
predicted load-deflection path between points A and B shown in Figure 7.35, had similar
stiffness as the one observed in AGO before failure. This stiffness also agreed with beam

ALO, which had weaker concrete but failed at higher load due to crushing of the strut.

The effect of changing the shear retention factor f in the interface elements was
examined. The objective of this analysis was to verify the sensitivity of the numerical
predictions to the assumed parameter D (Table 7.14). Assuming values of the aggregate
interlock stiffness (D,;) equal to zero resulted in a premature failure at load point C
(Figure 7.35), which was due to excessive concentration of compressive stresses at the
element near the edge of the loading plate. Figure 7.38 shows the change in inclination of
the principal compressive stress trajectories for different values of D,;. It can be seen in
Figure 7.38 (left) that assuming D,=0 lead to the entire load being transferred near the

edges of the loading plates, where the discrete crack remained closed.

In order to avoid premature failure for such cases, the strength of the concrete at the
elements near the loading plate was enhanced. For simplicity the concrete strength was

factored by three for these elements.
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Figure 7.38: Principal compressive stress trajectories in the NLFEA for cases of zero and normal

aggregate interlock stiffness assumptions

The predictions of crack opening and sliding using D,; = 0, which are shown in Figure
7.35, were slightly higher than in the previous analysis, although the results were still
acceptable. On the contrary, high values of the aggregate interlock stiffness resulted in a

clear underestimation of w and s, especially on the crack slip. The results of the
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parametric analysis are shown in Figure 7.35 for D,; equal to two and four times the
stiffness assumed in the first analysis (Table 7.14). The parametric analysis concluded
that the values assumed initially for D,; provided optimal predictions of w and s for beams
AO. In addition, the principal stress trajectories had a better agreement with the STM than
when low values of D,; were used, which resulted in high concentration of stresses. The
strut width predicted in the NLFEA and principal compressive stress trajectories were

consistent with the STM, as shown in Figure 7.38.

NLFEA results for beams with stirrups

Good numerical estimations of crack opening and slip were also obtained for beams with
stirrups as shown in Figure 7.39, although the slip was slightly overestimated for beams
with large number of stirrups, such as beam AL4. A better performance of the NLFE
model was achieved if the concrete strength of the elements adjacent to the loading platen
was factored, results denoted as “high fc”. An enhancement factor of three was adopted in
order to assess the crack opening and sliding at loads near failure. As shown in Figure
7.39 the slip was clearly over predicted if the strength of these elements was not
enhanced. This overestimation of the slip resulted from excessive cracking of the smeared

cracking elements surrounding the interface plane at the top of the beam.
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Figure 7.39: Comparison of numerical and experimental load-deflection curves and crack

opening/sliding of beams AG2, AL3 and AL4
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Figure 7.39 (Cont.): Comparison of numerical and experimental load-deflection curves and crack

opening/sliding of beams AG2, AL3 and AL4

The large concentration of stresses at the edge of the loading plate predicted in the
NLFEA of short beams with stirrups seemed to be related to the geometry of the top node
as opposed to values of D,; assumed in the model. In view of the results obtained for short
beam without stirrups, low values of D,; were avoided and average values shown in Table

7.14 were used in the NLFEA.

Figure 7.40 shows the principle compressive stress trajectories of beams AG3 compared
with AGO predicted by the NLFEA; the strut-and-tie model proposed has been
superimposed. The slightly steeper direct strut, assumed in the STM for beam AG3, was
consistent with NLFE predictions (Figure 7.40). In addition, the geometry of top and

bottom nodes was similar in both models.
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Figure 7.40: Principle compressive stress trajectories predicted in the NLFEA compared with

STM for beams with and without stirrups (beams AG3 and AGO)
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The crack opening obtained was constant along the discrete crack for early load stages,
while for higher loads w was considerably smaller at points where the stirrups crossed the
discrete crack, as shown in Figure 7.41. As mentioned earlier, these local variations in the
crack width were expected since no bond-slip was taken into account in the NLFE model.
The sliding was constant along the crack throughout the loading, as shown in Figure 7.41
for beams AL3 and AL4. However, the crack slip predicted in beam AL4 was only
mobilized until a distance of 500mm from the bottom, which corresponded to the stirrup

closer to the loading point.
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As discussed in previous section, beam AL3 had an unusually low strength in comparison
the rest of beams AL. The shear stresses at the main diagonal crack predicted in the
NLFEA are shown in Figure 7.42 for the interface elements that became active. The
magnitude of the shear stresses obtained was similar to those for beam AGO, see Figure
7.37. Moreover, the shear stress predicted at the crack in beam AL3 was in good
agreement with those obtained from the STM—shear friction model. Figure 7.42 shows a
similar distribution of shear stresses along the discrete crack in beam AL3 as in beam
AGQO. The value assumed in the NLFE model for D,; did not have a significant effect on
the predictions of 7., as shown in Figure 7.42. The results are shown for a load of 750kN,
which corresponds to the ultimate load according to the STM. The NLFE prediction for
the max 7, at failure load of 960kN was only 5% higher than the ones shown in Figure
7.42. The shear stress interpolated from the push-off tests for beam AL3 was 3.64MPa,
which is slightly higher than the values predicted in the NLFEA and STM model (see
Figure 7.42).
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Figure 7.42: NLFE predictions shear stresses along active discrete crack compared with shear

friction threshold value

The shear stresses obtained in the NLFEA were in reasonable agreement with previous
estimations, although clear values of 7., could not be obtained for all specimens tested due
to numerical oscillations in beams with large number of stirrups. These numerical
difficulties were due to discontinuities in the crack slip along the interface plane, which
were similar to the one shown in Figure 7.41 at the top of beam AL4. These local effects

were aggravated for beams AG with a higher concrete strength.
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Final remarks about NLFE predictions

Several simplifications were assumed regarding bond-slip, dowel action and aggregate
interlock behaviour in the NLFEA. However reasonable predictions were obtained for
crack opening and slip at the shear diagonal crack of short span beams. In addition, even
though the inclination of the main crack in the NLFEA was assumed constant, the
numerical predictions of w and s were still acceptable for beams such as ALO, where this

assumption could be more dubious (Figure 7.30).

The numerical predictions supported the low values obtained experimentally for crack
slip compared with crack opening, discussed in section 7.5.1 (see Figure 7.27). These
reduced values of s compared to w justified the use of simple discrete crack model as
opposed to a more realistic crack dilatancy model, in which shear stiffness is a function of
the crack displacements. In addition, although a constant shear retention factor was
applied at the discrete crack, the shear stresses predicted in the NLFE model were in a

similar range to those given in the STM-shear friction model.
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7.6 Additional considerations on short span beams

As shown in previous sections the sensitivity of the ultimate strength predictions of short
span beams to different geometrical and material parameters varies significantly
depending on the design method applied. In this chapter, the influence of parameters such
as the clear shear span to effective depth ratio (a,/d) or stirrup index on shear strength
predictions has been shown. In this section additional considerations are made regarding

bearing plates, size effects and relative position of stirrups.

Bearing plates
As discussed in section 7.3.4, the influence of the bearing plates on the ultimate strength

of short span beams is ignored in many cases. The influence of using roller supports in
beam tests was also discussed and an approximated approach was suggested by the author
to include them in the STM (see section 7.3.6). However, the existing design methods for
short span beams, which are described in sections 7.2.1 and 7.3.1, are inconsistent with

each other with regards the influence of the size of bearing plates.

The strut-and-tie models are very sensitive to changes in the length of the plates since the
inclination and width of the direct strut are highly dependent on these geometrical
constraints. On the other hand, equation (7.11) in MC90 ignores completely the size of
the bearing plates. The remaining methods reviewed consider the size of the bearing
plates indirectly through the enhancement factor £, which increases linearly with the
length of the plates. Furthermore, the standard truss method applies factor £ to the
concrete component only and so the influence of the size of the bearing plates is

independent of the stirrup index, which is not the case for the rest of the design methods.

Unfortunately there is a lack of experimental data which provides clear evidence
regarding the consequences of changing the size of the plates in short span beams since
the bearing plates were generally kept constant within each set of beam tests. A group of
eight beams was selected from the database with similar a/d (1.49-1.56) and SI (0.04-
0.06) in order to avoid dispersions in the predictions (see Figure 7.43). The beams had
different relative bearing lengths with respect the shear span (a/a, = 1.17-1.35-1.45). A
parametric analysis was performed for each design method, changing the size of both
support and load plates simultaneously for beams C2-4 (Clark [130]), which had average
values of the SI. The results from the author’s parametric analysis showed an increase in

strength due to reducing a, whilst keeping a/d constant, which was in good agreement
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with the strut-and-tie model predictions. Values of a/a, below 1.1 corresponded to failure
of the bearing plates, which is taken into account in the strut-and-tie based methods as

shown in Figure 7.43.
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Figure 7.43: Influence of size of bearing plates (a/a,) for beams with similar S/ and a/d ratios

Short span beam tests carried in this work showed that failure could be encourage in one
of the shear spans by increasing the bearing plate of the other span by 37.5%
(Up,1e=125mm, I ien~200mm). This difference in the size of the bearing plates results in a
20% increase in strength according to the STM as opposed to 8% if the simplified EC2
method is applied. Of the 8 beams tested, 6 failed in the shear span with smaller bearing

plate and only two on the span with /; gn =200mm.

Walraven and Lehwalter [171] derived interpolated surfaces from the basis of test results
of short span beams without stirrups, in which various sizes, a/d ratios and support widths
were tested (see Figure 7.44). The maximum stresses in the concrete struts were
calculated using a STM model with hydrostatic nodes, as shown in Figure 7.44. The
interpolated surfaces provided showed that the stresses in the strut decrease with
increasing a/d and //d, although they were in general higher than the constant v/ limit
used in practice. As reported by Walraven [23], this limit seemed valid for members with

a/d<2, depths up to 1m and /, up to around 0.25d.
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Figure 7.44: Maximum stresses in concrete struts according to experimental data (adapted from

Walraven & Lehwalter [171])

It is interesting to highlight in Figure 7.44 that the rate at which stresses decreased with
increasing //d was not linear. Hence ultimate failure load must have increased slightly by
increasing /,, which is consistent with the results obtained in the parametric analysis

shown in Figure 7.43.

Size effect

The reduction of shear strength of reinforced concrete beams with increasing the size of
the member, also know as “size effect”, was first raised by Kani [127] in the mid-1960s.
Currently, design provisions are being revised with regards size effects since as reported

by Collins et al. [12], old design codes have been shown to be inadequate in this matter.

Researchers have justified size effect by means of different factors influencing the shear
behaviour of reinforced concrete beams. Taylor [172] suggested that keeping the
aggregate size while increasing the beam size would decrease the aggregate interlock
contribution hence size effect would occur. However, tests carried out by Walraven [173]
using lightweight aggregate, which fractured at cracks, was also subjected to size effects.
In view of these results and further experiments, Walraven & Lehwalter [132] suggested
that size effect was primary due to the rate of crack formation rather than aggregate
interlock. According to Walraven & Lehwalter [132], the energy-release of larger
members is greater compared with smaller beams hence the crack pattern developed
much faster in larger beams. In addition, the capacity of cracks to transmit tensile forces
is significantly lower for larger specimens since cracks are considerably wider. Several

size effects factors have been proposed by different researchers, such as Bazant & Kim
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[174] or Fujita et al. [175]. Tests carried by Fujita et al. [175] for high-strength concrete

showed size effect to be related directly with the concrete strength f..

On the other hand, the modified compression field theory (MCFT) developed by Collins
& Vecchio [8], size effect is assumed to be caused by the loss of shear stress transmitting
capacity of wide crack for deeper members, due to larger crack spacing. This brings back
to Taylor’s premise of aggregate interlock as main reason for size effect. On the basis of
the MCFT authors such as Sherwood et al. [176], Lubell et al. [30], Bentz & Collins [177]
support the idea of aggregate interlock capacity as the main parameter for size effect.
Lastly, another possible cause for size effect, which was reported by Kotsovos & Pavlovic
[155] (see section 7.3.4), is related to unintended out-of-plane actions induced in very

slender members.

Although there is not a general agreement for explaining size effect in RC beams, it is
widely accepted that it can be significant, especially for cases such as slender beams
(a/d>3.0) without stirrups. Furthermore, size effect is believed to be mitigated in beams
with stirrups due to closely spaced cracks with lower crack widths (Collins & Kuchma
[178]). As reported by Tan & Lu [139], less experimental data is available regarding size
effects on short span beams compared with slender beams. As described in previous
section, especial attention must be paid into the size of the bearing plates since in many
instances the length of the bearing plates were kept constant while changing the member
depth. In such instances, it can be questionable whether the decrease in shear strength is a
measure of size effect or a consequence of variations in the a,/d ratio. According to Zhang
& Tan [140], this might have been the problem in several sets of experimental data

(Collins & Kuchma [178], Tan & Lu [139], Yang et al. [179]).

Early experimental work carried out by Walraven & Lehwalter [132] suggested that short
span beams are subjected to size effects equally as slender beams. According to their
work, size effect in short span beams is related to the direct strut component only and not
to the load path provided by stirrups. As shown in Figure 7.45, the interpolated surface of
maximum stresses in the strut for different a/d and /,/d ratios, was considerably lower for
members with d=Im compared to 300mm, which is shown in Figure 7.44. In view of
these results, empirical equations with the enhancement factor f=2d/a, were introduced in
EC2 as an alternative method to STM. Attempts have been made to include size effect
factors into STM models (see example in STM model proposed by Zhang & Tan [140]),

although these types of approaches have yet not been implemented in design codes.
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Figure 7.45: Maximum stresses in concrete struts according to experimental data of members with

depths of 1m (taken from Walraven & Lehwalter [171])

The performance of the predictions from the strut-and-tie models described in sections
7.2.3 and 7.3.5 for cases with and without stirrups were investigated for different effective
depths. The predictions of the proposed strut-and-tie model for short span beams with
stirrups did not seem to be influenced by the effective depth, as shown in Figure 7.46
(left). This supports Walraven & Lehwalter’s [132] findings for short span beams with

stirrups.

On the other hand, the STM strength predictions of beams without stirrups tested by
Walraven & Lehwalter [132] (see Table 7.2) became less conservative for larger values of
d. According to the authors these beam tests showed a significant size effect. However,
the STM applied to more recent results provided by Zhan & Tan [140] (a,/d=0.94) with

similar beam heights, did not show such a pronounced size effect (see Figure 7.46).
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Figure 7.46: Size effect on short span beams; a) beams with stirrups (0.75<a,/d<2; Table 7.7); b)
beams without stirrups (tests by Walraven & Lehwalter [132] and Zhang & Tan [140])
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The difference between predictions of Walraven & Lehwalter’s and Zhan & Tan’s test
(Figure 7.46.b) might seem contradictory regarding the relevance of size effect, since both
sets of experiments had similar f. (20-30MPa), longitudinal reinforcement ratios (~1.2%)
and a/d (1-1.1%). In addition, the bearing plates were scaled appropriately in both sets of
beams so that /,/d was maintain constant; /,/d were around 0.30 and 0.15 in beams tested
by Walraven & Lehwalter [132] and Zhang & Tan [140] respectively. These variations in
relative size of the bearing plates could justify that the P.,./Pi.s ratio was generally higher
for Walraven & Lehwalter’s beams using the STM (Figure 7.46.b). Moreover, according
to Figure 7.44(left) stresses in the strut could be overestimated using the constant value of

Vf, for a/d=1 and [,/d=0.30, as in beams tested by Walraven & Lehwalter [132].

Most importantly, beam with lowest value of d (V711, see Figure 7.46.b), which had the
lowest P.q/Prs ratio, had a considerably large value of the concrete cover (¢/d=0.25).
The c/d ratio of beam V7110 was three times larger than for the deeper beams, which
explains the conservative prediction of this beam using the STM model. This raises the
question of whether the data shown in Figure 7.46.b is reflecting a size effect problem or

not.

Recent experimental and analytical work carried in Toronto by Uzel et al. [180] on large
footing with no stirrups and a/d between 1 and 3, seem to suggested that size effect is
much less critical in beams with a direct strut action than slender beams. Authors such as
Collins [181] believe that size effect is unimportant for short span beams, since failure is
generally governed by crushing of the direct strut and not by the lost of shear stress
capacity along the main diagonal crack. Although this assumption might be true for a
large number of cases, it seems questionable for others, such as beams AGO and AL3
tested in this work, in which a shear proper type of failure was obtained (see section 7.5).
In the author’s opinion, the relative position of the main diagonal crack respect the direct
strut, which seems difficult to predict a priori, could have an effect not only on the
ultimate strength but also on size effect considerations. According to the author,
additional experimental data from short beams failing in a shear proper type of failure and

different beam depths is required in order to verify this hypothesis.
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Relative position of stirrups

One aspect that is generally ignored in the design of short span beams is the relative
position of the stirrups within the effective shear span. The only restriction regarding the
location of the stirrups is that they must lie within the effective shear span in order to be
mobilized when crossed by the main diagonal crack. Design codes usually recommend a
uniform distribution of the transverse reinforcement, which also enhances ductility and

control over the crack width.

From the design methods discussed in this chapter only the proposed strut-and-tie model
makes allowance for changing the actual position of the stirrups. Parametrical analysis of
the strut-and-tie model showed that changes in the position of the stirrups within the
effective shear span had a small effect, less than 1%, on the predictions of the ultimate
load. The highest strength scenario was obtained by placing the stirrups towards the
support, with a small spacing between the stirrups. Even for this extremely odd scenario,
the strut-and-tie model predicted only a 0.78% increase in strength from the normal case

with uniform stirrup distribution along the clear shear span.

No experimental evidence could be found regarding the influence of changing the
position of the stirrups in short span beams, although the parametric study supported the
idea that a non-uniform distribution of the stirrups did not offer any particular advantage

in terms of strength compared to the conventional uniform layout.
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7.7 Conclusions

Design codes make the allowance of applying alternative design methods for short span
beams in order to take into consideration the enhancement in shear strength due to
arching action. According to the analysis of the experimental database gathered of short
span beams it was concluded that existing design equations for short span beams with and
without stirrups were in general over conservative. The strut-and-tie model proposed
provided better predictions of the ultimate shear strength, although a large scatter was
found for short span beams without stirrups. This scatter was most likely due to the
influence of the position of the main diagonal crack with respect the direct strut. A
modified STM was examined, in which a shear friction relationship was implemented in
the model. This approach provided a formal explanation for the low strength of beams
AGO and AL3. Furthermore, if a more elaborate crack friction relationship was applied,
aspects such as crack width and aggregate size could also be taken into account.
However, up-to-date these alternative techniques implemented in STM, seem not suitable
for design purposes due to excessive uncertainties in the material and geometrical

parameters involved.

The sensitivity of different design parameters such as the clear span to effective depth
ratio or the stirrup index were examined for the proposed STM model and compared with
existing design methods. The performance of EC2 simple approach for short span beams
with stirrups was highly dependent on the stirrup index. Similar problem was observed in
MC90 simplified formula, which provided rather conservative results. The STM
overcame this dependency between the predictions and S/ due to the fact that the
contribution of the direct strut reduces as S/ increases. On the contrary, the STM was
sensitive to variation on a,/d. According to experimental data, the range of validity of a,/d
in the STM was confirmed between 1 and 2. In addition, yielding of the stirrups was
assumed in the STM. The proposed STM for short span beams with stirrups is not
applicable for large values of S/, in which the direct strut vanishes (4=0). However, the
critical value of S, at which A=0 is significantly larger than general stirrup indeces
provided in practice; only one beam out of 143 investigated had a stirrup index greater
than S7,,,,.. The strut-and-tie model for short span beams developed by the author was also
applicable to short span beams strengthened in shear with externally bonded CFRP sheets
to the full depth of the beam.
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The NLFEA performed for short span beams A, showed that ultimate loads and crack
patterns could be estimated accurately. However, the sensitivity of the numerical
predictions to material parameters such as tensile strength was considerable. The multi-
directional fixed smeared crack model was finally chosen between all the smeared
cracking models examined, although the model faced numerical difficulties near failure.
The implementation of interface elements with discrete crack formulation was required in
order to assess the relative crack displacements and shear stresses along the crack.
Although the predictions of w and s were reasonable, several assumptions had to be made
regarding aggregate interlock behaviour, dowel action and bond-slip in order to avoid

numerical instabilities.

In view of the experimental and analytical results, the influence of the fracture of the
aggregate was insignificant for beams A. Design methods examined, including the
proposed STM, had similar performance for limestone and gravel beams. Other aspects
such as the location of the shear crack in relation to the direct strut seemed to have a more
important role on the ultimate strength than the roughness of the main crack in beams A.
The crack opening-sliding ratio obtained at the main diagonal crack was around 3, which
is considerably larger than in slender beams or push-off tests (ow/ds~1). This large value
of ow/6s, which was in agreement with predictions from the NLFEA, suggested that the

shear stresses developed at the crack by means of aggregate interlock were small.
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8.1 Introduction

Extensive experimental and numerical research has been carried out in the past into shear
behaviour of RC slender beams, especially for beams without stirrups. According to
experimental work of slender beams without stirrups, three main shear-carrying
mechanisms have been reported; namely shear carried at the compression head, aggregate
interlock action and dowel action. The contribution of each mechanism is not clearly
understood, although it is generally accepted that aggregate interlock action along the
crack surface is critical at failure due to the formation of the diagonal shear crack from a
previous flexural crack. According to experimental evidence from Taylor [1] or Regan et
al. [4], there seems little doubt that shear strength is reduced in beams without stirrups
due to aggregate fracture at the crack. However, the influence of aggregate fracture is less

clear in beams with stirrups due to lack of appropriate test data.

In addition, most of experimental data available of slender beams with stirrups consists of
simply supported beams where there is a clear interaction between bending and shear.
Moreover, the shear strength of beams loaded at mid-span has the unavoidable
contribution of shear at the compression head, which is generally difficult to estimate.
Empirical data of continuous beams with stirrups, which were critical in shear, are rarely
found in the literature. Design methods, such as the variable strut inclination method
suggested in EC2, have been validated using simply supported beams but few using
beams with a point of contra-flexure. To the best of the author’s knowledge the influence
of aggregate fracture into the shear strength of continuous beams with stirrups has not yet

been investigated.
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In this chapter the experimental results of beams B0, B, C and D (see chapter 6) are
analysed using proposed design methods in EC2, BS8110 and CSA, as well as numerical
predictions from non-linear finite element models developed by the author. An
experimental database of continuous beams tested by other authors was gathered to verify
the results obtained from beams B and C. The results were also compared with traditional
simply supported beam tests found in the literature, similar to beams D tested in this

work.

The crack pattern and crack dilatancy at the main shear cracks were modelled numerically
using NLFEA and analytically using discrete crack truss models. Results are compared
with those obtained for short span beams, which are discussed in previous chapter. In
order to estimate the shear stresses at the crack in beams B, the test data from the push-off
tests shown in chapter 4 was interpolated. These empirical interpolated values were used
to validate analytical discrete approaches developed. The discrete crack-slip model
presented for shear panels (see section 5.5) was adapted in order to predict the relative
crack displacements and stresses along shear cracks in continuous beams. On the other
hand, predictions of shear stresses at the crack from truss models with crack friction are

also discussed.
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8.2 Analysis of slender beams without shear reinforcement
(Beams B0)

8.2.1 Comparison between test results, EC2 empirical formula and
MCEFT; influence of aggregate fracture

The experimental results from slender beam without shear reinforcement (beams BO0)
showed a good correlation with previous tests from Regan et al. [4] with similar type of
aggregate. As described in chapter 6, the type of failure observed for limestone and
normal gravel beams were identical to each other. Failure occurred suddenly after the
formation of the critical diagonal crack, which extended horizontally into the compression
zone and along the flexural reinforcement towards the support. The failure crack surface
was smoother for BLO than for BGO due to aggregate splitting at the crack of the
limestone aggregate. The crack patterns were similar between limestone and gravel
specimens with the only exception that the angle at which the diagonal crack met the
horizontal dowel crack was slightly steeper for the limestone beams than for the gravel

beams, as described in chapter 6.

The influence of aggregate fracture on shear strength prediction of slender beams without
stirrups was examined at first using the EC2 empirical formula (8.1), applying no partial

material safety factors:

Vo (EC2) =0.18100.p, 7. ) 1+ 4200/d )b RCRY

where p; = longitudinal reinforcement ratio; f, = cylinder compressive strength; d =

effective depth; and b = width.

Table 8.1 summarizes the predictions of the ultimate strength of beams BO using
characteristic strengths (%=1). Predictions are shown in Table 8.1 for both cases of
ignoring and considering the limitation on the concrete strength of 60MPa, as
recommended in the UK National Annex. As expected from Regan’s experiments, the
Viesi! Veaie Tatio was lower than 1 for all beams BO tested. The limitation on the concrete
strength to 60MPa had a noticeable improvement on the predictions of the gravel beams,
which had a concrete strength of 80.2MPa. However the limitation of concrete strength
showed to be inefficient for the limestone beams since f. was only 68.4MPa. Whilst safe,
the limit on the concrete strength seems inconsistent with experimental evidence, since

this constraint was only effective for the gravel beams, where only a small portion of the
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course aggregate fractured at the crack (~30%), and not in limestone specimens where all
aggregate particles fractured. Hence, this supports Regan’s [4] conclusion in which the
/. <60MPa limitation should be considered as a compromise solution before a more

rational approach is developed.

EC2 empirical formula Response 2000

Vies Vitex Vies Veale Vies Veale Viest Veale

Beam | X | N | Ve Ve | [roc60MPa) | [ag10mm] | [ag=0]
BGO-1 | 6131 | 100 | 0.76 (1.14) | 0.84 (1.26) | 0.88 (1.34) | 0.94 (1.44)
BG0-2 | 63.11 | 100 | 0.78 (1.17) | 0.86(1.29) | 0.91 (1.38) | 0.97 (1.48)
BLO-1 | 46.86 | 98.5 | 0.61(0.91) | 0.64(0.96) | 0.71 (1.08) | 0.76 (1.16)
BL0-2 | 54.07 | 98.5 | 0.71(1.06) | 0.74 (1.11) | 0.82(1.25) | 0.88 (1.34)
Avg. BGO | 0.77 (1.15) | 0.85(1.27) | 0.89 (1.36) | 0.95 (1.46)
BL0O | 0.66(0.98) | 0.69 (1.03) | 0.76 (1.16) | 0.82 (1.25)

Note: values in parenthesis correspond to design values (EC2: 3. =1.5; CSA: y.=1.53)
Parameters adopted in Response 2000: base curve (Popovic/Thorenfeld/Collins), Comp. Softening (Vecchio
& Collins 1986), Tension Stiffening (Bentz 1999), crack spacing (auto), f;; and &. (auto)

Table 8.1: Predictions of ultimate strength using EC2 empirical formula

As shown in Table 8.1, the V,u./Vies ratio using equation (8.1) was 16% larger for the
limestone beams than for the normal gravel beams due to fracture of the aggregate. These
results were consistent with Regan’s [4] findings for beams with similar /. and d, as
shown in Figure 8.1. The interpolated surfaces proposed by Regan clearly illustrate that

the predictions worsens for higher beam depths and concrete strengths.
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Figure 8.1: Correlation of experimental results of beams B0 with interpolated surfaces (Vies/V i~
f.~d) proposed by Regan [4] for limestone and gravel aggregate concrete beams without stirrups

using EC2 empirical formula
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Predictions from sectional approach using Response 2000 (Table 8.1), which is based on
MCFT, are more accurate than EC2 empirical formula, although the V,.s/V.u. ratio was
still lower than 1 for all beams (no material factors of safety applied). The crack spacing
predicted using CEB-FIB [6] formulas implemented in MCFT, were in agreement with
experimental values. Moreover, the maximum vertical deflections predicted were between

4 and 5Smm, as observed in the tests.

Again, predictions using Response 2000 are shown for two distinctive cases; firstly with
an effective aggregate size (a.p) equal to 10mm and secondly with a4 equal to zero. The
second case corresponds to the CSA recommendations for the given concrete strengths,
while the former (a.;y =10mm) would be assuming that the aggregate did not fracture at
the crack independently of £, which was the case for beams BGO. As shown by figures in
Table 8.1, reducing a.; provided a similar improvement of the Vi/Veu. ratio for all
beams, which seemed to be more rational than the simpler approach suggested for EC2.
The Vies/Veare ratio is very similar for BGO and BLO if a5 is taken as 10mm for the gravel

and zero for the limestone beam, as suggested by observed behaviour.

In view of these results it can be concluded that both EC2 and MCFT constraints applied
to deal with aggregate fracture, which are based on concrete strength rather than type of
aggregate, can be used to obtain safer design strengths. However, these approaches are
not necessarily consistent with experimental data, as shown for beam BGO0. Although to
be fair, MCFT approach seems more rational from a theoretical perspective. In addition,
this approach was more effective than EC2 method for beam BLO in which the aggregate

fractured completely.
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8.2.2 Predictions of NLFEA using smeared cracking models

Numerical simulations using a non-linear finite element analysis of beams B0 were
carried by the author using the three smeared cracking approaches described in chapter 3:
total strain fixed crack model, total strain rotating crack model, multi-fixed crack model.
A shear retention factor fof 0.1 was used in both totally fixed and multi-fixed models.
The threshold angle (a) was selected as 30° in the multi-fixed model, according
considerations made for multi-directional fixed models in section 3.2.1. The remaining
material properties considered in the models are summarized on Table 8.2. The concrete
elastic modulus (E.), tensile strength (f.,), compressive strength (7. ) and the steel yield
strength (f,) were obtained experimentally whilst the remaining parameters had to be
estimated. The stress-strain models used were the Hordijk softening curve for tension and
the parabolic curve proposed by Feenstra [82], which are defined by respective tension

and compression fracture energy, see section 3.3.

Concrete BGO BLO Steel Plates Lo.ng
reinf.
E. [MPa] 42608 34969 | E,[GPa] 200 200
1% 0.2% 0.2* 1% 0.3 0.3
fo [MPa] 5.7 49 fy [MPa] 500 580
G/[N/mm] 0.113  0.101
f. [MPa] 80.2 68.4

Notes: * For the Total Strain models v=0
* An estimated value of G, = 100G was assumed, where Gf‘(MC90):Gﬁ;.(ﬂm_/f;»nw)oj

Table 8.2: Material properties in NLFEA

The total strain fixed crack model incorrectly predicted flexural failure and consequently
overestimated the failure load (Figure 8.2). The use of totally fixed crack models within a
total strain formulation can give inconsistent results in cases where cracks cross previous
cracks with different inclinations. On the other hand, the total strain rotating and multi-
fixed models predicted the ultimate load and mode of failure satisfactory as shown in
Figure 8.2. However, numerical difficulties were faced at loads near experimental failure,

which needs further discussion.

The iterative procedure in the multi-fixed model diverged on the last load step, although
the ultimate load corresponding to the last converged load step was very similar to the
experimental value, as shown in Table 8.2. Divergence of the iterative process in a
NLFEA is not always related to failure (Borst & Nauta [67]), although in this case it

appears to be related to the sudden formation of the diagonal crack.
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In the total strain rotating model the failure load is taken at load step where the diagonal crack was
predicted (see circle mark); load branch above this load is denoted as “post-failure behaviour”

Figure 8.2: Performance of smeared cracking models for slender beams without shear

reinforcement

The total strain rotating model provided sensible predictions for the failure load and crack
pattern but the predicted post-failure response was unrealistic as shown in Figure 8.2. It is
important to note that failure in the total strain rotating model was assumed at load step in
which the diagonal crack was predicted to form. This critical step also corresponded to a
considerable increase in vertical deflection; refer to circle mark in Figure 8.2. A
considerable amount of load was predicted to be carried after this point, which was not
consistent with experimental evidence. This spurious load branch, which is partially

shown in Figure 8.2, is denoted as “post-failure behaviour”.

The increment in load obtained in the post-failure branch was accompanied with the
development of a horizontal smeared crack along the longitudinal reinforcement as shown
in Figure 8.3. This suggests that the spurious load mechanism obtained seems to be
related to the complete debonding of the concrete from the longitudinal reinforcement at
failure not being reflected in the NLFE model. This is further supported by NLFEA of

small scale beams carried by Ueda [182], which showed that a discrete horizontal crack
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along the reinforcement had to be introduced in the model in order to obtain reasonable

failure loads.

BGO01

Experimental\- A

punt 4 it L
VLR ML

Figure 8.3: NLFEA (total strain rotating) crack pattern predictions, post-failure behaviour

Experimental data from the post-peak branch is rarely available for slender beams without
stirrups. Experimental work from Chana [183], which included high-speed recording of
crack widths at the dowel and diagonal cracks, showed that after the peak load was
reached the dowel crack opened up at approximately twice the rate as the diagonal crack.
At loads lower the peak value, the dowel crack started to open right before the diagonal

crack and both continued opening at a similar rate until failure.

Regarding the influence of parameters assumed on numerical predictions, the concrete
tensile strength (f.,) had a significant effect, as shown in Figure 8.2. This observation
agreed with Vecchio & Shim [98] conclusions. In the previous analyses, f.; shown in
Table 8.2 was obtained from the split cylinder test. Adopting this value for f; provided a
sensible estimate of the ultimate load but the first flexural cracks formed later in the
analysis than in the tests. The prediction of the initial crack development was improved if

the tensile strength was reduced to ]‘ct:O.33(fC’)1/2

as recommended by Bresler & Scordelis
[169] but the ultimate load was underestimated in some cases such as beam BGO02 (see

“Tot. Rot low f;,” in Figure 8.2).

It can be concluded that despite the numerical difficulties faced and assumptions made by
the smeared cracking models applied, the NLFE estimations of the ultimate strength
(Figure 8.2) were reasonable. The NLFEA presented here did not model the effect of
aggregate fracture. Hence, it could be expected that predictions for BLO to be less
conservative than those obtained for BG0. However, this was only true using the multi-fix
model. This was probably due to the difference in concrete properties between both set of
beams assigned in the numerical models such as f or f.;, which had a significant effect on

the numerical predictions.
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8.3 Analysis of slender beams with shear reinforcement
(Beams B, C and D)

8.3.1 Influence of the load arrangement: continuous beams

Experimental evidence

Most of the available experimental data on beam tests with shear reinforcement
correspond to simply supported beams with a high flexural capacity in order to ensure a
shear type of failure. “T” or “I” cross sections with thin webs were generally applied in
order to avoid flexural failure due to their high efficiency. Rectangular sections can also
be adopted, such as beams D tested in this work, although flexural reinforcement had to
be distributed in three layers. Beam tests designed using either type of cross sections have
been widely used to validate analytical models such as the standard truss method or the
more recent variable strut inclination method (EC2), as shown in Figure 8.4, which was

taken from Walraven [23].
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Figure 8.4: Validation of variable inclination strut method (adapted from Walraven [23])
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Beams B & C, described in chapter 6, were loaded at two points, one of them at a
cantilever end, in order to have a point of contra-flexure at the shear critical span (see
Figure 6.33). This load arrangement reduces considerably the shear contribution at the
compression head and relates to structural cases with pure shear action rather than
combined shear-flexure behaviour of a simply supported beam. Experimental data of
beam tests critical in shear with a point of contra-flexure are less common than simply
supported beam tests. Tests carried by Ramirez et al. [184] or Regan [149] (Table 8.3)
had a similar load arrangement to beams B & C, although the shear reinforcement ratios
were lower. As shown in Tables 8.3 and 8.4, all beams considered had stirrup ratios
greater than minimum requirements by EC2 and BS8110 (see section 7.3); beams with

lower amounts of stirrups had at least twice these minimum values.

Watanabe & Lee [185] referred to a series of 95 beam tests similar to beams B & C
carried in Japan in the early 90s by several researchers. Unfortunately only data of 56
specimens (Table 8.4) could be retrieved from this source, refer to [186-190]. Useful
information was obtained about ultimate strength and crack patterns from these tests,
although the references were in Japanese and so the interpretation of the results was very
limited. The cross section and reinforcement arrangement in the Japanese beams were
very similar to beams B & C, although the type of aggregate used is unknown. The cracks
in these tests might have been wider than in beams tested in this work since very high

yield strength steel was generally used for the stirrups as shown in Table 8.4.

Cont. Beams Vcalc/Vtest
T N
Author Beam a/d [n:im] [mbm] [Nicl’a] [Nf;a] Il\’fl:a] pfy/vfe ﬁ/};:)énzl]n \[/l:;?]t EC2 BS8810 CSA
Ramirez I-NWLA 495 308 356 462 520 233 0.090 6.7 1308.0 1.16 0.84 0.86
etal. 2-NWLB 495 308 356 462 520 233 0.090 6.7 1455.0 1.04 0.76 0.77
3-NWLC 498 306 356 46.6 472 237 0.082 6.0 1263.0 1.08 0.82 0.84
4-NWLD 498 306 356 458 472 237 0.055 4.1 1044.0 0.87 0.80 0.84
5-LWLA 495 308 356 434 520 233 0.095 6.9 984.0 1.54 1.12 1.13
6-LWLB 495 308 356 43.0 520 233 0.096 6.9 1116.0 1.35 0.99 1.00
7-LWLC 498 306 356 434 472 237 0.086 6.3 1071.0 1.27 0.97 0.99
8-LWLD 498 306 356 443 472 237 0.057 4.1 840.0 1.08 0.99 1.04
9-NWLD 498 306 356 40.0 472 237 0.061 43 930.0 0.98 0.90 0.92
10-NWHD 4.98 306 356 60.1 472 237 0.045 3.5 1077.0 0.84 0.77 0.85
11-LWHD 498 306 356 723 472 237 0.040 32 1188.0 0.76 0.70 0.77
12-NWHD 498 306 356 752 472 237 0.039 3.2 1191.0 0.76 0.70 0.77
Regan J-18 375 271 152 313(+) - 146  0.070 2.6 163.0 0.65 0.58 -

Note: for slender beams the stirrup ratio p is defined as 4,/,/(bs)
(+) estimated from cube strength (assuming f. =0.8f..)
Beams LW tested by Ramirez et al. refer to light-weight aggregate concrete

Table 8.3: Continuous beams with stirrups tested by Ramirez et al. [184] and Regan [149]
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Cont. Beams Vcalc/Vtest
d b fc' fy pl p/pmin | Vtest
Author Beam a/d (mm] | (mmi| [MPa] | (MPaj| MPa] pfy/vfe EC2] | kN EC2 | BS8810 CSA
Kagami F-90-041* 444 360 200 383 922 1.73 0.207 8.1 268.21 | 1.92%* 1.39% 1.25%
et al. E-90-041* 4.64 345 200 383 922 241 0.207 8.1 325.59 | 1.52% 1.13* 1.08*

B-90-041 4.76 336 200 383 922 3.09 0.207 8.1 37425 1.27 0.97 0.98
G-90-041 4.85 330 200 383 922 378 0.207 8.1 37425 1.25 0.96 1.01
H-90-041 4.80 333 200 383 922 315 0.207 8.1 35022 | 1.35 1.03 1.04
E-30-041 4.64 345 200 383 225 241 0.051 2.0 223.08 [ 0.68 0.70 0.74
G-30-041 4.85 330 200 383 225 3.78 0.051 2.0 216.02 [ 0.68 0.73 0.81
Kokusho B-210-6.0 3.53 340 180 21.2 1386 3.11 0.374 11.8  241.33| 1.29 1.31 1.21
etal. B-210-7.4 3.53 340 180 21.2 1478 3.11  0.564 17.8 27959 | 1.15 1.13 1.04
B-210-9.2 3.53 340 180 21.2 1458 3.11  0.890 28.1  321.77 | 1.00 0.98 0.91
B-210-11.0 3.53 340 180 21.2 1488 3.11  1.278 404  356.10 | 0.90 0.88 0.82
B-360-4.1 3.53 340 180 39.0 1448 3.11  0.108 43 625.88 | 0.97 0.71 0.78
B-360-5.1 3.53 340 180 39.0 1478 3.11 0.170 6.7 72139 | 1.17 0.83 0.89
B-360-6.0 3.53 340 180 39.0 1386 3.11  0.220 8.7 75796 | 1.23 0.96 1.00
B-360-7.4 3.53 340 180 39.0 1478 3.11  0.332 13.1  762.03 | 1.39 1.04 1.29
B-360-9.2 3.53 340 180 39.0 1458 3.11 0.524 20.7 953.04| 1.18 0.83 1.17
B-360-11.0 3.53 340 180 39.0 1488 3.11  0.753 29.8 1056.68| 1.07 0.75 1.05
B-570-4.1 3.53 340 180 56.0 1448 3.11  0.082 3.6 300.19 | 0.98 0.72 0.82
B-570-6.0 3.53 340 180 56.0 1386 3.11  0.167 7.3 41693 [ 1.28 0.84 0.89
B-570-7.4 3.53 340 180 56.0 1478 3.11  0.252 11.0  485.60 | 1.28 0.79 0.99
B-570-9.2 3.53 340 180 56.0 1458 3.11  0.398 17.3 54936 1.28 0.70 1.17
B-570-11.0 3.53 340 180 56.0 1488 3.11  0.571 249 59351 | 1.21 0.64 1.30

Matsuzaki C-210-0.19 3.57 336 200 239 710 2.83 0.104 3.5 254.08 [ 0.80 0.68 0.76
etal. C-210-0.40 3.57 336 200 239 710 2.83 0.220 7.3 320.79 | 1.01 0.85 0.93
C-210-0.59 3.57 336 200 239 751 2.83 0342 1.3 329.62| 1.13 1.11 1.09

C-210-0.89 3.57 336 200 239 751 283 0516 17.1  377.69| 1.04 0.97 0.95
C-210-1.18 3.57 336 200 239 751 283 0.685 227  423.79| 0.92 0.87 0.85
C-360-0.19 3.57 336 200 384 706 2.83 0.069 2.7 259.18 [ 0.78 0.70 0.79
C-360-0.89 3.57 336 200 384 756 2.83 0345 13.6  462.05| 1.21 0.91 1.16
C-360-1.18 3.57 336 200 384 756 2.83 0457 18.0 52582 1.12 0.80 1.11
C-570-0.40 3.57 336 200 685 710 2.83 0.095 43 44145( 0.97 0.64 0.73
C-570-0.59 3.57 336 200 685 751 2.83 0.149 6.7 588.60 | 1.09 0.66 0.72
C-570-0.89 3.57 336 200 685 751 283 0.224 10.1  652.37| 1.15 0.64 0.83
H-210-1.18 3.57 336 200 239 751 283 0.685 227 43753 | 0.89 0.84 0.82
U-210-1.18 3.57 336 200 239 751 2.83 0.685 227 412.02| 0.95 0.89 0.88
Takagietal. B-30-046 4.76 336 200 34.1 363 3.09 0.094 35 268.70 [ 0.93 0.76 0.80
B-30-121 4.76 336 200 335 297 3.09 0.206 7.7 403.19 | 1.06 0.83 0.84
B-60-030 4.76 336 200 339 512 3.09 0.087 33 24937 ( 0.92 0.79 0.83
B-60-059 4.76 336 200 343 576 3.09 0.192 73 410.55 | 1.03 0.79 0.80
B-80-019 4.76 336 200 347 900 3.09 0.098 3.7 277.52( 0.96 0.76 0.80
B-80-022S 4.76 336 200 350 856 3.09 0.093 3.5 27448 [ 0.92 0.75 0.79

B-80-046 4.76 336 200 350 937 3.09 0.237 9.0 377.69| 1.23 1.01 1.01
B-80-058S 4.76 336 200 35.1 875 3.09 0.286 109 41849 1.18 1.00 1.03
B-80-059 4.76 336 200 35.1 937  3.09 0306 11.7 46235 | 1.09 0.91 0.97
B-80-110S 4.76 336 200 352 835 3.09 0.556 21.3  527.88 | 1.04 0.80 1.01
B-80-121 4.76 336 200 352 934 3.09 0.622 23.8 507.47| 1.08 0.83 1.05

B-120-019 4.76 336 200 359 1104 3.09 0.117 4.5 32422 | 1.00 0.73 0.77
B-120-030 4.76 336 200 36.2 1104 3.09 0.177 6.8 386.81 | 1.11 0.81 0.83
B-120-059 4.76 336 200 36.1 1103 3.09 0.352 13.6 47490 1.13 0.88 1.05
B-120-121 4.76 336 200 36.2 1108 3.09 0.721 27.8  540.83 | 1.04 0.78 1.01
B-150-019 4.76 336 200 363 1284 3.09 0.135 52 311.66 | 1.22 0.84 0.88
B-1.5-022 3.57 336 200 36.7 856 3.09 0.089 3.4 281.55( 0.90 0.73 0.78
B-1.5-058 3.57 336 200 36.8 875 3.09 0.275 10.7  439.19| 1.16 0.96 0.98
B-1.5-110 3.57 336 200 369 835 3.09 0.535 20.8  531.60| 1.07 0.79 1.05

Simokaichi Bl 346 260 150 638 376 3.06 0.041 1.8 158.16 | 0.65 0.65 0.77
etal. B2 346 260 150 63.8 929 3.06 0274 122 44482 [ 1.00 0.55 0.78
Total = 69 including beams in Table 8.3 EC2 | BS8810 CSA

Summary of results*

max value= 4.85 360 200 68.5 1488 3.78 1.278 40.4 Mean| 1.06 0.84 0.93
minvalue= 3.46 260 150 212 225 1.73 0.041 1.8 SD| 0.19 0.14 0.14
COV %| 17.68 | 17.09 15.42

Note: *Bond failure (results are neglected); summary table refers to the remaining 67 beams

Table 8.4: Continuous beams with stirrups (test carried by Japanese researchers)
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Differences in ultimate strength and crack pattern

The experimental data from the 69 beams shown in Tables 8.3 and 8.4, was consistent
with results from beams B & C. Several differences were observed between the shear
behaviour of simply supported beam tests and beams with a point of contra-flexure. The

ultimate strength and crack pattern seemed to be influenced by the type of loading.

Ultimate load

The ultimate shear strength of beams B & C was significantly lower than those shown in
Figure 8.4, which were simply supported and had a flanged compression head. This
reduction in strength in beams B & C was in agreement with experimental data shown in
Tables 8.3 and 8.4. This is clearly shown in Figure 8.5, where the strength of continuous
beams was generally under the predicted strength curve suggested in EC2, as opposed to
simply supported beams shown in Figure 8.4, where points were clearly above it. This
disagreement between both sets of experimental data, seems to worsen for higher values
of shear stresses. The shear strength of simply supported beam with a rectangular section,
which was tested in this work (see beam D in section 6.6), was similar to equivalent
continuous beam. This suggests that the difference between Figure 8.4 and 8.5 results

might be mainly due to the compression flange.

The shear force resisted by the compression flange at failure can be estimated using
equation (8.2), suggested by Placas & Regan [143]. Equation (8.2) takes into account the
rigidity of the flange, although the formula had not been validated for neither lightweight
nor high-strength concrete. Despite this limitation, equation (8.2) was applied in order to

obtain an order of magnitude of the shear carried by the flange.
V., =017, (b, +1.54h, )k, .. (8.2)

where A= 1.0 if [(by-b,) > 3hy] and A= (by-b,)/3hyif [(by-by) < 3h]]

Figure 8.5 compares the results of beams tested with a point of contra-flexure (black
squares) with simply supported beams (white circles). The simply supported beams
shown in Figure 8.5 correspond to tests by Hamadi & Regan [19] and Walraven [10],
which had a “T” and “I” section respectively. The estimated shear contribution carried at
the flanged V., has been subtracted from the total shear force, which is represented by
triangle markers in Figure 8.5. The results obtained showed a reasonable correlation,
especially for values of pf,/ 1f. <0.4, which seems to suggest that flanged sections can

provide a significant contribution to shear strength. According to this analysis the shear
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carried by the flange V., had a contribution to the total strength that varied from 10 to
20% for the 14 simply supported beams considered.
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Figure 8.5: Ultimate shear strength with pf/ vf. for simply supported and continuous beams;

contribution of shear carried at the flanges (/) in simply supported beams

In order to investigate the influence of compression flanges on shear behaviour of
reinforced concrete beams, two beam test series were carried out by Regan [149], which
consisted of simply supported beams with similar dimensions, concrete strengths and
amount of stirrups. The results shown in Figure 8.6 correspond to beams with vertical

stirrups and a/d ratios between 3.4 and 3.6.

Again the contribution of the compression flange is observed (Figure 8.6), although in
two of the beam tests, which had low transverse flange reinforcement, premature failure
occurred at the flange. For the remaining beams, the strength was generally greater
compared with equivalent beams with a rectangular section, the figure of 10-20%
estimated previously was in good agreement with the experimental data. These results
further support the relevance of flanged sections, although more experimental data of

beams with higher stirrups indexes would be desirable.
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Figure 8.6: Ultimate shear strength for simply supported beams with rectangular and T sections

Differences in crack pattern

The crack pattern was also influenced by the type of loading. Experimental evidence
shows that in simply supported beams failing in shear, initial 45° shear cracks form at
early load stages at the mid-height of the web along the shear span (Figure 8.7). However,
in beams B & C, these cracks formed at a distance equal to the effective depth d from the
loading points as part of the fanned shape strut (Figure 8.8), while the central span
remained uncracked. The difference in the stress fields between simply supported and
continuous beams before cracking is clearly shown in Figure 8.9 adapted from Calavera

[191].
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Figure 8.7: Crack pattern of simply supported beam; Top — T section (GT4, Hamadi & Regan
[19]); Bottom — Rectangular section (beam DB1 tested in this work)
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Figure 8.8: Typical crack pattern of continuous beam. Top — (BL1); Bottom — Bond split crack

along flexural reinforcement (BG1)
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Figure 8.9: Compression and traction lines in simply supported and continuous beams before

cracking (adapted from Calavera [191])

Once the preliminary shear cracks had developed, redistribution of stresses is required to
stabilize the system. As the load increases and the stirrups begin to yield the strut changes
its orientation in order to activate a larger number of stirrups and flatter cracks (35°) may
form. In the case of simply supported beams, these later cracks crossed the previous 45°
ones as shown in Figure 8.7. On the other hand, in beams B & C, these newer cracks
formed at the centre of the shear span, where the concrete was uncracked. Most likely
these differences in the crack development resulted in a different contribution of
aggregate interlock to the shear strength of the specimen. At failure, the behaviour of the
main shear crack depended on the stirrup index (S7). Beams with lower S/, such as BLI,
the crack got wider and failure was due to the complete lost of aggregate interlock while

for the remaining beams crack slip was also mobilized.

In some of the continuous beams examined (see Kagami et al. [186], Regan [19], or
beams tested BG1-BG2), near failure the main diagonal shear crack extended to the ends
along the main flexural steel in a bond splitting horizontal crack (see Figure 8.8 top). This

type of bond failure does not appear to be related with the type of loading since similar
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crack propagation was reported in simply supported beams such beams GT4-5 and LT4-5
tested by Hamadi & Regan [19] (Figure 8.7 top). The ultimate load of the beams, which
exhibited a bond split crack at failure, was not significantly lower than the rest of the
beams, except for tests by Kagami et al. [186] which had considerably low flexural
reinforcement ratios (o, =1.73-2.4%). The beams by Kagami et al. [186] in which the
ultimate strength appeared to be influenced by the low longitudinal reinforcement ratio
corresponded to the lowest two data points in Figure 8.5 with pf,/ V. = 0.2. Even though
in some beams bond failure was predominant, in other cases such as beams BG1 and

BG2, failure seemed to occur as a combination of both shear and bond failures.

NLFEA of simply supported and continuous beams

In order to assess clearly the differences described above between simply supported and
continuous beams, a simple comparative scenario with identical beams was established
using a non-linear finite element analysis. Numerical predictions of crack pattern and
stress redistributions of tested beams B were compared with identical beams without the
load point applied at the cantilever end. These beams, for which no experimental data was

available, are denoted as beams Bs.

Two major changes were required in order to model beams Bs. Firstly, the width of the
elements in the right short shear span had to be factored by three, in order to avoid failure
in that span, which had twice the shear force in beams B. Secondly, the yield strength of
the flexural reinforcement was increased to 980MPa and a compression flange was
included (hr=125mm, by=405mm) to avoid flexural failure. These changes in the cross
section were required since the maximum bending moments in the simply supported
beam Bs were twice as in continuous beam B. As a result from these changes in the cross

section, the lever arm was around 5% larger in beams Bs than in beams B.

In the NLFEA, the multi-fixed smeared crack model was adopted. Similar material
properties as in beams A were applied see section 7.4. As shown in Figure 8.10, the
different crack development obtained for simply supported beams Bs and continuous

beams B was satisfactory reproduced by the NLFE models.

As shown in Figure 8.10 the crack development predicted at a shear force of 360kN,
which was near the experimental failure load in beam BL1, was much lower in beam
BsL1. The predicted critical shear crack at the centre of the span clearly crossed the

preliminary 45° shear crack (Figure 8.8), as observed in tests.
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Figure 8.10: NLFE prediction of crack development in beams B and Bs

The directions of the principle compressive stresses before cracking were similar to those
shown in Figure 8.9. However, the struts in the continuous beams seemed considerably
flatter than those in beams Bs, as shown in Figure 8.11. The truss system generally
described for simply supported beams was clearly reproduced in the NLFEA, see Figure
8.11 top. The vectors of the principle compressive stresses were orientated at 45° around
preliminary shear cracks and were flatter between these cracks. In addition, arching action

near the support was also captured in the NLFEA.
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Figure 8.11: Principle compressive stresses at ultimate loads for beams BL1 and BLs1
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8.3.2 Comparison between predictions from variable strut inclination
method (EC2), simple truss (BS8110) and MCFT
Variable strut inclination method (EC2)

As discussed in section 8.3.1, the variable inclination strut method (VSI) was applied to
predict the ultimate strength of beams presented in Tables 8.3 and 8.4, along with
continuous beams tested in this work (beams B & C). The VSI method produced
satisfactory predictions of the ultimate strength of beams with pf,/vf.” ratios up to around
0.15 (see Figure 8.12). Above this value, where the predicted cot8 becomes lower than
2.5, the strength was generally overestimated. The V,,;./Vis ratio obtained for beams B, C
& D are summarised in Table 8.5, in which no material factors of safety have been

applied; for the remaining beams refer to Tables 8.3 and 8.4.

As discussed in previous section, the overestimation of the ultimate strength seemed
related with the type of loading in the test, in particular with the type of cross section
used. However, parameters assumed in the VSI method such as the lever arm (z) or the

effectiveness factor of the concrete (v) had a significant influence on the shear strength

predictions.
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Figure 8.12: Variable strut inclination method predictions for continuous beams

In Figure 8.12, both design and characteristic strength curves using VSI are presented. As

shown in Figure 8.12, the application of material factors of safety (1.5 and 1.15 for the
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concrete and steel, EC2) still allows for a certain margin of safety, which seems to
decrease quite considerably for beams with cot@ equal to 2.5. The ultimate strength of
these beams is governed by yielding of the stirrups and so only steel material factor of
safety is applied (1.15). In this range, only light-weight aggregate continuous beams
tested by Ramirez et al. [184] were below the design curve. In addition, two beams from
Kagami were below the design VSI curve in the plastic range, which could be explained
to local bond failure. The accuracy of the predictions is discussed in further detailed in the
next sections; the performance of other design codes such as BS8110 and CSA are also

shown in Tables 8.3, 8.4 and 8.5.

VSI(EC2) | BS8810 Rezsg(;’(;‘s' MCFT (CSA)
Beam p}zfjfc, [Z’N} Ve Ve cot0 | VeV | VeV | Ve View ot
BGI 016 285.19| 1.15 226 | 084 1.02 0.96  1.49
BG2 027 32224| 122 163 | 1.08 1.23 1.19 138
BLI  0.11 35073| 1.03 250 | 0.68 0.94 0.82  1.48
BL2 0.18 478.18| 1.07 213 | 0.73 0.96 0.82  1.38
CBI 008 30880| 1.00 250 | 0.74 0.98 0.88  1.49
CAI 008 29396| 105 250 | 0.78 1.03 0.92  1.49
CB2 012 42871| 108 250 | 0.69 0.92 0.80  1.42
CA2 012 41866| 1.11 250 | 0.71 0.94 081  1.42
DBI* 008 31137| 094 250 | 0.70 0.98 0.81  1.43
DAI* 008 29922| 097 250 | 0.63 0.94 0.77  1.43

Ave. | 1.06 0.76 0.99 0.88

SD | 0.08 0.13 0.09 0.12

Cov (%) | 71.93 16.73 9.26 14.18

Note: no material factors of safety have been applied; “all specimens were continuous beams except for
DB1/DAL.

Additional assumptions are:
- In EC2 (VSI), z=0.94
- In BS8110 cube strengths have been assumed as 0.8f, and £, <40MPa
- In Response 2000: base curve (Popovics/Thorenfeldt/Collins), Comp. Softening (Vecchio & Collins
86), Tens. Stiffening (Bentz 99); aggregate size 10mm; no strain hardening considered for steel
- MCFT (CSA), design equations (2.18) & (2.19) with 5.,~300mm; M, was taken not lower than Vd,

Table 8.5: Summary of predictions of the ultimate strength of beams B, C & D using the variable
strut inclination method (EC2), classical truss (BS8110) and MCFT (Response 2000 and general
design equations CSA)
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The value assumed for the lever arm z=kd, had a significant influence on the prediction of
the ultimate strength using the VSI. In design codes & is suggested to be taken as 0.9,
although allowance is made to estimate this parameter more accurately. However, no
general guidance is provided in order to assess z. A preliminary estimate of the lever arm
could be obtained from the maximum flexural capacity of the section, but this approach

would be problematic since it is dependent on the longitudinal reinforcement ratio.

The lever arm estimated from the maximum flexural capacity of the section can differ
from the actual value at failure especially in shear tests where beams are designed with a
considerable safety margin from flexural failure. Hence, the lever arm was estimated at
the section of maximum bending moments for the beams described in Tables 8.3 to 8.5,
from first principles using the bending moment obtained experimentally. Reasonable
predictions of the strains in the longitudinal reinforcement were obtained for beams BG2
and BL2 in which a parabolic-rectangle relationship was assumed between strain and
stresses at the concrete as suggested in EC2. The strains in the tensile reinforcement were

60% and 86% of the yield strain for beams BG2 and BL2.

The experimental values obtained for & from this analysis are shown in Figure 8.13, with
an average value of 0.84. In particular £ was equal to 0.86 for beams BL and BG. When
analysing beams with a point of contra-flexure, Regan [3] suggested a lower value of k =

0.8 in order to fit experimental data from Watanabe [192].
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Figure 8.13: Average values for factor k£ for beams with a point of contra-flexure
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This conservative value of £=0.8 seems more consistent with experimental data shown in
Figure 8.13 and provides a better estimate of the ultimate load of continuous beams when
using the VSI (see Figure 8.14). For simply supported beams with and “I”” or “T” section,

such as beams Bs, described in section 8.3.1, the value of £=0.9 seems more suitable.
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Figure 8.14: Predictions of variable strut inclination method for different lever arm assumptions

(Zex=krpiex.d, see Figure 8.13)

A large group of the beams included in the experimental database had a stirrup index
(SI=pfy/ 1f.) lower than 0.138 hence cot6 was limited to 2.5 in the VSL This range of S/
corresponds to a linear cut-off in the prediction curve. According to the VSI method, in
such instances where the angle of the strut is restricted to 21.8° as in beam BL1, the shear
strength is only governed by the yielding capacity of the stirrups within a length of 2.5z.
Hence the influence of the concrete strength is ignored. On the other hand, shear design
methods based on the standard truss model (V,+7;), such as in BS8110, /. is taken into

account to estimate the ultimate strength.

The suggested VSI cut-off seemed to fit experimental data of continuous beams with low
values of SI as shown in Figure 8.14. In addition, Figure 8.15 showed that the predictions
for the continuous beams with low S/ were not very sensitive to variations in f. for
concrete strengths up to 70MPa. Additional data of simply supported beams, which is also
shown in Figure 8.15, seemed to suggest a reduction in the Py/Pq. ratio as fc’ increased.
However, beam tests provided by Walraven & Stroband [10] still showed accurate

predictions for concrete strengths as high as 115MPa using the cot@=2.5 cut-off. As
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described in next section, predictions of the ultimate strength using BS8110 and CSA
were more conservative (Figure 8.15). This is particularly interesting since both of these
codes apply both material factors of safety, one for concrete and one for steel, unlike EC2
where only 1.15 for steel is applied. The question may arise of whether is sensible to have
such a low material factor using EC2 for such cases, considering that the predictions are

close to experimental values.
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Figure 8.15: Influence of concrete strength in shear strength predictions using EC2, BS8110 and
CSA methods for beams with cot6=2.5

Comparison with standard truss (BS8110) and MCF'T predictions
The ultimate strength of beams tested in this work was also estimated using standard truss

method (BS8110) and MCFT (Response 2000 and CSA design equations), see results in

Table 8.5. Average values of the V,,./Vi.s ratio obtained for the 10 beams tested showed
that the accuracy was highest using Response 2000, while the most conservative

predictions were obtained using the BS8110 approach.

The design equations proposed in CSA code provided a similar performance to more
elaborate analysis using Response 2000. Hence, the CSA approach was adopted for
estimating the shear strength of the remaining 69 beams shown in Tables 8.3 and 8.4. The
performance of the different design methods varied for different ranges of pf,/ V.. In

order to compare the results with EC2 predictions three cases were investigated. Firstly,
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beams with pf,/ 1. <0.11, which refers to cot6=2.5 using material factors of safety
according to EC2 (see Figure 8.12). Secondly, beams with pf,/v/. >0.11, which relates to
cases where cot6<2.5. Thirdly, the overall performance was studied for all 75 continuous

beams described in Tables 8.3, 8.4 and 8.5.

Similarly as in the study of short span beams (see section 7.2.3 and 7.3.5), a Demerit
Point Classification (Collins [148]) was carried out, using test data from 75 continuous
beams shown in Tables 8.3 to 8.5. This classification system assumes that an appropriate
level of safety is found for Py/P.q. values between 0.85 and 1.30. A Demerit Point mark
is assigned, as described in section 7.2.3, according to the percentage of specimens found
at the different ranges of Pys/P.aic. Lowest values of DP indicate a better performance of
the design method. The results obtained for the three design methods examined are

summarized in Table 8.6 and Figure 8.16.

VSI- VSI-
Ptest/Pealc ply/vie'<0.11 pp | Ecz |BSBII0| CSA 1, 984
<0.5 Extremely dangerous 10 0 0 0 0
0.5-0.65 Dangerous 5 0 0 0 0
0.65-0.85 Low safety 2 10 0 0 7
0.85-1.30 Appropiate safety 0 69 38 86 62
1.30-2.00 Conservative 1 21 62 14 31
>2.00 Extremely conservative 2 0 0 0 0
TOTAL DP| 41 62 14 45
VSI- VSI-
Ptest/Pealc ply/vic'>0.11 pp | Ecy |BSBII0| CSA 1, 984
<0.5 Extremely dangerous 10 0 0 0 0
0.5-0.65 Dangerous 5 0 0 0 0
0.65-0.85 Low safety 2 35 2 9 4
0.85-1.30 Appropiate safety 0 65 76 89 96
1.30-2.00 Conservative 1 0 22 2 0
>2.00 Extremely conservative 2 0 0 0 0
TOTALDP| 70 26 20 9
VSI- VSI-
Ptest/Pcalc ALL DP EC2 BS8I101  CSA 7=0.8d
<0.5 Extremely dangerous 10 0 0 0 0
0.5-0.65 Dangerous 5 0 0 0 0
0.65-0.85 Low safety 2 25 1 5 5
0.85-1.30 Appropiate safety 0 67 61 88 83
1.30-2.00 Conservative 1 8 37 7 12
>2.00 Extremely conservative 2 0 0 0 0
TOTAL DP| 59 40 18 23

Note: Total number of beam 75: of,/ V. <0.11 (29 beams), o, % V. >0.11 (46 beams)

Table 8.6: Demerit point classification for continuous beams
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Figure 8.16: Demerit point classification proposed by Collins [148]; results for continuous beams

Table 8.6 shows that the Canadian approach provides the lowest demerit point mark, with
a noticeable constant performance for different values of the stirrup index. It is
noteworthy that the critical section was assumed at a distance of 0.9d from the support, in
which most of continuous beams examined had a M/V ratio lower than d. According to
CSA approach M/V should not be taken less than d since the strain at the top chord might
become tensile, which in turn would lead to an unconservative estimate of the strain at the

mid-depth taken as g=¢/2.

EC2 and BS8110 perform very differently depending on the stirrup index. Classical truss
approach (V.+V5), which is suggested in BS8110, provides rather conservative results for
S1<0.11 compared to EC2 and CSA methods, which results in a DP mark equal to 70. A
similar mark is obtained for EC2 method with $/>0.11, although in this case this is due to
the fact that 35% of the specimens lay on the “low safety range” and not due to an
excessive level of conservatism as in BS8110. This percentage is significantly large, in
fact it is one of the largest observed in this work, see sections 7.2.3 and 7.3.5 for short

span beams (a,/d=1-2) with and without stirrups.

As discussed earlier, assuming a lower value of the level arm equal to 0.84 improved the
predictions considerably. This is clearly reflected on the demerit point classification
shown in Table 8.6 and Figure 8.16 for beams with S7>0.11, where the performance of
EC2(z=0.8d) is remarkable. In addition, for beams with §/<0.11 using EC2(z=0.8d), the
DP mark is similar to EC2(z=0.9d), although the predictions become slightly more
conservative. It can be argued that this is desirable, since as discussed earlier EC2 applies

a lower material factor of safety for such cases compared to CSA and BS8110.
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It is of interest to compare these values of demerit marks with those obtained by other
authors. Cladera [24] gathered an experimental database of 123 simply supported beams
with stirrups, in which the DP mark obtained using Response 2000 was 26. This is
consistent with the one obtained here using CSA design equations, see Figure 8.16. On
the other hand, Cladera obtained a considerably large value of DP (136) using EC2
method, which was due to an excessive level of conservatism in the results. The beams
studied by Cladera [24] were high strength concrete beams. Cladera [24] also observed
that predictions became in general less conservative as the shear stresses increased, which

is also in agreement with results shown in Table 8.6.

As shown in sections 7.2.3 and 7.3.5 the Demerit Point system proposed by Collins [148]
can be misleading, since the approach neglects the differences in material and load factors
of safety applied in design codes. Hence, overall factors of safety need to be considered in
order to obtain a more realistic comparison between the different design methods.
Similarly as in sections 7.2.3 and 7.3.5, the design strength (P,) of the beams investigated
was obtained considering material and load factors of safety, assuming DL=LL (see
Figure 8.17). The overall FOS (Ps/P,) for the 75 beams studied is shown in Figure 8.17.
A modified Demerit Point Classification system suggested by the author is shown in

Table 8.7, which is based on the P,/P ratio, as described in sections 7.2.3 and 7.3.5.

3.50

TS1=0.11
' ¢ VS EC2
3.00 - 0 BS&110 o
a MCFT- CSA
=
& 250 Tf S S
§ ] .
=W
> b il $ ¢ o
2 2.00 1 L
=
1.50 - G
1.00 0 . T T T T T T
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

SI=pfy/vfc'

Note: Dead Load=Live Load; EC2 (1.35+1.5)/2; BS8110 (1.4+1.6)/2; CSA (1.25+1.5)/2
Material factors of safety (y./y): EC2 (1.5/1.15); BS8110 (1.25/1.15); CSA (1.54/1.18)

Figure 8.17: Summary of factors of safety of continuous beams using EC2, BS8110 and CSA

Although the VSI (z=0.9d) predictions of continuous beams studied were not accurate for

values of S7 larger than around 0.11, the factors of safety shown in Figure 8.17 were still
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acceptable, except for some of the LWAC beams tested by Ramirez et al. [184]. This is
highly inconsistent with the results obtained in the original Demerit Point Classification
proposed by Collins [148] (see Table 8.6). The modified Demerit Point Classification
approach presented here, reflects this improvement in FOS using the VSI method for
stirrup indexes higher than 0.11; see reduction in DP mark in Table 8.7. On the other
hand, the marks shown for both demerit point classifications (Table 8.7) were similar for
the remaining design methods investigated. Lastly, it is noteworthy that both demerit
point approaches showed that the FOS obtained using the VSI method were significantly
lower for S/<0.11. From the beams tested in this work, the lowest FOS obtained was 1.56,
which corresponded to beam CA1 using the VSI method. The average FOS obtained for
the 8 continuous beams tested were 1.65/2.31/1.88 using EC2/BS8110/CSA design codes
respectively; the COV were 4.4/13.6/8.3% using EC2/BS8110/CSA respectively.

WITH FOS NO FOS
ply/vEc'<0.11 Ptest/Pd :ZIZIZ BS8110 | CSA Ptest/Pcalc }]212 BS8110| CSA
Extremely dangerous <1.0 0 0 0 <0.5 0 0 0
Dangerous 1.0-1.15 3 0 0 0.5-0.65 0 0 0
Low safety 1.15-1.5 10 0 4 0.65-0.85 10 0 0
Appropiate safety 1.5-2.3 72 34 96 | 0.85-1.30 69 38 86
Conservative 2.3-3.5 14 66 0 1.30-2.00 | 21 62 14
Extremely conservative >3.5 0 0 0 >2.00 0 0 0
TOTAL DP| 52 66 7 41 62 14
WITH FOS NO FOS
ply/vEc'>0.11 Ptest/Pd EEIZ- BS81101 CSA Ptest/Pcalc ;212- BS8110 | CSA
Extremely dangerous <1.0 0 0 0 <0.5 0 0 0
Dangerous 1.0-1.15 0 0 0 0.5-0.65 0 0 0
Low safety 1.15-1.5 4 2 2 0.65-0.85 | 35 2 9
Appropiate safety 1.5-2.3 89 72 87 | 0.85-1.30 65 76 89
Conservative 2.3-3.5 7 26 11 1.30-2.00 0 22 2
Extremely conservative >3.5 0 0 0 >2.00 0 0 0
TOTALDP| 15 30 15 70 26 20
WITH FOS NO FOS
VSI- VSI-
ALL Ptest/Pd EC2 BS8110| CSA Ptest/Pcalc | EC2 BS8110 | CSA
Extremely dangerous <1.0 0 0 0 <0.5 0 0 0
Dangerous 1.0-1.15 1 0 0 0.5-0.65 0 0 0
Low safety 1.15-1.5 7 1 3 0.65-0.85 | 25 1 5
Appropiate safety 1.5-2.3 83 57 91 0.85-1.30 67 61 88
Conservative 2.3-3.5 9 41 7 1.30-2.00 8 37 7
Extremely conservative >3.5 0 0 0 >2.00 0 0 0
TOTALDP| 29 44 12 59 40 18

Note: Dead Load=Live Load; EC2 (1.35+1.5)/2; BS8110 (1.4+1.6)/2; CSA (1.25+1.5)/2
Material factors of safety (y./%): EC2 (1.5/1.15); BS8110 (1.25/1.15); CSA (1.54/1.18)

Table 8.7: Modified Demerit Point Classification proposed by the author
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Parametric analysis of aggregate size using MCFT (Response 2000)

In the shear strength predictions shown in previous section using CSA formulas, the
effective crack spacing (s..) was assumed to be 300mm, which is the value recommended
for members with shear reinforcement. On the other hand, members without shear
reinforcement, allowance is made for estimating s.. as a function of the crack spacing
parameter and aggregate size (a). As discussed in section 8.2.1, this allows to take into

account for aggregate fracture at cracks by reducing a.

In order to investigate the effect of reducing the aggregate size in members with shear
reinforcement, a parametric analysis was carried out for beams BL, using Response 2000.
The aim was to assess the stirrup index at which aggregate fracture would be more critical
according to MCFT. According to shear panels investigated in section 5.3.3, the influence
of reducing the aggregate size using MCFT in members with shear reinforcement was
insignificant. The results obtained from the parametric analysis for beams BL showed a
similar conclusion as for shear panels (see Figure 8.18). The largest differences in shear
strength between predictions using a=10mm and a=0 were 2.75% for beams without

stirrups and 2.17% for SI about 0.16.
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Figure 8.18: Influence of aggregate size in MCFT predictions of continuous beams

In the parametric analysis carried for beams BL, flexural failure was obtained at $/=0.26.
However, the differences between a=10mm and a=0 curves were similar to that shown in
Figure 8.18, if a higher yield strength of the longitudinal reinforcement was adopted in

order to increase the load at which flexural failure occur.
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8.3.3 Estimation of shear stresses at cracks

In this section, the shear stresses carried along critical cracks in beams B were estimated
initially from interpolating crack displacement and stress data from push-off tests. These
experimental results are compared with predictions from different analytical models,

which are further discussed in the following sections. These are:

1. Equilibrium at the crack assuming angle of the strut from VSI and MCFT

2. Variable strut inclination method with “shear friction” constraint

3. Discrete crack-slip model

4. NLFEA with smeared and discrete cracking elements
The methods mentioned above, which are used to assess the shear at the crack (z.,) were
based on analytical models, in which several parameters needed to be estimated and

therefore variations in the solutions were expected.

Experimental values of shear stresses according to push-off test data

In order to estimate the shear stresses at the critical cracks in the beams from push-off test
data, interpolated curves were obtained in section 4.3, which provided values of 7., for
different crack opening (w) and slip (s) displacements. These curves were generated for
the same concretes used for beams BL and BG, as well as for different shear
reinforcement ratios. Interpolating the shear stresses at crack in beams from push-off test
data can offer several advantages, although it can also bring several uncertainties, as
described in section 4.3. Monitoring crack displacements was possible in beams with
stirrups due to their more ductile behaviour compared to beams without stirrups, for

which measuring w and s is complicated as pointed by Taylor [2].

One of the main differences between cracks measured in push-off tests and those obtained
in beam tests is that the crack dilatancy (6w/0s) is considerably lower for the first type of
tests (Figure 8.19). In addition, as shown in chapter 6 (sections 6.3.4 and 6.5.4), the crack
widths were generally greater in short span beams, which resulted in ow/ds ratios of
around 3. These values were considerably larger than slender beams with stirrups
(ow/ds~1.5), which could result in a lower contribution of aggregate interlock action.
These variations in the crack dilatancy are shown in Figure 8.19. In addition, the crack
opening-slip relationships obtained experimentally were satisfactory reproduced by either
non-linear finite element models and discrete crack slip model described in the next

sections. The interpolated curve, which was obtained to fit the crack dilatancy observed in
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short span beams tested in this work (section 7.5), is also shown in Figure 8.19 in order to

illustrate the difference between cracks in slender beams, short span beams and push-off

tests.
INCREMENTAL CRACK OPENING [mm]
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0.00 ez }
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< |
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(PL2) N -
S ~
0.50
WiS=3

Note: relative crack displacements are shown up to peak load
Refer to section 7.5 for crack dilatancy relationship obtained for short span beams A

Figure 8.19: Comparison between crack dilatancy of slender beams with stirrups (beams B, C and

D), short span beams and push-off tests

As shown in Figure 8.19, beam BL1 had a slightly different crack dilatancy compared to
the remaining slender beams tested. Initially this was believed to be due to wider cracks
related to the lower reinforcement ratio of BL1. However later experimental evidence
from beams with similar stirrup indexes (beams CB1 and DB1) did not support this idea,
as shown in Figure 8.19. The crack widths at failure observed in both beams C and D
were of similar magnitude as those measured in beam BL1 (Figure 8.19), which might

indicate that the problem is related perhaps to the crack slip measurements in BL1.

The crack shear stresses obtained at failure load in beams B are summarised in Table 8.8.
These figures were obtained from curves given in section 4.3 (see Figure 4.12), using
crack displacements at failure shown in Table 8.8. The shear stresses at the crack shown
in Table 8.8 were higher in beams BL than in beams BG, which was probably due to the
significant difference in the concrete strength. It is interesting to note that the ratio
between the shear estimated at the crack and the total shear (z.,/v), assuming a constant
distribution along the section, was larger than the one obtained for short span beams (see
Table 7.12). This further supports the idea that aggregate interlock had a lower

contribution in short span beams tested compared to beams B.
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Test Interp.

v=V/b,d w S Tor
[MPa] [mm] [mm] | [MPa]
BG1 4.83 0.55 035 3.15 | 0.65
BG2 5.46 0.33  0.09 410 | 0.71
BL1 5.94 1.02 031 3.75 | 0.63
BL2 8.10 0.39 0.23 | 5.10* | 0.63

Beam TV

Note: *This value corresponds to push-off tests PL3, which provides a higher bound since had a slightly
larger reinforcement ratio; the actual crack had a reinforcement ratio between that provided to PL2
and PL3. A lower bound would correspond to PL2 (7,=4.6MPa)

Table 8.8: Interpolated shear at the crack (z,) at failure in beams B from push-off test data

In the following sections 7, is estimated using different analytical approaches. Firstly,
results from smeared crack approaches are presented using the variable inclination strut
truss and MCFT. Secondly, discrete approaches are adopted (Discrete crack-slip model

and NLFEA).

1- Equilibrium at the crack assuming angle of the strut from VSI and MCFT

The shear and normal stresses at the crack can be estimated once the inclination of the
crack (&) and the strut are known, as shown in Figure 8.20. The shear stresses at the crack
can be estimated from the equilibrium conditions of a differential element at the crack,
which leads to equation (8.3), see Hamadi & Regan [19]. The results for 7z, are highly
dependent on the difference in angle £ assumed between the crack and the stress field.
The inclination of the crack (&) was taken from the observed shear crack at mid-height of
the beam, as shown in Figures 8.20 and 8.21.
r = a.% . (83)

where f=(a —6).

The angle of the strut (6) was estimated with both the variable inclination strut method
and the MCFT, see Table 8.5. In the VSI the inclination of the strut was given by the
plastic solution in beams BG and BL2, while for the remaining beams cot@ was limited to
2.5. An alternative approach for assessing @ is to assume that failure was governed by
yielding of the stirrups without crushing of the struts. In this latter method, the
experimental ultimate load was used to determine the inclination of the strut required to
mobilize the sufficient stirrups to resist the entire shear force. The stirrups were assumed

to be smeared out uniformly along the beam.
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According to this analysis, the struts would only reached around 80% of their plastic
capacity (v/.’) in beams B, see Figures 8.19 and 8.20. Both this approach and the VSI
gave similar predictions of @ since shear strength predicted by the VSI method was close
to the actual failure load. The largest difference in strut inclination was (5°) in BG2, with
the lowest Viesi/ Veaie tatio. The inclination of the strut (6) and crack () are summarized in
Figures 8.20 and 8.21, which also show the crack pattern in relation with the orientation
of the struts. As expected, the angle between the crack plane and strut direction decreased

as the stirrup index increased, resulting in lower shear stresses at the crack.

The MCFT was also used to estimate €. The inclination of the struts predicted using CSA
approach is considerably steeper than those obtained with EC2, as shown in Table 8.5.
This is due to the fact that a concrete contribution is taken into account. As described by
Bentz & Collins [177], CSA design equations provide similar predictions to MCFT,
although a larger value of V. is needed in the CSA approach to compensate for neglecting
the limit of shear transfer capacity of the crack. Hence, it seems more sensible to estimate
0 by solving the full set of equations in the MCFT (Response 2000) rather than using
CSA design equations. The results obtained for # and 7., at failure are summarized in

Table 8.9 for both EC2 and MCFT approaches.

VSI MCFT (Response 2000) Tests Egn.
(at Vies) (at V... except ”, see Table 8.5) | (section4.3) | (2.14
0 T o o T | Wucrr | W o Vei

Beam | o | inipay| o] | (MPa] | [MPa] | [mm] | [mm] | [MPa] | [MPa]

BGI | 2697 | 228 | 2734 | 13.70 | 227 | 0.82 | 0.55 | 3.15 | 4.56
BG2 | 3690 | 024 |33.31"|12.62"| 1.02" | 0.36 | 033 | 4.10 | 6.14
BLI |22.40| 3.65 | 23.62 | 17.94 | 3.18 | 1.45 [ 1.02 | 3.75 | 4.09
BL2 2683 | 3.14 | 29.22 | 20.60 | 2.06 | 0.72 [ 0.39 | 5.10 | 6.49

Note: "Shear stress obtained according to equation (8.3)

*Test values correspond to Table 8.8 which are estimated from push-off test data

MCEFT (Response 2000): results shown for a section at a distance 0.9d from load point; w (average
values); o, 6 obtained at mid-depth of section

*Values are given at load similar to experimental failure load, since V_/Vies=1.23 (Table 8.5)
**Equation (2.15) used in MCFT, taking experimental values of w. Normal crack stresses have been
estimated assuming yielding of stirrups crossed by the crack (f.=2.47/3.36/2.31/3.25MPa for beams
BG1/BG2/BL1/BL2 respectively)

Table 8.9: Summary of predictions of using approaches based on inclination of strut
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Table 8.9 shows that the inclinations of the strut were similar using VSI and MCFT.
Hence, the shear stresses obtained along the crack were comparable using either
approach. However, both predictions were lower than those obtained experimentally,
especially for beams with larger number of stirrups (see Table 8.9). In particular, the
inclination of the strut predicted for BG2 was almost parallel to the crack plane, which

resulted in very low values of the shear stresses at the crack.

Crack widths predicted by MCFT were around 50% greater than those obtained
experimentally. As a result, the maximum shear stress capacity that can be transmitted
along the crack according to MCFT equation (2.14) is underestimated. The last column in
Table 8.9 shows the shear stresses estimated at the crack using MCFT equation (2.14) and
(2.15). In order to get a more realistic estimate, the crack openings adopted in these
equations were taken from the experimental values. In addition, the normal stresses at the
crack were estimated assuming yielding of the stirrups, which were crossed by the crack;
refer to Table 8.9. The shear stresses at the crack assessed in this manner, which are

shown in Table 8.9, were closer to the values derived from the curves in section 4.3.

It can be concluded that the approaches followed here to estimate the shear stresses at the
crack must be considered as rought approximations primarily because the inclination of
the strut had to be estimated analytically. In this work, the value of & has not been
measured experimentally, although several techniques are available. Firstly, principal
strains could be measured experimentally by means of a rosette of transducers, which
provide strains readings in three directions. The inclination of the principal stresses could
be assumed to be equal to strains, which seems to be the basis of Walraven & Stroband
[10] results for 6. Another approach was used by Hamadi & Regan [19], who calculated &
from equilibrium at the bottom chord of the truss using strains measured in longitudinal
and shear reinforcement respectively. These approaches can provide reasonable values of

the inclination of the strut, although they are approximate solutions.

The second uncertainty in the values of 7., presented in Table 8.9 is that the inclination of
the crack is not constant as assumed, which can produce high variations in the
predictions. Even so, the crack patterns were in good agreement with the predictions from

the variable strut inclination truss model, as shown in Figures 8.20 and 8.21.
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2- Variable strut inclination angle truss with “shear friction” constraint

In many design codes such as EC2 or ACI-318 a “shear friction” relationship in the form
of 7= C+uo (Coulomb failure criteria) is suggested to design contact interfaces between
two concrete surfaces. As discussed in section 4.4, the cohesion factor (C) is generally
given as a function of the tensile strength of the concrete and the friction x# depends
exclusively on the roughness of the interface. However, design codes can be inconsistent
regarding recommended values for C and g, which can complicate the use of this formula
in more general shear design method since results are highly dependent on these
parameters. For the particular case of beams B, the cohesion and friction were calibrated
using push-off test data available (see Table 4.3); C(BG/BL1)=1.20/2.50MPa and
H1(BG/BL)=1.06/0.95, these values are discussed in further detailed in section 4.4.

As reported by Regan [3], recent German revisions to EC2 implemented in
DIN1045:2000, seem to introduce this shear friction equation into the variable inclination
strut model, being the limiting factor for intermediate shear reinforcement ratios. In this
manner web failures due to crushing and sliding at the cracks are treated separately, as
shown in Figure 8.22. A similar approach can be adopted in a strut-and-tie model, as
shown in section 7.5.2, for short span beams. These types of approaches seem transparent
and consistent with code guidelines, although as mentioned earlier the results are highly

dependent on parameters C and x assumed.

The formulas derived by Regan [3] in which a shear friction equation was implemented
into the VSI truss, could not be applied directly to beams B since they assumed a crack
inclination of a = 45° and a friction y equal to 1. The previous assumptions led to the
exact linear solution v=V/bz=C+p,f,. In a more general case shown in Figure 8.22, the
system of equations (8.4 to 8.6) must be solved iteratively. Equations (8.4) and (8.5)

relate to the variable strut inclination truss, with the stress in the strut (o) limited to 142’.

Note: o, (normal stresses at the crack) =o /(1 +cof’ ), where f=a-0

Figure 8.22: Variable inclination strut method with shear friction condition at cracks
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y=t g OO . (84)
bz 1+cot” @
v=p,.f,.cotd ... (8.9)
2
= C.M(Shear—friction) <. ... (8.6)
cotff—u
where f= a—60

The shear friction condition, given by equation (8.6), is considerably less restrictive for
35° inclined cracks such as those in beams B than for the 45° cracks studied by Regan or
short span beams investigated in chapter 7. Figure 8.23 shows the results obtained for
beams BG and BL with average crack inclinations of 37.5° and 34.5° respectively. The
numerical results shown in Figure 8.23 seemed consistent with the experimental data
except for beam BG2, which had the largest p,f,/1f.". The shear estimated at the crack

(7r) and the strut inclination (6) are also shown in Figure 8.23.

The predictions of the ultimate strength were reasonable for most of beams B, although
they did not differ much from the standard VSI predictions. Therefore, the benefit of
imposing a simplistic shear friction restriction into the VSI in this case was not
significant. It is also noteworthy that simplified estimate of 7., provided by FIP [21],
which is adopted in the truss with crack friction model (see section 2.4), were in good

agreement with predictions from the VSI with shear friction approach (see Figure 8.23).

0.6 T
|
|
l
0.5 | |
Shear friction criti ‘ |
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pvfy/ Vfc '

Figure 8.23: VSI with shear friction constraint at the cracks in beams B
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3- Discrete crack-slip model

An alternative method to a shear friction formulation for limiting the shear strength in the
beam by means of shear transfer across shear cracks is to apply a discrete approach using
a crack slip model. The previous technique was developed by the author for shear panels
with 45° inclined cracks and a pure shear stress state, see section 5.5. Strain compatibility
and equilibrium of an element at the discrete crack is formulated in terms of the crack slip
and opening. The main advantage of the crack-slip approach is that the shear stresses at
the crack can be estimated in combination with the crack opening and sliding, which were
obtained empirically. This seemed to be a more realistic approach than the shear friction
model since relative crack displacements are taken into account. However, several
difficulties arose from including realistically complex aspects such as aggregate interlock
behaviour or tension stiffening into the model. Hence, several simplifications were

necessary in the crack-slip model, which are discussed here and section 5.5.

The crack-slip model was initially conceived for pure shear panels, although the crack
pattern and stress fields at the centre of the critical span of beams B are in some extent
similar to the panels, see Figure 8.24. This assumption does not apply for neither simply
supported beams nor for regions closer to the loading points, where the compression
stress fields are fanned shaped. The main difference between panels and beam tests is that
panels are usually reinforced in two orthogonal directions whilst the webs of the beams
have vertical reinforcement only. In addition, the cracks at the beams were flatter than the

typical 45° cracks observed in a pure shear panel.
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Figure 8.24: Differential element used in the crack-slip model for continuous beams
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The values for crack inclination (&) and diagonal spacing (Sy) used in the crack-slip
model were taken directly from the experiments of beams B. In a general case, these
parameters can be estimated using approximate formulas available, which are function of
the stirrup spacing, refer to CEB-FIB[6] formulas. In addition, the linear aggregate
interlock model proposed by Walraven & Reinhardt [46] was adopted to relate
normal/shear displacements and stresses at the crack. This aggregate interlock model,
which had been validated in this work against push-off experimental data, provided

sensible predictions of shear panel tests, as shown in section 5.5.3.

The equilibrium and compatibility conditions shown in section 5.5.2 for the particular
case of shear panels with 45° cracks can be generalized as shown by equations (8.7) to
(8.13). The horizontal and vertical faces of the differential element shown in Figure 8.24
have lengths equal to L,=S¢/(2sina) and L,=S¢/(2cosa) respectively. The strains generated
in both global x-y directions and local r-d axis, due to crack opening in the r direction are

given by equations (8.7), (8.8) and (8.9).

E = and Egr =0 ... (8.7)
Sé’
70" = gl’CV _8dcl’ = gl’ci‘ ce (8'8)
&, _2% Gn’a and £ _2W s ... (8.9)
7 4

Similarly, the strains generated due to crack sliding s are given by equations (8.10) and

(8.11).

grcr = gdcr = ycr = 0 (810)
2s . -2s .
&y = -SiInacosa and &, =——.sinacosa ... (8.11)
4 4

Equilibrium conditions at the differential element shown in Figure 8.24 yield to the

following expressions:

T, +t0, tana =1, ... (8.12)
r,+0,,.cota=0 p cota—r, ... (8.13)

where oy=min[f,, Esu.&] and Ej, =enhanced value of the Young’s modulus

367



Chapter 8 — Analysis of Slender Beams

As discussed in section 5.5.3, the enhanced value of the Young’s modulus £, due to
tension stiffening can be estimated using approximate formulae such as proposed by Hsu
[114]. For simplicity, E, was taken as 1.5 times E; (200000MPa). In addition elastic
strains in the concrete and bond-slip between the concrete and reinforcement were
neglected. It is also important to note that the pre-cracked state is not taken into account.
As already mentioned, the Walraven & Reinhardt [46] linear aggregate interlock
relationship, see equations (2.28) and (2.29), were adopted to relate 7, and o, in

equations (8.12) and (8.13) to relative crack displacements w and s.

The crack opening and slip can be solved numerically implementing equations (8.7) to
(8.13) into a spreadsheet. The results obtained using the crack-slip model are summarised
in Table 8.10. Surprisingly, the maximum shear stresses at the crack were similar to the
ones obtained from the shear friction approach shown in Figure 8.23. These values are

lower than those interpolated experimentally (Table 8.9).

Crack-slip model VSI Test

ST Ter w s 0 0 w S Tor
ph/ve | [MPa] [mm] [mm)] [°] [°] [mm] [mm] [MPa]

BG1 | 0.16 1.77 0.55 034 2398 | 2697 | 0.55 0.35 3.15
BG2 | 0.27 2.39 0.55 043 2132 | 3690 | 0.29 0.15 4.10
BL1 | 0.11 2.36 0.45 0.27 28.00 | 2244 | 1.02 0.3l 3.75
BL2 | 0.18 3.57 0.25 0.18 26.19 | 26.83 | 0.39 0.23 5.10

Note: Diagonal spacing Sy adopted from tests observation (230/177/206/65mm) for beams
BG1/BG2/BL1/BL2 respectively

Table 8.10: Crack-slip model predictions

Similarly as in shear panels, the inclination of the strut & was calculated from Mohr’s
circle knowing points A(oupx, 7y) and B(oyp,, -7y), as shown in equation (5.22). In
Beams B, oy, was zero since only vertical reinforcement was provided at the web. It is
interesting to note that the inclination of the principle compression stresses predicted by
the crack-slip model was consistent with the plasticity estimations for all beams B, except
for BG2, which was considerably flatter (see Table 8.10). Figure 8.25 shows the predicted

and experimental development of the crack opening and sliding through the loading
(V/Vimax).
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Figure 8.25: Comparison between experimental and predicted crack opening and sliding
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The crack opening and sliding predicted by the crack-slip method were reasonable in
general as shown in Figure 8.25 and Table 8.10. The ow/ds ratio predicted was around
1.5, as discussed at the beginning of this section (refer to Figure 8.19). The worse
predictions were obtained for BG2 where w and s were overestimated. In addition, the
relatively large crack opening in beam BL1 was not well captured by the crack-slip
model. It must be highlighted that curves shown in Figure 8.25 refer to the tests of the
pre-cracked beams and so the change in stiffness at early load stages is not reflected. This
is consistent with the crack-slip model assumption, which does not take into account the
pre-crack state, and so results were similar for early load stages. Yielding of the shear
reinforcement was predicted in all the beams by the crack slip model, except for beam
BG2. This did not agree with experimental evidence since according to Demec gauge

readings stirrups yielded at failure in all beams B

In view of these results it can be concluded that the crack-slip model provided better
predictions for beams B with intermediate S/=p,f,/ f. (BG1, BL2). In extreme cases with
high S7 (BG2), where the w and s were small, the crack-slip model did not provide
accurate results. This performance was expected since the crack-slip model suggested
assumed that the shear strength is only limited by the shear transfer across the cracks.
However, experimental evidence shows that the aggregate interlock action is mobilized

only for intermediate ranges of SI.
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4- NLFEA with smeared and discrete cracking elements

The crack opening and sliding at the main shear crack were assessed using a non-linear
finite element model, which combined discrete and smeared cracking elements, in a
similar fashion as for short span beams A. The mesh applied for beams B, shown in
Figure 8.26, was assembled after the position of the main shear cracks was obtained
experimentally. As in the NLFEA of short span beams described in section 7.5.3, a
preliminary analysis using smeared cracking elements only was performed. This analysis
was required firstly to validate the smeared crack models and secondly to verify that the
main shear cracks formed at a similar position as the discrete interface plane assumed.

SMEARED CRK. ELEMENTS
Crackl

B

Cracks I

Ly
Crack I

INTERFACE ELEMENTS /"%
Figure 8.26: Finite element mesh of beams B, using discrete and smeared cracking elements

Same types of elements were applied for beams B as in the short span beams models
(refer to section 7.5.3). Analogously, the multi-fixed smeared crack model was chosen for
the concrete and a perfect Von Misses plastic material was assumed for the embedded
reinforcement elements. In addition, no bond-slip considerations were made and identical
free-length values (/) were assigned to the reinforcement crossing the interface elements

(refer to section 7.5.3).

The splitting tensile strength was adopted for the smeared cracking elements. On the other
hand, the interface elements were assumed to be pre-cracked (f.; =0.1MPa), to be
consistent with experimental data, which corresponded to a pre-cracked specimen. The
interface elements crossed by longitudinal reinforcement remained inactive due to the low
[5 assigned to the reinforcement. The material properties applied to steel and concrete are
summarized in Table 8.11. Similarly as in the NLFEA of short span beams, the concrete
strength of the elements near the bearing plates was enhanced in order to avoid local
failure of these elements and allowing to obtain crack displacements at loads near failure

load.
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Concrete BG BL Steel Plates Ig’::i i’;.e:;
E. [MPa] 27215 36306 | E,[GPa] 200 200 200
1% 0.2 0.2 1% 0.3 0.3 03
fo [MPa] 2.8 3.8 fy [MPa] 500 580 550
Gr [N/mm]* 0.15 0.15 I [mm] - 0.2 150
f. [MPa] 31.7 53.1

Notes: ' An estimated value of G. = 100G was assumed, where Gf(MC9O)ZGf{,.(fc,,,/fcm,,)o‘7
" A Hordijk tension softening was applied

Table 8.11: Material properties in NLFEA of beams BG and BL

Considerations of constitutive model for interface elements

As discussed in section 7.5.3, the use of a simple discrete crack model where the shear
and normal stresses were uncoupled, was justified for short span beams due to the
relatively large crack opening compared with slip obtained. This assumption seemed
more dubious for most of beams B, where the crack opening/slip relationship was lower.
However, the performance obtained using the simpler discrete crack model was
acceptable even for beams B, as it is shown in this section. Severe numerical difficulties
were faced if a more complex crack dilatancy model was implemented in the NLFEA. For
simplicity the discrete crack model was finally adopted, hence the shear stresses predicted

in the NLFEA were only considered as a guidance value.

The overall shear stiffness of the interface elements after cracking (Dr) was initially
estimated using Hamadi & Regan’s [19] expression for aggregate interlock stiffness
D7 =k/w. For simplicity a constant value of Dy (Table 8.12) was adopted assuming an
average crack width near failure of around 0.5mm. Unlike short span beams, experimental
data regarding the shear stiffness at the crack was available from push-off tests given in
chapter 4. As described in section 4.5, Hamadi & Regan’s [19] formula provided sensible
predictions using a value of & equal to 5.4MPa for all specimens except for specimen
PG2. Although the shear stiffness is generally assumed to be independent of the normal
stresses at the crack, the value in this case seemed to be lower, as shown in Figure 8.27.
Subsequently, k£ was assumed as 2.7MPa for BG2 and 5.4MPa for the remaining beams as
shown in Table 8.12. The influence of changing Dy in the predictions was examined in

the NLFEA.

As explained in section 3.4.2, modelling of reinforcement crossing discrete cracks is
complicated. Simple approach adopted in DIANA, which is described in section 3.4.2,

seems to overestimate the contribution of dowel action to the overall shear stiffness at the
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interface. This can be compensated by reducing the shear stiffness assigned to interface
elements (D,;) in order to have an equivalent overall stiffness (D), which is measured in
push-off tests. The dowel action stiffness (Dg,) assumed in the model can be calculated in
terms of the free length parameter and shear reinforcement ratio defined along the crack
surface Dg,=E/(2l5)per. The decomposition of D7 into Dy, and D,; components finally

adopted in the models is shown in Table 8.12.

Parameters BG1 BG2 BL1 BL2

D;[N/'mm’] 136070 136070 181530 181530
Dy [N/mm’] 56698 56698 75637 75637
for [MPa] 0.1 0.1 0.1 0.1
G/[N/mm]  0.054  0.054  0.084  0.084
Dy [N/mm’] 5.4 10.8 10.8 10.8
Dg, [N/mm®’]  2.78 4.64 2.78 4.64
D,; [N/mm’] 2.6 6.2 8.0 6.2

Note: D = elastic stiffness (I- normal; II- shear); estimated as D;= E/h and D;= G/h where &= 0.2mm.
D; = overall shear stiffness at the discrete crack assuming D;=k/'w where w=0.5mm and
k=2.7(BG1)/5.4MPa for remaining beams
D,,, = dowel action contribution estimated by DIANA for given /;=150mm, crack angle (33°) and
stirrup spacing (£,=200000MPa)

D,; = shear stiffness assigned to interface elements (D,; = Dy -D,)

Table 8.12: Material properties in the NLFEA of beams BG and BL

8
Hamadi & Regan:
71 =D T.s=(k/w).s
results shown for
6 1 w=0.65"> (MC90)
— 5
&
=4
N B ¥ L i Al
2 -
1 |
0 ks T T T T

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Crack sliding (S) [mm]

Note: Specimens P2-P3 had similar reinforcement ratio crossing the crack to beams B1-B2 respectively
Test data corresponds to first load cycle (see section 4.2.4)

Figure 8.27: Estimation of overall shear stiffness of cracks from push-off test data
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NLFEA predictions for beams B

The numerical predictions of the crack opening and sliding at the central shear cracks
(Cracks II in Figure 8.26) had a good correlation with experimental data, as shown in
Figures 8.28, 8.29 and 8.30. The estimated crack slip was constant through the discrete
plane in all beams as shown in Figure 8.28 for beam BLI1, which is consistent with
experimental data from either cross LVTDs, photogrammetric targets and Demec crosses
placed at the crack. Similarly as in beams A, the crack opening predicted in the NLFEA
was uniform along the interface plane for early load stages while for loads near failure w
was considerably lower at interface elements crossed by shear links. As shown in Figure
8.28, interface elements crossed by longitudinal reinforcement were not active. This was
intentional (refer to value of /; in Table 8.11) and the crack propagation in this region was

relied upon the smeared cracking elements. As discussed in section 7.5.3, this approach

was required in order to keep

the model numerically stable.
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Figure 8.28: Numerical and experimental crack displacements along discrete crack plane A-B of

beam BL1 (results shown for D;=10.8N/mm’)
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In addition, the load-deflection response was satisfactorily reproduced by the FE models,
although the solution was very similar to the model using smeared cracking elements only
(Figure 8.29 and 8.30). In general the crack opening w was slightly overestimated,
especially for beams with higher stirrup indexes. The predicted crack openings were
independent from changes in the shear stiffness at the discrete crack. However, the same

was not true for the crack slip.

The crack sliding was slightly under-predicted in beams BG, especially for high values of
Dr, see Figure 8.29. Better predictions of s were obtained in beams BG by reducing Dy.
On the contrary, in beams BL the opposite was true, especially for beam BL2. The good
predictions obtained for beams BG using low values of D7 suggested that the struts must
had been almost parallel to the crack in those beams. This implied that a lower shear
forces was transferred along the crack in beams BG compared to BL. This conclusion

seems consistent with both interpolated shear stresses from push-off tests and analytical

predictions given in this section.
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Figure 8.29: Comparison of numerical and experimental load-deflection curves and crack

opening/sliding of beams BG
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Despite the small discrepancies in w and s shown in Figures 8.29 and 8.30, the NLFEA
reflected two important aspects observed in the experiments regarding the ow/ds ratio.
Firstly, the relatively large opening measured in beam BL1 (ow/ds=3), which had the
lowest SI, was confirmed by the numerical analysis. Moreover, the predicted and
experimental values of w and s for beam BG2, which had the highest SI, were
considerably small (Figure 8.29). Secondly, for higher S7 a change in the slope was also
predicted (see Figure 8.19) in the w-s curve from early load stages, where the crack re-
opened (ow/0s=3), to near failure, where crack slip was mobilized (ow/ds=1). These
results were consistent with the predictions from the crack-slip model presented in

previous section.
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Figure 8.30: Comparison of numerical and experimental load-deflection curves and crack

opening/sliding of beams BL
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NLFEA predictions of crack shear stresses

The crack shear stresses predicted along the discrete plane (Crack II) were uniform
throughout the loading, as shown in Figure 8.31 for the interface elements that became
active. The values obtained for 7., were highly dependent on the shear stiffness assumed
in the analysis (Dr). The stresses shown in Figure 8.31, include the contribution of
stirrups crossing the interface, which for the case of BL2 (D7 =26.3N/mm3) was around
20% of the total shear stress 7. It could be debatable whether the shear stresses obtained
from the NLFEA are realistic, since the Dr was assumed constant. A consequence of this
assumption is that increase of crack slip observed at failure due to crack widening could
not be reproduced accurately; instead a linear response is predicted as shown in Figures
8.29 and 8.30. Nevertheless, useful information regarding crack displacements and

stresses was still obtained by providing different values of Dr.

As mentioned earlier, the crack slip of beams BG was predicted more accurately
assuming relatively low values of Dz, which results on minor shear stresses 7., at the
crack. On the contrary, the prediction of the crack slip in beams BL was improved
considerably assuming higher values of the aggregate interlock stiffness (D;~25N/mm’),
as shown in Figure 8.31. The shear stresses predicted in the NLFEA for beam BL2 at
loads near the experimental failure load, using optimal values of Dr, were around 3.5MPa
(see Figure 8.28), which has a good agreement with crack-slip model predictions shown

in previous section (see Table 8.10).
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Figure 8.31: Shear stresses along discrete crack. Left — 7, distribution along interface elements
that became active (BL2); Right — 7, at experimental failure load for different values of aggregate

interlock stiffness
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The shear stresses were estimated using a more realistic crack dilatancy model such as the
linear aggregate interlock relationship (Walraven & Reinhardt [46]). The experimental
values of the crack opening and sliding were assumed in order to obtain the aggregate
interlock shear stiffness and the corresponding shear stress for each load, see Figure 8.32.
According to the linear aggregate interlock relationship, 7., was zero for beams with large

crack opening compared with sliding i.e. beams A and beam BL1.

The results shown in Figure 8.32 were comparable to those obtained from the NLFEA
assuming a constant value of Dy. Furthermore, the shear stiffness near failure was similar
to the optimal values shown in Figure 8.31. It can be concluded that the benefit of using
crack dilatancy models instead of the simpler approach (D7 constant), is dubious in this
case, since the increase in accuracy does not seem to compensate for numerical

difficulties faced by the crack dilatancy models.
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Note: Dr= D,, in the crack dilatancy model
Figure 8.32: Shear stresses and stiffness assumed by linear aggregate interlock relationship

(Walraven & Reinhardt [46])

Strain predictions in the shear reinforcement

The strain predicted by the NLFEA supported that stirrups had yielded at failure. The
NLFEA showed lower strains in the shear links in beam BG2, which also agreed with
experimental evidence. Figure 8.33 shows the average strain readings from the Demec
gauge compared to numerical results at gauss points immediately next to the discrete
cracks. In general the Demec readings were slightly larger than those predicted in the
NLFEA as shown in Figures 8.33 and 8.34. The experimental values shown in Figure

8.33 relate to the sector of the stirrup with highest strains, which is highlighted.
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Figure 8.33: Experimental and numerical predictions of strains in stirrups
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As described in section 6.5.4, the maximum strains were obtained at sectors of the stirrup
which were crossed by the main shear crack (see Figure 8.33). The distribution of strains
along stirrups predicted in the NLFEA was in good agreement with test data. This is
clearly shown in Figure 8.34 for the last load step in which Demec readings were taken
before failure; results refer to stirrups S6/S7/S8 (beams B1) and S9/S11/S13 (beams B2)
see Figure 8.33. These stirrups were at similar distance with respect the loading point at
the central span (around d), and were crossed by the main shear crack, as shown in Figure

8.33.

The strains measured using the Demec gauge were fairly similar for symmetrical stirrups,
which was satisfactory reproduced in the NLFEA. In addition, the predicted strains of the
first two stirrups closer to the loading points were negligible, as observed experimentally

(see Figure 8.33).
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Figure 8.34: Distribution of strains over height of stirrups for beams B1 and B2
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Strain predictions in the longitudinal reinforcement

The strains in the flexural reinforcement obtained in the NLFEA were in good agreement

with experimental data from strain gauges located at points of maximum and minimum

bending moments, as shown in Figure 8.35. Moreover, the strain predictions using

bending theory for a cracked section at the location of maximum bending moments

(loading points) were satisfactory. The longitudinal strains at the centre of the shear span

(M=0) were around half those at M,,,, which was accurately predicted by both the

NLFEA and the curtailment rule (7=Vcot@/2) used in EC2. In order to estimate & using

the curtailment rule z was taken as 0.8d, according to section 8.3.2.
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Figure 8.35: Experimental and numerical predictions of the strains in the flexural reinforcement at

points of maximum and minimum bending moments
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8.4 Conclusions

The influence of aggregate fracture on the shear strength of slender beams was found to
be more critical in beams without stirrups (B0), where aggregate interlock action seemed
predominant, compared to continuous beams B with stirrups. The experimental results of
beams B0 were in good agreement with previous experimental data from Regan et al. [4]
with similar concrete strengths and effective depths. The V_/Vies ratio was 16% higher

in limestone beams than in gravel beams due to cracking of the coarse aggregate.

Imposing a limit to the concrete strength of 60MPa in the shear design equations, as
recommended in the UK National Annex, slightly improved the predicted strength for
beams BG, which had a concrete strength of 80.2MPa. However, the same was not true
for beams BL, which had a lower concrete strength (68.4MPa). For this case MCFT
approach, in which the aggregate size is reduced linearly according to f., was more
effective. Although both EC2 and MCFT approaches for dealing with aggregate fracture
provided safer design strengths, they were not necessarily consistent with experimental

evidence such as beam BG, in which the crack went round the aggregate.

The NLFEA of beams B0 using smeared cracking elements provided sensible estimations
of the crack pattern, deflections and ultimate loads. However the influence of the
aggregate fracture or the post-failure behaviour of beams BO could not be assessed by the
NLFEA using smeared cracking elements only. In order to model these aspects

accurately, a discrete crack approach seems necessary.

The main shear cracks of continuous beams tested with a point of contra-flexure were
significantly flatter (~33°) compared with simply supported beams. The difference in the
crack pattern could have had an influence of the contribution of the aggregate interlock
action to the shear strength of the beam. Additional experimental evidence from other
researchers showed that the shear strength of beams with a point of contra-flexure was
considerably lower than traditional simply supported beams. The higher strength observed
in simply supported beams, which usually had a flanged section, was probably due to the
shear strength resisted at the compression head. The variable strut inclination method,
suggested in EC2, seems to provide safe predictions for simply supported beams
assuming values of z equal to 0.9d, as recommended in EC2. However, the shear strength
was clearly overestimated in continuous beams and a value of z =0.8d provided a

significant improvement in the predictions. This suggested lower estimate for the lever
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arm of continuous beams with symmetrical reinforcement was more consistent with
experimental evidence of the 72 beams studied, in which the average lever arm at failure

was 0.84d.

The comparative study between EC2, BS8110 and CSA design methods for the
continuous beams investigated, showed that the first two approaches had a significantly
different performance depending on the stirrup index (SI=pf,/vf. ). The predictions using
CSA design formulas were accurate for all ranges of S/. On the contrary, for low values
of the stirrup index (cot@=2.5), EC2 provided more accurate predictions than BS8110.
The analysis showed that EC2 provides lower factors of safety than CSA and BS8110 for
continuous beams with stirrups indices lower than 0.11. In addition, the study of the
performance of different design method by means of the Demerit Point Classification
system proposed by Collins [148] showed that the results can be misleading. This is due
to neglecting the effect of different material and load factors used in the design codes.
According to the author, in order to compare the different design methods the influence of
material and load factors should be taken into account. Hence, the modified Demerit Point
Classification system proposed by the author seems a rational approach, although the

marking scheme proposed is opened to discussion.

The aggregate interlock shear stresses at the main shear crack in the continuous beams B
were interpolated from crack displacements and stress data obtained from push-off test
using identical concrete and similar reinforcement ratios. These values were compared to
four different techniques based on smeared and discrete crack approaches; these were
equilibrium at the crack estimating the strut inclination, VSI with shear friction, discrete
crack-slip model and NLFEA. As expected, the estimations of 7., varied for each method,
since different simplifications were assumed in each approach. However, the predictions
of 7., were in a similar range of magnitude. In addition, the crack opening and sliding at
the main shear crack could be reproduced accurately by both proposed discrete crack-slip
method and NLFEA (discrete/smeared cracking). In general, predicted values of crack
width, at which shear at the crack started to reduce were around 0.3-0.5mm for both
gravel and limestone specimens. These values were in good agreement with experimental
data. In addition, the crack opening/sliding ratio obtained was in general much lower
(ow/ds~1.5) than the one obtained for short span beams A (ow/ds~3) due to smaller values
of w. The relatively low values of ow/ds obtained in slender beams with stirrups, implied

a higher contribution of aggregate interlock action compared to short span beams.
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9.1 Summary

The thesis presents the details of experimental and analytical studies into the influence of
crack roughness and aggregate fracture on the behaviour of RC beams failing in shear.
Various commonly used design methods for shear are reviewed and assessed against a
large database of experimental results, including the author’s tests in which gravel and
limestone aggregates were used. The effect of the reduction in aggregate interlock due to
aggregate fracture has been investigated experimentally and numerically in short span and

slender beams failing in shear.

The study focused firstly on isolated cracks, which were analysed by means of push-off
tests carried by the author. Subsequently, in-plane pure shear stress states were
investigated using shear panel test data available in the literature. Analytical smeared and
discrete crack models were validated against these simple test arrangements. However,
information regarding the type of aggregate or whether it had fractured was not available
to the author for these panels. Lastly, the experimental results obtained from a total of 22
beam tests carried in this work were analysed and compared with previous experimental
data from other researchers. The shear stresses transmitted along critical shear cracks
were estimated from interpolating the data obtained from push-off tests. These results
were compared with analytical predictions using several approaches that had been
previously validated using push-off and shear panel test data. In addition, the performance
of different design methods for shear was compared for both slender and short span
beams. The conclusions and main contributions of this work are summarised in the

following sections.
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9.1.1 Transfer of stresses at cracks by means of aggregate interlock
Aggregate type

Tests showed that the aggregate type had a larger impact on the crack roughness than the
concrete strength. Aggregate fractured at the crack in specimens with limestone aggregate
for concrete strengths of around 5S0MPa. On the other hand, in gravel specimens, the
crack went round the aggregate. This was true even for beams with concrete strengths up
to 80MPa, in which only a small portion of the aggregate fractured at the crack (30%).
This seems inconsistent with assumptions made in design codes where aggregate fracture

is dealt only in terms of the concrete strength.

Push-off tests

Crack stresses and relative displacements can be studied with standard push-off tests. This
test arrangement is practical since the entire shear force is transferred through a pre-crack
surface of which both geometry and normal stresses are known. For normal size stirrups
and concrete strengths used, the contribution of dowel action to the shear strength was

negligible.

The push-off tests carried out by the author using gravel and limestone aggregates showed
that considerable shear stresses could be transmitted through cracks even in the limestone

specimens in which the aggregate particles had fractured at the crack surface.

Shear friction formulae can be used to estimate the ultimate shear strength of crack
interfaces, although the influence of crack width is ignored. The cohesion factor obtained
from linear regression of the test data agreed well with the EC2 recommendations.
However, the value of the friction parameter obtained for the limestone specimens were
surprisingly high and comparable to the gravel tests. This could be due to a certain level

of roughness at a macro-level.

In general, the shear stress predictions from the crack dilatancy models investigated
tended to overestimate the shear stress for crack displacements near the peak load. On the
other hand, for low crack slips (s<0.2mm) the stresses were underestimated. The
predictions of normal and shear stresses were sensible up to slips of around Imm using
the linear aggregate interlock relationship proposed by Walraven & Reinhardt [46],
similarly as the rough crack model (Gambarova & Karako¢ [48]). For simplicity the
former model was adopted in subsequent calculations, although other models such as the

one suggested in MC90 also provided sensible predictions.
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Estimation of stresses at critical shear cracks in beam tests

Shear stresses were estimated at critical shear cracks in both short span beams with and
without stirrups and slender beams with stirrups by interpolating stresses and relative
crack displacement data from the push-off tests. This extrapolation was possible due to
the similar geometry of the crack surface, shear reinforcement crossing the crack and
concrete strength. Uncertainties arise in the interpolation of stresses due to the differences
in the inclination of the stirrups with respect the crack plane and differences in crack
paths between the push-off and beam tests. Nevertheless, the empirically derived crack
stresses were similar in magnitude to those predicted analytically using different discrete
crack approaches such as NLFEA with discrete cracking, crack slip model, variable
inclination truss or strut-and-tie models with shear friction constraints. Moreover, the
crack opening and slip were reasonably predicted using either crack slip model developed
by the author for slender continuous beams or NLFE models applicable to both short span

and slender beams.

The relative crack displacements were in general very similar for otherwise identical
gravel and limestone beams, which resulted in similar shear stresses being developed
along the critical shear cracks. The crack opening and sliding measurements at different
levels of the crack were fairly constant, which agreed with the NLFE predictions. This

might be different for larger member depths and lower longitudinal reinforcement ratios.

The crack paths obtained experimentally, i.e. w-s relationship, varied considerably
depending on the type of test. Crack sliding was predominant in push-off tests

23 for normal

(ow/0s~0.5), which was in agreement with the MC90 simple formula w=0.6s
values of crack slip. Crack opening was predominant along the critical shear crack in
short span beams, where the ow/ds ratio was around 3. In general, slender beams with
stirrups had an intermediate value of ow/ds of around 1.5 near failure. These variations in

crack dilatancy could result in different contributions of aggregate interlock action, which

seems to be less critical in short span beams.
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9.1.2 Modelling of in-plane pure shear stress states by means of
smeared and discrete crack approaches

Shear panel tests

Shear panel tests can be relevant to the prediction of the strength of beams since a pure
shear stress state is attained, which can be helpful to obtain a better understanding in the
contribution to shear behaviour of aggregate interlock and compression softening.
Chapter 5 shows that the MCFT can predict accurately the shear strain-stress response of
shear panel tests, although shear stresses at previous cracks are ignored since the model
follows a rotating crack approach. Alternatively, the discrete crack slip model derived by
the author is a simple whilst rational approach to assess the limit case where the
behaviour is governed by shear stresses along cracks. Despite the large number of
simplifications adopted in the model, comparable predictions of the shear stress-strain
response and ultimate strength to MCFT were obtained. Subsequently, the crack slip
model was applied to estimate relative displacements and stresses at the crack in

continuous beams.

As shown in chapter 5, simple plasticity rotating truss formulas can provide accurate
predictions of the ultimate strength of shear panel tests. Similar predictions could be
obtained performing a simple NLFEA using total strain and multi-directional fixed
smeared cracking models. This analysis showed that compression softening due to
transverse tensile strains must be taken into account in order to obtain reasonable
predictions. However, several uncertainties are still found about parameters assumed in
these models for the softening behaviour of concrete in compression or the yield strength

assumed for the reinforcement depending on the governing failure mode.

Non-Linear finite element analysis of beams

The NLFE models developed in this work, in which only smeared cracking elements were
applied, showed that sensible predictions of the crack pattern, deflections and ultimate
loads could be obtained. However, these predictions were highly sensitive to parameters
assumed in the models such as tensile strength or local values of the compression strength
assumed for elements near the loading plates. In addition, the brittle nature of some of the
shear failures studied resulted on several numerical instabilities that were difficult to
overcome with simple smeared crack elements only. Aspects such as lateral confinement
near loading plates or debonding and dowel action failure cracks cannot be modelled

realistically using these simple smeared crack approaches.
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The multi-directional fixed approach provided accurate predictions, although the model
faced numerical difficulties near failure and in some instances divergence occurred in the
last incremental step. The total strain models, which showed a good performance for
shear panel tests, were robust numerically for beam models, although for slender beams

without stirrups a spurious post-failure behaviour was obtained.

In order to assess crack opening-slip and normal-shear stresses using NLFE models, it has
been shown that combining smeared and discrete cracking elements in the same mesh
with relatively simple discrete crack models for the interface elements can provide
sensible predictions. However, estimating parameters used in the models is not
straightforward. Shear retention factors applied in the interface elements can be estimated
from push-off test data or simple analytical equations, for which the expected crack width
at failure is needed. In addition, several assumptions had to be made regarding the normal
and transverse stiffness transferred into the interface elements by embedded
reinforcement crossing the discrete crack. Introducing interface elements with complex
crack dilatancy models and bond slip considerations is not recommended since the FE

models can become highly unstable.

9.1.3 Additional experimental evidence provided by beam tests
Relative crack displacements monitored in beam tests were valuable to obtain a better
understanding of the aggregate interlock contribution as explained in section 9.1.1. The

following conclusions can be drawn from the beam test data obtained in this work.

Crack patterns
The relative position of the diagonal shear crack had an important role on the shear

strength of short span beams, especially on members without shear reinforcement. Beams
in which the diagonal crack formed at early load stages crossing completely the direct
strut (shear proper failure) showed a relatively low strength compared with others in
which the diagonal crack formed slightly below and where failure seemed to be more
related to crushing of the strut. This is relevant since this type of failure might have an

effect on size effect considerations.

For the remaining beams the crack patterns varied significantly depending on the load
arrangement. The critical shear cracks remained independent of flexural cracks in the
short span beams and continuous beams, but not in the simply supported beams. Shear

cracks that formed near failure crossed previous 45° shear cracks in the simply supported
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slender beams with stirrups. However, this was not observed in identical beams loaded
with a point of contra-flexure. Critical shear cracks formed at service loads and remained
stable until failure, except in slender beams (a/d=3.5) without shear reinforcement, where

failure occurred immediately after the diagonal crack had formed.

Additional conclusions from short span beam tests

Short span beam tests presented here showed the relevance of size of bearing plates. An
increase of the bearing length of one of the supports from 125 to 200mmm resulted in
failure of the opposite shear span in 6 specimens out of 8 beams tested. In general failure
was due to crushing of the concrete near the load plate, which is not consistent with STM

assumptions in which the bottom node is assumed to be critical.

Additional conclusions from slender beam tests

The shear cracks that formed at early load stages in the continuous beams were
considerably flatter than in simply supported beams. This could have resulted in a
different contribution of aggregate interlock action between both types of loading
arrangements. However, the ultimate shear stress for simply supported and continuous

beams with rectangular sections and equal shear reinforcement ratios was very similar.

General conclusions from measuring techniques in lab testing

In general, the different types of measuring crosses used for recording opening and slip
displacements at the crak (LVTDs and Demec discs) provided values that were in
agreement with each other and with visual reading. The more innovative technique used
for measuring global deflections, which was based on digital photogrammetry, provided
accurate readings at several points. Although these readings were in good agreement with
LVTDs measurements, they were not accurate enough to obtain strain values.
Furthermore, only in few tests where the working distance was small, reasonable
measurements of crack opening and sliding could be obtained. Although, digital
photogrammetry is a fairly recent technique and current work is taking place to improve
its performance, the results shown in this work look quite promising for future

applications.
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9.1.4 Shear design of short span beams

According to the experimental database gathered in this work, which includes beams
tested by the author, it was concluded that existing design equations for short span beams
with and without shear reinforcement were in general over conservative. The performance
of the predictions using the simplified approaches assumed in EC2 and BS8110 for short

span beams were highly dependent on the stirrup index.

A strut-and-tie model was developed by the author, which was consistent with EC2
recommendations for STM, for both short span beams with and without stirrups. These
models provide more accurate predictions of the ultimate strength than simplified
formulas in EC2 and BS8110. In addition, the strut-and-tie model provided reasonable
predictions of the shear strength of short span beams strengthened with externally-bonded

CFRP sheets to the full depth.

The factors of safety provided using the strut-and-tie model proposed for specimens with
steel stirrups was appropriate for concrete strengths up to 80MPa, although a large scatter
was found for short span beams without stirrups. This scatter was most likely due to
influence of the position of the diagonal crack relative to the direct strut, as mentioned in
section 9.1.3. The implementation of a shear friction constraint into the STM as presented
in this work can be used to relate the effective strength of the direct strut to shear strength
capacity along the critical crack. More advanced relationships for the ultimate shear
capacity of the crack can be used in which the crack width or aggregate size are
considered. Although this type of approach can be used to provide a formal explanation
for the lower strength obtained for those beams failing in a shear proper type of failure,
the method is not practical from a design perspective due to the uncertainties in the

parameters involved.

The performance of the predictions of the short beams tested in this work using the
different methods studied, were identical for gravel and limestone specimens. This
suggests that aggregate fracture was not critical for these beams, which seems to be
supported by the large crack dilatancy ow/ds ratio obtained experimentally. As suggested
in next section regarding future work, it would be interesting to verify this conclusion for

members with different member depths and longitudinal reinforcement ratios.
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9.1.5 Shear design of slender beams

Unlike short span beams, aggregate fracture was found to be more critical for slender
beams without shear reinforcement. The V,u/Vis ratio using EC2 empirical formula for
beams without shear reinforcement was 16% greater in the limestone beams than in the
gravel ones due to cracking of the course aggregate at the crack. The performance of this
equation suggested in EC2 can be questionable since the V,,/Vies ratio was greater than 1
for both beams tested; the ratio was as high as 1.5 for the limestone beams. These results
were expected in light of Regan et al. [4] findings for similar beams in which limestone
and gravel aggregates were used; the V,.u./Vis ratios obtained were in excellent
agreement with interpolated surfaces proposed by Regan et al. [4] in which EC2

predictions worsen with increasing d and £, .

Imposing the limit of 60MPa for the concrete strength, as recommended in the UK
National Annex to EC2 provided a slight improvement in the predictions of gravel beams,
in which the crack went round to a large portion of the aggregate (~70%) and the concrete
strength was around 80MPa. Interestingly, the prediction of the shear strength in the
limestone beam, in which the aggregate fractured completely, the limit of 60MPa was
inefficient, since the concrete strength was only 68MPa. This supports Regan’s [4]
conclusion that this limit on the concrete strength should be considered only as a

temporary compromise before a more rational approach is developed.

A good attempt towards this aim can be seen in MCFT method for dealing with aggregate
fracture, which consists in reducing the aggregate size in the calculation according to f; .
Although this approach provided a better performance for beams BLO and BGO than EC2
method, the type of aggregate is also ignored. Hence, the approach was inconsistent with
beam BGO, similarly as EC2, since aggregate was assumed to fracture at the crack

according to its high value of f; .

The predictions of the slender beams with stirrups tested in this work did not seem to be
highly influenced by whether limestone or gravel aggregate was used. However, the
strength of the continuous beams tested, especially those with theoretical values of cotéd
lower than 2.5, were generally lower than predicted using the variable strut inclination
method with a conventional value of z equal to 0.9d. These results were verified by
additional test data of continuous beams carried out in Japan in the late 80’s. According to
the database gathered of continuous beams, a better fit was obtained using an estimated

value of the lever arm close to 0.8d.
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The relatively low strength of the continuous beams studied was unexpected in view of
experimental data of simply supported beams, which have been widely used to validate
the variable strut inclination method. The set of experimental data of simply supported
beams lays considerably above the variable inclination strut predicted strength, especially
for cases where the predicted cot@ is lower than 2.5. This difference seems to be due to
the contribution of shear taken by the compression head since many of these simply
supported beams had large compression flanges. The simply supported beams with
stirrups tested in this work had similar shear strength to equivalent continuous beams,
both of which had rectangular sections. However, there is experimental evidence
available that shows that simply supported beams with flanges have higher strength than
identical beams with rectangular sections. This seems to support the idea that the
difference between both sets of data from simply supported and continuous beams was

mainly due to shear at the compression head.

Lastly, the VSI method was compared with the design equations given in BS8110 and
CSA. This comparative analysis showed that the CSA method gave a reasonably
consistent safety factor for the continuous beams investigated which was independent of
the stirrup index. The BS8110 predictions were acceptable for stirrup indices pf,/ lfc’
higher than around 0.11, but the method was extremely conservative for lower values of
the stirrup index. Direct comparison between EC2, CSA and BS8110 predictions is
difficult since different partial material and load factors are used in each code. Hence, the
study of the performance of different design codes by using Py.s/P.q. ratio only, such as
in the Demerit Point Classification (Collins [148]) can be questionable. The analysis of
the performance of design methods for short span beams (chapter 7), showed a similar

conclusion with regards the Demerit Point Classification system.

The Modified Demerit Classification system proposed by the author seems to be a more
reasonable method since the design strength is used in the approach, to account for
variations in material and load factors of safety. The author’s analysis shows that EC2
gives significantly lower factors of safety than CSA or BS8110 for continuous beams
with stirrup indices lower than 0.11. However, the lowest FOS (Prs/Pq) obtained with
EC2 for the author’s beams was 1.56, which is similar to that used in flexural members. It
could be argued that a higher FOS should be used for members failing in shear since the
failure mode is potentially catastrophic. Flexural strength is also potentially increased by

membrane action.
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Chapter 9 — Conclusions

9.2 Suggestions for future work
The thesis includes new experimental results and develops analytical methods that can be
used to assess the influence of crack roughness on the shear strength of reinforced

concrete beams.

However, the number of tests performed was restricted due to limited resources in the
project. Future experimental work could include similar tests using other types of
aggregate such as granite or lightweight aggregates to further validate these results. In
addition, it could be of interest to carry out these tests using different depths and
longitudinal reinforcement ratios, in order to assess the influence of potential size effects

or larger values of crack widths at failure.

The analytical work carried out in this thesis was largely focused on the development of a
rational strut-and-tie model for short span beams, which could provide more accurate
predictions of the shear strength than current simplified design equations given in EC2
and BS8110. Although the strut-and-tie model was formulated according to the EC2
recommendations for STM, research on size effects seems timely since large
discrepancies are found among researches regarding this particular point. Moreover,
further experimental and analytical work is required to investigate the influence of node
regions which are frequently critical in STM and non-linear finite element analysis. This

work would show whether existing strut-and-tie provisions for node regions are realistic.

Finally, further work is required to develop rational methods for assessing the influence

of crack roughness on the shear strength of reinforced concrete members.
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