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Abstract 
High-strength (HS) and light-weight aggregate (LWA) concretes are generally used to 

reduce member sizes and self-weight. The bond between the aggregate particles and the 

cement paste can be strong enough in HSC and LWAC to cause the aggregate to fracture 

at cracks which in turn reduces the shear stress which can be transferred across cracks by 

means of aggregate interlock. The contribution of aggregate interlock to the shear strength 

of reinforced concrete beams is uncertain and depends on parameters such as the amount 

of shear reinforcement and the contribution of arching action for loads applied close to 

the support. These aspects can influence the crack pattern and relative crack 

displacements, which in turn affects the contribution of aggregate interlock to shear 

strength. Previous tests on slender reinforced concrete beams without shear reinforcement 

have shown that shear strength is reduced by aggregate fracture. There is a lack of similar 

test data for members with stirrups and for members with varying shear span to effective 

depth ratios. This thesis describes a set of 22 beam tests carried out by the author, on short 

span beams and simply supported slender beams all with and without stirrups. Tests also 

include continuous beams with stirrups. Two different types of aggregate were used 

(gravel and limestone) to investigate the effect of aggregate fracture on shear strength. 

The cracks tended to pass around the gravel aggregate and through the limestone 

aggregate. Shear stresses were estimated at critical shear cracks from constitutive 

relationships derived from the author’s push-off tests. The shear strengths of the 22 beams 

tested are compared with strengths calculated in accordance with the design provisions in 

EC2, BS8110 and CSA design codes, in which aggregate fracture is not explicitly 

considered. Strut-and-tie models for short span beams with and without stirrups are also 

presented. A discrete crack slip model is also developed for shear panels, short span and 

continuous beams, in which the behaviour is assumed to be governed by shear stresses 

along cracks. The analytical and finite element models developed can be used to assess 

the influence of crack roughness on the shear strength of reinforced concrete beams. 
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CHAPTER 1 – Introduction 
 

1.1 Motivation and challenges 
This work is primarily concerned with the influence of aggregate interlock on the shear 

strength of reinforced concrete beams. The bond between the aggregate particles and the 

cement paste can be strong enough in high-strength concretes (HSC) to cause the 

aggregate to fracture at cracks which in turn reduces the shear stress which can be 

transferred across cracks by means of aggregate interlock. A similar situation can arise in 

light-weight aggregate concretes (LWAC). The contribution of aggregate interlock to the 

shear strength of reinforced concrete beams is uncertain and depends on parameters such 

as the amount of shear reinforcement and the contribution of arching action for loads 

applied close to the support. These aspects can influence the crack pattern and relative 

crack displacements, which in turn affects the contribution of aggregate interlock to shear 

strength.  

Taylor’s [1, 2] pioneering experimental and analytical work on slender beams without 

shear reinforcement indicated that aggregate interlock could contribute up to 50% of the 

shear strength. Regan [3, 4] recently carried out a series of tests on beams without stirrups 

which showed that shear strength was reduced if the coarse aggregate fractured at cracks. 

This work led to the maximum design concrete strength being limited to 60MPa in the 

UK National Annex to Eurocode 2. Regan was unable to establish the influence of 

aggregate fracture on the shear strength of beams with stirrups due to the failure of many 

investigators to report the type of aggregate used in their tests. A key aim of the current 

work is investigate the influence of aggregate fracture on shear strength in beams with 

stirrups.  
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A significant limitation in the design methods for shear given in codes such as BS8110 

[5], MC90 [6], or EC2 [7] is that they do not, with the exception of LWAC, take into 

consideration the type of aggregate used. In general, the potential reduction in shear 

strength due to smoother cracks is only considered by means of the concrete compressive 

strength and not by the type of aggregate. For example, UK National Annex to EC2 limits 

the concrete strength to 60MPa in shear calculations to account for fracturing of the 

course aggregate, unless further experimental evidence is provided. On the other hand, 

Canadian design equations, which are based on the well known Modified Compression 

Field Theory (Vecchio & Collins [8]), aggregate fracture can be considered by reducing 

the effective size of the aggregate in the calculations. However, this is generally done 

according to the concrete strength and not to the type of aggregate. Moreover, the 

allowance of changing the aggregate size in the simple approach suggested in the 

Canadian code seems to be only recommended for cases of members without shear 

reinforcement. 

Concerns about aggregate fracture have been raised by authors including Walraven et al. 

[9, 10]. These concerns led to them testing several series of simply supported slender 

beams using HSC and LWAC. These tests did not show any significant reduction in shear 

strength due to aggregate fracture. However, to the author’s knowledge, no tests have 

been carried out using different aggregate types in identical beams with similar concrete 

strengths and different shear span to effective depth ratios, including cases with and 

without shear reinforcement. Moreover, little experimental evidence is available on 

continuous beams with stirrups. 

Shear in structures becomes more critical in zones near the supports or applied loads, 

where the stress distribution is not uniform. In these discontinuity regions, standard 

theory is not applicable and more recent approaches such as the strut-and-tie method 

(STM) have been developed in order to detail the reinforcement layout at these regions. 

Although the STM is transparent, several assumptions are required in terms of strength 

and geometry of truss elements (strut, nodes and ties). Again, the influence of aggregate 

fracture is not taken into account directly since cracking and transverse strains are only 

considered by means of “effectiveness” concrete strength factors. In particular, EC2 

allows the STM to be used for designing short span beams as an alternative method to 

simple design formulas. However, the predictions of these formulae and STM can vary 

considerably. It is questionable which method is more realistic since aspects such as size 
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effects and the influence of the position of critical shear cracks on strength of the strut are 

neglected in many of these approaches. The inconsistencies between the predictions of 

simple design formulae, NLFEA and strut-and-tie models have intrigued the author since 

his early days as a structural engineer in a consultancy office in Madrid. 

1.2 Objectives 
The main objectives of this work are highlighted below.  

1. The assessment of normal and shear stresses transmitted along cracks in which the 

aggregate particles had fractured completely for different shear reinforcement 

ratios. 

2. The modelling of in-plane shear stress states by means of smeared and discrete 

crack approaches. 

3. The development of an experimental programme in order to assess the influence 

of aggregate fracture on shear behaviour for different beam slenderness ratios 

(short span and slender beams), including cases with and without shear 

reinforcement. 

4. To investigate the accuracy of the design equations for shear in RC short span and 

slender beams which are available in codes of practice. This study includes a close 

examination of critical parameters and assumptions made by each method, 

especially those related to aggregate interlock action. 

5. The provision of general recommendations to improve shear strength predictions 

when using either design formulae or more elaborate smeared/discrete crack 

approaches, in particular for cases where the aggregate particles split at the crack 

surface. 
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1.3 Outline of Thesis 
This thesis consists of nine chapters. The introductory chapter is followed by chapters 2 

and 3 in which the different approaches for modelling shear in reinforced concrete 

members used in practice are reviewed. Chapter 2 focuses on the different analytical 

methods which form the base for most of shear equations suggested in design codes such 

as EC2 or BS8110. Although most of these methods are grounded on the truss analogy 

concept, smeared and discrete crack approaches are also discussed.  

In chapter 3, several approaches for modelling cracking in reinforced concrete members 

by means of the Finite Element Method are presented. The advantages and shortcomings 

of each approach are discussed, as well as recommended values for the different 

parameters required for non-linear finite element analysis. 

Aggregate interlock action is studied in chapter 4, in which experimental push-off test 

data obtained in this work is presented. The results are also discussed in view of the 

predictions from analytical models described in previous chapters. Subsequently shear 

panel test results available in the literature are examined in chapter 5. A simple discrete 

crack slip approach is presented and validated using existing experimental data. This 

approach applies crack dilatancy relationships, which had been previously validated in 

chapter 4. 

The experimental results and test procedures for a series of 22 beam tests carried by the 

author at the Heavy Structures Laboratory at Imperial College London is presented in 

chapter 6. The results obtained from the short span beams are analysed in chapter 7. In 

addition, a strut-and-tie model is proposed, which is consistent with EC2 

recommendations for STM. The predictions of a large data base of short span beams 

using the proposed STM model are compared with those obtained from design methods 

suggested in EC2 and BS8110. In chapter 8, the slender beam tests presented in chapter 6 

are analysed. Similarly as in chapter 7, the accuracy of the predictions from the different 

design equations is discussed. Estimations of shear stresses along critical cracks are 

shown in chapters 7 and 8, which were obtained by either interpolation of push-off test 

data or analytical models that had been previously studied in chapters 4 and 5. 

Finally, in chapter 9 the main conclusions drawn from this work are outlined as well as 

recommendations for future work. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 2 – Literature Review 
 

2.1 Introduction 
Shear design in structural concrete has been a topic of research for many years. The large 

number of factors influencing shear behaviour such as aggregate interlock, dowel action 

or size effect, makes the study of shear in reinforced concrete a challenging subject. This 

is evidenced by the large number of research groups that are currently carrying out 

experimental and analytical work in this area.  

This great effort for improving shear design equations has been largely motivated by the 

shear failure of some existing structures, which were designed using early code 

formulations. Typical examples presented by Collins et al. [11, 12] include the collapse of 

roof beams in the Air Force warehouse in Ohio back in 1955 to the more recent collapse 

of Laval’s bridge in Quebec (2006), which is shown in Figure 2.1. Both structural failures 

showed the importance of longitudinal reinforcement and size effects in shear design. 

 

 

 

 

 

 

 

Figure 2.1: Shear failure of Laval’s bridge, Quebec 2006 (adapted from [13]); Left- Photograph 

taken in road supervision hours before the collapse; Right- General view 
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Shear transfer in cracked reinforced concrete members is commonly described using the 

well known truss analogy, which was first proposed by Ritter [14] and Morsch [15] at the 

beginning of the Twentieth Century. Subsequently, many attempts have been made to 

improve the truss analogy.  

In structural concrete, four major methods are commonly used to calculate shear strength:  

1. Classical Method: based on the Truss Analogy (θ = 45˚) 

2. Variable Strut Angle Method: based on the Theory of Plasticity  

3. Smeared Truss Models: Compression Field Theories 

4. Discrete Crack Approaches 

These four methods, which are the most commonly used in shear design/analysis, are 

reviewed in this chapter, which examines their assumptions, limitations and differences in 

in outcome. The role of aggregate interlock is presented, along with equations for several 

crack dilatancy models, which can be used in non-linear analytical procedures. The 

different approaches for studying shear, which are presented in this chapter, are also 

reviewed in terms of their capacity to model the potential reduction in shear strength 

resulting from the loss of aggregate interlock at smooth cracks passing throught the coarse 

aggregate. Some of these models are assessed in chapter 4 using experimental data from 

the author’s push-off tests. 

Shear in structures often becomes critical in zones near the supports or applied loads 

where the stress distribution is not uniform; these regions are commonly denoted as 

“Discontinuity regions” (D regions). The traditional assumption that plane sections 

remain plane no longer applies in D regions. The strut-and-tie method (STM) is widely 

recommended for the design and analysis of D regions. The STM has the advantage of 

being a relatively simple procedure but there are still significant uncertainties and 

questionable assumptions implicit in the method. Some of the most important aspects of 

strut-and-tie modelling are outlined in this chapter. 
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2.2 Classical and variable inclination strut methods 
The truss analogy forms the basis of most design methods for shear. Traditionally the 

shear resistance is assumed to be given by V=Vc+Vs where Vc is the shear resisted by a 

beam without stirrups and Vs is the contribution of the stirrups calculated using a truss 

system with struts inclined at 45˚. The concrete term “Vc” was introduced to improve the 

correlation between test results and strengths predicted with Morsch’s truss. This term is 

estimated using empirical rules first appended in codes such as DIN1045 and SIA 

(Sociéte Suisse des Ingénieurs et des Architectes) as well as in the ACI 318. 

Alternatively, in the plasticity approaches developed by Muttoni et al. [16], Nielsen [17]  

and Nielsen & Braestrup [18], shear is assumed to be completely resisted by the steel 

component Vs with no contribution of Vc. The plasticity methods form the basis of the 

variable strut inclination design method (VSI) given in EC2. In this design method, the 

inclination of the strut is freely selected within a prescribed range wich depends on the 

strength of the struts in the inclined stress field. 

In practice, the lowest possible angle of inclination is usually adopted to minimise the 

area of stirrups. Codes provide different ranges for θ. For example, EC2 gives 

2.5≤cotθ ≤1 (21.8˚≤θ ≤45˚) or MC90 gives 3≤cotθ ≤1 (18.4˚≤θ ≤45˚). From truss 

equilibrium the ultimate shear due to yielding of the stirrups is given by expression (2.1). 

θcot., zf
s
A

V ywd
sw

sRd =       … (2.1) 

where Asw = area of the transverse reinforcement, s = stirrup spacing in the longitudinal 

direction, fywd = design yield strength of transverse reinforcement, z= inner lever arm 

taken as 0.9d in shear and θ = strut inclination. 

Once the transverse reinforcement begins to yield, θ decreases to activate more stirrups. 

This strut rotation, which has been measured in tests by Walraven [9, 10] or Hamadi & 

Regan [19] amongst others, results in an increase of the compressive stress in the strut. 

The ultimate shear stress that causes crushing of the strut is given by equation (2.2): 

 )tan/(cotcos.sin.max, θθνθθν +== zbfzbfV wcdwcdRd   … (2.2) 

where ν = 0.6(1-fck/250) according to EC2, fck = cylinder concrete strength, bw = minimum 

width between tension and compression chords. 
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Figure 2.2 shows the variation in VRd,s and VRd,max with the strut angle. The minimum 

permissible value for θ is the greater of θ min or the value calculated by equating the 

design shear force to the web crushing capacity (VRd,max), which is given by equation 2.2. 

On the other hand, if the ultimate shear strength is to be calculated for a given shear 

reinforcement ratio, θ must be obtained from equations (2.1) and (2.2), checking that θB 

≤θ ≤θC as shown in Figure 2.2. 

In the variable strut angle model the concrete strength has an “effective” strength factor ν 

that takes into account the biaxial compression-tension stress state and the influence of 

cracks running skew to the strut which reduce the effective area of the concrete in 

compression. The difference between the predictions given by the classical truss model 

and the variable strut angle method are shown in Figure 2.2. In the variable strut 

inclination method, the shear strength is generally taken not lower than the shear strength 

of equivalent beam without shear reinforcement (point A in Figure 2.2) 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Variable strut inclination method 

One of the advantages of using the variable strut inclination method is that since it is 

based on a pure truss, the contribution of concrete is more visible than with a simplified 

constant θ truss, where an empirical value for Vc must be added. As reported by Regan 

[20], the concrete term in the classical 45º truss approach, which is estimated as the 

strength of the equivalent beam without stirrups, can be physically misleading. This is due 

to the large difference in the ultimate load behaviour between members with and without 

shear reinforcement. Some authors like Reineck [21] suggest that the addition of this 

“artificial” concrete component in the 45˚ truss method can be explained as the 

contribution of concrete to shear strength due to friction forces along the failure cracks, 

(see section 2.4). 
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The Spanish code EHE [22] adopts a compromise solution between the classical 45º truss 

and the variable strut inclination method with regards to the concrete contribution. 

According to EHE, the total shear is given by the sum of βVc and Vs, where β equals 1 if θ 

is 45º and 0 if θ is 26.6º (cotθ=2). For intermediate values of β, EHE provides an 

interpolation relationship, which is a function of the assumed angle θ and the crack 

inclination, which is estimated from the elastic stresses at the level of the neutral axis. 

Once the angle of the strut is selected by the designer, similar checks are made as in the 

variable inclination strut method of EC2 (crushing of the strut, yielding of the stirrups and 

failure of the tensile chord). Although this method offers a transition between the 

extremes of the classical or variable strut inclination methods, it is possibly more 

misleading than either. 

Another advantage of the VSI sectional method in EC2 worth mentioning is that it models 

the transition between regions of uniform stress fields and regions where trusses, fans and 

other strut-and-tie systems are used together. These regions can be modelled using a 

plasticity truss model, which considers the entire stress fields. The variable strut angle 

method seems more rational than the simple truss in such transition regions since it can be 

demonstrated clearly that all systems are in equilibrium (Walraven [23]). 

A shortcoming in the variable strut inclination method is the assumption that the principal 

tensile stress is zero. In addition, the shear taken by the compression zone is neglected. 

The variable strut inclination angle method, which is justified with the lower bound 

theorem of plasticity, only considers the ULS. The plasticity truss model is effectively a 

rotating crack model in which the effect of previous cracks is neglected. No consideration 

is given to the effects of variations in aggregate interlock at cracks. The failure to 

consider shear transfer at cracks can lead to the shear strength being overestimated by the 

plasticity truss model if the minimum angle of the compressive stress field is governed by 

interface shear at the cracks. Aggregate fracture at the crack can only be taken into 

account in an indirect manner by limiting the effective concrete strength in the strut. 
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2.3 Modified Compression Theory 
The Modified Compression Field Theory developed by Vecchio and Collins [8] is a 

further development of the Compression Field Theory. In the CFT it is assumed that the 

principal tensile stress f1 is zero after the concrete has cracked while in the MCFT the 

effect of the residual tensile stress in the concrete between the cracks is taken into 

account. Tensile stresses across the diagonal struts increase from zero at the cracks to a 

maximum in the middle of the strut as shown in Figure 2.3 (left). 

 
 
 
 
 
 
 
 
 
 
Figure 2.3: MCFT: Left – Tensile stresses along a cracked strut; Right – Mohr’s circle for average 

strains (adapted from Collins & Mitchell [11]) 

The MCFT model consists of strain compatibility and equilibrium equations which can be 

used to predict the complete shear deformation response. All the compatibility equations 

are expressed in terms of “average” strains measured over base lengths long enough to 

include several cracks. The compatibility conditions for both CFT and MCFT are given in 

equations (2.3), (2.4) and (2.5), which are obtained from Mohr’s circle shown in Figure 

2.3 (right). 

θ
εεγ
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= x
xy        … (2.3) 

yx εεεε +=+ 21        … (2.4) 
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x        … (2.5) 

where γxy= shear strain, εx= strain in the x-direction, εy= strain in the y-direction, ε1= 

principal tensile strain in concrete (positive value), ε2= principal compressive strain in 

concrete (negative value). 
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The Mohr´s circle (Figure 2.4) can be used to derive an equation for relating the principal 

compressive stress f2 and tensile stresses, see equation (2.6). 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: Mohr stress circle for average concrete. 

 12 ).cot(tan ff −+= νθθ      … (2.6) 

where v = V/(bwjd). 

The equilibrium conditions for a symmetrical cross section subjected to pure shear shown 

in Figure 2.5 can be expressed as  

 sbfffA wywdsw ).cossin( 2
1

2
2 θθ −=     … (2.7) 

 
 
 
 
 
 
 
 
Figure 2.5: Cross section, principal stresses and tension in web reinforcement 

Substituting equation (2.6) into (2.7) leads to the following expression 

θθ cot.cot1 jd
s
fA

jdbfV ywdsw
w +=      … (2.8) 

Collins & Mitchell [11] noted that equation (2.8) expresses shear resistance in terms of 

the sum of a concrete and steel contributions, as the traditional or classical method. The 

concrete contribution depends on the average tensile stresses in the concrete whilst the 

latter depends on the tensile stresses in the stirrups and the angle of the inclined stress 

field. It is important to highlight that although the approaches might seem similar, the 

concrete contribution suggested in the MCFT is not constant as assumed in the classical 
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truss method. Furthermore, Vc in the MCFT it is not equal to the shear strength of a 

similar member without shear reinforcement. As shown in this section, Vc according to 

the MCFT is a function primarily of the crack width. Increasing the number of stirrups 

reduces the crack spacing, which in turn decreases the crack width and hence increases 

the concrete contribution (Cladera [24]). 

One of the most important features of the MCFT is the average strain-stress relationships 

derived from the tests of reinforced panels subjected to pure shear (Vecchio and Collins 

[8]). The concrete compressive strength is reduced to take into account softening due to 

transverse tensile strain (ε1). Initially [8], a parabolic relationship for cracked concrete in 

compression subjected to high tensile strains in the direction normal to the compression 

was suggested, see equation (2.9). 
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Later Vecchio & Collins [25] modified equations 2.9 and 2.10 in the light of the new 

experimental data. The compression curve used for concrete was changed to the  

Thorenfeldt asymmetric curve instead of the parabolic relationship used originally. Figure 

2.6 shows that the new relationship given for concrete softening β(1993), which is 

referred to as Model B in [25], is not significantly different from the original one.  

Alternative analytical relationships have been presented by different researchers to 

account for compression softening (Kollegger & Melhorn [26], Miyahara et al. [27], 

Belarbi & Hsu [28]). As recognized by Vecchio & Collins [25], there is a considerable 

variation between these models although the comparison is difficult for some of them 

since the equations were implemented in models which accounted for crack slip. As 

reported by Vecchio [29], compression softening is influenced by slippage on the cracks.  

Equation (2.10) was derived for the MCFT in which the crack slip is not taken into 

account. On the other hand, if crack slip is to be considered in the model, the rate of 

softening must be reduced to account for the greater strains obtained in (2.10), which are 
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due to slippage (Vecchio [29]). Typical examples include the Disturbed Stress Field 

Model (DSFM) suggested by Vecchio [29], which is not discussed here, or in the Truss 

with Crack Friction model (see section 2.4). In both types of approaches, crack slip is 

considered. In the DSFM, the parameter Cs was introduced in the softening curve (2.10), 

as shown in Figure 2.6; a value of Cs=0.55 provided optimal predictions of shear panels 

investigated by Vecchio [29]. 

According to Vecchio & Collins [25], concrete strength can have also an influence in 

concrete softening; high-strength concretes tend to show a slightly larger softening than 

normal strength concretes. Moreover, size effects can also have an effect on β. Effective 

strengths used in plasticity approaches (see section 2.1), assume a constant reduction 

parameter ν, which is only a function of the concrete strength; for normal concrete 

strengths ν  is around 0.5, which corresponds to similar levels of softening as in the 

MCFT for transverse strains of around 4εc
’ (see Figure 2.6). 

• Vecchio & Collins [8] 
 
 
 
 
  
 
                   Cs = 1 (MCFT) 
 

• Vecchio [29] 
 
                    Cs = 0.55 (DSFM) 
 
 

Figure 2.6: Concrete softening due to transverse strains according to Vecchio and Collins 

For concrete in tension the curve proposed in Vecchio & Collins [8] is given by the 

following equations 

 if  ε1≤ εcr then 11 .εcEf =      … (2.11) 
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Equation (2.12) was updated subsequently by Vecchio & Collins [25] to include two new 

parameters α1 and α2 that accounted for the bond characteristics of the reinforcement and 

the type of loading. The updated equation is as follows  

1

21
1 .5001

..
ε

αα
+

= crff        … (2.13) 

where fcr is usually taken as 0.33fc
1/2. 

As mentioned earlier, the stress and strain formulations adopted in the MCFT, use 

average values and so local variations are not considered. In the method, a check must be 

done to ensure that reinforcement can take the increment in tensile stress at the crack. In 

order to make this check a value of the stress along the crack must be assumed. The shear 

transfer at the cracks by aggregate interlock action is estimated using relationship (2.14), 

which was derived from Walraven´s test data. 

max
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ci       … (2.15) 

In the expressions above, a is the maximum aggregate size in millimetres and w is the 

average crack width over the crack surface which is estimated as the product of the 

principal tensile strain (ε1) and the crack spacing (sθ). In order to account for aggregate 

fracture at the crack in high-strength concretes, an effective maximum aggregate size (aeff) 

was suggested by Lubell et al. [30] and Angelakos et al. [31], which is a function of fc
’ 

only. The maximum size of the aggregate used in equation (2.10) is reduced linearly as fc
’ 

is increased from 60 to 70MPa. This approach does not make any allowance for the 

influence of aggregate type on crack roughness. 

The spacing of the shear cracks is considered to be dependent on the crack spacing in the 

longitudinal and transverse reinforcement directions smx and smy. The MCFT suggest 

expression (2.16) for sθ. Values for smx and smy can be estimated using MC90 equations 

for crack spacing which are dependent on the spacing between the reinforcement bars and 

the bond strength. 
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According to the Modified Compression Theory at low shear values, tension is 

transmitted across the crack by increases in reinforcement stresses until yielding occurs. 

After yielding of the reinforcement at the cracks, a shear stress vci is needed along the 

crack to maintain equilibrium. The calculated average stress state and the local stress state 

at the crack must be statically equivalent. From this condition equation (2.17), which 

limits the value for the tensile stress, can be derived. Consideration of equations (2.8) and 

(2.17) shows that the shear stress vci is required to maintain equilibrium in a member 

without shear rebars (ρsy=0). 

 ).(tan.1 syyysyci ffvf −+= ρθ       … (2.17) 

The Modified Compression Field Theory can provide accurate predictions of shear 

strength and deformation as shown in chapter 4, despite the simplifications in the method. 

The first and most important assumption made in the MCFT is that of a rotating crack 

model in which previous cracks are assumed to be inactive. The MCFT assumes that the 

angles of the principal strains and stresses axes coincide (θ); in the literature this is 

referred to as the co-axiality principle. The crack in which all the checks are carried is 

assumed to be oriented at the same angle θ as the compressive stress field. Theoretically, 

no shear stresses should be expected in this plane so the physical meaning of vci is 

troublesome. The advantages and disadvantages of using a rotating crack model instead of 

a fixed crack model are discussed in section 3.2.1. 

Another concern with the MCFT is that no check is made on interface shear at previous 

cracks which may be critical for shear transfer. Furthermore the tension stiffening effect 

of the reinforcement can be significantly overestimated since it is modelled by adjusting 

the stress strain response for cracked concrete rather than the response of the 

reinforcement. As described previously, the MCFT defines equilibrium and compatibility 

in terms of average stress and strains without any bond slip considerations of the 

reinforcement bars, so it seems reasonable that the prediction of the local stresses at the 

reinforcement bars is not entirely accurate. 

Lastly, the MCFT has been often criticized from a practical perspective since it requires 

the use of a computer in order to solve the system of equations. To overcome this problem 
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Bentz & Collins provide free software packages RESPONSE 2000 and MEMBRANE 

2000, to solve the equations. Bentz et al. [32] developed simplified versions of the 

MCFT, which can be used in order to predict the maximum shear capacity rather than the 

complete load-deformation response. These simplified equations are incorporated in the 

Canadian code CSA A23.3 [33]; see equations (2.18) to (2.20). 

dbfVVV wccscr
'25.0 φ≤+=       … (2.18) 

θφβφ cot' df
s

AdbfV y
sw

swccr +=      … (2.19) 

where φc, φs = capacity reduction factors, bw = web width, d = effective shear depth 

(dv=0.9d), As = area of longitudinal reinforcement on the flexural tension side. The CSA 

standard limits the maximum value of √fc
’ to 8MPa. Parameter β represents the shear 

retention factor i.e. ability of cracked concrete to transmit shear by means of aggregate 

interlock, while θ is the angle of inclination of the strut. Both β and θ are estimated in 

terms of the longitudinal strain at the mid-depth of the section using equations (2.20) and 

(2.21).  
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β   … (2.20) xεθ 7000º29 +=     … (2.21) 

where 
sls

ff
x AE

VdM
2

/ +
=ε ; Mf and Vf are the factored moment and shear force at section. 

The effective crack spacing (sze) is taken as 300mm for members with at least minimum 

stirrups and sze=35sz/(15+a)≥0.85sz for members without stirrups. The crack spacing 

parameter (sz) is the longitudinal spacing between cracks, measured at mid-depth of the 

member; sz is usually taken as dv for members without horizontal reinforcement at the 

web. As highlighted by Collins et al. [34], parameter β consists of the product of a strain 

effect factor, which is given by εx, and a size effect factor governed by sze. Hence shear 

strength decreases as the longitudinal strain increases and for members without stirrups, 

as the member depth decreases. In addition, for members with stirrups, an increase in εx 

results in a decrease in the shear strength due to the lower stirrup contribution Vs. 

Yielding of the longitudinal reinforcement on the flexural tension side must be checked as 

in the classical and variable strut inclination methods. 
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2.4 Discrete crack models 
The methods for shear design described so far are “smeared approaches” where the 

compression field is analysed independently of the crack pattern. In addition, the angle of 

the compression field is skewed to the crack pattern (βr=θ) as shown in Figure 2.7 (left). 

In reality shear failure is likely to be governed by equilibrium at the critical shear crack as 

shown in Figure 2.7 (right), which is related to the aggregate interlock. 

 
 
 
 
 
 
 
 

Figure 2.7: Left– Crack oriented as compression fields (θ =βr); Right– Strut crossed by cracks 

(adapted from Schlaich et al. [35]) 

As emphasized by Reineck [21], research should focus more on the so-called “failure 

mechanism approaches”. In these methods the actual failure surface in a member or the 

critical crack and the localized crushing of the concrete in the compression zone are 

considered. Discrete crack approaches provide a more rational description of the shear 

behaviour, but are probably too complex for practical purposes since they usually require 

the solution of complicated analytical equations. 

Truss Model with Crack Friction 
An example of a discrete method for shear design is the Truss Model with Crack Friction 

proposed in 1996 FIP Recommendations [21]. These recommendations are based on 

previous work by Poli et al. [36, 37], Kirmair [38] and Kupfer [39]. The model considers 

the equilibrium of a free-body diagram of a separated element along a diagonal crack as it 

was done by Mörsch but also considers the friction force along the crack due to aggregate 

interlock. 

The shear resisted by the web (VRd,web) is the total sum of the shear force component 

carried by the vertical stirrups (VRd,s), which is obtained using equation (2.1), and the 

vertical component of the friction forces at the crack (Vfd). The latter component 

represents the “concrete contribution” in the standard truss method. To calculate VRd,web, 

the inclination of the crack as well as the crack spacing must be assumed or estimated, for 
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example by performing a non-linear analysis. A constitutive law for the transfer of forces 

along the cracks by interface shear must be implemented. Several aggregate interlock 

models are available in the literature (see section 2.5), which relate crack opening and slip 

to shear and normal stresses at the crack. 

According to the truss model with crack friction, strains must be determined in the chords 

and web in order to calculate Vfd, which depends on the crack width and slip. As pointed 

by Reineck [21], Vfd depends on the shear force, strain conditions in the member, on the 

longitudinal strain at mid-depth (εx) and crack spacing. However, for practical reasons 

and applicability of the method, a constant value of Vfd is generally assumed in the codes.  

The 1996 FIP Recommendations give the following values: 

• For members without axial forces: 

 )(07.0 cdwfd zfbV =        … (2.22) 

 20.1cot =rβ          … (2.23) 

• with axial compression: 

 ctmxdr f/20.020.1cot σβ −=       … (2.24) 

 0)).(4/cot1(10.0 ≥−= cdwrfd zfbV β      … (2.25) 

• with axial tension: 

 0/90.020.1cot ≥−= ctmxdr fσβ      … (2.26) 

 0)).(cot/36.01(10.0 ≥−= cdwrfd zfbV β     … (2.27) 

A value for βr of 40º is commonly used for members without axial tension force. 

However, as discussed in chapters 6, 7 and 8, the inclination of the critical shear crack can 

vary from 45º to 30º depending on the shear span to effective depth ratio (a/d) and type of 

loading. In beams with axial compression and tension the angle βr is decreased and 

increased respectively. Equation (2.26) for members with axial tension can result in large 

amounts of transverse reinforcement (Reineck [21]). 

Further improvements need to be implemented in the previous method for lightweight and 

high-strength concretes where the shear component resisted by friction at the interface 
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(Vfd) will be clearly overestimated using equations (2.22, 2.25 and 2.27). This is due to the 

fact that aggregate fracture at the crack is not taken into account. 

One last important aspect that was highlighted by Reineck [21] refers to the strength 

assumed for the concrete struts between shear cracks. As mentioned in section 2.3 the 

concrete strength is decreased by transverse tensile strains in the struts, which are induced 

by stirrups and friction forces along cracks. Crack slip and shear transfer along cracks is 

taken into account in the truss model with crack friction and so the compression softening 

implemented in the model should be lower than normally used in the rotating crack 

approach, (see section 2.3). According to Reineck [40], a reduction factor of 0.85 is 

recommended, which is considerably larger than used in plasticity approaches, where ν is 

typically about 0.5. Reineck’s recommendations for the strength reduction factor are 

based on work carried by Schlaich & Schäfer [41], Schäfer et al. [42], Eibl & Neuroth 

[43], Kollegger & Mehlhorn [26]. 

Other discrete crack models 

Other examples of discrete cracking approaches, are the methods of Poli et al. [36, 37] 

and Prisco et al. [44]. All these approaches use a friction law to define the force transfer 

along the cracks. Opening and sliding of the crack are considered as well as non-

coaxiality (βr>θ) in the orientation of the strut and the crack. 

The method developed by Poli et al. [36, 37] used the Rough Crack Model described in 

detailed in section 2.5, to describe for the aggregate interlock at the crack. The 

contribution of Vf was studied by the authors for I thin-webbed beams basing their method 

on the plane truss proposed by Mörsch but with aggregate interlock considerations 

similarly as the truss with crack friction model. A system of non-linear equations was 

solved accounting for equilibrium, stirrups-to-concrete compatibility, friction law for 

aggregate interlock, solid concrete between shear cracks and crack spacing. Other 

aggregate interlock models were applied, such as the two-phase model (Walraven [45], 

see section 2.5), resulted in similar predictions. 

In their initial method Poli et al. [36, 37] neglected any shear and bending stiffness of the 

diagonal struts as well as the beneficial effect of the dowel action. The ratio for transverse 

reinforcement was kept small in order to assure that shear failure would be governed by 

the yielding of the stirrups. Poli et al. [36, 37] made refinements to the model to take into 

consideration the shear and bending carrying capacity of the struts as well as bond-slip 
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between of the stirrups and concrete. These changes resulted in a decrease of the 

inclination of the compressive fields allowing for a more economical design compared to 

the original model. 

Constant relative displacements along the crack were assumed in the original model. In 

later work done by Prisco & Gambarova [44] a non uniform law for the relative 

displacements along the crack (Figure 2.8) was implemented as well as plastic-strain 

accumulation in the stirrups and dowel action. The first two enhancements showed that 

the assumptions made initially were not on the safe side since they had a negative effect. 

The experimental values of the crack opening and slip obtained in the author’s tests (see 

chapter 6), showed a more uniform distribution than that shown in Figure 2.8. This 

suggests that the variation of the crack displacements along the crack can be influenced 

by the depth of the member as well as the amount of longitudinal reinforcement. 

 

 

 

 

Figure 2.8: Analytical model proposed by Prisco & Gambarova [44]; a) Web-shear cracks; b) 

Flexure-shear cracks; c) & d) Assumed crack opening and slip distribution along crack (Case 1 & 

2) 

Another example of a truss model in which equilibrium at the crack was imposed in order 

to obtain the ultimate shear capacity was suggested by Hamadi & Regan [19]. In their 

model the inclination of the strut was obtained by minimising the total complementary 

energy of the internal structure. Although several simplifications were assumed, sensible 

predictions were obtained and most importantly the relevance of decreasing the stiffness 

of the aggregate interlock action could be assessed. An alternative approach reported by 

Regan [3], which seem to be adopted in DIN1045:2000, is to use the variable strut 

inclination method limiting the shear stress at the critical crack instead of using the plastic 

solution; this approach is discussed in further detail in section 8.3.3. 
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2.5 Aggregate interlock models 

2.5.1 General aspects 
The discrete crack approaches, described in section 2.4, consider failure along the actual 

critical crack surface and study the interface transfer of forces between the rough concrete 

crack faces, also known as “aggregate interlock action”. Although this technique might 

seem to give a more physical meaning solution than smeared crack approaches, aggregate 

interlock must be implemented by means of analytical models. In this section, several 

aggregate interlock models available in the literature are reviewed. The performance of 

some of these models is further investigated in chapter 4 in view of the experimental 

results obtained from push-off test carried out in this work. 

Numerous experiments have been performed in the past showing that the shear force 

transferred along the cracks is not related in a simple direct way to shear displacements. 

Crack width, slip, aggregate size and normal stresses are all interrelated. Hence it is 

extremely difficult to establish a precise analytical model to link them all together. 

To understand the mechanical behaviour of aggregate interlock action concrete must be 

studied as a composite material consisting of two phases (see Figure 2.9). Phase I is 

composed of the aggregate particles that have high strength and stiffness and phase II is a 

matrix material consisting of hardened cement paste with fine sand, which has lower 

strength and stiffness. The interface between the aggregate and the matrix is the critical 

path that the crack is going to follow so that for normal concretes the crack intersects 

phase II but never phase I as shown in Figure 2.9 (left). However, there are other 

instances where the bond between the aggregate and the cement paste is strong enough to 

fracture the aggregate at the crack. This results in smooth cracks as shown in Figure 2.9 

(right), which are commonly observed in lightweight and high-strength concretes. 

 

 

 

 

Rough crack       Smooth crack (aggregate fracture) 

Phase I: aggregate particles; Phase II: Matrix (cement paste and sand particles) 

Figure 2.9: Aggregate interlock; Left– Rough cracks; Right– Aggregate fracture (smooth cracks) 

Phase I 

Phase II 

Phase I 
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Experimental evidence shows that when crack faces are subjected to relative shear 

displacements a wedging action is initiated which generates normal stresses and activates 

the reinforcement that crosses the crack to maintain equilibrium. It is widely accepted that 

the crack width (w) has an important role in aggregate interlock action; higher values of w 

results in lower stiffness of the aggregate interlock. Different opinions exist about 

whether size and type of aggregate (rounded, crushed, lightweight) are crucial parameters. 

According to Taylor [1], the ratio between aggregate and matrix strengths is the most 

important parameter which influences the roughness of the crack. In practice, concrete 

strength is assumed to be the critical variable and only light-weight aggregate concrete is 

considered separately. 

Hamadi & Regan [19] performed push-off experiments in order to study the influence of 

the aggregate type. These tests were carried using concretes with either lightweight or 

normal gravel aggregates. From their experimental results they concluded that stiffness at 

the crack was dependant on crack opening and type of aggregate but not on the normal 

stresses. On the contrary, the ultimate shear strength was found to be a function of the 

normal stresses and type of aggregate but not on the crack opening. 

Similar tests were carried by Walraven and Reinhardt [46]. The variables to be studied in 

this case were the type of reinforcement (embedded and external reinforcement bars), the 

concrete strength (fcc=13–60MPa), the type of concrete (sand gravel, lightweight 

concrete), the grading of the concrete, the scale of the concrete (Dmax=16 and 32mm) and 

the initial crack width. An interesting aspect which was observed in these tests was the 

different behaviour of cracks with embedded or external reinforcement bars. A local 

concentration of stresses was observed near the embedded reinforcement bar, which was 

caused by the reduction of the crack width in this region. One consequence of this 

concentration of stresses is that the crack opening path (w–s relationship) is 

approximately linear for reinforced cracks independently of the reinforcement ratio, as 

shown in Figure 2.10.a. This was not the case for push-off tests with external 

reinforcement (Figure 2.10.b). Changes in bar diameter in reinforced cracks, while 

keeping ρ constant, showed no major influence on the response. Conclusions drawn for 

reinforced cracks were made for concretes with moderate strength (20–38MPa). 

However, in lightweight concrete specimens, the crack opening paths observed were 

much steeper with ∆s>>∆w as shown in Figure 2.10.c.  
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a)       b)        c) 
 
Figure 2.10: Crack opening paths for a) Reinforced cracks; b) Unreinforced cracks; c) Reinforced 

cracks: lightweight and high-strength concretes (adapted from Walraven and Reinhardt [46]) 

Walraven & Reinhardt’s [46] experiments showed that changing the grading of the 

aggregate in gravel concrete by increasing the size from 16 to 32mm or by removing all 

particles between 0.25 and 1.00mm had no significant influence. As expected, increasing 

the reinforcement ratio and concrete strength decreases the normal and shear 

displacements in reinforced cracks. Lastly, these tests showed similar results for 

specimens with external restraint bars and specimens with soft sleeves secured to both 

sides of the crack over a short length. The latter specimen configuration was used to avoid 

concentration of stresses around the embedded reinforcement bars. 

2.5.2 Crack dilatancy models 
To implement the aggregate interlock phenomena into the calculations crack dilatancy 

models can be used with constitutive laws that can be based on an empirical formulation 

(Hamadi & Regan [19], Walraven & Reinhardt [46]; Bazant & Gambarova [47]; 

Gambarova & Karakoç [48]) or an analytical rational formulation (Walraven [45]; Li, 

Maekawa & Okamura [49]). For most of the cases the formulation is based on a total 

deformation theory where normal and tangent stresses are expressed as functions of the 

relative displacements ∆w and ∆s. 

The “Linear aggregate interlock” and” Crack rough” models 

One of the most widely used friction laws is the linear aggregate interlock relation of 

Walraven & Reinhardt [46]. The method, which is a based on linear regression analysis of 

their experimental data, is simple and yet still achieves good accuracy. The model is 

given by equations (2.28) and (2.29) for normal gravel concrete. An interesting feature of 

this model is that a minimum value of the crack slip is required to mobilize the shear and 
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normal stresses; this value is larger for the normal stresses than for shear stresses as 

shown in Figure 2.11.a. 

 ( )[ ] sfwwf
cc

cu
ncr ∆−++−= −− ..15.0.191.0.35.1

20
552.063.0σ   … (2.28) 

 ( )[ ] sfwwf
cc

cu
cr ∆−++−= −− ..20.0.234.0.8.1

30
707.080.0τ   … (2.29) 

where σn and τ are greater than zero. 

Expressions (2.28) and (2.29) are used for normal gravel concrete while the following 

expressions are suggested for a lightweight concrete. 

 ( ) swfcu
ncr ∆−+−= − .1.928.1

40
87.0σ      … (2.30) 

( ) swfcu
cr ∆−+−= − .1.495.1

80
233.1τ      … (2.31) 

An example of relations (2.28) and (2.29) is plotted in Figure 2.11.a for a concrete with a 

cube strength fcu of 56.1 MPa. The stiffness of aggregate interlock given by the slope of 

these equations is considerably larger than for the lightweight concrete expressions (2.30) 

and (2.31). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   a) Linear aggregate model       b) Rough crack model 
Figure 2.11: Aggregate interlock models; a) Linear aggregate interlock model proposed by 

Walraven & Reinhardt [46]; b) Rough crack model proposed by Bazant & Gambarova [47] 

The rough crack model proposed by Bazant & Gambarova [47] is also based on empirical 

results. In this case the constitutive model was obtained by optimising the fit of Paulay & 
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Loeber’s [50] test results at constant crack width. The rough crack model considers the 

crack surface as a regular array of trapezoidal asperities.  

One of the main features of this model is that shear stress is primarily dependant on the 

displacement ratio r=∆s/∆w. The curve has an asymptotic behaviour for large values of r, 

as shown in Figure 2.10.b, which is a consequence of microcracking and crushing of the 

matrix near the aggregate particles. For values of ∆w>Dmax/2 where Dmax is the maximum 

aggregate size, the crack reaches the state of no contact. 

The constitutive equations (2.32) and (2.33) are again functions of ∆s, ∆w and fcc as in 

Walraven & Reinhardt’s [46] model. However additional parameters Dmax and tensile 

strength ft are introduced. 
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Improvements to this model were proposed in later work by Gambarova & Karoç [48]. 

According to the authors a better formulation to the relation between normal traction and 

crack displacements was found. Daschner & Kupfer [51] tests were used to optimise the 

curve fitting because the confinement stress was kept constant. Expressions (2.32) and 

(2.33) were modified to: 
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The “Two-phase” and” Contact density” models 

Other attempts to model aggregate interlock action were done by developing a more 

theoretical approach such as the “Two-phase Model” proposed by Walraven [45] or the 

“Contact Density Model” introduced by Li et al. [49]. 

The two-phase model assumes that concrete consist of two ideal phases; spherical 

aggregate particles, which are perfectly stiff, and a perfectly plastic matrix, see Figure 

2.12. As shown in Figure 2.12, shear stresses generate when the sphere particles intrude 

into the matrix. 

 
 
 
 
 
 
 
 
Figure 2.12: Different phases in aggregate interlock action assumed by the two-phase model 

(adapted from Walraven & Reinhardt [46]) 

The statistics of aggregate distribution are taken into account to estimate the active area 

between the inclusions and the matrix. The tangent stiffness is again a function of crack 

displacements (∆s, ∆w) and aggregate distribution. The formulation is given by equations 

(2.36) and ( (2.37). 

 ( )ntpuncr AA .. µσσ −−=       … (2.36) 

 )..( tnpucr AA µστ +=        … (2.37)  

where σpu = matrix compressive strength; µ = friction coefficient between intrusion and 

matrix; At = tangent average contact area; An = normal average contact area. 
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The Contact Density Model developed by Li, Maekawa & Okamura [49] also deals with 

aggregate interlock using contact density probability functions. In this model the 

inclinations of the contact units or intrusions θ (within a range of -90º and 90º) is a 

stochastic variable described by its density probability function Ω(θ). The direction of the 

contact stresses is proposed to be constant and normal to θ. 

The mathematical formulation for this model is given by equations (2.38) and (2.39) 
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In expressions (2.38) and (2.39) Ω is assumed to be a trigonometric function independent 

of the size and grading of the aggregate as well as the strength and type of coarse 

aggregates. The effective ratio of contact area K(∆w) expresses the contact stage along the 

crack when ∆w is large compared with the roughness of the crack surface. The contact 

force (σcon) is calculated using an elasto-perfectly plastic model. The surface area At is 

estimated as 1.27 times the area of the crack plane. This estimated value only applies for 

normal concretes with strengths not higher than 50MPa as will be discussed later on. 

Considerations for smooth cracks 

As mentioned earlier, cases where the aggregate fractures at the crack can lead to a 

reduction of the aggregate interlock action and so the crack dilatancy models described 

earlier need to be examined carefully.  

The linear aggregate interlock model offers alternative equations (2.30) and (2.31) for 

lightweight aggregate, which seems to accounts for the lower stiffness due to smoother 

cracks. However, these equations do not always provide accurate results for normal 

concretes in which the aggregate splits at the crack, as it is shown in section 4.5. On the 

other hand, the two-phase model (Walraven [45]) is based on the assumption that the 

crack goes round the idealised sphere aggregate and the case of the crack going through 

the particle is not considered. The crack rough model, makes use of empirical parameters 

(a0, a1, a2, a3 and p) and so would seem necessary to perform a recalibration of these 

parameter in order to take into account for cases where aggregate breaks at the crack. 
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Although experimental work will be required, the enhancement of the latter method 

seems feasible, at least from a theoretical point of view. 

The contact density model by Liu et al. [49], due to its rational derivation, can be oriented 

towards the assessment of flat surface cracks. Even though the background theory for this 

model is mostly applied to gravel aggregate concrete some innovations are being 

developed by Maekawa et al. [52] in recent publications in order to adapt the method to 

smooth fracture surfaces. As recognized by Maekawa et al. [52], the changes required to 

adapt the model to even cracks are not straightforward. First modification required would 

involved the density function Ω(θ), which is generally assumed to be 0.5cosθ. For smooth 

cracks this function can be substituted by a truncated normal distribution (Maekawa et al. 

[52]). The contact density function Ω(θ) in this case will no longer be independent from 

the type of aggregate as it was assumed before. The other variable that would need to be 

modified is the effective ratio of contact K(∆w) since the roughness is considerably small 

compared with ∆w. 

The formulas proposed by Maekawa et al. [52] for high-strength concrete are based on 

statistical analysis of histograms of directional crack distributions. For lightweight 

concrete where the aggregates are much softer the same formulas are suggested, but in 

order to avoid overestimating the stresses transferred at the crack a reduced contact 

yielding stress is recommended. 

Simplified aggregate interlock models 

Despite the extensive formulation and different alternatives among the crack dilatancy 

techniques some of the models described earlier can lead to extremely difficult and time-

consuming calculations. In fact, crack dilatancy models as stated by Feenstra et al. [53] 

can result in asymmetrical tangential stiffness matrices, which generate numerical 

difficulties in solving the algebraic equations typically set for a non-linear finite element 

analysis.  

In order to implement the crack dilatancy model into an interface finite element, the linear 

aggregate interlock model given by expressions (2.28) and (2.29) seems the simplest 

approach. The stability of mechanical systems with a non-symmetrical tangent-stiffness 

matrix K is satisfied if all the eigenvalues of the matrix (K+Kt) are positive (Feenstra et al. 

[53]). This condition is derived from the fact that internal strain energy (U) must be 

positive for any kinematically admissible strain-rate vector in order to assure stability.  
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From Feenstra et al. [53] stability analysis, it was concluded that all the crack dilatancy 

models presented in this section showed cases with negative eigenvalues, where stability 

was lost before the maximum shear stress was attained. Only the contact density model 

showed a better stability, which was due to the fact that the stiffness matrix is less 

asymmetric than the remaining models. 

This clearly justifies the use of simpler aggregate interlock models, which could be 

implemented in a simpler manner into shear design methods while keeping a certain level 

of accuracy. An example is shown in section 2.3 in the MCFT for the shear carried at the 

crack vci (see equations 2.14 and 2.15). 

Another example of simplified formulation for aggregate interlock is equation (2.40) 

proposed by Hamadi & Regan [19], which was obtained from regression of the 

experimental data from push-off tests. The stiffness parameter k suggested by the authors 

was 5.4N/mm2 and 2.7N/mm2 for natural gravel and expanded clay aggregates 

respectively. According to equation (2.40) the aggregate interlock stiffness depends only 

on the type of aggregate and crack width. Hamadi & Regan [19] used a shear friction type 

of formula (2.41) to obtain the shear capacity (τult), in which the cohesion (c) and friction 

(µ) parameters need to be estimated. Although this approach is commonly used in design 

codes, the influence of the crack width is neglected. This is inconsistent with other 

approaches such as the vcimax value used in the MCFT (see equation 2.15). Further 

discussion regarding the shear friction formula is presented in section 4.4. 
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Li, Maekawa, Okamura & Soltani [49, 54] presented simplified equations (2.42) and 

(2.43), which were based on the contact density theory described earlier. Similarly as in 

the rough crack model, equations (2.42) and (2.43) are a function of the ∆s/∆w ratio. 
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Lastly, MC90 provides design equations (2.44) and (2.45) for rough interfaces that can be 

used to assess the shear stresses mobilized for a certain value of crack sliding. This model 

assumes a linear relationship up to a crack slip of 0.1mm, as shown in Figure 2.13. The 

ultimate shear stress corresponds to a crack slip of approximately equal to 2mm and can 

be estimated using equation (2.46).  

According to MC90, the crack slip is accompanied by a crack opening, which can be 

estimated as w=0.6s2/3 (units in mm). These equations were presumably derived from 

push-off test data since the ∆s/∆w is similar to that shown in Figure 2.10. 

• For s<0.1mm 

sultττ 5=         … (2.44) 

• For s≥0.1mm 
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where 3/13/2'4.0 στ cult f=       … (2.46) 

 

 

 

 

 

 

 

Note: Ultimate crack slip su = 2mm 

Figure 2.13: MC90 predicted shear stress as a function of the crack slip 
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2.5.3 Aggregate interlock contribution to shear strength of RC beams 
As shown in this chapter, the role of aggregate interlock action assumed by the different 

shear models available in the literature can be significantly different. The contribution of 

shear transfer along cracks must be considered either directly or indirectly in order to 

obtain reasonable predictions of shear strength in reinforced concrete beams. However, 

this contribution might vary depending on the amount of shear reinforcement provided, 

shear span to effective depth ratio, concrete strength or type of aggregate used. 

Experimental data regarding aggregate interlock is mainly focused in members without 

shear reinforcement. Early estimates of the percentage of vertical shear carried across 

flexural cracks were provided by Fenwick & Paulay [55]. According to their experiments 

an approximate figure of 70% of the shear was taken by aggregate interlock, while the 

remaining 30% was carried by the compression zone and dowel action. Later work 

carried out by Taylor [1, 2] confirmed that the contribution of aggregate interlock was 

predominant, as shown in Figure 2.14. The percentages provided by Taylor [1, 2] for the 

contribution of aggregate interlock (35-50%), dowel force (15-25%) and shear 

contribution of the compression zone (20-40%) have been well documented in a great 

number of references found in the literature. 

 

 

 

 

 

 

 

 

Figure 2.14: Components of shear resistance obtained experimentally by Taylor [1, 2] in members 

without shear reinforcement (adapted from Taylor [2]) 
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According to these results, there seems little doubt that aggregate fracture in members 

without shear reinforcement can results in a reduction of shear strength due to the lower 

aggregate interlock capacity. As mentioned earlier, Taylor [1] supported the idea that the 

most critical parameter, which governs the crack roughness, is the ratio between the 

aggregate and matrix strengths. According to this, the influence of the type of course 

aggregate used in the concrete can be critical. Clear evidence regarding the effect of using 

different types of aggregates was provided by Regan et al. [4]. This work showed that 

beam tests using limestone aggregate, which generally fractures at the crack, had a lower 

shear resistance compared with beams made with granite or normal gravel aggregate 

concretes.  

As highlighted by Regan [3], the type of aggregate used is generally not reported by 

researchers, which complicates the interpretation of the experimental databases. This is 

surprising, considering that experimental databases are being gathered using data from all 

continents, where presumably the type of aggregate used is completely different. Tests 

carried out in Canada generally used limestone aggregate (Collins [56]), which as 

recognized by Angelakos et al. [31] can result in a noticeable decrease of crack roughness 

with the concrete strength. In the UK, limestone aggregate is commonly used for high-

strength concretes, while for normal strength concretes gravel aggregate is usually more 

common. 

Although the contribution of aggregate interlock is more or less understood for members 

without stirrups, there is a lack of experimental data regarding aggregate interlock 

contribution for members with stirrups (Taylor [1, 2], Regan [4]). The shear design 

approaches described in this section rely upon the shear transfer across cracks and so it 

seems reasonable that aggregate fracture might also have an effect in this case. However, 

as mentioned by Regan et al. [4] this influence might be less than in members without 

stirrups since shear reinforcement provides a better control over the crack widths.  

In this area, it is noticeable work carried by Walraven [9, 10] using either lightweight or 

high-strength concretes, in which the crack roughness was influenced by splitting of the 

aggregate. According to their experimental work of slender beams with stirrups, a 

reduction of the shear strength could not be observed. This was explained by the fact that 

shear forces could still be transmitted along the crack due to the irregular shape of the 

crack surfaces (roughness at a macrolevel) which allowed for additional contact areas to 

develop. However, it remains questionable whether this would apply to other load 
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arrangements and beam dimensions where these irregularities in the crack surface might 

not be attained. As reported by Regan et al. [4], experimental evidence provided by 

Motamed [57], seems to suggest that there might be a potential concern for lightly 

reinforced high-strength limestone aggregate members. 

Design codes generally account for aggregate fracture indirectly by means of the concrete 

strength. UK National Annex to EC2 limits the concrete strength to 60MPa in shear 

design equations due to concerns about aggregate cracking. Similar approach is taken in 

other codes such as Spanish code (EHE). However, for both EC2 and EHE codes, this 

limitation is imposed for both cases of members with and without shear reinforcement, 

which might not be entirely accurate.  

On the other hand, Canadian Code (see section 2.4) which is based on the MCFT, the 

aggregate size can be reduced in the calculations in order to account for aggregate 

fracture. As discussed previously, this is usually done according to the concrete strength 

only. Moreover, for members with stirrups the simplified equations in the Canadian Code, 

assumes a constant value for the crack spacing and so allowance for changing the size of 

the aggregate size is not made.  

As shown, the design codes can be inconsistent regarding a potential reduction in shear 

strength due to aggregate fracture. Furthermore, the type of aggregate is completely 

neglected, except for lightweight aggregate concrete members. Therefore, it seems 

sensible that further research is carried out in order to assess these assumptions made by 

the different design codes. 
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2.6 Strut-and-tie modelling 
General aspects 

The Strut-and-Tie Method (STM) is an application of the lower bound theory of plasticity 

used in design for the ULS in regions where plane sections do not remain plane (D 

regions). In these areas called discontinuity regions, there is a statical or geometrical 

disturbance that causes non-uniformity of internal forces as shown in Figure 2.15. 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.15: Stress lines in B and D regions for a concrete beam (adapted from Schlaich & 

Schafer. [58]) 

The load is assumed to be transferred from the loading points to the supports through a 

truss in which compression stress fields are resisted by concrete and tension stress fields 

by reinforcement (Figure 2.16). The main concept of STM is to solve a continuum 

concrete structure by calculating a truss structure (strut-and-tie system). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.16: Example of a strut-and-tie model for a deep beam 

The lower bound theory of plasticity states that for a given load case if there is a stress 

distribution that satisfies equilibrium with the boundary conditions and stresses 

everywhere are below a threshold value or strength defined by the codes, the structure 
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will carry those loads without collapsing. The theory does not require the actual stress 

state to be calculated since it is a lower bound theorem. 

Although the method was originally based on Mörsch’s truss analogy concept used to 

explain shear in a RC beam, it was not well established until 1987 when Schlaich, Shafer 

and Jennewein [35] defined the basis for this method and its applications for discontinuity 

regions. The Féderation Internationale du Béton (fib) enhanced this method helping STM 

make its way into codes of practice. 

The following procedure is used to develop a strut-and-tie model. 

1. Definition of the D-region; borders and forces within these boundaries. 

2. Drawing a strut-and-tie model on the basis of assumed node geometry. 

3. Solving for the truss member forces. 

4. Calculate the reinforcement layout providing the required tie capacity and enough 

anchorage length for the bars to ensure the correct behaviour at the nodes. 

5. Dimension nodes using truss member forces obtained previously. 

6. Go back to new geometry (step 2) in order to find a converged solution. 

Despite the didactic value of the STM and its many appealing applications the method is 

not always trouble-free and has many uncertainties. These difficulties are outlined here 

for general strut-and-tie modelling, although some of them are further discussed for the 

particular case of STM of short span beams shown in chapter 7. Regarding the steps 

listed, which are needed to develop a strut-and-tie model, steps number 1, 3, 4 and 6 are 

straightforward. On the contrary steps 2 and 5 are more problematic since the geometry of 

the strut-and-tie model changes not only with the load case but also with the magnitude of 

the load. 

There are four major problems in developing strut-and-tie models. These are: 

1. Uncertainties in obtaining dimensions, stiffness and effective strength of strut, ties 

and nodes for the truss models. 

2. Need to select the optimal strut-and-tie model and iteratively adjust and refine the 

truss geometry. 

3. Need to combine different load cases. 

4. Uncertainties for statically indeterminate models. 
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Definition of nodes 

In order to obtain the dimensions and shape of a node, the widths of the incoming strut 

and ties are needed. The widths of the elements are chosen so that stresses are below the 

code restrictions. One possible way of dimensioning a node is to assume that the stresses 

on all the sides of the node are equal which results in a hydrostatic biaxial state of 

stresses. This can be done by defining the boundaries of the nodes so that they are 

proportional and perpendicular to the forces acting on them. Defining the node in this 

manner guarantees that no shear is transmitted to the node face. 

However, this procedure can be quite laborious for cases where more than three truss 

elements meet since the centrelines are unlikely to coincide. In addition, hydrostatic 

nodes are not always feasible due to geometrical constraints. An example of this is shown 

by Brown et al. [59], in Figure 2.17 (left). According to these limitations, non-hydrostatic 

nodes are usually recommended by the codes (AASHTO LRFD and ACI 318-05). 

Schlaich et al. [35] proposed a simplified method, where the centrelines coincide but the 

stresses on the sides of the node were different and constant. In this procedure a check to 

assure that these stresses were below the limit was needed. In addition, in order to limit 

the shear within the node it was recommended that the ratio of maximum to minimum 

principal stress be less than two. 

A comprehensive study of modelling nodes in STM was presented by Schafer [60], which 

included general guidelines for dimensioning and checking bearing stresses for several 

types of nodes. These guidelines have been implemented in several design codes such as 

EC2. A typical example of compression-tension node (CT) is shown in Figure 2.17 

(right), which is commonly used in STM of beams supported on bearing plates. The width 

of the incoming strut can be easily obtained from the length of the bearing plate (lb) and 

distance from the bottom to the centroid of the reinforcement (c). 

 

 

 

 

 

Figure 2.17: Types of nodes in STM (adapted from Brown et al. [59]); Left– Hydrostatic node at 

impractical case; Right– Non-hydrostatic CT node (estimation of strut width) 
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Statically indeterminate systems 

Another problem faced by the STM is to estimate accurately the stiffness of struts and ties 

due to the presence of cracks. The truss systems to be solved in a strut-and-tie model must 

be simple so that all element forces can be obtained with only equilibrium conditions (i.e. 

statically determinate systems). Hence, in general cases the stiffness of both strut and ties 

are not required. However, if the stiffness of the truss elements could be estimated the 

member forces could then be calculated, even for statically indeterminate configurations. 

Moreover, if the load-deformation response of the struts and ties were known the 

equivalent deflection behaviour could be predicted for the evaluation of the serviceability 

limit state.  

An example of a statically indeterminate system can be found in short span beams with 

stirrups (see chapter 7), in which the proportion of the load that is taken by the stirrups is 

not known. Several approaches can be applied to solve hyperstatic strut-and-tie systems. 

The simplest assumption is made by the classic plastic truss method, where the most 

loaded ties are assumed to yield. Another approach is the decomposing method proposed 

by Schaich & Schafer [61], in which the system is divided into several statically 

determinate systems. However, a reasonable estimation of the stiffness and the imposed-

loading distribution of each model are needed in order to sum all these sub-models. Other 

authors such as Ameida [62], suggest an energetic technique in order to consider 

compatibility in the general model. Lastly, a stiffness analysis by strain compatibility can 

be carried out in a similar manner as the method applied for beam-column joints proposed 

by Vollum & Newman [63]. In any of these approaches, additional information from both 

laboratory testing and non-linear finite element analysis would be beneficial to validate 

the assumptions made in the strut-and-tie model.  

Effective strength of struts 

Another topic of debate in the strut-and-tie method is the effective strength assumed for 

the struts. Different design codes provide a wide range of reduction factors to apply to the 

cylinder compressive strength to estimate the capacity of the struts. EC2 applies no 

reduction for cases where the concrete strut is in a region with transverse compressive 

stress or no transverse stress, while ν is used to reduced fc
’ for struts in cracked 

compression zones where ν=0.6(1-fck/250). This parameter is identical to the one 

suggested for the variable inclination strut method used for shear design (see section 2.1).  
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Other codes such as Model Code MC90 give different values depending on the 

constitutive laws used for concrete.  

• For compression using a parabola-rectangle diagram 

 [ ]2
max, )/()/.(2..85.0 clcclccdRd f εεεεσ −=  for εc ≤ εcl 

 cdRd f.85.0max, =σ     for εcl ≤ εc ≤ εcu 

00.0max, =Rdσ      for εcu ≤ εc 

where εcu=0.002 

• For a bi-linear stress-strain relationship 

 [ ]250/1..85.0max, ckcdRd ff −=σ  for uncracked areas 

 [ ]250/1..60.0max, ckcdRd ff −=σ  for cracked areas 

There are six major factors influencing the strength of the concrete strut. 

1. Shape of the strut: prismatic where the strength of the strut is closest to a concrete 

cylinder; fan and bottle-shaped where the strut spreads out as it moves from the 

ends causing splitting for smaller values than fc
’. 

2. Disturbances in the strut: initial cracks parallel or skewed with respect to the strut 

orientation. The influence of aggregate interlock is not taken into account in the 

codes. Another disturbance in the strut can be the tensile stresses or strains induced 

by a crossing tie such as the case of a stirrup in the truss analogy for shear in a RC 

beam. 

3. Distributed reinforcement: well distributed reinforcement can control the spreading 

effect of the strut and increase the overall ductility. 

4. Confinement: either by reinforcement or by mass surrounding the element the 

performance of the strut can be enhanced by confinement. This favourable effect 

had been studied thoroughly in the literature and has been implemented in most of 

the codes of practice. 

5. Angle of strut: reduced angles between struts and ties should be avoided since it 

might violate strain compatibility at the nodes (Schafer [60]). Transverse strains 

induced by the ties into the strut will result in this extreme case in an excessive 
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reduction in strength of the strut. Collins & Mitchell [11] suggested a relationship 

(see Table 7.1) to obtain the effective strength in the strut in order to satisfy 

compatibility at the bottom node. The strength was written in terms of the strain at 

the tie and the angle between the strut and the tie. 

6. Size of strut: STM generally do not make any allowance for size effects. However 

up to date, there is no general agreement on the influence of size effects in short 

span beam where strut-and-tie models are applied. This topic is discussed in further 

detailed in section 7.6, in view of experimental evidence available in the literature. 

Uniqueness of strut-and-tie model and applicability to practical cases 

In many instances, the STM can provide more than one possible truss that can satisfy 

equilibrium since the method is based on the lower bound theory. Optimal models will 

minimise the strain energy. The largest strains are concentrated in the most ductile 

elements, which are the steel ties. Hence a common rule is that models with shortest ties 

are optimal. 

New procedures for topology optimisation are now being developed, for example 

evolutionary methods proposed by authors such as Qing Quan Liang et al. [64]. These 

techniques combine FEA with an optimisation algorithm, which systematically removes 

elements that have least contribution to stiffness. In this manner the optimal strut-and-tie 

model is defined gradually by the remaining elements. The element virtual strain energy 

is calculated for element removal and “Performance Index” is used to control the 

optimisation process. These techniques are found to be useful but quite hard to implement 

for cases of non-linearity. 

In general, the calculations performed in a strut-and-tie analysis can be time-consuming 

since the truss must be iteratively adjusted. In addition, different truss models must be 

developed for each load case. As shown by the strut-and-tie models developed by the 

author (see chapter 7), an iterative scenario is generally required to solve these models, 

even for very simple geometrical cases. Computer-based graphical design programmes 

are being developed by research groups such as the Swiss Federal Institute of Technology 

(ETH), the University of Stuttgart, Purdue University or software programmes such as 

CAST developed by Tjhin and Kuchma [65] amongst others. The main objective of these 

aids is to provide the designer with powerful tools that can optimise the computations in a 

strut-and-tie design routine. Lastly, NLFEA can be carried out in addition, in order to 

asses the effect of crack pattern, although this process is not trouble-free (see chapter 3). 



Chapter 2 – Literature Review 

72 

2.7 Conclusions 
Shear design in structural concrete has been a challenging topic for many years. The truss 

analogy first proposed by Ritter [14] and then improved by Morsch [15] at the beginning 

of the Twentieth Century has been a powerful tool up to date in understanding the shear 

transfer mechanisms in a RC beam. However, progress has been made since those early 

truss models. Four different groups of approaches have been developed; classical 45º 

truss model, variable strut inclination method (plasticity trusses), smeared truss models 

(compression field theories) and discrete crack approaches.  

Predictions of the shear strength provided by these approaches have improved 

considerably from early formulations, which were based only on empirical results. As 

reported by Collins et al. [12], early design equations for shear have been proven to be 

unsafe since the experimental data used in calibrating the models corresponded to rather 

small specimens. Nowadays it is a well know fact that aspects, which used to be 

considered secondary, such as size effect or amount of longitudinal reinforcement, can 

have a critical role in shear performance of RC members. 

Analytical models for shear can be complex due to the large number of parameters that 

need to be taken into account. Aggregate interlock action has a significant contribution to 

shear strength. This contribution has been studied in depth for members without shear 

reinforcement (Taylor [1, 2], Regan [4]) but to a lower extent for shear reinforced 

members. Design methods for shear rely on the shear transfer across well-formed cracks 

in either a direct or indirect manner. Plasticity approaches, such as the variable inclination 

strut model for regions with uniform stress fields or the strut-and-tie models for 

discontinuity regions, make use of constant “effectiveness strength” factors to consider 

these aspects. 

On the other hand, the modified compression field theory offers a rational approach in 

which the shear transmitted along the crack is limited according to the crack width and 

aggregate size. However, the MCFT is formulated in a smeared manner using average 

stresses and assuming coaxiality between strains and stresses. Discrete crack models 

using a truss with aggregate interlock models, offer an attractive alternative since failure 

is studied along the critical crack surface rather than a smeared crack element. Either 

smeared or discrete models can provide accurate predictions, although several 

simplifications are generally required in order to include them in design codes used in 

practice. 
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Strut-and-tie modelling, which was developed by Schaich et al. [35], is often claimed as a 

transparent method for designing and detailing discontinuity regions. It is shown that the 

method requires several simplifications regarding geometry assumed for the truss 

elements or the effective strength of the struts. In addition, several difficulties can be 

faced in developing a strut-and-tie model such as uniqueness of the model, combination 

with other load cases or dealing with statically indeterminate systems. Design provisions 

are available in the codes of practice for STM, which can be used in a regular basis for the 

design of D regions. In addition, solving strut-and-tie models generally require an 

iterative approach and so computational tools to optimise these calculations are being 

developed.  

In order to produce an accurate strut-and-tie model in which some of the uncertainties 

mentioned above is critical, laboratory testing will be required. Additionally, the use of 

finite element modelling can also be helpful to generate strut-and-tie models, as 

recognized by Schaich & Schaffer [58]. Moreover, carrying a non-linear finite element 

analysis (NLFEA) can provide useful information of the crack pattern, which can be 

responsible for failure. However, as described in chapter 3 this analysis is not 

straightforward and often requires experimental data in order to calibrate the models used 

in the NLFEA. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 3 – Non-Linear Finite Element Analysis 
 

3.1 Introduction 
Finite element modelling has been applied on a regular basis by researchers and designers 

in order to predict shear behaviour of RC structures. In the past, non-linear finite element 

analysis (NLFEA) was restricted to few specific cases due to its difficult applicability. 

The considerable emerging number of user-friendly NLFEA software packages available 

has increased the number of cases where NLFEA are performed. However, two main 

difficulties have arisen. Firstly, NLFE predictions are highly dependent on the 

constitutive model applied and parameters assigned in the model. Due to the large amount 

of constitutive models available and considerable number of parameters required in each 

model, the calibration process of each parameter can be extremely time consuming. 

Secondly, mesh properties, solver configurations or boundary conditions can influence 

the numerical stability of the FE model. Numerical difficulties can be expected in the 

NLFE modelling of shear critical concrete structures due to their brittle behaviour. 

Additionally, NLFEA predictions may contradict in many instances existing design 

equations and irrational solutions can be obtained if the model has not been validated 

beforehand with existing experimental data.  

The main objectives of the non-linear finite element models developed by the author were 

to support experimental data and validate proposed analytical methods. The FE models 

were developed using DIANA v.9 software package, which offers a large variety of state-

of-the-art constitutive models for concrete. Several techniques to model cracking in 

reinforced concrete are investigated (smeared, discrete and combined). This chapter 

summarizes the main features of the constitutive models implemented in the NLFEA 
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presented in chapters 5, 7 and 8. In addition, values assumed for the parameters required 

in the NLFEA are contrasted with general recommendations from the literature. It must 

be noted that the performance of most of the constitutive models investigated for 

concrete, is case dependent. Hence the conclusions drawn in this chapter regarding 

NLFEA should be considered as a guideline only for similar models. The FE models 

presented here, assume plane stress conditions and in general shear behaviour was 

predominant over other types of failure.  
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3.2 Crack modelling in NLFEA 
Two main techniques are commonly used to model cracking in NLFEA of reinforced 

concrete structures; namely smeared and discrete cracking methods. In the smeared crack 

approach, cracking is smeared within the element unlike the discrete approach where a 

gap is introduced into the mesh after cracking. The discrete crack approach is more 

realistic than the smeared crack formulation but it is far more complicated to implement 

in a finite element model since it requires the nodal connectivity to be changed on crack 

formation. Furthermore, the crack must follow the element edges. The smeared method 

idealises the cracked element as a continuum which can lead to “stress locking” effects 

near the crack. These local effects are usually unimportant and the general behaviour of 

the structure can be well predicted with smeared models. In case the stresses at the crack 

are to be estimated more accurately, the alternative method of combining smeared and 

discrete cracking elements seems more sensible, as shown in chapters 7 and 8. Other 

considerations related with smeared cracking models, which were investigated by authors 

such as Rots et al. [67-69], include “mesh-induced directional bias” and “numerical 

instabilities” due to bifurcations caused by closely spaced cracks. Some of these aspects 

are further discussed in section 3.5. 

3.2.1 Smeared cracking models 
Smeared cracking is commonly formulated based on either a total strain concept or in a 

strain-decomposition manner. The second approach offers several advantages since it 

divides the total strain into two components: strain of the concrete between cracks and 

strain at the crack itself (ε=εco+εcr). This division allows to combine different types 

models for concrete such as elastic, plastic or visco-elastic models. As reported by Rots 

and Blaauwendraad [66], the relevance of this approach has been documented in the past 

by several authors (Bazant  & Gambarova [47], De Borst  & Nauta [67], Rots et al. [68], 

Riggs & Powel [69]). 

Independently of the decomposition of strains used, the inclination of the crack can be 

assumed to be totally fixed or fully rotating. An alternative hybrid approach, such as the 

multi-directional fixed crack technique (Rots and Blauuwendraad [66]), can incorporate 

the extreme cases of fully rotating and totally fixed cracks dependent on the choice of 

threshold angle (α) at which further cracking is permitted. The main features of these 

three approaches (fixed, fully rotating and hybrid) are reviewed in the next sections. 
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Fixed inclination crack models 

The main advantage of using a fixed crack model, as opposed to a fully rotating approach, 

is that previous cracks are considered in the analysis. In addition, the fixed crack model 

enables the normal and shear actions to be considered separately (Maekawa et al. [52]). 

On the other hand, one of the main drawbacks of the totally fixed or multi-directional 

fixed models is that there are several uncertainties in the shear stiffness assumed after 

cracking. The reduction of shear strength once the crack has formed is defined by the 

shear retention factor (β), see Figure 3.1.  

The shear retention factor, which is usually assumed constant, can have a significant 

effect on the rotation capacity of the struts crossing the cracks, due to shear friction along 

the crack. For simplicity β is generally assumed as 0.1 or 0.2, which was originally 

proposed by Suidan and Schnobrich [70]. These values of the shear retention are widely 

used in FE modelling, see TNO DIANA [71], Rots et al. [66, 68], Kotsovos & Pavlovic 

[72], Pimentel [73]. However, according to experimental evidence, shear stiffness after 

cracking is not constant and decreases as the crack gets wider. Authors such as Rots & 

Blaaunwendraad [66], Cervenka et al. [74], or Figueiras [75] presented more realistic 

models with a variable shear retention factor, which decreases as the normal strain at the 

crack (εnn) increases, see Figure 3.1. Rots and Blaaunwendraad’s model applies to 

unreinforced cracks, while Cervenka and Figuiras’ models were developed for cracks 

which are crossed by reinforcement bars. These models are given by equations (3.1, 3.2 

and 3.3). The ultimate strain (εnn,ult) in equations (3.1) and (3.3) is dependent on the 

tension softening assumed in the model, the crack bandwidth (h), and the fracture energy 

(Gf). 

• Rots and Blaauwendraad [66] 
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where εnn,ult = 0.0045and ξ=0.25/0.125 for single/double cracking 

 

 

 

 

 

 

 

 

Figure 3.1: Shear retention factors according to different models 

The models described above seem to be more realistic from a theoretical point of view 

than assuming a constant value of β. However, two main disadvantages can be 

highlighted. Firstly, the models given by equations (3.1 to 3.3) can produce shear 

retention factors well above 0.4 for low normal strains (Figure 3.1). As reported by Rots 

and Blaaunwendraad [66], assuming large values of β (>0.5) can result in extremely stiff 

responses due to overestimation of principle stress rotation after cracking. Secondly, these 

models assume that the shear stiffness of the aggregate interlock across macro-cracks is 

zero (β =0 for εnn > εnn,ult), which is inconsistent with experimental evidence, such as 

push-off tests data shown in chapter 4. In view of these limitations, a constant value of the 

shear retention factor was finally adopted in this work; conventional values of β (0.1-0.2) 

were used, although parametric studies were carried out for each model to assess the 

consequences of this assumption. 
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Rotating crack models 

In the fully rotating models (threshold angle α =0), the stresses are computed along the 

axis of the principal strains (co-axiality principle). Hence shear transfer along the cracks 

and shear retention factors are not required. A typical example of fully rotating model is 

the Modified Compression Field Theory (MCFT) developed by Vecchio and Collins [8]. 

According to the authors of the MCFT, the co-axiality assumption seems to be valid for a 

large number of cases. However, as reported by Vecchio [29] or Maekawa et al. [52], the 

co-axiality principle does not apply for structural cases where shear slip and shear transfer 

along cracks is predominant. Experimental data shows a delay between the direction of 

the principal stresses and the principal strains (Vecchio [29]). According to Maekawa et 

al. [52] the co-axiality assumption would only seem reasonable for cases such as RC 

elements with no pre-cracks, a cracked RC element reinforced in both directions and 

cracked elements with small crack widths. As shown in short span beams modelled by the 

author (see section 7.4), similar predictions were obtained using totally fixed and fully 

rotating models. In this case this was due to the limited crack rotation within the shear 

span, and so the same did not apply for more slender beams. Another example of the 

performance of a fully rotational crack model can be seen in shear panels, which are 

investigated in chapter 4. As reported by Vecchio [29], one of the deficiencies in the 

MCFT, which is related with the co-axilality assumption, can be observed in shear panels 

which are lightly reinforced in one direction. In such cases, where there is a high strut 

rotation, the ultimate shear strength and stiffness is generally overestimated by the 

MCFT. 

Hybrid fixed-rotating crack  models 

Several attempts have been made in order to improve fully rotational models to capture 

more realistically the influence of shear transfer along previous cracks. Hybrid models 

between fully rotating and fixed crack models have been developed. Although the 

predictions using these models are in many cases more accurate than the extreme rotating 

and fixed models, severe numerical difficulties can arise. 

An example of hybrid formulation is the “Disturbed Stress Field Model” (DSFM) 

presented by Vecchio [29]. The main advantage of the DSFM compared to the MCFT is 

that co-axiality is no longer required since a crack slip relationship is introduced. 

Alternatively to the DSFM, other hybrid models such as the multi-directional fixed crack 

model (Rots et al. [68]) were developed. The multi-directional fixed crack model, which 
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is denoted as “multi-fix” in this work, is easily formulated for strain-decomposition 

models (see Rots et al. [68]). This model, which is implemented in DIANA, was adopted 

for the NLFEA shown in chapters 5, 7 and 8. The multi-fix model assumes that once the 

maximum tensile stress criterion is violated, a crack forms perpendicular to the principal 

tensile stress direction. The direction of the crack is kept fixed; hence the principal stress 

can rotate due to shear transfer along the crack. A new crack may form in a different 

direction if the maximum tensile stress criterion is again violated. Similarly as in the fixed 

model, a shear retention factor β must be assumed in the multi-fix model. However, the 

consequence of estimating β seems less relevant than in the fix model since in this case 

the orientation of the crack is updated to some extent. 

Regarding the criteria for the formation of a new crack, four possible criteria are 

distinguished by Rots and Blaauwendraad [66]: 

a) the principal tensile stress is violated 

b) the angle between the principal tensile stress and the existing crack(s) exceed the 

value of the threshold angle (α) 

c) both conditions (a) and (b) are violated 

d) either conditions (a) or (b) is violated 

As reported by Rots and Blaaunwendraad [66], condition (a) will not limit the number of 

cracks, which will lead to an inefficient algorithm especially when the stresses can rotate 

considerably (high values of β~0.5). Excessive number of cracks at a single point will 

result in ill conditioning of the stiffness matrix and numerical difficulties for cases of 

crack re-opening (Rots and Blaaunwendraad [66]). Similar problem as in case (a) will be 

faced if (d) is assumed. Condition (b) on its own would not be reasonable since the tensile 

stress would be completely ignored. Therefore, (c) seems to be the most suitable criteria 

from a numerical perspective and so was adopted in the FE models used in this work. It is 

important to note that this assumption can lead to extreme cases, as reported by Rots [68], 

where the principal tensile stress can reach up to three times the tensile strength while the 

threshold angle condition is still not violated. In order to avoid these situations a 

reasonable value of the threshold angle (α) needs to be chosen. 

The default value of the threshold angle α assumed in DIANA is 60˚, which generally 

provided sensible results in FE models developed by the author. In most of the beams 
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analysed here, the value of α did not have a significant effect on the predictions. 

Furthermore, for beams with stirrups, the FE model was more stable assuming a value of 

α =60˚. However, in beams without shear reinforcement, where shear cracks crossed 

previous flexural cracks (see beams B0 in chapter 8), a value of α equal to 60˚ provided 

slightly higher values of the ultimate strength. In such cases, a value of α equals to 30˚ 

provided better predictions. Similar conclusion was obtained by Pimentel [73] in his 

analysis of slender beams without shear reinforcement, using the multi-fix model. 

Pimentel [73] justified this value of alpha from observation of the crack pattern obtained 

in the experiments. The value of α equals to 30˚ also agreed with earliest estimates given 

by Rots and Blaauwendraad [66], which was suggested as a balance between 

“computational cost and level of sophistication”. 

3.2.2 Discrete crack models 
Discrete cracking is generally modelled by means of interface elements introduced in the 

FE mesh. In general, a previous analysis using smeared cracking elements only, is carried 

out in order to assess the exact position and geometry of the cracks. The formulation of 

constitutive model used in the interface elements are based on the total deformation 

theory, where normal and tangent stresses are expressed as functions of the crack relative 

displacements ∆w and ∆s, see Figure 3.2.  

 

 

 

 

 

 

Figure 3.2: Relationships between normal/shear stresses and crack opening/slip displacements in 

interface elements (adapted from DIANA [71]) 

Two types of models, which are described in DIANA [71], were investigated: 

a) Discrete crack model 

b) Crack dilatancy models 
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Discrete crack model 

The discrete crack model implemented in DIANA, is a simple formulation where the 

shear and normal stresses are uncoupled, hence Dij = 0 (i≠j) in Figure 3.2. The crack 

initiation is only governed by Mode I (tension) criteria. Once the tensile stress reaches the 

tensile strength a tension softening relation is applied for normal stresses while constant 

shear retention is assumed in shear. The model does not consider the reduction in shear 

stiffness due to crack widening nor the interaction between τ and σ. However, the 

numerical stability is guaranteed since the stiffness matrix remains symmetrical.  

The main difficulty of this approach would be to provide a reasonable value for the shear 

stiffness (D22) after cracking since this parameter has a direct effect on the sliding allowed 

at the crack. As reported by Feenstra et al. [53], if the discrete crack elements are aligned 

with the potential principal tensile stresses, D22 could be assumed as zero. Although this 

assumption might be reasonable up to a certain level of loading, it is questionable whether 

it would still apply at loads near failure, where strut realignments can be expected. 

According to the author, providing an estimate of D22>0 would seem to be a more 

reasonable approach since it would allow for stress redistribution in some extent. As 

shown in sections 7.5.3 and 8.3.3, D22 can be estimated from either push-off test data or 

from analytical approximations. The aggregate interlock stiffness predicted by analytical 

models such as Hamadi and Regan’s [19] formula or most of the crack dilatancy models 

discussed in section 2.5.2, is a function of the crack width. Therefore, an estimated of D22 

can be obtained assuming a sensible value for the crack opening near failure. This initial 

estimated value of D22, can be easily optimised if crack slip data from tests is available. 

Estimating the shear stiffness from crack openings at loads near failure should provide a 

lower bound of the shear stresses at early loading, since D22 is underestimated at these 

load stages. 

Crack dilatancy models 
Crack dilatancy models (CDM) can be applied to account for aggregate interlock in 

macro-cracks in a more realistic manner than the simple discrete crack model described 

above. As explained by Fenstra et al. [53], the crack dilatancy model is mobilized in the 

open-crack state, i.e. the tensile stress at the interface element reaches zero in the 

softening curve. Before the crack dilatancy model is mobilized, the initial linear-elastic 

and crack development (tensile softening) states are identical as in the simple discrete 

crack model described previously. 
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The main shortcoming of the CDM is that stiffness matrix D is non-symmetrical and so 

the stability of the analysis is compromised. From the author’s experience using CDM, 

these difficulties can be partially overcome by reducing the load steps considerably or 

applying an adaptive type of loading. However, if failure is sudden, such as in beams 

without stirrups, an indirect displacement control such as the “Crack Mouth Opening 

Displacement” control (CMOD) seems necessary.  

Another important aspect that must be highlighted is the relevance of the type of 

algorithm (see section 3.5.2) applied to solve the system of non-linear equations in the 

FEA, when using interface elements with CDM. In the NLFE models, the load stages at 

which the discrete crack started to open was critical in terms of numerical stability. 

Solvers such as the traditional Newton-Raphson or the Quasi-Newton (secant), described 

in section 3.5.2, provided a good performance. However, the constant and linear solvers, 

which apply the stiffness matrix obtained in previous load step, provided spurious results. 

These algorithms seemed to be inefficient to capture the sudden changes in stiffness 

produced at the crack initiation stage. 

Several CDM relationships are implemented in DIANA: 

- Linear aggregate-interlock model (Walraven & Reinhardt [46]) 

- Rough crack model (Bazant & Gambarova [47] or Gambarova & Karakoç [48]) 

- Two-phase model (Walraven [45]) 

- Contact density model (Li et al. [49]) 

These approaches, which are based on either empirical or analytical models, were 

presented in section 2.5.2. According to Feenstra et al. [53], the contact density model 

provided a better numerical stability compared with the rest of the models. The linear 

aggregate interlock relationship suggested by Walraven and Reinhardt [46] is also widely 

applied due to its simplicity. The performance of some of these models is investigated in 

section 4.5 using experimental data from the push-off tests carried out by the author. 

In view of the numerical difficulties faced in some of the NLFEA performed in this work 

using CDM, it can be concluded that the use of CDM should be restricted to very limited 

cases, where the crack slip is significant compared with crack opening. As discussed in 

chapters 7 and 8 for the analysis of the beams tested, the simpler discrete crack model 

provided reasonable predictions when sensible estimates of D22 were applied. 
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3.3 Constitutive material models applied 
In order to cover the main groups of smeared cracking techniques described in previous 

section, two types of material models were investigated. 

1. Total Strain models: rotating and fixed crack model 

2. Multi-directional fixed crack model 

The first model is based on the total strain formulation and includes fully rotational and 

totally fixed alternatives. The second model used was a strain-decomposition, multi-

directional smeared crack in tension with an elasto-plastic model in compression. The 

main features of these models are described in previous section. The constitutive 

equations for compression, tension and shear, as well as the parameters generally 

assumed in each model are described below. The expressions for the strain vectors and 

stiffness matrix assumed in each model are omitted; refer to Rots and Blaauwendraad [66] 

or DIANA’s Users Manual [71] for detailed information regarding these equations. 

Total Strain Models: fixed and rotating crack models 

The equivalent stresses are calculated in terms of the strains in the crack directions, 

assuming a constant Poisson ratio. In the Total Strain fixed model this direction 

corresponds to the initial crack orientation, while in the rotating crack model the principal 

strain/stress direction is used. Unloading is modelled in both tension and compression 

through a straight secant strain-stress path, which passes through the zero point as shown 

in Figures 3.3 and 3.4. 

After cracking, the shear stiffness is assumed constant in the fixed crack model (βG). In 

the rotating model, co-axiality is forced by introducing a tangential shear modulus (G12, 

G23 and G31) according to equation (3.4), derived by several researchers (Bazant [76], 

William et al. [77], Rots and Blaauwendraad [66]). 
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       … (3.4) 

where (i,j) = (1,2); (2,3); (3,1) for G12, G23 and G31 respectively. 

An important aspect that must be highlighted regarding the Total Strain models is that the 

Poisson ratio must be taken as zero. This assumption is not required in smeared models 

using a strain decomposition method, since the elastic strains in the concrete (εe) are 

independent of the strains in the crack (εcr). As described by Pimentel [73], the elastic 
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strains in the concrete reduce considerably right after cracking. This reduction of εe can 

only be captured in strain decomposition methods and not in the total strain models. If a 

conventional value of ν larger than zero is introduced in the Total Strain models, the 

transverse strains can be severely overestimated. The situation is more critical for cases 

with large crack openings, since the crack strains would be taken into account to obtain 

the transverse strains, which is not correct. As noted by Pimentel [73], these unrealistic 

transverse deformations can introduce large perturbations in the stress fields. Similar 

conclusions are obtained in the FE analysis carried outh by the author for shear panels 

tested by Vecchio & Collins [8], refer to chapter 5. This numerical analysis showed very 

low stiff predictions of the shear panels, if conventional values of ν =0.2 were used in the 

Total Strain models. Other researchers, such as Vecchio [78], have taken values of ν for 

the concrete after cracking equal to zero. This assumption seems to provide reasonable 

predictions in many structural cases. However, as pointed by Pimentel [73], this might not 

be the case in structures where the increase in concrete strength due to confinement is 

significant. 

The tension softening relationships generally applied in the models developed in this 

work corresponded to either a linear relationship or a Hordyk [79] model (see Figure 3.3). 

Both models are defined by means of the fracture energy (Gf) and the crack bandwidth 

(h), which provides a certain degree of objectivity regarding mesh refinement, as 

discussed in section 3.5.1. The fracture energy was estimated from MC90 formula (3.5), 

which is dependent mainly on the tensile strength. In cases where the elements were 

heavily reinforced, Gf was increased in order to take into account tension stiffening. 
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where fcm0 =10MPa and Gf0 is a function of the aggregate size according to Table 3.1. 

dmax 
[mm] 

Gf0 x 103 

[N/mm] 
8 25 
16 30 
32 58 

Table 3.1: Coefficients required to obtain the fracture energy according to MC90 
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Notation: εnn,ck (normal strains in the crack); εnn,co  (normal strains in the concrete) 

Figure 3.3: Tension softening curves applied for loading and unloading (crack band concept) 

As mentioned earlier, the crack bandwidth concept, which was originally introduced by 

Bazant & Oh [80], was used in the smeared crack models. This concept, which is 

generally used in non-linear fracture mechanics theory, assumes that the crack strains are 

concentrated along a strip or band of constant width (h) with a constant strain distribution 

as shown in Figure 3.3. In finite element modelling, the value assume for h depends on 

the element size and integration scheme. The crack bandwidth (h) was assumed in the 

models as the square root of the area of the element for bidimensional plane stress 

elements. More elaborate estimates of h for the plane stress elements would be rather 

problematic since the orientation of the cracks is not generally known a priori. On the 

other hand, for interface elements h was taken as the thickness of the element. 

In compression, several relationships are commonly applied in practice (see Figure 3.4). 

Typical examples include symmetrical parabolic curve of Hognestad, Thorenfeldt curve 

or relationship proposed by fib [60, 81]. The asymmetric parabolic curve proposed by 

Feenstra [82] is adopted in this work. This strain-stress curve consists of three branches, 

which are limited by points O, A, B and D in Figure 3.4. An initial linear relationship is 

assumed until point A, while two parabolic curves are fitted for pre-peak and post-peak 

load branches; see equations in Figure 3.4. The residual compressive stress for large 

strains was limited to 0.2σc, in order to avoid numerical difficulties. 
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Figure 3.4: Strain-stress curves for concrete in compression 

As shown in Figure 3.4, there is a good agreement between the different models in the 

ascending branch of the strain-stress curves for compression. However, this is not the case 

for the descending branch. Aspects such as the level of confinement or high strength 

compressive behaviour have a significant role on the post-peak strain-stress curve. An 

accurate definition of the post-peak branch is more relevant in the analysis of the load-

deflections response of over-reinforced structures (Wong & Vecchio [83]), since a larger 

stress redistribution is expected after the critical region begins to crush. 

The parabolic descending branch proposed by Feenstra [82], is defined by means of the 

compressive fracture energy Gc, although not much information is available in the 

literature about this parameter. In practice, Gc is generally estimated from the tensile 

fracture energy using an approximate value of 100Gf (Ožbolt & Reinhardt [84]). This 

estimated value of Gc was adopted in the FE models developed by the author. However, 

recent work from Pimentel [73] or Majewski et al. [85], shows that there is not a general 

agreement about this particular parameter. For example, Pimentel [73] applied estimates 

of Gc in his numerical models up to two times the reference value provided by Ožbolt and 

Reinhardt, obtaining equally accurate answers. On the other hand, in the NLFEA carried 

out by Majewski et al. [85], the conventional value of 100Gf produced a clear 

overestimation of the ductility of the specimen. In this case, values of Gc of around 50Gf 

provided more sensible answers (from personal communication). 

These results support the idea that the influence of Gc on the numerical predictions is case 

dependent, which was otherwise expected. Pimentel [73] NLFEA involved slender beams 

failing in shear diagonal tension, while work carried by Majewski et al. [85] focused on 

columns failing in compression. It seems clear that the second case, the influence of Gc 









+==









==









=

0,
2
3

,
3
4

3
,

3

,
c

c
Bnnu

c
c

c
c

c

c

c

h
GD

E
B

E
A

σ
εε

σσε

σσ

- Asymmetric parabolic 
curve (Feenstra 1993):  

0

5

10

15

20

25

30

35

40

45

0.000 0.005 0.010 0.015 0.020
εnn

σ
nn

 [M
Pa

] 

Feenstra 1993

Thorenfledt 1990

fib99

Unloading

0.2σc

G c /h
A

B

C

εc

σc

εu
D

Note: ABC is non-symmetrical;
    Area under descending branch

O



Chapter 3 – Non-Linear Finite Element Analysis 

88 

would be much more relevant than in the former case. The NLFEA carried in this work, 

involved either cases where failure was due to shear in diagonal tension (slender beams 

without stirrups) and shear-compression (short span beams). Therefore, the influence of 

Gc on the predictions was expected to be different for either type of shear failures. In 

short span beams analysed in chapter 7, where the role of Gc would seemed to be more 

critical, only a small fraction of elements near the loading plate reached strains above the 

peak. Hence, the margin for stress redistribution was low and so changes in Gc in the 

NLFEA did not make much difference in the numerical predictions. 

A more comprehensive model to consider the post-peak behaviour of concrete in 

compression was developed by Markeset and Hillerborg [86]; the Compression Damage 

Zone (CDZ) model. In their approach, energy is dissipated through a combination of 

smeared axial splitting and a localized deformation, as shown in Figure 3.5 (right). In the 

CDZ the axial splitting is related with the fracture energy in tension, while the localized 

deformation (wc) depends on the crack surface; wc can vary from 0.4mm to 0.7mm for 

normal density concrete or be less than 0.3mm if the aggregate fractures. Although CDZ 

offers a reasonable approach, there are large uncertainties in the material parameters 

required in the model. Furthermore, the values obtained for Gc using the CDZ, which had 

a good agreement with experimental data provided by Vonk [87], are not that different 

from the conventional value of 100Gf, as shown in Figure 3.5 (left). 

 

 

 

 

 

 

 

 
Note: values used in the CDZ model in the figure (Gf=0.12N/mm; fc=45MPa; wc=0.4mm) 

 

Figure 3.5: Compression fracture energy according to CDZ (adapted from Markeset and 

Hillerborg [86]); Left- experimental and predicted values of Gc; Right- Fundamentals of CDZ 

Gc=100Gf 
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Finally, the reduction in compression strength of the concrete due to transverse strains 

was taken into consideration in the NLFEA by using predefined-function VC1993 

implemented in DIANA, (see Figure 2.6). This algorithm, which is based on work carried 

by Vecchio and Collins [25], was applied in the Total Strain models. However, this might 

be questionable for the total strain fixed crack model, since concrete softening could be 

overestimated according to (Vecchio [29]). The performance of this softening curve is 

studied in chapter 5 in the analysis of shear panel tests. 

Multi-directional fixed crack model 

The multi-fixed model was applied using equivalent uniaxial strain-stress constitutive 

equations for tension and compression as in the Total Strain models described in previous 

section. A shear retention factor β is assumed since the model is based on a multi-

directional fixed crack concept. Standard values of 0.1 and 0.2 are used, similarly as in 

the fixed crack models. 

The multi-fix model combines smeared cracking with plasticity, since it is formulated 

based on strain decomposition concept (see section 3.2.1). Strains in the crack are 

modelled using a multi-directional fixed model, while plasticity theory is applied for the 

concrete strains. In order to deal with biaxial stress states (Figure 3.6), which often 

combines tension with compression, a constant (Rankine) cut-off was applied for tension 

and a Druker-Prager yield surface was adopted for compression, see equation (3.6). 
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where P / π are the projection matrix/vector respectively given by equations (3.7). 
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parameters αf and βc are given by equations (3.8). 
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The friction angle φ, which is generally assumed as 30˚ in other plasticity criteria, was 

taken as 10˚, in order to force equation (3.6) to go through points A(0,0,-fc) and B(0,-1.16 

fc,-1.16 fc) in Figure 3.6, which correspond to uniaxial and biaxial tests respectively. In a 

similar manner, the cohesion (c) must be equal to 0.42fc. According to DIANA [71], the 

dilatancy angle ψ is not essential for plane stress situations. Hence associative plasticity 

(ψ = φ) is assumed for simplicity. 

 

 

 

 

 

 

 

Figure 3.6: Biaxial stress state of concrete (adapted from Kupfer and Gerstle [88]) 

Strain hardening/softening c(k) is introduced in equation (3.6) by defining the uniaxial 

stress-strain parabolic relationship, which was previously described for the Total Strain 

models (see Figure 3.4). The only difference in the input of this relationship in DIANA is 

that the parabolic relationship is not pre-defined for plasticity models and so the points 

are introduced in a discrete manner in terms of stress-plastic strains. In order to assess the 

points, which define the descending parabolic branch, the crack bandwidth h is estimated 

manually from the average size of the elements in the mesh. 

The compressive softening due to transverse strains is not taken into account directly in 

multi-fix model as in the Total Strain models. Instead, the concrete strength in elements, 

which are influenced by large transverse strains, is reduced to some extent. Shear panels 

examined by the author showed that the effectiveness factor ν suggested in EC2 could be 

applied as a reference value (see section 5.4). Alternatively, Pimentel [89] suggests a 

concrete strength of 0.85fcm, which is based on recommendations made by Reineck [40]. 

Concrete softening can be overestimated if same softening curves developed for rotating 

crack models are applied in models where the crack slip is taken into account (Vecchio 

[29]). As reported by Pimentel [89], this would be the case in the multi-fix model since 

the crack slip is considered in the model. 
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3.4 Modelling of reinforcement 
Reinforcement bars are generally modelled in DIANA as “embedded elements” which 

add stiffness to the mother elements in which they are surrounded in. Alternatively, truss 

elements can be used, although the mesh must be adapted to the reinforcement in order to 

have perfect node connectivity. On the other hand, embedded elements provide no extra 

degrees of freedom to the model and strains are obtained from the displacement field of 

the mother elements. These assumptions imply perfect bonding between the concrete and 

the reinforcement bar. In order to introduce bond-slip relationships, truss elements must 

be then used in combination with interface elements that are placed between the 

reinforcement bar and the concrete. This compromises the mesh generation and the 

numerical stability of the model. Hence, perfect bonding was assumed in the models 

presented in this work. In addition, the material model applied for the reinforcement steel 

consists in a conventional perfect plasticity Von Misses yield criteria with no strain 

hardening. The reinforcement is defined in most of the models as discrete elements as 

opposed to continuous grids. The differences between both types of elements are 

discussed in next section. Reinforcement crossing interface elements required additional 

considerations which are further commented on section 3.4.2. 

3.4.1 Grid and discrete embedded elements 
Two main alternatives are commonly available to simulate reinforcement by means of 

embedded elements; namely discrete and smeared (grid) reinforcement. As discussed, the 

discrete embedded reinforcement can also be modelled by using truss elements with 

matching node connectivity to the mesh. The grid alternative is suitable for large areas 

where reinforcement is distributed evenly in two or one directions, such as two-way slabs 

or shear-reinforced beams respectively. However, the question may arise of whether to 

use discrete or smeared reinforcement when the spacing between reinforcement bars is 

significant. Aspects such as mesh density or type of material model used for concrete may 

have an influence in this decision since the decrease in stiffness in the system due to 

cracking might be more or less abrupt depending on these two variables. 

In addition, the probability of having a significant number of finite elements with no 

reinforcement crossing them would be high if the spacing between discrete reinforcement 

elements is large. The situation may worsen if the FE mesh density is increased. The 

behaviour of plain concrete elements could vary depending on the type of constitutive 

model used. 
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In order to investigate the consequences of using either type of reinforcement elements, 

continuous beam BL1, described in chapter 6, was modelled using both discrete and grid 

reinforcements. The spacing between stirrups in BL1 is 150mm and the quadrilateral 

elements, which are used in the mesh, have an average side of 55mm. This mesh 

configuration leads to one column of finite elements located between stirrups, which are 

not crossed by any reinforcement, as shown in Figure 3.7. A second case was also 

investigated, which is denoted as BL1b, where the stirrup spacing was taken as 270mm 

resulting in three columns of finite elements between stirrups being un-reinforced. This 

last beam represents the worst case scenario in beams with shear reinforcement since the 

maximum spacing between stirrups is commonly taken as 300mm (BS8110). 

The analysis of both BL1 and BL1b showed that the numerical predictions were very 

similar using either discrete or smeared embedded reinforcement elements. The load-

deflection curves obtained (Figure 3.7) were identical for the multi-fix model, while for 

the total strain models only small deviations were observed at loads near failure. The 

overall performance of each model is discussed in further detail in chapters 5, 7 and 8. 

 

 

 

 

 

 

 

 

 

 
 
Note: Total Strain (ν =0, β =0.1 for Tot. Fix); Multi-fix (ν =0.2, α =60, β =0.1, fc was factored by 1.5 in  
          elements near the plate); remaining material properties are given in chapter 8 for beams B 

Figure 3.7: Load-deflection curves for beam BL1 using grid and discrete reinforcement 

Although the aim of this analysis was to investigate the difference in using grid vs. 

discrete embedded reinforcement elements, two aspects must be highlighted in Figure 3.7. 

Firstly, the discrepancy for early load stages between numerical and experimental data, is 
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due to the fact that beam BL1 was pre-cracked, which is not considered in the NLFEA. 

Secondly, the ultimate load predicted in the multi-fix model in this case was highly 

influenced by the concrete strength assumed for the elements near the plate. This was not 

observed in the numerical predictions using Total Strain models. For the analysis shown 

in Figure 3.7 using the multi-fix model, the concrete strength of the elements near the 

plate was factored by 1.5. This approach, which is further discussed in section 3.5.3, was 

needed in some of the models developed to avoid premature failure of these elements. 

This allowed to assess stresses and crack patterns at loads near experimental failure loads. 

Lastly, the only significant difference observed between predictions using grid or discrete 

reinforcement embedded elements was regarding the geometry of the cracks. In the FE 

models with grid shear reinforcement the cracks had a slightly curved path (Figure 

3.8.b.1), which is due to the smearing of the tensile stresses provided by the grid. This 

curved crack path predicted was more noticeable in the total strain models, especially for 

intermediate loading, when higher realignment of principal stresses took place. Using 

discrete reinforcement elements eliminates this problem since the stirrups are positioned 

at discrete intervals rather than being smeared within the elements. Hence a polygonal 

type of crack path is predicted, which agrees better with experimental evidence (Figure 

3.8.a). Furthermore, the exact location of the crack becomes clearer as shown in Figure 

3.8.c. 

 

 

a) Experimental (BL1) 

 

 

 

b.1) Grid (P=750kN)       b.2) Grid (P=850kN) 

 

 

c.1) Discrete (P=750kN)                  c.2) Discrete (P=850kN) 

Figure 3.8: Predictions of crack pattern for multi-fix model using grid and discrete reinforcement 
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It can be concluded from the previous analysis that both smeared and discrete types of 

reinforcement elements can be used to model beams failing in shear, as long as the stirrup 

spacing complies with design standards. However, the second option (discrete elements) 

tended to give in general more realistic crack pattern for intermediate loadings. Therefore, 

the discrete reinforcement was preferred over the grid option for the models developed in 

this work. 

3.4.2 Reinforcement bars crossing interface elements 
So far, reinforcement elements have been assumed to be embedded in plane stress mother 

elements only. Additional considerations regarding the normal and shear stiffness must be 

made if the reinforcement is embedded in interface elements. This situation arises at 

discrete cracks crossed by reinforcement bars. As described by Maekawa et al. [52] or 

Soltani et al. [90], several phenomena related to dowel action and bond-slip effects take 

place at the crack where it is crossed by reinforcement (Figure 3.9). Bond stresses are 

highly influenced by deterioration of the concrete surrounding the reinforcement bar due 

to splitting and crushing of the concrete. Furthermore, if the reinforcement is skewed with 

respect the shear plane, the deterioration length increases due to spalling of the concrete 

near the reinforcement bar at the crack (Soltani et al. [90]). 

 

 

 

 

 

 

 

Figure 3.9: Local effects of reinforcement bars crossing cracks; Left – Push-off test PG3 tested by 

author; Right – Local effects according to Soltani et al [90]. 

As described by Walraven & Reinhardt [46], cracks crossed by embedded reinforcement 

have a different behaviour than when restrained by un-bonded or external reinforcement. 

This is due primarily to the reduced crack width immediately near the embedded 

reinforcement bar, which results in secondary diagonal cracking and an additional strut 

mechanism (Figure 3.10). On the other hand, externally reinforced cracks and un-bonded 
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S

(smooth bars) have a constant crack width, which results in shear forces to be transmitted 

by aggregate interlock action only since the diagonal strut is no longer present.  

These different shear transmitting mechanisms that are present in cracks crossed by 

embedded reinforcement are difficult to take into account accurately in FE modelling. 

Several analytical models have been developed in order to simulate these mechanisms in 

a realistic manner. An example is the model proposed by Walraven and Reinhardt [46] 

(Figure 3.10.c). 

 

 

 

 

 

         a) un-bonded bar         b) deformed bar     c) 

Figure 3.10: Local mechanism at cracks with embedded reinforcement according to Walraven and 

Reinhardt [46]; a) constant crack widths for un-bonded reinforcement bars; b) secondary struts (S) 

with diagonal cracking in the vicinity of deformed reinforcement bars; c) shear transfer 

mechanisms along crack due to aggregate interlock (Fiv, Fih), secondary struts (S), dowel action 

(Fd) and normal stiffness from reinforcement bars (Fs) 

In DIANA, aggregate interlock action is modelled using interface constitutive 

relationships, which are described in section 3.2.2. The secondary strut mechanism 

illustrated in Figure 3.10.b, was not considered in the NLFEA carried out in this work. In 

DIANA, the normal and shear components introduced by the reinforcement bar, which 

refer to Fs and Fd in Figure 3.10.c, are estimated in terms of the free length (lfr) parameter, 

according to Figure 3.11. 
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Note: the thickness of the interface element (h) does not have to be equal to lfr   

Figure 3.11: Estimation of stiffness per unit area in the normal and transverse direction of 

reinforcement element, which crosses an interface element (according to DIANA) 
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Additionally, reinforcement elements crossing interfaces are integrated in DIANA using a 

single Gauss point with normal and shear dof in the same directions as the interface 

elements and not along the reinforcement. The thickness of the interface elements is 

unimportant; in this work h=0.2mm. In order to estimate the free-length parameter, 

yielding of the stirrup reinforcement was assumed to occur at a crack opening of 0.4mm 

(lfr=150mm). This assumption was based on experimental evidence shown in chapters 4 

and 6. 

Although the free-length parameter can be estimated from observed crack openings as 

shown above, the value assumed in DIANA for the dowel action stiffness (kn) (Figure 

3.11) seems highly questionable. To illustrate this, three different load-deformation 

models for dowel action were applied (Millard & Johnson [91], Walraven & Reinhardt 

[46], He & Kwan [92]), see Figure 3.12. These models, which are based on traditional 

beam over elastic foundation problem, provided very similar predictions for a single T8 

stirrup bar (see parameters used in models in Figure 3.12). In addition, MC90 formula for 

dowel action was consistent with the previous three models; Pult(MC90)=12.8kN. 

 

 

 

 

 

 

 

Figure 3.12: Load-deformation response of dowel according to different analytical models  

A perfect-plastic behaviour is assumed in He & Kwan’s model (Figure 3.12) based on 

experimental work carried by Dei Poli et al. [93], Dulacska [94] and Vintzeleou & 

Tassios [95]. On the other hand, Millard & Johnson’s model assumes an elastic behaviour 

up to 40% of the ultimate load. The initial stiffness of the dowel action predicted by both 

models was identical and considerably lower than Walraven & Reinhardt’s model, which 

appears to be too stiff. However, for slips greater than 0.1mm, the three models provided 

similar predictions. Results in Figure 3.11 are shown for no axial tension. However, 

experimental evidence provided by Eleiott [96] showed that the dowel stiffness can 

Parameters: 
   D =8mm (A=50.24mm2) 
   Es =200GP 
   fcc =40MPa 
   fy =550MPa 
   e =0.1mm (MC90) 
   α =1.3 (MC90) 
   β =1 (Millard & Johnson) 
Results shown for no axial    
tension (N=0), unless stated 
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considerably lower when axial tension is applied. This is shown for Millard & Johnson’s 

model (Figure 3.11) for an axial stress of half the yielding capacity of the bar. Walraven 

& Reinhardt’s model included a reduction factor to take into account for this, which 

provided similar answers as Millard & Johnson’s curve. 

According to these analytical models shown in Figure 3.12, the constant stiffness 

assumed in DIANA, which was estimated using the free-length parameter obtained from 

crack opening considerations (lfr =150mm), seems excessive. According to these three 

models, which were applied for normal crack widths and reinforcement bar sizes used for 

stirrups, a more reasonable value for the kt/kn ratio would seem to be 1/10. Increasing 

parameter lfr to optimise the dowel action stiffness would result in excessevily large 

normal deformations at the interface element. 

Possible alternatives to embedded reinforcement elements could include using spring 

elements with user-supplied material constitutive equations (Eierle & Schikora [97]) or 

truss elements. Either option is not straight-forward since firstly, the mesh would have to 

be adapted to the shear reinforcement and secondly, constitutive equations would need to 

be developed for the element crossing the interface. This was not considered to be within 

the main scope of this project and so an alternative solution was adopted. As described in 

chapters 7 and 8, the value of the shear stiffness assigned to the interface elements due to 

pure aggregate interlock was decreased in order to account for the excess stiffness 

provided by the shear reinforcement. This compensation would have to be larger in beams 

with lower stirrup spacing. The aim was to provide overall shear stiffness that would be 

realistic in view of the experimental and analytical results from the push-off tests shown 

in chapter 4. This approach is less numerically demanding than using spring elements or 

truss elements with very short lengths. 
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3.5 Other aspects related to NLFEA 

3.5.1 Mesh considerations 
The finite element meshes generated in this work consisted of triangular and quadrilateral 

isoparametric plane stress elements with quadratic interpolation (6 and 8 nodes 

respectively); refer to Figure 3.13.a and b. Linear interpolation elements were avoided for 

the non-linear analysis, as recommended by DIANA [71]. A default Gauss integration of 

2×2 for the quadrilateral elements and 3-point area integration schemes were adopted. On 

the other hand, in order to model discrete cracking, line interface elements with a 6-node 

and a 5-point Newton-Cotes integration were used (Figure 3.13.c). As reported by 

Feenstra et al. [53], numerical oscillations can occur in interface elements with small 

thicknesses unless a Newton-Cotes quadrature is used. Alternatively, lumped interface 

elements could be applied, although the stiffness matrix would be similar (Feenstra et al. 

[53]). Triangular plane stress elements were introduced in the meshes to provide a 

transition in the geometry from the quadrilateral elements to the inclined interface 

elements, see Figure 7.34. 

 

 

 

 

 
a)     b)        c)  

Figure 3.13: Types of elements used in FE meshing (adapted from DIANA [71]); a) Triangular 

element (CT12M); b) Quadrilateral element (CQ16M); c) Line interface element (CL12I) with 5-

point Newton-Cotes integration scheme 

The FE meshes generally used in the models were uniform, as shown in Figure 3.7, with a 

number of divisions of around 10 for the height of the beam. This resulted in element 

sizes of around 50mm. This mesh density was of a similar magnitude as models 

developed by other authors (Vecchio & Shim [98], Kotsovos and Pavlovic [72], Pimentel 

[89] or Feenstra et al. [99]). In order to provide numerical results which are independent 

of the size of the elements, a regularization technique must be applied. As described in 

section 3.3, this is achieved in DIANA by using the crack bandwidth (h) concept. The 

constitutive models are formulated based on the fracture energy released in the element 
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after reaching the tensile strength, which guaranties the objectivity of the results as long 

as the total fracture energy is kept constant. 

The main shortcoming of this approach occurs for coarse discretisations or large 

unreinforced concrete structures, where the values of h could be large enough to produce 

a snap-back in the constitutive model used for tension. This snap-back behaviour will 

occur if the maximum value of the tangent stiffness of the softening curve, which 

generally takes place at the start point of the curve, is greater than the Young’s modulus 

of the material. According to softening curves shown in Figure 3.3, this limitation is more 

critical for the Hordyk’s curve than for a linear relationship with the same Gf value. From 

the Hordyk’s expression shown in Figure 3.3, the value of the ultimate strain (εnn,ck(ult)) 

can be written in terms of the fracture energy (Gf), crack bandwidth (h) and tensile 

strength (ft), as shown in equation (3.9). 

t

f
ultcknn hf

G
.136.5)(, =ε        … (3.9) 

The minimum value of the ultimate strain (εnn,ck(ult)|min) for which the slope of the curve at 

the starting point becomes greater than E in the Hordijk’s model is given by equation 

(3.10). Imposing εnn,ck(ult) >εnn,ck(ult)|min yields to equation (3.11), which provides the 

maximum value of hmax for which snap-back behaviour will occur. 
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If a linear softening curve was assumed, coefficients 5.136, 6.957 and 0.739 in equations 

(3.9) to (3.11) should be changed to 2, 1 and 2 respectively. Normal values used in this 

work include Gf=0.1N/mm, E=30000MPa and ft=3.8MPa, which leads to values of hmax 

equals to 150mm and 400mm for the Hordijk and linear curves respectively. This clearly 

shows two important aspects of these models. Firstly, the Hordijk relationship is much 

more restrictive than a linear softening and secondly, element sizes assumed in the 

author’s models were free of this snap-back behaviour (h~50mm). This work does not 

include cases where h>hmax, although in such situations, there are three possible 

alternatives. The first two would be decreasing either the effective tensile strength or the 
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value of h, in order to satisfy the energy balance in the system (Bazant and Oh [80]). 

Thirdly, the fracture energy could be increased. 

Although the strain-stress relationships used in the models (section 3.3) were defined 

using fracture energy and crack bandwidth concept, which provide a level of objectivity 

of the results to mesh refinement, two additional comments can be made. Firstly, it is well 

documented that the predictions of the crack patterns are influenced by the type of mesh 

discretisation used, where cracks tend to form in the direction of the finite element sides. 

This “mesh-induced directional bias”, which was investigated by authors such as Rots 

[100], Rots & Blaauwendraad [66] or Rots & Borst [101], can result in stiff predictions or 

convergence difficulties. This problem can be mitigated by refining the mesh, although as 

stated by Lie & Zimmerman [102], it cannot be fully overcome. 

One last aspect with regards to the crack bandwidth concept, which was raised by 

Pimentel [73], refers to the implicit assumption of constant strains along the bandwidth. 

This assumption, which is shown in Figure 3.3, would seem consistent with strain fields 

found in finite elements with a linear interpolation and not in a quadratic interpolation 

element. In this other case, regularization techniques based on the non-local theory, in 

which the strains are assumed to change along the specimen, would seem more consistent 

than the crack band concept. Although these types of models can provide useful 

information of the strains at the fracture zone, the size of the elements required would be 

very small. 

3.5.2 Solution procedures for non-linear systems 
In order to solve the system of non-linear equations in the NLFEA, a conventional 

incremental-iterative procedure was applied. For the iterations a traditional Newton-

Rapson was generally adopted. An energy norm was used for the converge criteria, with a 

tolerance value of 1% for the type of solver used, refer to Figure 3.14. The value assumed 

for the tolerance, which was obtained from Khwaounjoo et al. [103], seemed to be 

adequate for the cases investigated and the strength of beams analysed was not generally 

overestimated. On the contrary, divergence occurred in some cases at very low loads 

(around 30-50% of the ultimate load). These numerical difficulties seemed to be related 

more to the smeared cracking model and type of failure, rather than to the tolerance value 

assumed for the norm. This was confirmed by changing the tolerance in some of the 

analysis performed. 
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Note: ∆u (relative displacements),  fint (internal forces) 

Figure 3.14: Energy norm converge criteria for iteration (adapted from DIANA [71]) 

As discussed in section 3.5.3, a large concentration of stresses around the edge of the 

loading plates seems to be responsible for the premature failure in some of the FE models 

shown in chapters 7 and 8. In other cases, a converged solution was obtained up to loads 

near the experimental failure load. In general, the total strain models had a more robust 

behaviour from a numerical perspective, although in some cases a spurious post-peak 

response was obtained. This is discussed further for each particular model in chapters 5, 7 

and 8. In the multi-fix model, on the other hand, the iterative process diverged at loads 

near the failure load obtained experimentally. This problem has already been reported by 

Pimentel [73] in similar NLFEA using the multi-fix model. In the shear panels modelled 

in chapter 4 using plasticity models, this was overcome by changing the type of solver at 

load steps just before failure from Newton-Rapson to a Constant solver. The Constant 

solver uses the same stiffness matrix for each iteration, which is estimated from the 

previous increment. Although this method is very robust, it was not effective for more 

complex models such as beams, which had a larger number of elements. 

Finite element models that included discrete cracking had an even more problematic 

numerical stability. As discussed in section 3.2.2, the load steps had to be reduced quite 

considerably when using interface elements. In models with smeared cracking only, the 

load/displacements increments generally used were around 10% of the ultimate 

load/displacement, while models with discrete cracking the steps had to be reduced down 

to 1-2% the ultimate load/displacement. Constant solver provided unrealistic answers in 

models with interface elements, especially if crack dilatancy models were applied, since 

the algorithm could not handle the asymmetry in the stiffness matrix. 
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For the incremental algorithm in the solver, both load and displacement controls were 

applied. The latter was faster and was generally used in the NLFEA of simply supported 

beams. Load control, which was applied to the analysis of continuous beams, can also be 

efficient, especially if an arc-length method is implemented. This algorithm adapts the 

steps size depending on the results in the current step, allowing to capture snap-back 

behaviour as good as in displacement control. Therefore, it was not surprising that the 

load control with arc-length method applied to the simply supported beams resulted in 

similar answers as using a displacement control. Finally, adaptive loading was also 

investigated for the analysis of some of the FE models, which faced numerical 

difficulties. This analysis was helpful in order to estimate a load step size, which balanced 

accuracy and numerical stability. However it did not overcome the numerical difficulties 

in those models with a high concentration of stresses near the edges of the loading plates. 

This concern is further discussed in next section. 

3.5.3 Modelling of loading plates 
Boundary considerations can have a significant effect on the numerical performance of 

FE models. Load can be applied in testing by means of different arrangements of loading 

platens, rollers or rockets. Depending on this arrangement vertical/horizontal 

displacements and rotation can be restrained at these points. In addition, load can be 

applied directly to the specimen as an edge load (point load in plane stress problems) or 

as a pressure load (bearing plate). However, it is frequent to see in FE modelling that 

loads are assumed to be point loads irrespective of the type of loading plate used. This 

assumption can be questionable in some cases, such as short span beams, where the size 

of the bearing plates can have a significant influence in the shear behaviour (see chapter 

7). According to these considerations, it seems surprising the general lack of detailed 

information in the literature concerning the modelling of loading points in FEA. 

A clear example of the importance of modelling loading plates accurately was seen in the 

international shear panel test contest (Collins et al. [104]) in which the winner entry was 

Dr. Vladimir Cervenska. As recognized by Cervenska (Walraven [105]), one of the key 

aspect in order to obtain accurate predictions using NLFEA, was to include in the model 

aspects related to how the load was transferred from the complex set of hydraulic jacks 

into to the panel. 
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Enhanced strength 

In the NLFEA of beam tests carried in this work, loading plates were included in the FE 

mesh, assuming a perfect nodal connectivity (Figure 3.15) with the same thickness as the 

platens used in the test. In load control, a uniform pressure load was applied to the plate, 

which seemed consistent with the test arrangement shown in chapter 6. Similar results 

were obtained using displacement control. An equal value of the vertical displacement 

was forced to all the nodes at the top of the plate when using displacement control. 

However, for the relatively thick plates used in the analysis similar results were obtained 

by imposing vertical displacement at the central node only, see Figure 3.15. b (top). At 

the supports, pin rotation allowed by rollers was simulated by constraining vertical 

displacements at the central node of the plate, as shown in Figure 3.15.a. 

 

 

 

 

 

a) Pressure load            b) Point load: (top) normal; (bottom) thin plate 

Figure 3.15: Loading plates considerations in NLFEA; a) Pressure load; b) Point load (normal and 

thin loading plates) 

Although this approach for modelling the loading plates seemed consistent with the 

experimental setup, a large concentration of stresses was generally obtained at the edge of 

the loading plate as shown in Figure 3.15.b (top). As discussed in previous section, this 

concentration of stresses resulted in a premature failure in some of FE models at loads of 

around 30-50% the ultimate failure load. In order to overcome this problem, the concrete 

strength of the elements in this region was increased (Figure 3.15.a). Although this 

approach was practical to assess deflection, strains, crack patterns and relative 

displacements at loads near failure, the ultimate load predicted was highly dependent on 

the values assumed for the enhanced concrete strength of these elements.  

This concrete strength enhancement in elements near the loading plate could be justified 

based on the lateral confinement provided by the steel plates, which is not taken into 

account in the NLFEA (Vecchio & Shim [98]). However, this confinement seems rather 

difficult to consider using simple two-dimensional models; more refined 3D NLFEA 
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would be required. Alternatively, in the two-dimensional FE models developed by 

Vecchio & Shim [98], a small amount of “out-of-plane reinforcement” (ρz=5–2.5%) was 

introduced into the elements near the loading plate, similar to those shown in Figure 

3.15.a. According to Vecchio & Shim [98], this allowed for some enhancement of both 

strength and most importantly ductility of these elements. Other alternatives, such as 

introducing an interface layer between the load plate and the concrete, would seem 

problematic since the friction at the interface would have to be estimated. 

The local high stresses under the loading platen predicted by the FEA are influenced by 

the flexural stiffness of the plate. As shown in Figure 3.15.b, decreasing the thickness of 

the loading plate while concentrating the load to the central node, results in a more 

uniform stress distribution under the plate. In addition, the numerical sensitivity to this 

localization of stresses seemed to be different depending on the material model assumed 

for the concrete in the NLFEA. From the author’s experience using Total Strain and 

Multi-fix smeared crack models, the latter tended to be more sensitive to the stress 

concentration around the edge of the plate than Total Strain models. The situation 

worsened when discrete cracks, which extended to the edge of the load plate, were 

introduced into the mesh. 

To the author’s knowledge up to date, experimental evidence is not available from beam 

tests regarding stress development at different points under loading plates. The NLFEA 

seem to suggest that stresses tend to localized at the edges while strut-and-tie modelling 

assume that the stresses are constant. In the beam tests carried by the author, cracks that 

form near the edge of the loading plates (see Figure 3.16) could have indicated a certain 

level of stress concentration in this region, although experimental data is not available. 

 

 

 

 

 

 

Figure 3.16: Cracks at the edge of the loading plate observed in short span beam (Beams A, refer 

to section 6.3) 
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3.6 Conclusions 
Several alternative approaches are available to model cracking in reinforced concrete 

structures using NLFEA. The most commonly used smeared and discrete crack models in 

NLFEA are reviewed in this chapter. Smeared cracking models offer a simpler approach 

than discrete crack models since mesh modifications are not required. Rotating crack 

models, such as the MCFT, can provide accurate predictions for large number of cases. 

However, the co-axiality principle assumed between strains and stresses does not apply to 

other cases where crack slip and shear transfer along the cracks is predominant (Vecchio 

[29], Maekawa [52]). In such cases, fixed crack models might seem more suitable, 

although shear retention factors, which are uncertain to evaluate, must be applied. Hybrid 

solutions between rotating and fixed crack models, such the multi-directional fixed crack 

model (Rots et al. [68]), can partially overcome these difficulties. Although the choice of 

crack inclination (rotating, fixed or hybrid) assumed in the NLFEA can have an influence 

on the accuracy of the predictions, more important to this seems to select consistent 

values for the parameters used for each model. This is the main shortcoming of NLFEA. 

From a comprehensive study of the different models available, two smeared cracking 

models were finally adopted in this work; Total Strain (rotating and fixed crack) and 

Multi-directional fixed crack models. Tension softening and compression strain-stress 

relationships used in the FE models are given in terms of the fracture energy and crack 

bandwidth in order to guarantee mesh-independent results. Fracture energy in tension (Gf) 

was estimated from MC90 formulas, while for compression, an estimated value of 100Gf 

was assumed. For the descending branch in tension, either linear and Hordijk curves were 

used, while in compression, parabolic relationship proposed by Feenstra [82] was 

adopted. Compression softening due to transverse strains was taken into account in the 

total strain models using Vecchio & Collins [25] softening curve. This softening 

relationship was not applied in the multi-fix model, instead the concrete strength was 

decreased by a constant factor. The use of the softening curve [25] in the total strain 

model with a fixed crack is questionable since this relationship was originally derived for 

rotating crack models, where the slip is completely ignored. The performance of these 

models is further discussed for the analysis of shear panels and beam tests in chapters 5, 7 

and 8. 

Two discrete cracking models were reviewed. First model (Discrete Crack Model) 

assume both constant shear stiffness after cracking and uncoupled normal-shear stresses. 
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The second model included crack dilatancy relationships with a variable shear stiffness 

and normal/shear stresses interdependency. Although the later assumptions are more 

realistic for aggregate interlock behaviour (see chapter 4), comparable results can be 

obtained using both models, if proper calibration of the aggregate interlock stiffness is 

provided. Severe numerical instabilities can be obtained using crack dilatancy models, 

due to asymmetry in the stiffness matrix (Feenstra et al. [53]). Numerical solvers such as 

the “constant stiffness” algorithm seemed to be inefficient to handle these situations. 

Steel reinforcement is usually modelled in FEA using discrete or smeared (grid) 

embedded elements. The NLFEA of a continuous beam in which the stirrup spacing was 

increased up to 300mm, showed that numerical predictions were very similar using either 

type of elements. Reinforcement elements crossing discrete cracks require additional 

considerations regarding normal and shear stiffness introduced to the interface mother 

element. Local phenomena related to bond-slip, dowel action or secondary diagonal struts 

can be difficult to implement in FE modelling. It has been shown that the simplified 

approach assumed in DIANA using normal values of the free-length parameter can lead 

to extremely stiff predictions of the dowel action. If using this method, the shear stiffness 

assigned to the interface elements should be reduced in order to account for the excess in 

dowel stiffness assumed. 

Ultimately, numerical predictions from NLFEA can be influenced by other considerations 

such as mesh generation, numerical solvers used or modelling of the loading plates. 

Although these issues are not within the main scope of this work, the consequences of the 

assumptions made regarding these points were investigated. The numerical difficulties 

faced in the NLFEA of the shear critical reinforced concrete beams were expected, due to 

their brittle behaviour, especially for high-strength concretes and large depths. Moreover, 

the concentration of stresses around the elements near the loading plates resulted in a 

premature failure in some of the FE models shown in chapters 7 and 8. In order to 

overcome this problem, the concrete strength of these elements was enhanced. The 

selection of a proper numerical solver and incremental-iterative algorithm is also critical 

in obtaining converged solutions. Even so, in many of the NLFEA this was not possible 

and the iterative process diverged at loads near failure, especially when using the multi-

fix smeared crack model. These numerical difficulties using smeared and discrete 

cracking models are well documented in the literature and clearly show the need of 

performing hand calculations in addition to NLFEA. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 4 – Push-off Tests 
 

4.1 Introduction 
Aggregate interlock at concrete cracks is a complex phenomenon since it involves several 

shear resisting mechanisms in which normal and shear stresses interact. As the crack 

slides, it tends to open due to overriding of the aggregates particles against each other, 

which is known as “crack dilatancy”. Normal stresses are introduced at the crack face, if 

the widening of the crack is constrained by embedded or external reinforcement. In 

addition, the shear stiffness decreases as the crack gets wider due to contact lost between 

crack faces. 

Although the fundamentals of aggregate interlock may seem straightforward, the 

analytical solutions to model this behaviour are complex and often produce significant 

discrepancies with experimental results. As discussed in chapters 2 and 3, this is due to 

the large number of secondary aspects involved, which may not be considered in the 

model; typical examples are dowel action, localized stresses around embedded bars, 

tension stiffening of the concrete, normal stiffness introduced by the reinforcement or 

uncertainties in the crack roughness. Moreover, cracks that form in real concrete 

structures have additional uncertainties related to variable conditions of loading, creep 

and shrinkage, which introduce complex stress fields that are difficult to assess. 

Therefore, the attempt of estimating the normal and shear stresses directly at cracks that 

form in reinforced concrete structures seems unrealistic. 

In order to have a better understanding of the stresses transmitted at the crack, a common 

approach is to isolate the crack in a simple test configuration so that a good control of the 

variables mentioned above is achieved. Push-off tests, such as the one shown in Figure 
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4.1, is a widely recognized procedure for assessing shear and normal stresses at reinforced 

cracks. In general, a push-off test consists of two stages; firstly, the specimen is pre-

cracked and then the load is applied vertically (Figure 4.1) so that the entire shear force 

applied is transmitted along the crack plane.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Left- Typical push-off test arrangement; Right- Test carried by the author 

Many of the analytical models described in chapter 2, were developed using experimental 

data obtained from push-off tests similar to the one shown in Figure 4.1. Early 

experimental work by Mattock et al. [106], Walraven & Reinhardt [46] or Hamadi [107] 

was carried to validate shear friction equations, which were provided in the codes to 

design concrete joints or interfaces. 

This chapter describes the experimental results of seven push-off tests carried out by the 

author. These tests were required in order to assess the magnitude of the normal and shear 

stresses carried at cracks of specimens where the aggregate had fractured in comparison 

with others where the crack went round the aggregate. In addition, the results obtained for 

shear stresses are interpolated for different values of crack opening and slip, in order to 

extrapolate the results to cracks measured in beam tests, which are described in chapters 

6. Lastly, the experimental data is compared with different analytical models, which are 

used in chapters 7 and 8, to validate the values of the empirical parameters assumed in the 

models. These figures are also compared with traditional values recommended by the 

codes. 
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4.2 Experimental results 

4.2.1 General aspects 
A total of seven push-off tests were carried out by the author using the same concrete as 

in beams B described in chapter 6. The specimens were cast in two groups; one group 

made with limestone aggregate concrete (PL2, PL2b, PL3 and PL4) and another group 

made with normal gravel aggregate (PG2, PG3 and PG4). Similarly as in beams B, the 

limestone aggregate fractured completely at the crack unlike the gravel, where the crack 

went round the aggregate. The aim was to investigate the relationship between aggregate 

interlock and relative crack displacements (opening and sliding) in order to extrapolate 

the results to the beam tests. The crack area (Hcr × wcr, see Figure 4.1) was kept similar to 

that in beams A and B in order to correlate the results with both types of tests. In addition, 

the size of the specimens was designed to be similar to those used by other authors, as 

shown in Table 4.1, in order to facilitate the comparison between tests results. 

[mm] Mattock 
Ref. [106] 

Hamadi 
Ref. [107] 

Walraven
Ref. [46] 

This work  

H 660.4 700 600 700 
Hcr 304.8 350 300 350 
b 355.6 300 400 300 
w 177.8 150 120 165 

wcr 177.8 120 120 135 
 
Note: For notation refer to Figure 4.1; Area of the crack = Hcr × wcr 

Table 4.1: Specimen dimensions in push-off tests carried by different researchers 

As explained in previous section, the specimens were pre-cracked by applying a lateral 

edge load. Once the crack had formed, the specimen was loaded vertically until failure 

along the crack plane (see Figure 4.1). The peak load was reached without much damage 

of the specimen; hence the specimen was un-loaded and re-loaded two more times. The 

two additional cycles provided useful information about the influence of changing the 

initial crack width on the aggregate interlock action. 

The stirrups crossing the crack were embedded in the concrete in all specimens. Stirrups 

T8 were used, which had a yielding strength of 550MPa; see section 6.2.1 for further 

details. Specimens were labelled according to the number of stirrups crossing the crack 

plane as shown in Figure 4.2. The reinforcement layout provided showed to be sufficient 

to avoid local failure of the corbel in all specimens except for PG4. This undesired 

behaviour of specimen PG4 was due to the strength obtained in mix 4 used in specimens 
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PG, which was significantly lower to the concrete strength assumed in the design. 

Fortunately, failure of the corbel did not occur for the rest of specimens PG and so only 

data from PG4 was neglected. A replicate of specimen PL2 was made in order to test the 

loading rig and testing procedure; this specimen is denoted as PL2b.  

 

 
 
 
 
 
 
 
 
 
a) PG2, PL2 (ρv =0.42%) b) PG3, PL3 (ρv =0.64%) c) PG4, PL4 (ρv =0.85%) 
 
Note: fc

’ (PL)=53.11MPa and fc
’(PG)=31.7MPa; refer to mixes 3 and 4 (section 6.2.2) 

         Reinforcement steel: fy(T8)=550MPa and fy(T16)=600MPa 

Figure 4.2: Reinforcement layout in push-off specimens (dimensions in mm) 

The load was applied at the top through a loading plate and a spherical seating at the 

centre (Figure 4.3), which allowed for free rotation of the top half. A layer of grout was 

provided between the specimen and bearing plates. The lateral displacements were 

released by the use of mini-rollers placed between the plates at the support (Figure 4.3). 

The test was carried in displacement control with increment of 0.1mm for the first cycle 

and 0.2mm for the second and third cycles. The load rate was 0.1mm/min. 

 

 

 

 

 

 

 

Figure 4.3: Left – Top loading plates and spherical seating; Right – Release of horizontal 

displacements at the bottom support by using mini-rollers 
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Splitting (pre-cracking) of specimens 

In order to generate the crack along the plane of interest, the specimens were rested on 

one side and loaded with an edged load by using a steel wedge as shown in Figure 4.4. A 

spherical seating was used at the top plate to distribute the load. The initial crack widths 

obtained were around 0.1-0.3mm, as shown in Table 4.2 with small variations along the 

crack plane. The worst deviations in w0 were found for specimens with lesser number of 

stirrups as shown in Table 4.2. These variations in the readings were found mainly 

between faces of the specimen and not between top and bottom of the crack plane. 

Nevertheless, this slight asymmetry in the crack plane tended to decrease as the specimen 

was loaded in the vertical direction. Soon after the vertical load was applied, readings of 

the crack opening at both sides became very similar. 

 

 

 

 

 

 

 

Figure 4.4: Pre-cracking of push-off specimens (Left – Top view; Right – Bottom view) 

4.2.2 Manufacture and curing 
The specimens were cast in wood moulds simultaneously to beams B, which are 

described in chapter 6. The concrete used for specimens PL and PG relate to mixes 3 and 

4 respectively, which are fully described in section 6.2.2. The concrete was poured in the 

direction perpendicular to the crack plane in three batches to assure similar vibration 

conditions of the concrete near the crack plane. Good compaction of the concrete was 

achieved by casting the specimens on a vibrating table. Once the top surface was levelled, 

the specimens were covered with polythene sheets until stripping the moulds two days 

after casting. The curing conditions for the push-off specimens and their respective 

control cubes and cylinders were identical as beams B, refer to section 6.5.2. 
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4.2.3 Instrumentation 
The load and total deflection were monitored by the load cell and displacement transducer 

incorporated in the loading rig. Six additional LVTDs displacement transducers (#1 to #6) 

were placed at different location (see Figure 4.5) to assess the general response of the 

specimen.  

 

 

 

 

 

 

 

 

 

Figure 4.5: Instrumentation used in push-off tests 

Digital photogrammetric surveying 

Alternatively to traditional displacement measurements taken by LVTDs, digital 

photogrammetric surveying was carried out. This relatively new technique, which is 

based on image processing, allows to obtain information of displacements in the x-y 

directions at several points (targets) of the specimen. These readings were used to obtain 

the crack opening and sliding at four different heights of the crack. The computer 

software required to analyse the digital photographs was developed and calibrated by 

McCarthy & Tsang [108], from the Department of Environmental and Civil Engineering 

at Imperial College London. The programme was written in the LabVIEW platform. The 

results were compared with LVTD, Demec and strain gauge readings. 

Digital photogrammetry is a recent method, although it has been applied in the past for 

testing beams, see Jauregui et al. [109], Ortlepp et al. [110] or Lee & Al-Mahaidi [111]. 

The level of accuracy depends on many factors, as explained by McCarthy and Tsang 

[108], which are related with the system setup: resolution, field of view, working 

distance, sensor and depth of field. Other factors such as contrast, perspective and 
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distortion optical effects can introduce errors in the image processing analysis. The 

maximum errors observed in this work using digital photogrammetry were around 

0.03mm. Although this tolerance might be acceptable for displacements, it is not accurate 

enough to estimate strains. 

The primary function of image processing is to track given patterns (targets) and assign 

them coordinates relative to fixed reference points. The targets consisted of dark circles of 

7mm diameter, which were printed on a white background (13mm square) in order to 

provide sufficient contrast. For each camera it was necessary to provide four reference 

targets, which were fixed to plastic rulers located at the left and right ends of the picture, 

see Figure 4.1. The horizontal and vertical distances between these reference points were 

around 450mm and 370mm respectively. The moving targets were arranged in an 

orthogonal grid with 75mm spacing, as shown in Figure 4.5, which was placed at both 

north and south sides of the specimen. Two digital cameras were used, one at each side, in 

order to measure the crack opening and sliding at four different levels of the crack for 

each side. Digital pictures were taken manually at each load step. Adequate lighting was 

provided by two halogen lamps and the working distance between the camera and the 

specimen was around 500mm for both cameras. 

 
Crack opening and sliding measurements 

Several types of crosses were used (Figure 4.5) to measure the crack opening and sliding 

at different heights of the specimen. In this work three different monitoring systems were 

used in the cross; crosses of demec discs, LVTDs and photogrammetric targets. The 

gauge length of the Demec and LVTDs was 150mm, while the grid of photogrammetric 

targets was 75×75mm. 

In order to calculate the crack opening and sliding, independently of the system used, 

cross readings were taken between two pair of points, which form a cross so that one 

point of each pair is on the same side of the crack (see Figure 4.6). This simple procedure 

has been applied in the past by authors such as Hamadi [107], which derived the 

following equations in order to obtain the crack opening (∆h) and sliding (∆v) from the 

cross readings. 
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a) Push-off test    b) Beam test 

Figure 4.6: Obtaining relative crack displacements through cross Demec/LVTDs readings 

From the geometry of the cross shown in Figure 4.6, the length between points 1-1’ (l) 

can be written in equation (4.1). After deformation, points 1’ and 2’ move to 1’’ and 2’’ 

respectively. The length between 1-1’’ can be written as in equation (4.2). Squaring both 

sides of equations (4.1) and (4.2) and subtracting the second one from the first one leads 

to equation (4.3). In the last step, second order terms are neglected. In the same manner 

for points 2-2’, within a distance l’, equation (4.4) can be obtained. 

 22 vhl +=         … (4.1) 

 ( ) ( )22 vvhhll ∆++∆+=∆+      … (4.2) 

 vvhhll ∆+∆=∆ 222        … (4.3) 

 vvhhll ∆−∆=′∆′ 222        … (4.4) 

Finally, from equations (4.3) and (4.4) and assuming l=l’, the sliding and opening of the 

vertical crack can be obtained, see equation (4.5) and (4.6) respectively. In this work the 

crack opening and sliding are usually referred to as w and s respectively. However for 

equations (4.1) to (4.6), ∆v and ∆h have been used for consistency with Hamadi’s 

notation. 

 ( )ll
v
lv ′∆−∆=∆

2
       … (4.5) 

 ( )ll
v
lh ′∆+∆=∆

2
       … (4.6) 

In the push-off tests, the cross nails were placed with points 1 and 2 aligned vertically, as 

shown in Figure 4.6. However, shear cracks that were measured in beam tests presented 
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in chapter 6 were not vertical. In this case, cracks were generally oriented 45º with respect 

the horizontal line and therefore the cross was placed so that the line defined by 1-1’ was 

vertical and line 2-2’ horizontal. In cases where the crack orientation was exactly 45º, 

equations derived by Hamadi (4.5 and 4.6) still applied. However in many other cases 

where the crack was flatter than 45º, equations (4.5 and 4.6) were modified to take into 

account the deviation angle (α) with respect the 45º plane, refer to Figure 4.6.b. Equations 

(4.7) and (4.8) allow to obtain the crack opening (∆hα) and sliding (∆vα) along the actual 

plane of the crack. The deviation angle α is considered positive in the clockwise 

direction, in other words if the crack is flatter than 45º and 1-1’ is vertical. 

 hvv ∆−∆=∆ .sin.cos ααα       … (4.7) 

 hvh ∆+∆=∆ .cos.sin ααα       … (4.8) 

Only demec readings could be used to estimate the initial crack displacements due to the 

type of loading required for pre-cracking the specimen (see Figure 4.3). Once the 

specimen was uplifted in its final position before testing, demec discs on the south side 

were removed and replaced by nails, which were needed for the cross of LVTDs 

(transducers #6 to #9 in Figure 4.5). On the north side, the Demec discs were kept and 

used for taking readings during the test. Additional discs had been previously attached on 

the north side at six different heights (Hi), as shown in Figure 4.5, to obtain horizontal 

strain readings at the several levels, including at the reinforcement. These readings were 

compared with strain gauge readings described in next section 

 

Strain gauges 

Two strain gauges were placed in one leg (top and bottom) on each stirrup where the 

crack crossed the stirrup, see section 2.4.4. Two extra strain gauges were placed in 

specimens P2 and P3, at top and bottom of the stirrup leg, far from the crack plane. The 

aim was to assess the distribution of strains along the stirrups. Lastly, two additional 

strain gauges were attached in PL2, on the other leg of one of the stirrups, in order to 

study possible asymmetric behaviour between north and south sides. 
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4.2.4 Results 
Summary of experimental results 

Table 4.2 summarizes the experimental results obtained for the seven push-off tests. 

Results are shown for specimen PG4, although premature failure occurred at the corbel in 

this case, hence these results were neglected. The crack opening and sliding at the peak 

load (wpeak, speak) are given in Table 4.2 for each cycle; measurements were taken from the 

LVTD crosses placed on the south face. On the other hand, the initial crack width (w0) 

was obtained from averaging readings from the four Demec crosses placed on the both 

sides of the specimen; the maximum standard deviation (S.D) obtained was 0.14mm 

(Table 4.2). For the second and third load cycles, the initial crack width was estimated 

from the two crosses placed on the north side.  

Specimen Cycle w0  
[mm] 

S.D 
[mm] 

τpeak 
[MPa]

wpeak  
[mm] 

speak  
[mm] 

PG2 1 0.273 0.148 3.67 0.65 0.93 
2 0.714 0.108 3.46 0.79 1.46  3 0.877 0.043 3.31 0.92 2.02 

PG3 1 0.081 0.039 4.91 0.51 0.60 
2 0.395 0.082 4.72 0.68 1.00  3 0.628 0.080 4.45 0.92 1.64 

PG4+ 1 0.237 0.088 5.14+ 0.47+ 0.46+ 
2 0.359 0.060 4.70+ 0.54+ 0.62+  3 0.386 0.232 4.09+ 0.65+ 0.82+ 

PL2 1 0.132 0.051 4.85 0.36 0,29 
2 0.296 0.043 4.52 0.48 0.57  3 0.705 0.091 3.85 0.93 1.61 

PL2b 1 0.093 0.068 5.82 0.24 0.20 
2 0.491 0.098 4.76 0.57 0.67 
3 0.711 0.146 4.48 0.75 0.98  
4 0.804 0.169 4.40 0.85 1.15 

PL3 1 0.123 0.043 5.55 0.37 0.40 
2 0.380 0.044 5.17 0.47 0.71  3 0.545 0.066 4.76 0.61 1.16 

PL4 1 0.120 0.024 7.10 0.38 0.50 
2 0.418 0.021 6.63 0.52 0.89  3 0.766 0.090 6.03 0.85 1.77 

 
Note: +Specimen PG4 had a premature local failure, results are not taken into consideration 

 

Table 4.2: Summary of push-off test results 
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Relative crack displacements 

Figure 4.7 shows the crack opening and sliding history of the specimens during the three 

load cycles; results are shown for the top LVTD cross. The crack path (∆W-∆S) was very 

similar for gravel and limestone specimens with an average crack opening-sliding ratio 

(δw/δs) for the first two load cycles of around 0.5. These results are consistent with 

Walraven & Reinhardt’s [46] tests using normal gravel aggregate. In addition, the crack 

dilatancy formula suggested in MC90 (w=0.6.s2/3) is in excellent agreement with 

experimental data from PG and PL specimens, as shown in Figure 4.7. According to this 

analytical expression, the δw/δs ratio is only dependent on the crack sliding; crack slips of 

0.1, 0.5 and 4mm relate to δw/δs ratios of 0.86, 0.5 and 0.25 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: for crack path diagram (∆W-∆S) the initial crack width is not considered 
 

Figure 4.7: Relative crack displacements and shear stresses in push-off tests 
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Note: for crack path diagram (∆W-∆S) the initial crack width is not considered 
 

Figure 4.7 (Cont.): Relative crack displacements in push-off tests 

The relative crack displacements required to obtain the maximum shear stress were larger 

for the gravel specimens than for the limestone ones, which had a more brittle behaviour. 

An interesting aspect that can be seen in Figure 4.7 is the post-peak behaviour of the 

specimens. In the tests, once the maximum value of the shear stress was reached, the load 

started decreasing down to around 70% of the peak value at around 7mm slip. This 

reduction was similar for both PG and PL tests. The peak values obtained at the different 

cycles followed the same load curve, similarly as in Walraven & Reinhardt’s [46] tests, in 

which the time interval between cycles was as long as months. 

Lastly, the shear stiffness at the crack during the first load cycle was similar for 

specimens PL2, PL3 and PG3, as shown in Figure 4.7. The shear-slip response was in 

good agreement with Hamadi & Regan’s model (see section 2.5.2) using k=5.4N/mm2 

and w from MC90 formula. As shown in Figure 4.7, specimens PL4 and PG2 had 

different stiffness compared to the remaining specimens. The lower stiffness observed in 
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PG2 was probably due to the larger initial crack width obtained, see Table 4.2. However, 

the stiff response of specimen PL4 could not be explained by lower values of w0. Hence it 

is questionable whether this was due to dowel action or influence of normal stresses in the 

shear sfiffness for highly reinforced cracks. 

Crack opening and sliding variations along the height of the crack 

In general, readings obtained from the LVTD, Demec and photogrammetric crosses had 

an excellent agreement with each other as shown in Figure 4.8. Only in particular cases, 

such as south face of specimen PL2 (see Figure 4.8), photogrammetric readings presented 

some oscillations; readings taken on the other side of the specimen did not presented such 

oscillations. Two important aspects were observed from these measurements. Firstly, the 

crack opening and sliding were fairly constant along the crack. Secondly, the difference in 

initial crack widths between north and south sides, which was obtained in the pre-

cracking of the specimen, was mitigated during loading so that near failure these readings 

were almost equal. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Note: bottom LVTD was faulty; Initial crack widths at both sides were estimated from demec readings 

Figure 4.8: Crack opening and sliding measured at different heights (specimen PL2) 
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Global deflections and post-failure behaviour of specimens 

As shown in previous section, both halves of the push-off specimen had a relative 

displacement with respect to each other due to opening and sliding at the critical crack. In 

addition, both halves had a joined global displacement due to bending of the corbels, as 

shown in Figure 4.9; measurements were taken from side transducers (#1-4) and 

photogrammetric targets (see Figure 4.5). Near failure, sliding at the crack became 

predominant and the overall rotation of the specimen due to bending of the corbels 

remained constant, which corresponds to sector A-B in Figure 4.9 (left). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: rotation obtained from LVTDs #1-4, refer to Figure 4.5 

Figure 4.9: Kinematics of specimen PL2b. Left- rotation of specimen; Right- global displacements 

(squares- 0kN, circles- 70kN, triangles- 250kN between A and B) 

During the tests, only minor cracking occurred at the corbels. These small flexural cracks 

formed at around 100kN at symmetrical points as shown in Figure 4.1 (right). The width 

of these cracks was constant during the test and had no influence on the results, except in 

specimen PG4, where they became critical.  

In the last cycle, specimens were subjected to very large crack displacements. The crack 

sliding was around 7 to 10mm. The type of failure obtained in this cycle was different for 

each specimen. In PL2 at a 6.7mm sliding, one of the stirrups fractured. On the other 

hand, spalling of the concrete cover around the crack occurred in specimen PG2. The 

concrete cover spalled out at the top or bottom of the strut in the limestone specimens 

PL3 and PL4 for crack slidings greater than 6mm. 
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Strains in stirrups 

According to Demec and strain gauge readings at the level of the reinforcement shown in 

Figure 4.10, stirrups started to yield at the end of the first load cycle, when the crack 

opening was about 0.4mm (Table 4.2). In general Demec readings were similar to each 

other and had a good correlation with strain gauge data, which provide slightly larger 

strains. Strain gauges readings of the top stirrup in specimens PL2 and PL3 were 

significantly large, which could have been due to flexure at the corbel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Strain gauge numbering (Even - top; Odd - bottom); N/S refers to stirrup leg (north/south face)  
          Demec numbering refers to stirrup at which strain gauge with same number was placed 

Figure 4.10: Strain at shear reinforcement of push-off specimens (1st Cycle) 
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Note: Strain gauge numbering (Even - top; Odd - bottom); N/S refers to stirrup leg (north/south face)  
          Demec numbering refers to stirrup at which strain gauge with same number was placed 

Figure 4.10 (Cont.): Strain at shear reinforcement of push-off specimens (1st Cycle) 

In the second and third load cycles, the load-strain curve followed a similar path as in the 

first loading as shown in specimen PL2 (Figure 4.10). Once the peak load was reached, 

strains increased considerably reaching maximum values of around 7-10‰ at the end of 

the third load cycle. Strain gauges started to fail usually by the end of the second cycle. 

In general, strains recorded at different stirrups of the same specimen were similar. 

Moreover, strains recorded at both legs of the stirrup in specimen PL2 (SG5-6 & SG7-8) 

were also similar. 

Strain gauges placed 100mm away from the crack plane in specimens P2 and P3, 

provided values which were almost zero as shown in Figure 4.10. A relationship between 

strain gauge and demec readings can be estimated from compatibility conditions along the 

stirrup. The demec strain is an average measurement over a gauge length of 150mm. If 

the strain distribution along the stirrup is assumed to be parabolic from maximum at the 

crack to zero at 100mm from the crack, the ratio between the maximum strain (i.e. 

reading provided by strain gauge) and demec reading would be 1.12. If the strain 

distribution is assumed linear this ratio would be 1.5. These figures seem consistent with 

the differences between demec and strain gauge readings shown in Figure 4.10. 
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4.3 Interpolated shear stress curves for correlating push-off 
and beam test data 

4.3.1 General aspects 
In order to estimate the shear stresses transmitted along cracks in beams tested by the 

author (see chapters 7 and 8), the experimental results from the push-off tests described in 

section 4.2 are extrapolated. As mentioned earlier, this was possible due to three main 

aspects which were considered in the design of both types of tests. Firstly, same concrete 

was used for beam and push-off specimens. Secondly, the area of the crack and shear 

reinforcement ratio crossing it was similar. Thirdly, the crack openings measured in both 

types of tests were of similar magnitude.  

On the other hand, two main drawbacks are found, which complicate the correlation 

between beam and push-off test data. The first difficulty faced is that the position of the 

stirrups is skewed with respect the crack plane in the beam tests while in a push-off test 

the stirrups are perpendicular to the crack plane. The efficiency of stirrups crossing the 

crack increases with decreasing the angle between the crack plane and the stirrup in the 

direction of the sliding, as shown in Figure 4.11 (Maekawa et al. [52]). This increase in 

the shear capacity has been observed in push-off tests carried by authors such as 

Walraven & Reinhard [46] or Maekawa et al [52]. 

 

 

 

 

 

 

 

Figure 4.11: Influence of the angle of stirrups relative to crack plane in shear strength of push-off 

tests (adapted from Maekawa et al. [52]) 

In the beam tests performed in this work, the inclination of the stirrups relative to the 

crack plane varied from 60º for the flattest shear cracks to 45º. As an order of magnitude, 

the increase in strength from perpendicular to 45º orientated stirrups is around 30% 

according to tests carried by Walraven & Reinhardt [46]. In their tests, the δw/δs ratio 
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was approximately equal to 1 and the shear reinforcement ratio was 0.56%, which is 

similar to specimens P2 and P3 tested in this work. The results obtained by Walraven & 

Reinhardt are broadly consistent with Maekawa’s findings shown in Figure 4.11, despite 

the reinforcement ratio in these latter tests was almost double (1.27%). 

The second drawback in correlating push-off and beam test data is related to the 

differences in loading and stress fields produced at each type of test. As discussed in 

chapters 7 and 8, the crack opening and sliding ratio δw/δs in a push-off test (δw/δs~0.5, 

see section 4.2.4) is considerably lower than in a beam test, which can vary from 3 to 1.5 

depending on the geometry and type of loading. According to Walraven & Reinhardt 

[46], the inclination of the stirrup in relation with the crack plane does not seem to have 

an important effect on the δw/δs. The difference in δw/δs between both types of tests 

seems to be related more to the type of loading and to the fact that the crack in a push-off 

test can slide freely while in the beam tests this movement is restraint by the longitudinal 

reinforcement. The question could be raised of whether the crack opening and sliding in 

beams would be uniform as in a push-off test. The experimental results shown in chapter 

6 showed that the crack opening and sliding measured in the beams tested did not change 

significantly along the crack and so shear stresses were extrapolated directly from the 

push-off test data. 

4.3.2 Interpolated curves 
The experimental data from the three load cycles was used in order to generate an 

interpolated 3D surface (w− s−τ) for each push-off test, see example in Figure 4.12 for 

specimen PG2. The interpolated surfaces were used to estimate the shear stresses at 

cracks in the beams tested for the measured crack displacements (w, s), see chapter 7 and 

8. The results from the three load cycles were treated separately, as shown in Figure 4.12, 

with the only difference that the initial crack width increased from one cycle to the next 

one. The crack slip was taken as zero at the end of each cycle, in order to measure relative 

crack slip values. The peak shear stresses relate to the 1st cycle. The different crack paths 

(δw/δs ratio) obtained in push-off and beam tests, which were discussed earlier, are also 

illustrated in Figure 4.12. 

The interpolated surfaces were generated using the built-in algorithm in MATLAB called 

“nearests”, which is based on a Delaunay triangulation using Qhull joggle option (see 

Barber et al. [112]). These surfaces seem valid for values of w and s up to around 1.5mm, 
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above which more experimental data would be required. However, the values obtained of 

w and s in the beam tests were within this range and so additional test data does not seem 

necessary. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.12: Example of interpolation surface for push-off test PG2 

The results obtained for all the push-off tests are shown as contour plots in Figure 4.13 in 

which the contour lines relate to different crack openings. These curves are used in 

chapters 7 and 8 to estimate the shear stresses transmitted along cracks measured in the 

beams tested in shear. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
PG2 (ρfy/νfc’  = 0.14) - used for beam BG1 
Note: contour lines relate to different crack widths [mm] 

Figure 4.13: Shear stresses for different crack widths derived from interpolated surfaces 
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PG3 (ρfy/νfc’  = 0.64) - used for beam BG2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PL2 (ρfy/νfc’  = 0.09) - used for beams BL2 & AL2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PL3 (ρfy/νfc’  = 0.14) - used for beam BL2 & AL3/AL4 
 
Note: contour lines relate to different crack widths [mm] 

Figure 4.13 (Cont.): Shear stresses for different crack widths derived from interpolated surfaces 
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Contour plots, which are shown in Figure 4.13, seem sensible for crack slips greater than 

around 0.2mm for which shear stresses decreases as the crack width increases. For small 

values of crack sliding (s<0.2mm) and large crack openings (w>0.8mm) the interpolated 

surface is no longer representative of the experimental data, as shown in Figure 4.12. 

However, the crack slip obtained experimentally in beam tests were generally larger than 

0.3mm, so curves shown in Figure 4.13 were still applicable. 
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4.4 Estimation of cohesion and friction parameters 
Shear friction relationships, which are usually given in the form of Coulomb failure 

criteria (τ = C+µσ ), are used in design codes such as EC2 or ACI-318 to obtain the shear 

capacity of contact interfaces between two concrete surfaces. The cohesion factor (C) is 

generally given as a function of the tensile strength of the concrete and the friction (µ) 

depends exclusively on the roughness of the interface (see Table 4.3). Such equations are 

used in the design of construction joints, although it could also be extrapolated to crack 

interfaces in reinforced concrete beams. Although the formulation can be easily 

implemented in other methods, such as variable inclination strut method or strut-and-tie 

models (see chapters 7 and 8), the results are highly dependent on the values assumed for 

C and µ.  

As shown in Table 4.3, there is a large inconsistency between the values of C and µ 

recommended by different design codes. In order to apply the shear friction formula in the 

analysis of reinforced concrete beams carried in chapters 7 and 8, parameters C and µ 

were estimated from the push-off test data. This was possible due to the similarities 

between cracks in push-off and beam tests carried by the author, which are discussed in 

further detailed in section 4.3. The values of C and µ obtained are shown in Table 4.3. 

Reference Surface Cohesion (C) Friction (µ) 
Rough 0.625fctk

** 0.70 
Smooth 0.486fctk

** 0.60 EC2 
Very smooth 0.347fctk

** 0.50 
Monolithically 2.75 MPa 1.4 

Rough 2.75 MPa 1.0 ACI-318 
(for NW concrete) Medium - 0.6 

Rough 0.25(fc
’)2/3 1.4 

Medium 0.25(fc
’)2/3 0.9 Clímaco and Regan 

Smooth 5 MPa 0.7 
Natural gravel 0.25(fc

’)2/3 0.7 Hamadi and Regan Expanded Clay 0.25(fc
’)2/3 0.3 

Gravel (PG) 
(fc

’ = 31.7MPa) 
1.20 MPa 
(~0.41 fct) 

1.06 Interpolation of 
push-off tests Limestone (PL) 

(fc
’ = 53.1MPa) 

2.50 MPa 
(~0.63 fct) 

0.95 
 
Notes: fctk

**  = 0.21(fc
’)2/3 for fck < 50MPa 

fctk
**   = 1.48ln[1+fcm/10] for 90 < fck < 50MPa 

Table 4.3: Cohesion and friction parameters according to design codes and experimental work 
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               wo   -   wf 
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  PL3      0.12 - 0.37
  PL4      0.12 - 0.39
  PG2      0.27 - 0.71
  PG3      0.39 - 0.61

PL2

PL3
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PG3

Figure 4.14 shows the linear regression of the experimental data that was carried to 

estimate C and µ; results are presented for the ultimate loads obtained at the first cycle, 

where the crack widths at failure were between 0.4 and 0.6mm. The shear stresses were 

normalized by conventional factor fc
’2/3. 

 

 

 

 

 

 

 

 

Figure 4.14: Estimation of cohesion and friction parameters from experimental data 

It is important to note that the shear friction formulas described above assume that the 

shear strength is not influenced by the crack width. This assumption seems to agree with 

experimental data from Hamadi & Regan [19] of specimens with large normal stresses 

(greater than around 1MPa), which is the case of specimens PG and PL. In addition, work 

carried by these authors also showed that the initial crack widths required in order to 

obtain a significant reduction in the shear strength were very large (w0~0.9mm) compared 

with values commonly seen in push-off tests. Similar conclusions can be drawn from 

interpolation curves derived in section 4.3 (Figure 4.13), where maximum values of the 

shear stresses remained almost constant for different values of w, up to crack openings of 

around 0.6mm. The initial crack widths measured at beams tests carried in this work were 

of similar magnitude as those obtained in the push-off tests, which were around 0.1-

0.3mm. All of this supports the idea that the values of C and µ obtained from the push-off 

tests, which are shown in Table 4. 3 and Figure 4.14 are not highly influenced by this 

assumption made in the shear friction model. 

The cohesion estimated from the linear regression was in good agreement with EC2 

recommended values (Table 4.3). However, the friction factor obtained in PG and PL 

specimens were larger than the highest values suggested in EC2, which relate to rough 
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cracks. According to ACI-318 or Climaco & Regan’s [113] classification, the friction 

estimated from the push-off tests corresponded to a medium-rough type of surface (µ = 

0.9-1).  

It is noteworthy that the friction of both limestone and gravel specimens was comparable, 

despite that in the former case the aggregate fractured completely at the crack. The large 

value obtained for µ in specimens PL was unexpected in view of previous test data of 

lightweight aggregate specimens where the friction was as low as 0.3 (see Hamadi and 

Regan [19]); ACI-318 provisions for light-weight aggregate recommends using a factor of 

0.75 to be applied to µ. The interpolated values obtained for the gravel specimens are of 

course approximate, since only two data points were available. However, in the limestone 

specimens, the three data points seem to have a good correlation factor for the linear fit 

(R2=0.95), as shown in Figure 4.14.  

A possible explanation for the large value of µ obtained in the limestone specimens could 

be due to friction at a macro-level as shown in Figure 4.15 (right). Similar conclusions 

were obtained by Walraven & Al-Zubi [9] from their beam tests using lightweight 

aggregate, in which the aggregate particles fractured completely at the crack. The shear 

performance of their beams was similar to equivalent beams made of normal aggregate 

concrete. 

 

 

 

 

 

 

 

 

a) Gravel specimen (Crack level)  b) Limestone specimen (Macro-level) 

Figure 4.15: Crack roughness in gravel and limestone specimens 
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4.5 Comparison of experimental results with analytical models 
In previous section, the experimental results were examined using the traditional shear 

friction formula, which can be used to estimate the ultimate shear load carried at the 

crack. As discussed in chapter 2, there are many other models, which can be used to 

assess the shear stress development at the crack as a function of the relative crack 

displacements. Four of these models, which are defined in section 2.5.2, were applied to 

investigate their performance using the experimental data presented in this chapter. The 

models which were investigated were originally proposed by Walraven & Reinhardt [46], 

Hamadi & Regan [19], Gambarova & Karakoç [48], and Li et al. [49]. In Figures 4.17 to 

4.18 these models are denoted with the name of the first author. 

The crack opening and sliding measured from the top cross of LVTDs were used in order 

to obtain the shear stresses (τ) at the crack shown in Figures 4.16 and 4.17, which relates 

to the first load cycle. The normal stresses (σ) were estimated from the mean strains 

measured in all stirrups measured at the crack plane, except for specimen PG3, where 

strain gauges failed at early load stages and so demec readings were used instead. 

In order to apply the linear aggregate interlock model proposed by Walraven & Reinhardt 

[46], concrete cube strengths of 30.4MPa and 60.3MPa were used for the PG and PL 

specimens respectively. Cylinder strengths were used for the rest of the models (Figure 

4.2). Modified equations for light-weight aggregate concrete propossed by Walraven & 

Reinhardt [46], were also investigated. The shear stresses were clearly underestimated 

using these modified equations, which are denoted as Walraven (LWT) in Figures 4.16 

and 4.17. 

 

 

 

 

 

 

 

Figure 4.16: Experimental and predicted shear/normal stresses (specimens PL) 
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Figure 4.16 (Cont.): Experimental and predicted shear/normal stresses (specimens PL) 

The shear friction model predictions shown in Figures 4.16 and 4.17, were obtained using 

optimal values for C and µ shown in Table 4.3. In Hamadi & Regan’s [19] model, the 

aggregate interlock stiffness (k) was taken as 5.4MPa, as suggested by the authors for 

gravel concrete. The results obtained using this value of k were acceptable for the 

limestone specimens, although for specimens PG parameter k seemed to be overestimated 

(see Figures 4.16 and 4.17). 

The different models provided similar answers for specimens PL. However this was not 

the case for specimens PG, where models proposed by Hamadi & Regan [19] or Li et al. 

[49] produced much higher shear stresses than the rest of the crack dilatancy models. In 

addition, the models tended to underestimate the shear stresses of the push-off specimens 

for crack slips lower than around 0.2-0.3mm. On the contrary, the shear stress was 

overestimated at the end of the first load cycle (s~0.5-0.7mm), especially using formula 

proposed by Li et al. [49] (see Table 4.4).  



Chapter 4 – Push-off Tests 

133 

0

2

4

6

8

10

0.00 0.25 0.50 0.75 1.00 1.25

Crack sliding (S) [mm]

τ 
[M

Pa
]

Test
Walraven
Hamadi
Gambarova
Maekawa

Shear-Friction

Walraven (LWT)

Walraven (NW)

Li

Hamadi

Gambarova

PG2

0

1

2

3

4

0.0 0.3 0.5 0.8 1.0 1.3

Crack sliding (S) [mm]

σ
 [M

Pa
]

Test

Walraven

Gambarova

ρ f y

Walraven (NW)

Gambarova

PG2

SG failed

0

2

4

6

8

10

0.00 0.25 0.50 0.75 1.00

Crack sliding (S) [mm]

τ 
[M

Pa
]

Test
Walraven
Hamadi
Gambarova
Maekawa

Shear-Friction

Walraven (LWT)

Walraven (NW)

Li

Hamadi

Gambarova

PG3

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

Crack sliding (S) [mm]

σ
 [M

Pa
]

Test

Walraven

Gambarova

ρ f y

Walraven (NW)

Gambarova

PG3Upper bound 
(Demecx 1.5) Lower bound 

(Demec)

Despite the large differences in the formulations proposed by Gambarova & Karakoç [48] 

and Walraven & Reinhardt [46] discussed in chapter 2, the models produced very similar 

answers for the first cycle, see Figures 4.16-4.18. These two models produced reasonable 

predictions of the shear stresses at the end of the first cycle, as shown in Table 4.4. 

Normal stresses predicted by these two models, were again similar to each other. 

However,  the normal stresses predicted were lower than the experimenta values (~25%); 

worse predictions were obtained for specimens PL3 and PL4 (~35%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Normal stresses obtained experimentally in PG3 are between lower and upper bound given by Demec 
          readings (factors between 1 and 1.5, as discussed in section 4.2.4)  

Figure 4.17: Experimental and predicted shear/normal stresses (specimens PG) 

Lastly, aggregate interlock provisions from MC90 were also examined. As discussed in 

section 2.4.2, crack dilatancy formula (w=0.6.s2/3) recommended in MC90 had an 

excellent agreement with experimental data obtained in this work. Equations for 

estimating the shear stress carried at the crack are also provided in MC90. These formulas 

assume that for crack slips (s) up to 0.1mm τ is proportional to the crack slip. This 

assumption seems reasonable, in view of the results shown in Figure 4.18. For values of s 
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greater than 0.1mm, τ is assumed to follow a polynomial relationship (fourth grade) up to 

2mm, where the ultimate shear stress is predicted (refer to section 2.5.2). The shear 

stresses estimated with the MC90 formulae are compared with experimental data from the 

first load cycle in Figure 4.18. The predictions seem sensible, although shear stresses are 

slightly overestimated at the end of the first cycle. The τcalc/τpeak ratio obtained for each 

analytical method shown in Table 4.4, improved with increasing the number of stirrups. 

As shown in Table 4.4, MC90 along with Walraven & Reinhardt [46] and Gambarova & 

Karakoç’s [48] methods provided the most accurate predictions. 

   

 

 

 

 

 

 

Figure 4.18: MC90 shear stress predictions compared with experimental data 

    τcalc/τpeak 

Specimen wpeak  
[mm] 

speak  
[mm] 

τpeak 
[MPa] Ref.1 Ref.2 Ref.3 Ref.4 MC90 

PG2 0.65 0.93 3.67 1.25 2.38 1.27 2.45 1.42 
PG3 0.51 0.60 4.91 0.98 1.54 0.97 1.64 1.06 

PL2 0.36 0,29 4.85 1.41 1.35 1.51 1.79 1.27 
PL3 0.37 0.40 5.55 1.38 1.29 1.36 1.66 1.24 
PL4 0.38 0.50 7.10 1.15 1.14 1.11 1.44 1.19 

Ref. 1- Walraven & Reinhardt  Mean 1.23 1.54 1.24 1.80 1.24 
Ref. 2- Hamadi & Regan SD 0.18 0.49 0.21 0.39 0.13 
Ref. 3- Gambarova & Karakoç COV 14.3 31.9 17.0 21.5 10.6 
Ref. 4- Maekawa & Okamura      

 

Table 4.4: Experimental and predicted values of the peak shear stress at the end of the first cycle 

The predictions from the analytical models worsened for the second and third load cycles, 

where the relative crack displacements were larger. All the models showed a reduction in 

the stiffness due to crack widening from one cycle to the next one (see Figure 4.19). 

However, the predicted shear stiffness reduction seemed to be excessive compared with 
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the experimental data, especially for the models proposed by Walraven & Reinhardt [46] 

or Gambarova & Karakoç [48]. Regarding shear stress predictions, only model suggested 

by Gambarova & Karakoç’s [48] seemed to provide reasonable answers for such large 

crack displacements (s>1mm),  see Figure 4.19. 

In view of these results, it seems questionable whether the analytical models are suitable 

for crack sliding greater than around 1mm. However, the maximum crack slip measured 

in the beams tested by the author, was around 0.5mm and so the use of these models in 

analysing beam test seems reasonable. According to the results shown in this section, for 

values of s lower than 0.2mm, Hamadi & Regan [19] and Li et al. [49] models provided 

accurate predictions. For crack sliding between 0.2 and 0.75mm, Walraven & Reinhardt 

[46] and Gambarova & Karakoç [48] seem to provide more realistic predictions. For 

simplicity, the linear aggregate interlock relationship proposed by Walraven & Reinhardt 

[46] and the model presented by Hamadi & Regan [19] were applied in this work for the 

analysis of the beam tests (see chapters 7 and 8).  

 

 

 

 

 

 

 

Figure 4.19: Experimental and predicted values of the shear stress at the three load cycles 

Contribution of dowel action 
The contribution of dowel action to the shear strength of the specimens was investigated 

using the Millard & Johnson’s [91] model. This formula, which was applied in section 

3.4.2, is based on a traditional solution of a beam resting on elastic foundation. The model 

gives slightly lower values compared to MC90 formulae in this case, although the 

difference in shear stresses is lower than around 30%. From this analysis, it was 

concluded that contribution of dowel action was negligible, as shown in Figure 4.18. 

Walraven & Reinhardt  [46] reached a similar conclusion on the basis of their test results. 
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4.6 Conclusions 
Push-off tests are commonly used in order to study the stresses transmitted along concrete 

cracks by means of aggregate interlock. This testing arrangement is practical since the 

entire load applied is transferred through a pre-cracked surface of which both geometry 

and amount of shear reinforcement crossing it is known. In addition, relative crack 

displacements (w-opening; s-sliding) can be monitored easily by using traditional 

measuring crosses. The experimental results presented in this chapter show a good 

agreement between relative crack displacements obtained using crosses of Demec, 

LVTDs and digital photogrametric targets. Readings were taken at different levels of the 

crack, showing similar values of w and s along the crack. The initial crack widths 

obtained after pre-cracking the specimens were somewhat different along the crack. 

However, the results seem not to be influenced by these small variations of the initial 

crack opening since at early load stages the values of w had levelled out considerably at 

both sides of the specimen. The contribution of dowel action to the shear strength of the 

specimens tested was negligible. 

Push-off tests carried by the author using gravel and limestone aggregates showed that 

considerable shear stresses could be transmitted through the crack in the limestone 

specimens. This was surprising since the limestone aggregate had fractured completely at 

the crack in these specimens. In addition, the friction parameter µ estimated from linear 

regression of the experimental data according to the shear friction formula (τ = C+µσ), 

was very similar between the gravel and limestone push-off tests (µ ~ 1.0). The estimated 

value of the friction coefficient was considerably larger than those usually obtained 

experimentally for light-weight aggregate (µ = 0.3, Hamadi & Regan [19]) or those 

recommended in EC2 for very smooth surfaces (µ = 0.5). 

Finally, the crack path (δw/δs ratio) was similar for both gravel and limestone specimens. 

The average δw/δs was around 0.5 at the first cycle, at which the peak shear stress was 

obtained. This value is in good agreement with Walraven & Reinhardt [46] test data and 

MC90 crack dilatancy rule (w=0.6.s2/3) in which the δw/δs ratio decreases from 0.5 to 

0.25 at crack slips of 0.5mm and 4mm respectively. Push-off tests carried by Walraven & 

Reinhardt [46] using light-weight aggregate showed a much lower value of δw/δs of 

around 0.25 for the entire test. From these considerations, it can be concluded that 

limestone specimens had an unexpected level of “roughness” or friction considering that 
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the aggregate had fractured completely at the crack. This might have been due to friction 

at a macro-level. 

The main drawbacks of extrapolating push-off test data for analysing cracks in beam tests 

have been investigated. The experimental data obtained from the Push-off tests has been 

used to generate interpolation curves, which were used to estimate the shear stresses at 

similar cracks formed at beams tested by the author. The peak shear stresses predicted by 

these curves seem to be independent of the crack width up to values of w of around 

0.6mm. This is consistent with the assumption made in shear friction formulas, which 

seems reasonable according to experimental data provided by Hamadi & Regan [19] 

amongs others. The cohesion parameter used in the shear friction formula was obtained 

similarly as parameter µ. In this case, the estimated cohesion was in good agreement with 

EC2 recommended values. Both estimates of C and µ are used in chapters 7 and 8 for the 

analysis of the critical shear cracks in beam tests. 

The shear and normal stress development at the crack, which was obtained 

experimentally, was compared with predictions from five different crack dilatancy models 

proposed by Walraven & Reinhardt [46], Hamadi & Regan [19], Gambarova & Karakoç 

[48], Li et al. [49] and MC90. The shear stresses were generally underestimated for low 

values of the crack slip (s<0.2mm). However, analytical models tended to overestimate 

the shear stress for values of the crack opening and sliding measured experimentally at 

the peak load. According to the experimental data provided, this was worse for the 

formula based in the contact density theory developed by Li et al. [49]. The rough crack 

model proposed by Gambarova & Karakoç [48] provided very similar predictions as the 

linear aggregate interlock relationship suggested by Walraven & Reinhardt [46]. Due to 

their simple formulation, the linear aggregate interlock relationship and model presented 

by Hamadi & Regan [19] were finally adopted for the analysis of shear cracks at the beam 

tests (chapters 7 and 8). The predictions of the shear stresses in the push-off tests using 

these two models seemed sensible for crack slips up to around 1mm. This was acceptable 

for the analysis of cracks at beam tests, since the crack slips measured in this case were 

usually lower than 0.5mm. Formulas included in MC90 had similar level of accuracy as 

the two models finally adopted in this work. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 5 – Analysis of Shear Panels 
 

5.1 Introduction 
The study of rectangular reinforced concrete membrane elements, which are subjected to 

in-plane shear and axial stresses, is commonly believed to be relevant to the prediction of 

the shear strength of beams. Considerable experimental data is available from previous 

tests on shear panels by investigators such as Vecchio & Collins [8] or Hsu [114]. As 

recognized by these researchers, shear panel tests are more difficult to carry out than 

regular beam tests, since they require a special rig that is capable to synchronize a large 

number of actuators as shown in Figure 5.1. On the other hand, the experimental data 

obtained from shear panel test is far easier to interpret than beam test data. This is due to 

the fact that the biaxial state of stresses in the panels shown in Figure 5.1 is totally 

isolated from other aspects such as bending stresses or dowel action of the flexural 

reinforcement that can occur in normal beam tests. 

 

 

 

 

 

 

 

Figure 5.1: Shear panel tests (adapted from Vecchio & Collins [8]) 

Biaxial State
(Pure shear) 
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In this chapter, two main concerns related to shear panel tests are investigated; namely 

compression softening and aggregate interlock action. Compression softening due to the 

presence of transverse strains to the main struts was first reported by Vecchio & Collins 

[115]. Aggregate interlock on the other hand, has been generally studied using pure shear 

tests such as push-off tests, which are described in chapter 4. 

A group of 64 shear panel test were selected from an experimental database of 102 tests, 

which was gathered by Bentz et al. [32], in order to study these two parameters. The 

predictions of the ultimate failure load, deflection-load response and strut inclination 

using the Modified Compression Field Theory are compared with different non-linear 

finite element models, which include both fixed and rotating smeared crack approaches. 

These smeared crack models are described in chapter 3. 

The ultimate failure load was also predicted using simple truss approaches, which are 

suggested in EC2. In addition, a simple analytical discrete crack approach is presented, 

which is referred to in this work as “crack slip model”. This approach was developed by 

the author and applies constitutive equations for aggregate interlock, which have been 

previously been validated against push-off test data shown in chapter 4. Subsecuently, the 

crack slip model is applied to continuous beams in chapter 8, in order to estimate relative 

crack displacements and shear stresses transmitted along shear cracks. 
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5.2 Database of experimental results 
A large database of experimental results from shear panel tests have been gathered by 

Bentz et al. [32]. This database includes tests from five different testing machines in four 

different research laboratories, adding up to 102 tests. However, in this study only shear 

panels without axial load and with shear reinforcement in both orthogonal directions were 

investigated. In addition, specimens tested by Vecchio & Collins [8], which had an edge 

type of failure or were poorly cast were neglected since in some cases it is not clear 

whether this lead to a premature failure. These specimens are PV1, 5, 7, 8, 9, 14, 30.  

Two cases for pure shear were investigated; shear panels equally reinforced in both 

directions (r=ρxfxy/ρyfyy=1) and panels with a predominant reinforced direction x (r 

=ρxfxy/ρyfyy>1), which are referred to as Case I and II respectively. Tables 5.1 and 5.2, 

summarise all the specimens considered, which add up to 32 panels for Case I & II 

respectively. The 64 panels examined were tested by eight different researchers (Vecchio 

& Collins [8], Yamaguchi et al. [116], Andre [117], Kirschner [118], Porasz & 

Beidermann [119], Vecchio et al. [120], Pang & Hsu [121], Zhang & Hsu [122]). 

A distinction is made between cases I and II since both types of panels have a 

considerably different performance. As shown in Figure 5.1 (left), in Case I panels, the 

inclination of the strut θ remains constant and equal to 45º. In such cases only concrete 

softening due to transverse strains is expected. In addition, the shear along the 45º crack is 

zero and no crack slip will occur. On the other hand, in Case II panels, the compressive 

strut will rotate as shown in Figure 5.2 (right). Hence aggregate interlock will be 

mobilized in addition to compression softening. This strut realignment results on normal 

and shear stresses at the crack by means of aggregate interlock. 

 

 

 

 

 

 

Figure 5.2: Crack pattern in shear panels; Left– Case I, PV27; Right– Case II, PV19 (adapted from 

Collins et al. [104]) 
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CASE I (r =1) τcalc/τtest

Author Panel a fc' 
[MPa]

ρxfxy 
[MPa]

ρyfyy 
[MPa] r τtest 

[MPa]
1- MCFT

Vecchio & PV2 6 23.5 0.77 0.77 1.0 1.15 0.68 0.67 yield
Collins PV3 6 26.6 3.18 3.18 1.0 3.06 1.05 1.04 yield

PV4 6 26.6 2.49 2.49 1.0 2.90 0.89 0.86 yield
PV6 6 29.8 4.76 4.76 1.0 4.56 1.05 1.04 yield

PV16 6 21.7 1.89 1.89 1.0 2.15 0.89 0.88 yield
PV27 6 20.5 7.91 7.91 1.0 6.36 1.04 0.89 crush

Yamaguchi S-21 20 19.0 16.18 16.18 1.0 6.46 1.12 0.82 crush
et al. S-31 20 30.2 16.18 16.18 1.0 8.46 1.25 0.94 crush

S-32 20 30.8 12.88 12.88 1.0 8.62 1.15 0.94 crush
S-33 20 31.4 10.11 10.11 1.0 8.16 1.16 1.01 crush
S-34 20 34.6 7.98 7.98 1.0 7.27 1.10 1.10 yield
S-35 20 34.6 4.92 4.92 1.0 5.64 0.87 0.87 yield
S-41 20 38.7 17.51 17.51 1.0 12.00 1.05 0.82 crush
S-42 20 38.7 17.51 17.51 1.0 12.77 0.98 0.77 crush
S-43 20 41.0 17.51 17.51 1.0 11.89 1.10 0.86 crush
S-44 20 41.0 17.51 17.51 1.0 12.30 1.06 0.84 crush
S-61 20 60.7 17.51 17.51 1.0 15.18 1.11 0.91 crush
S-62 20 60.7 17.51 17.51 1.0 15.78 1.10 0.87 crush
S-81 20 79.7 17.51 17.51 1.0 15.94 1.09 1.02 crush
S-82 20 79.7 17.51 17.51 1.0 15.94 1.09 1.02 crush

Andre TP4 9 23.2 9.18 9.18 1.0 8.12 0.92 0.78 crush
TP4A 9 24.9 9.18 9.18 1.0 8.72 0.88 0.77 crush
KP4 20 23.0 8.77 8.77 1.0 6.90 1.06 0.91 crush

Kirschner SE5 10 25.9 22.14 22.14 1.0 8.03 1.12 0.87 crush
& Collins
Porasz SE14 10 60.4 22.80 22.80 1.0 18.12 0.97 0.76 crush
& Beidermann
Pang & Hsu A2 19 41.3 5.51 5.53 1.0 5.62 0.99 0.98 yield

A3 19 41.6 8.00 7.99 1.0 7.90 1.02 1.01 yield
A4 19 42.5 14.01 14.03 1.0 11.90 1.03 0.89 crush

Zhang & Hsu VA1 13 95.1 5.30 5.33 1.0 6.47 0.96 0.82 yield
VA2 13 98.2 9.78 9.82 1.0 10.11 0.97 0.97 yield
VA3 13 94.6 16.33 16.37 1.0 15.42 1.06 1.06 yield
VA4 13 103.1 24.63 24.64 1.0 22.68 1.00 0.80 crush

Total 32 1- MCFT

max value = 20 103.1 24.6 24.6 Mean 1.03
min value = 6 19.0 0.8 0.8 SD 0.11

COV % 10.62

2- Truss EC2*

τcalc/τtest ¦ F.M

11.58

0.90
0.10

2- Truss EC2*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Note: a= maximum aggregate size; r =ρxfxy/ρyfyy 
          FM= predicted failure mode: “yield”  = yielding of reinforcement in x and y directions 
                               “crush” = strut crushing 
          *Truss EC2 = both rotating and fixed approaches provide identical answers (θ =45º) 

Table 5.1: Experimental database of shear panels equally reinforced in both directions (Case I, 

r=1) 
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CASE II (r >1) τcalc/τtest

Author Panel a fc' 
[MPa]

ρxfxy 
[MPa]

ρyfyy 
[MPa] r τtest 

[MPa]
1- MCFT

Vecchio & PV10 6 14.5 4.94 2.76 1.8 3.92 0.94 0.94 yield 0.98 yield
Collins PV11 6 15.6 4.21 3.07 1.4 3.59 1.02 1.00 yield 1.01 yield

PV12 6 16.0 8.40 1.20 7.0 3.14 0.92 0.97 crush 1.43 crush
PV19 6 19.0 8.20 2.13 3.9 3.99 1.05 1.05 yield 1.29 yield
PV20 6 19.6 8.23 2.63 3.1 4.31 1.08 1.08 crush 1.26 crush
PV21 6 19.5 8.20 3.92 2.1 5.07 1.10 1.02 crush 1.06 crush
PV22 6 19.6 8.20 6.41 1.3 6.08 1.02 0.88 crush 0.89 crush
PV26 6 21.3 8.16 4.66 1.7 5.33 1.14 1.08 crush 1.10 crush

Andre TP1 9 22.1 9.18 4.60 2.0 5.75 1.09 1.02 crush 1.05 crush
TP1A 9 25.6 9.18 4.58 2.0 5.63 1.12 1.15 yield 1.22 yield
KP1 20 25.2 8.77 4.38 2.0 5.54 1.12 1.12 yield 1.19 yield

Kirschner SE1 10 42.5 14.37 4.68 3.1 6.76 1.11 1.21 yield 1.41 yield
& Collins SE6 10 40.0 14.37 1.60 9.0 3.76 1.05 1.28 yield 2.12 yield
Porasz SE11 10 70.8 14.01 4.46 3.1 6.58 1.20 1.20 yield 1.40 yield
& Beidermann SE12 10 75.9 13.23 4.55 2.9 7.44 1.04 1.04 yield 1.20 yield

SE13 10 80.5 32.53 9.26 3.5 11.99 1.22 1.23 crush 1.37 crush
Vecchio et al. PA1 10 49.9 10.00 4.29 2.3 6.29 1.06 1.04 yield 1.14 yield

PA2 10 43.0 10.06 4.30 2.3 6.24 1.06 1.05 yield 1.15 yield
PHS2 10 66.1 19.70 2.18 9.0 6.15 0.88 1.07 yield 1.78 yield
PHS3 10 58.4 19.70 4.32 4.6 8.18 1.01 1.13 yield 1.47 yield
PHS8 10 55.9 19.70 6.43 3.1 10.79 0.98 1.04 crush 1.21 crush
PC1 10 25.1 8.25 4.09 2.0 4.94 1.19 1.17 yield 1.25 yield

Pang & Hsu B1 19 45.2 5.51 2.53 2.2 4.16 0.99 0.90 yield 0.97 yield
B2 19 44.1 8.00 5.56 1.4 6.44 1.04 1.04 yield 1.05 yield
B3 19 44.9 8.00 2.56 3.1 4.58 1.06 0.99 yield 1.15 yield
B4 19 44.8 14.05 2.55 5.5 5.33 1.09 1.12 yield 1.56 yield
B5 19 42.8 14.01 5.52 2.5 7.58 1.12 1.16 yield 1.29 yield
B6 19 42.8 14.01 8.30 1.7 9.84 1.05 1.05 crush 1.08 crush

Zhang & Hsu VB1 13 98.2 9.78 5.30 1.8 7.86 0.99 0.92 yield 0.96 yield
VB2 13 97.6 16.33 5.27 3.1 9.47 1.05 0.98 yield 1.14 yield
VB3 13 102.3 26.61 5.32 5.0 10.13 1.11 1.17 yield 1.58 yield
VB4 13 96.9 8.14 2.62 3.1 5.04 1.03 0.92 yield 1.07 yield

Total 32 1- MCFT

max value = 20 102.3 32.53 9.26 9.0 Mean 1.06
min value = 6 14.5 4.21 1.20 1.3 SD 0.09

COV % 8.14
0.10

2- Truss EC2 
(rotating)

0.27
21.769.59

τcalc/τtest ¦ F.M

3- Truss EC2 
(fixed)

3- Truss EC2 
(fixed)

1.26

2- Truss EC2 
(rotating)

1.07

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: a= maximum aggregate size; r =ρxfxy/ρyfyy 
          FM= predicted failure mode: “yield”  = yielding of reinforcement in x and y directions 
                               “crush” = strut crushing while yielding in the y direction 

Table 5.2: Experimental database of shear panels with a predominant reinforced direction x (Case 

II, r>1) 
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5.3 Analytical modelling of shear panel tests 
As discussed in chapter 2, several analytical methods for predicting the shear response of 

reinforced concrete members subjected to two-dimensional stress states have been 

proposed. Some of these methods such as the Modified Compression Field Theory 

(Vecchio & Collins [8]) or the Unified Theory of Reinforced Concrete (Hsu [114]), were 

derived from experimental data provided by shear panel tests. These theories, which are 

either based on a rotating or fixed crack concept can provide predictions of the full load-

deformation response. On the other hand, plasticity truss approaches, which are also 

discussed in chapter 2, can be used in order to predict the ultimate failure load of the 

shear panels. In this section, the predictions of the ultimate shear strength of shear panels 

shown in Tables 5.1 and 5.2 using the MCFT and truss approaches suggested in EC2 are 

compared. The basic assumptions made for each method are discussed in the following 

sections.  

5.3.1 Modified Compression Field Theory 
The fundamentals of the MCFT are described in detailed in section 2.3. The predictions 

of the shear strength using the MCFT shown in Tables 5.1 and 5.2, were obtained by 

Bentz et al. [32] using software Membrane 2000 in order to solve the full set of equations 

given in section 2.3. The equation applied for the softening of the concrete in 

compression relates to early formula provided in Vecchio & Collins [8], see equations 

(2.9, 2.10) . In tension, latest version given by equation 2.13 was used in Bentz et al. [32] 

analysis. The strain at which the concrete crushes is assumed to be 0.002 and the 

aggregate size (a) was taken as zero for concrete strengths greater than 70MPa, as 

discussed in section 2.3. As shown in Bentz et al. [32] the predictions using the full set of 

equation defined in the MCFT were similar to those using the simplified approach, which 

is suggested in the Canadian code. 

A preliminary analysis was carried by the author using the MCFT for shear panels tested 

by Vecchio & Collins [8]. This analysis was carried out before Bentz et al. [32] results 

were available to the author and were obtained using a spreadsheet. In this analysis the 

actual crushing strain of the concrete was used and the softening curve for compression 

adopted was the β(1993). In addition, the tension softening used corresponded to early 

formula given in the MCFT. Despite these differences with respect Bentz et al. [32] 

analysis, identical results were obtained to those shown in Tables 5.1 and 5.2. 
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5.3.2 Simple truss approaches 
A simple truss model can be used to predict the shear strength of the panels. Two 

different alternatives can be adopted: rotating or fixed crack approach. In neither of these 

two methods the contribution of the tensile stresses in the concrete is taken into account. 

In addition, the stresses at the crack are not limited, which can result in the shear capacity 

being overestimated. 

Rotating crack truss 

The rotating crack truss model can be derived by considering equilibrium of the panel 

shown in Figure 5.3, thus obtaining equations (5.1) and (5.2). 

θσ cos.cD =         … (5.1) 

 
θθ

σθτ
tancot

sin.
+

== c
xy D       … (5.2) 

where D = diagonal compression force; σc = normal strut stress; θ = strut inclination 

 

 

 

 

 

Figure 5.3: Rotating crack truss approach for shear panels; Left– Global forces; Right– 

Equilibrium of local stresses 

The angle of the crack is assumed to be equal to θ in the rotating crack model and 

previous cracks are considered to be inactive. The crack is assumed to be stress-free as 

shown in Figure 5.3 (right).  

Two types of failure modes are considered. Firstly, assuming that reinforcement bars in 

both x and y directions yield at failure, equilibrium conditions yield to equations (5.3) and 

(5.4). 

 xyxyx f τθρ =tan..        … (5.3) 

 θτρ tan.. xyyyy f =        … (5.4) 

1 

ρy.fyy 

ρx.fxy.tanθ 
τxy 

τxy 

tanθ 
θ 
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Substituting (5.3) into (5.4), the inclination of the strut θ and the ultimate shear stress can 

be obtained as shown in equations (5.5) and (5.6) respectively. 

 
xyx

yyy

f
f

.

.
tan

ρ
ρ

θ =        … (5.5) 

 yyyxyxxy ff ... ρρτ =        … (5.6) 

For Case I where r=1 and θ =45º, equation (5.6) can be simplified to τxy=ρfy and σc=2τxy. 

The second failure mode considered is yielding in the weak direction y combined with 

concrete crushing. The ultimate shear stress and strut angle can be found for this failure 

mode by substituting equation (5.2) into (5.4) for σcmax and solving for θ and τxy hence 

obtaining equations (5.7) and (5.8). According to EC2, σcmax = νfc
’
 = 0.6(1-fc/250)fc

’. 

θρτ cot.. yyyxy f=        … (5.7) 

yyy

yyyc

f
f

.
.

cot max

ρ
ρσ

θ
−

=       … (5.8) 

where ρyfyy≤0.5σc 

Fixed crack truss 

An alternative approach is to adopt a fixed crack truss model in which the normal stresses 

on the crack equals zero at failure and that the shear retention factor β is constant. As 

shown in Figure 5.4, the fixed model needs shear stress (τcr) acting along the crack to 

maintain equilibrium, which does not limit the shear stress since β is assumed to be 

constant. 

 

 

 

 

 

Figure 5.4: Fixed crack truss approach for shear panels; Left– Global forces; Right– Equilibrium 

of local stresses 
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The same failure modes were considered as in the rotating crack truss models. For a 45º 

initial crack shown in Figure 5.4 applying equilibrium conditions and assuming yielding 

of reinforcement in both directions, equations (5.9) and (5.10) are obtained for τxy and τcr.  

2
.. yyyxyx

xy

ff ρρ
τ

+
=        …(5.9) 

( ) cryyyxyxcr ff γβρρτ ....
2
2

=−=      …(5.10) 

Failure mode which combines crushing of the strut while yielding of the reinforcement 

bars in the weak direction is again obtained from substituting equation (5.2) into (5.4) for 

θ =45º. This yields to equations (5.11) and (5.12). 

2
maxc

xy
σ

τ =         …(5.11) 

( )yyyxycr f..2 ρττ −=       …(5.12) 

where σcmax(EC2) = νfc
’
 = 0.6(1-fc/250)fc

’ 

It can be easily demonstrated that for panels equally reinforced in both directions, the 

rotating or fixed crack approaches provide identical solutions. In addition, the critical 

value of ρfy/νfc
’ which divides both failure modes investigated (rebar yielding and strut 

crushing) is 0.5 for panels in Case I (see Figure 5.5). This is in agreement with Bentz et 

al. [32], in which the shear stress in this type of panels is generally assumed to be equal to 

ρfy until a ceiling value of 0.25fc
’ (~0.5νfc

’). For panels with one predominant 

reinforcement direction the line that divides both types of failure according to the simple 

rotating truss model suggested in EC2 is defined by ρxfxy/(νfc
’-ρyfyy)=1, as shown in Figure 

5.6. 

Typical examples of a crushing type of failure are shown in Figure 5.1 and 5.2 (left) for 

specimens PV20 and PV27 respectively. Figure 5.2 (right) shows the failure of panel 

PV19 due to yielding of reinforcement in both directions. As shown in Tables 5.1 and 5.2, 

both types of failure mode observed agreed with the predicted failure mode. 
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5.3.3 Results: MCFT vs. Simple truss approaches 
The predictions of the shear strength using either the MCFT or simple truss approaches 

are summarised in Tables 5.1 and 5.2 for Cases I and II respectively. Despite secondary 

aspects such as potential slippage between loading platen and panel or bond-slip between 

reinforcement bars and concrete are neglected, accurate predictions were obtained using 

both MCFT and the simple truss approaches described in previous section. 

For Case I panels, both rotating and fixed truss approaches provided identical results. In 

addition, MCFT and simple truss predictions for panels which failed due to yielding of 

the reinforcement were identical, as shown in Figure 5.5. However, panels which were 

predicted to be limited by crushing of the strut, the shear strength obtained experimentally 

lay between MCFT and truss predictions (Figure 5.5). This is in agreement with the 

model assumptions since the truss model neglects the tensile strength of the concrete. It is 

noteworthy that although the predictions from the simple truss approach were 

conservative, the results can be considered acceptable with a mean τcalc/τtest ratio of 0.90 

and a coefficient of variation of 11.6% (see Table 5.1). 

 

 

 

 

 

 

 

Figure 5.5: Comparison between MCFT and simple truss predictions for panels equally reinforced 

in both x and y directions (Case I) 

As shown in Table 5.2 and Figure 5.6, the fixed crack approach overestimated the shear 

strength of the panels with predominant reinforcement in one direction (Case II). Worse 

predictions were obtained for panels with both low ρyfyy stresses (~2MPa) and large 

values of r (greater than 5). In these panels, the strut rotation would be highest. Hence, the 

fixed truss model becomes less accurate since it does not impose a limit on the shear 

transmitted at a crack. On the contrary, the MCFT limits the shear carried at the crack 
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depending on the crack opening and type of aggregate, which seem to provide more 

accurate predictions than the simple fixed crack truss model, as shown in Figure 5.6. The 

simple rotating truss model provided similar predictions to the MCFT as shown in Table 

5.2 and Figure 5.6, regardless of the type of failure mode predicted. This is remarkable 

considering the large differences between the formulations. 

 

 

 

 

 

 

 

Figure 5.6: Predictions of ultimate shear strength of panels in Case I (r=1) 

In panels where strut rotation was expected, the MCFT provided larger values of the 

angle θ than those predicted using the rotating truss model, as shown in Figure 5.7 for 

specimens PV12, PV18, PV19 and PV20. The reason behind this is that unlike the 

MCFT, truss models neglect the tensile strength of the concrete. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Development of strut inclination according to MCFT and truss approach 
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The influence of changing the aggregate size on the MCFT predictions was investigated 

in panels with a predominant reinforced direction. Four panels were selected from Table 

5.2 (PHS2, SE12, SE13, VB3) which had concrete strengths from 66.1MPa to 102.3MPa. 

According to the MCFT the shear stress along the crack surface vci was governed by the 

threshold value vcimax in these panels. As discussed in section 2.3, the value of vcimax 

depends on the concrete strength, crack opening and aggregate size. The shear strain-

stress curves for these panels are shown in Figure 5.8. Point A labelled in Figure 5.8, 

represents the load at which vci is limited to vcimax. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Predicted shear strain-stress curves for high-strength concrete panels with 

predominant reinforcement in the x direction; influence of aggregate size assumed 

As shown in Figure 5.8, the influence of reducing the aggregate size using the MCFT was 

insignificant, although the prediction of panels with fc
’ greater than 70MPa was slightly 

improved by taking a equal to zero. The ultimate strength reduced slightly when 

decreasing the aggregate size a, from the maximum diameter of the coarse aggregate to 

zero.  
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The types of failure predicted by the MCFT and rotating truss model were identical for 

panels SE12 and SE13. The former was predicted to fail by yielding of both 

reinforcement bars x and y since ρxfxy/(νfc
’-ρyfyy)=0.48<1, while the latter was expected to 

failed by strut crushing combined with yielding of the reinforcement in the y direction, 

ρxfxy/(νfc
’-ρyfyy)=1.38>1.  

On the other hand, panels PHS2 and VB3, with intermediate values of ρxfxy/(νfc
’-ρyfyy) 

equal to 0.73 and 0.85 respectively, the predicted failure mode from the MCFT and 

rotating truss model were different. According to the MCFT, panel PHS2 would fail due 

to crushing of the strut while in VB3 yielding of both reinforcement bars would occur. 

The results shown in Figure 5.8 suggest that the MCFT failure mode prediction seems 

more sensible than the rotating crack approach for panel VB3 but not in panel PHS2, 

where the MCFT tends to underestimate the ultimate shear strength.  
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5.4 Non-linear finite element modelling of shear panels 

5.4.1 General aspects 
In this section, some of the smeared cracking models commonly used in non-linear finite 

element modelling, which are described in chapter 3, were used in order to predict the 

shear response of panels in pure shear. One of the aims of this analysis was to find 

whether similar predictions to the MCFT could be obtained using other types of smeared 

cracking models. Moreover, the analysis was used to validate these smeared crack models 

against simple shear stress state scenarios before implementing them into more complex 

FE models for the analysis of short span and slender beams (see chapters 7 and 8). 

The NLFEA was carried out using DIANA with an incremental-iterative solution 

technique (fixed size increment steps and Newton-Raphson solver for the iterations). 

Similarly as Vecchio [123], shear panels were modelled using a single 4 noded element 

(Figure 5.9) since both stress and material conditions were homogeneous throughout the 

member. The accuracy of the predictions was comparable to that obtained by authors such 

as Broo et al. [124], in which a more complex mesh was adopted. Point loads were 

applied at the nodes (Figure 5.9) to simulate the constant shear stress state at the panel.  

 

 

 

 

 

Figure 5.9: Finite element mesh of shear panels in pure shear (4 noded element with linear 

interpolation and Gauss integration) and concrete strain-stress curves assumed in the NLFEA 

The steel reinforcement was modelled using an embedded smeared grid, although discrete 

embedded reinforcement elements provided identical results in this case. A perfect plastic 

Von Misses constitutive law was adopted for steel. Two types of smeared crack models 

were investigated for concrete: total strain (rotating and fixed crack) and multi-directional 

fixed crack model; for full detail of these models refer to section 3.3. 

In order to obtain comparable results with the MCFT, equivalent constitutive equations 

(see Figure 5.9) and parameters were provided for each procedure. Therefore similar 

P

P
P 

P 

P Concrete strain-stress curves for NLFEA 
(refer to section 3.3) 

• Compression: 
Symmetrical parabola (Hognestad) 

• Compression softening:  
β(1993) or constant reduction  factor 

• Tension: 
Equation 2.13 
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solutions were expected from this analysis. To consider compression softening due to 

transverse strains, Vecchio & Collins [25] formula (see Figure 2.6) was applied in the 

total strain models via the built-in algorithm (VC1993) included in DIANA. In the multi-

fix model different reduction factors were applied to study this effect. In general, the 

shear retention in the total strain fixed and multi-fix models was taken as 0.1. 

5.4.2 Summary of results 
Case I: Shear panels with equally reinforced directions 

As mentioned in section 5.2, panels with equal amounts of reinforcement in both x and y 

directions are only subjected to compression softening due to transverse cracking. Two 

representative cases are shown here which relate to panels PV27 and PV6 (Vecchio & 

Collins [8]); crushing of the strut was critical for panel PV27 while yielding of the 

reinforcement was expected for panel PV6, as shown in Table 5.2. 

The types of failure modes were satisfactory reproduced both FE models investigated as 

shown in Figures 5.10 and 5.11. However, important remarks regarding parameters 

assumed in the models must be made. Looking at panel PV27, in which the softening of 

concrete in compression governed the shear behaviour, it can be seen that neglecting this 

effect can lead in some cases to a clear overestimation of the shear strength. Moreover, it 

can result in the prediction of a different failure mode, as shown in Figure 5.10 (right). In 

Case I panels, total strain models using either a fixed or rotating approaches provided 

identical predictions. Another important aspect, which was discussed in section 3.3, is 

that the Poisson ratio (ν) must be taken as zero in the total strain models; otherwise the 

shear strains are clearly overestimated in the element, as shown in Figure 5.10 (right). 

 

 

 

 

 

 

 
Note: Compression softening factors assumed (left) – multi-fix model νfc

’; total strain β(93) see Figure 2.6 

Figure 5.10: FE predictions of panel PV27; Left– Valid models; Right– Incorrect assumptions 
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As shown in Figure 5.10, similar predictions were obtained using the multi-fix, total 

strain, MCFT and simple truss approaches. In the multi-fix approach, the strength of the 

concrete was reduced by conventional plasticity “effectiveness” factor ν = 0.6(1-fc
’/250)fc

’ 

(EC2). As discussed in sections 2.3 & 3.3 this “effectiveness” value, which provided 

sensible predictions for this particular case, is considerably lower than the reduction 

factors proposed by authors such as Reineck [40]. It is questionable whether it is realistic 

to use the same concrete reducing factors for single elements in pure shear and elements 

found in dense meshes with more complex biaxial stress states since previous cracks can 

influence the strength of the struts. 

Panel PV6 was predicted to fail due to yielding of the reinforcement, as shown by the 

strain-stress curve in Figure 5.11 (left). As reported by Hsu [125], in such types of panels 

NLFE models tend to overestimate the yield strength since the increment of stresses in the 

reinforcement at the crack is not considered. Similar problem is obtained in Case II panels 

in which failure is due to yielding of reinforcement bars in both directions, see Figure 

5.11 (right). In this work, a sensible prediction of these shear panels was obtained by 

reducing the yield strength of the reinforcement bars by a factor of 0.75, as shown in 

Figure 5.11. MCFT or simple rotating truss models provided more accurate predictions 

than the NLFEA for panels governed by yielding of the reinforcement. An alternative 

method to reducing the yield strength of the reinforcement would be modifying the 

tension softening curve for concrete, although both approaches are approximate solutions. 

 

 

 

 

 

 

 

Note: Total strain rotating and fixed models provided identical predictions for both panels 

Figure 5.11: FE predictions of shear panels in which yielding of reinforcement was critical; Left– 

Panel PV6 (Case I); Right– Panel PV11 (Case II); refer to Table 5.1 and 5.2 respectively 
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Case II: Shear panels with predominant reinforcement in the x direction 

The predictions for the Case II panels, which were governed by crushing of the strut 

while yielding of the reinforcement in the weak direction, were similar using either NLFE 

total strain models or MCFT (Figure 5.12). On the other hand, multi-directional fixed 

crack model tended to overestimate the ultimate strength if same reduction factor ν = 

0.6(1-fc
’/250)fc

’ used for Case I panels was applied. This seemed to worsen for panels with 

larger strut rotation, such as PV12 (r =7). The results using this model are referred to as 

“Multi-fix” in Figure 5.12.  

The considerably larger level of softening adopted by the MCFT, which had a reduction 

strength factor of around 0.45, provided more accurate predictions for these panels 

compared to using the effectiveness factor ν = 0.6(1-fc
’/250)fc

’. As shown in Figure 5.12, 

the predictions of the multi-fix model can be improved for these panels by assuming this 

reduction factor of 0.45 for fc
’ in combination to reducing fyy by 0.75, as discussed in 

previous section; the results are denoted as “Multi-fix (modified)” in Figure 5.12. 

 

 

 

 

 

 

 
Note: Reduction of concrete strength in “Multi-fix” model of νfc

’ 
In Multi-fix (modified) concrete strength and yield strength of y-reinforcement has been factored by  
0.45 and 0.75 respectively 
 

Figure 5.12: FE predictions of Case II panels failing due to crushing of the strut while yielding of 

the reinforcement in the y direction; Left– Panel PV20 (r =3.1); Right– Panel PV12 (r =7) 

In view of these results it seems that total strain models are more suitable to simulate 

shear panels with large reorientation of stress fields than the multi-directional fixed crack 

approach. Surprisingly, both rotating and fixed total strain models provided comparable 

results. However, this was not the case if the shear retention factor in the total strain fixed 

crack model was increased from 0.1, which was the initial value adopted in the NLFEA. 

Figure 5.13 shows the increase in the ultimate strength due to increasing shear retention 
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factor β in the total strain fixed models. The increase seems to be larger for panel PV12 

since larger strut realignment took place. The value of β equal to 0.1, which is commonly 

adopted in the NLFE models developed in this work, provided optimal predictions as 

illustrated in Figure 5.13. 

 

 

 

 

 

 

 

Figure 5.13: Influence of shear retention factor assumed in NLFEA using total strains fixed crack 

model (panels PV20 and PV12) 
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5.5 Discrete crack approach: Crack slip model 
In order to assess the influence of neglecting the stresses at previous cracks, a discrete 

approach using a crack slip model has been derived by the author. The model assumes 

that the shear strength can be limited by shear transfer across cracks. As recognized by 

Vecchio [29], models such as the Disturbed Stress Field Model (DSFM, [29]), in which 

the crack slip is taken into account directly, are numerically demanding. Hence, several 

simplifications were adopted in the discrete model presented in this section to keep the 

analytical model practical. Whilst simple, the approach seems rational and can provide 

sensible predictions. Moreover, the crack slip model can be implemented with few 

modifications to study the development of crack displacements and stresses in continuous 

beams as shown in section 8.3.3. 

5.5.1 General assumptions 
The crack slip model is a discrete approach in which strains are obtained in terms of 

relative crack displacements i.e. slip (s) and opening (w), neglecting deformation within 

the concrete for a first estimation. A single square element is isolated from the crack with 

a size of L=Sθ/(2sinθ), as shown in Figure 5.14. The furthest point of the element from the 

crack corresponds with the location of the maximum tensile stress i.e. midpoint between 

two consecutive cracks.  

 

 

 

 

 

Figure 5.14: Crack slip model; Left– Isolated element; Right– Equilibrium at the crack 

Only pure shear conditions are considered, without axial tension nor compression. In this 

section, the formulas are derived by imposing compatibility and equilibrium conditions at 

cracks, which have an inclination of 45º (Figure 5.14). This is the general case of cracks 

that form at early load stages in a shear panel or in the web of a simply supported beam. 

In section 8.3.3, these formulas are generalized for different crack inclinations, in order to 

apply them to continuous beams, where the shear cracks were considerably flatter than 

45º. 
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5.5.2 Equilibrium and compatibility conditions 
The strains generated in the element for a given relative displacement w (crack opening) 

in the local r-direction, see Figure 5.15 (left), are given by equations (5.13) to (5.15). 

 
L

w
rcr .2

=ε  and  0=dcrε       … (5.13) 

 rcrdcrrcrcr εεεγ =−=        … (5.14) 

 
L

w
xcr .2

=ε  and  
L

w
ycr .2

=ε      … (5.15) 

where r-d are local crack directions, L=Sθ/√2, w = crack opening, s = crack slip, and 

tension is considered positive. Crack spacing Sθ is estimated as shown in Figure 5.14, 

assuming that crack parameters smx and smy are 1.5 times the maximum distance between 

reinforcement bars (Vecchio & Collins [8]). 

 

 

 

 

 

Figure 5.15: Strains generated due to normal and shear relative crack displacements; Left– 

Opening relative displacement (w); Right– Slip relative displacement (s) 

In the same manner for a relative displacement s in the d-direction, see Figure 5.15 

(right), the strains obtained for this case are given by equations (5.16) and (5.17). 

 0=== crdcrrcr γεε        … (5.16) 

 
L

s
xcr .2

=ε  and  
L

s
ycr .2

−
=ε      … (5.17) 

Unlike the simple truss approaches, which are described in section 5.3.2, the crack is no 

longer stress free. The shear and normal stresses can be calculated by considering 

equilibrium in the element (Figure 5.14), which yields to the following expressions: 

 xsxcrxyncr ρσττσ .+=+       … (5.18) 

 crysyxyncr τρστσ −=+ .        … (5.19) 

w 
s 

S/2 
S/2 
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The normal and shear stresses at the crack (σncr, τcr) in equations (5.18) and (5.19), can be 

written in terms of the crack opening and slip, using any of the formulations based on the 

deformation theory, which are described in chapter 2 (section 2.5.2). Five of these models 

were validated in section 4.5, using push-off test data obtained in this work. In view of the 

results presented in chapter 4, the linear aggregate interlock relationship (Walraven & 

Reinhardt [46]) was finally adopted for the crack slip model. This constitutive equation 

for aggregate interlock has also been adopted in other discrete crack approaches, such as 

the already mentioned DSFM (Vecchio [29]). 

In equations (5.18) and (5.19), the steel stresses σsx and σsy can also be written in terms of 

the crack slip and opening, as shown in equations (5.20) and (5.21). Term Esm in 

equations (5.20) and (5.21) is the enhanced value of the Young’s modulus for steel, which 

takes into account the contribution of cracked concrete to steel strength (tension 

stiffening). In order to estimate Esm, approach proposed by Hsu [114] for embedded 

reinforcement could be used or alternatively a derived value for Esm from the MCFT. For 

simplicity, an approximate value of 1.5 times Es was finally adopted, where Es 

=200000MPa. 
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where Esm = enhanced value of Young’s modulus (=1.5Es), fxy–fyy = yield strength of 

reinforcement bars in the x–y direction 

The crack opening and sliding can be solved numerically implementing equations (5.13) 

to (5.21) into a spreadsheet. The inclination of the principal compression stress θ can be 

calculated from Mohr’s circle knowing points A(σsxρx, τxy) and B(σsyρy, -τxy), as shown in 

equation (5.22). 
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5.5.3 Crack slip model predictions of shear panel tests 
The discrete crack slip model described in previous section was applied to estimate the 

shear response of panels tested by Vecchio & Collins [8], see Table 5.2. Despite the 

initial assumptions made, the results are quite favourable, especially for panel PV20, 

where the predictions of the shear strains seem even better than those given by MCFT, as 

shown in Figure 5.16. 

 

 

 

 

 

 

 

Figure 5.16: Predictions for shear response of panel PV20; MCFT, Crack slip and Truss models 

The predictions of the ultimate strength obtained using the crack slip model were 

reasonable for the eight panels investigated, as shown in Figure 5.17. However a slightly 

larger coefficient of variation was obtained (11.8%) compared with MCFT and simple 

truss rotating model, which had a COV of around 7%. The results for ultimate loads, 

crack displacements and inclination of strut at failure are also shown in Figure 5.17. 

 

 

 

 

 

            Note: wult, sult = crack opening  
            and slip at peak load 

 

 

Figure 5.17: Crack slip model predictions of shear panels tested by Vecchio & Collins [8] 
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The shear strain-stress curves of panels PV19 and PV12 are shown in Figure 5.18. These 

panels have considerably less reinforcement in the y direction than panel PV20 shown in 

Figure 2.16. The shear strength of panel PV12 was underestimated using the crack slip 

model or MCFT. As mentioned in section 5.4.1, this panel had a significantly greater 

value of r =ρxfxy/ρyfyy=7 compared with the remaining panels, in which r ranged from 1.5 

to 4. The larger strut rotation expected in this panel was in agreement with the lower strut 

angle θ shown in Figure 5.17 for PV12.   

   

 

 

 

 

 

 

Figure 5.18: Shear strain-stress predictions using MCFT and crack slip model (PV19 and PV12) 

The predictions of the shear response using the crack slip model are not realistic for early 

load stages as shown in Figures 5.16 and 5.18. This is due to the fact that in the crack slip 

model the un-cracked state was not taken into consideration. As discussed in chapter 8, 

this assumption is equivalent to assuming that the specimen is pre-cracked in shear. 

 

 

 

 

 



Chapter 5 – Analysis of Shear Panels 

161 

5.6 Conclusions 
Although shear panel tests are complex in terms of execution, the experimental data 

obtained is considerably easier to interpret than results gathered from traditional beam 

tests. A pure shear stress state in the concrete member can be attained in these panel tests, 

which can be helpful to obtain a better understanding in the contribution to shear 

behaviour of aggregate interlock and compression softening due to transverse cracking. 

The extensive database gathered by Bentz et al. [32] of experimental results from several 

researchers, shows that MCFT can predict accurately the response of shear panels in pure 

shear. Moreover, the simplified MCFT formulas proposed by Bentz. et al. [32] can also 

be used in order to assess the ultimate strength by simple hand calculations. The 

alternative simple truss models presented in this chapter, which are based on either a 

rotating or fixed crack concept, can provide equally accurate strength predictions for 

panels with the same reinforcement in each orthogonal direction. On the other hand, 

panels with one predominant reinforced direction (Case II) only the simple rotating truss 

approach provided accurate predictions, which are comparable to those obtained using the 

MCFT. The inclination of the strut was found to be steeper using the MCFT than the 

rotating truss model in the panels investigated. 

Two types of failure modes were usually observed, which referred to yielding of the 

reinforcement or crushing of the strut. In Case II panels, the crushing of the strut occurs in 

combination with yielding of the reinforcement in the weak direction, which is followed 

by a stress fields rotation and mobilization of the aggregate interlock action. In general, 

the predicted failure mode was identical for MCFT and simple truss approaches, which 

was in agreement with experimental evidence. 

The influence of changing the aggregate size (a) in the MCFT predictions of the shear 

panels constructed with high-strength concrete was insignificant. Nevertheless, reducing a 

from the maximum diameter of the course aggregate to zero for concretes with fc
’ greater 

than 70MPa, as recommended in the Canadian code, gave a slight improvement in the 

predictions. However, no information regarding the type of aggregate used or whether it 

had fractured at the crack was available for the panels studied. 

It has been shown that the response of shear panels can also be predicted carrying a 

NLFEA using a single element mesh, in which some of the smeared crack approaches 

described in chapter 3 were adopted (Total strains and Multi-directional fixed crack 
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models). Despite the different formulations applied in each of these smeared crack 

approaches (fixed/rotating, total strain/strain decomposition with plasticity), comparable 

predictions can be obtained to MCFT, if equivalent parameters and constitutive strain-

stress relationships are provided. The NLFEA showed the importance of adopting 

consistent values for the different parameter required in the models, such as the Poisson 

ratio (ν) or shear retention factor (β). Optimal predictions using the total strain fixed crack 

model were obtained using values of ν =0 and β =0.1. 

The results from the NLFEA of shear panels indicated that compression softening due to 

transverse strains must be taken into account in order to obtain reasonable predictions. 

The predictions of Case II panels, in which failing was governed by concrete crushing, 

were in general more accurate using total strain models, which are formulated in a similar 

fashion as the MCFT, than the multi-fix model. The strength of these panels was slightly 

overestimated using the multi-fix model which was surprising since a considerably low 

reduction factor for the concrete strength was applied (νfc
’). However, the same 

“effectiveness” factor applied to similar panels with equal amounts of reinforcement in 

both orthogonal directions, showed to be adequate using the multi-fix model. It remains 

questionable whether this low constant factor is suitable for this case only or it can be 

applied to more advanced stress state conditions. The strength of panels failing due to 

yielding of the reinforcement was overestimated by the NLFE models. This was expected 

since the increase of stresses in the reinforcement at cracks is not considered; a reduction 

factor for the yield strength of 0.75 was found to provide reasonable predictions. An 

alternative method would be to modify the tension softening behaviour of the concrete. 

Lastly, the discrete crack slip model presented in this chapter shows a simple whilst 

rational approach to assess the limit case where the behaviour is governed by shear 

stresses along cracks. More sophisticated models such as the DSFM [29], have been 

developed, in which the crack slip is also taken into account. Despite the large number of 

simplifications adopted in the model presented here, reasonable predictions of the shear 

strain-stress response were obtained for the panels investigated. The ultimate shear 

strengths were similar to those obtained using both MCFT and simple truss approaches, 

although a slightly larger COV was observed. Once the model had been validated for the 

particular case of shear panels in pure shear, the model was adapted for estimating 

stresses and displacement at critical shear cracks at webs of continuous beams (section 

8.3.3.).



 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 6 – Beam Tests 
 

6.1 Introduction 
This chapter summarises the experimental results and testing methodology of 22 beam 

tests carried out by the author in the Heavy Structures Laboratory at Imperial College 

London. The experimental results are discussed in further detail and compared with 

analytical/numerical predictions in chapters 7 and 8. The main goal of these tests was to 

investigate the influence of aggregate fracture on shear strength of reinforced concrete 

beams for different types of loading. Tests included beams with and without shear 

reinforcement. Shear span to effective depth ratios (a/d) of 1.5 and 3.5 were investigated, 

which relate to short span and slender beams respectively. The different tests series are 

summarised in Table 6.1. Previous experimental data was available in the literature 

regarding slender beams without shear reinforcement focusing on the type of aggregate 

(see Regan [4]); hence this type of test was chosen as the starting point of the 

experimental programme. Beams B0 were designed using a similar geometry and load 

configuration as tests carried out by Regan [4], which included beams with different types 

of aggregate. 

Beams a/d Stirrups? Type of Loading  
AG0; AL0 1.50 no Simply supported 
AG2, AG3, AG4; AL2, AL3, AL4 1.50 yes Simply supported 
BG01, BG02; BL01, BL02 3.46 no Simply supported 
BG1, BG2; BL1, BL2 3.52 yes Continuous beam 
CB1, CB2; CA1, CA2 3.52 yes Continuous beam 
DB1; DA1 3.68 yes Simply supported 

Note: Beams A and B- prefix “G” stands for gravel and “L” limestone aggregate concretes 
          Beams C and D- (gravel aggregate concrete); prefixes “A” and “B” stands for steel class (stirrups) 

Table 6.1: Summary of experimental work (beam tests) 
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Beams A and B were constructed in pairs using two types of aggregate (gravel and 

limestone); which are denoted as “G” and “L” respectively. The crack surfaces in the 

limestone specimens were smooth due to splitting of the course aggregate at the crack. 

The main parameters investigated in beams C-D, which were cast using normal gravel 

aggregate, were the amount of shear reinforcement and the class of steel used in the 

stirrups. Beams B-C were loaded with a point of contra-flexure while the remaining 

beams were simply supported. Beams C-D were not included in the original test 

programme. However, the undesired concrete strength variations obtained in beams B and 

the interest of studying the effects of the type of loading, motivated testing beams C-D. 

6.2 Material properties 

6.2.1 Reinforcement 
The reinforcement used for manufacturing beams A and B was hot-rolled round deformed 

high yield steel bars (T). Two samples of each bar diameter (8mm and 25mm) were tested 

to calculate the yielding strength. The yield strength, which was obtained using the 0.2% 

offset rule, was found to be different for the T8 bars and T25 bars, 550MPa and 580MPa 

respectively. The stress-strain diagrams are plotted in Figure 6.1. 

 

 

 

 

 

 

 

Figure 6.1: Stress-strain diagrams for T8 and T25 reinforcement bars 

Beams C and D were constructed using 10mm diameter stirrups, with either class A or B 

steel, according to EC2 classification. Both types of steel had similar yield strength 

(fy=600MPa) but class A had a more brittle behaviour (Figure 6.1). 

The amount of reinforcement provided in the beams was designed using EC2 and BS8110 

to avoid flexural and local failures. The design was verified by performing a non-linear 

finite element analysis, which corroborated that longitudinal reinforcement, would not 
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yield for the design concrete strength assumed. Sufficient anchorage length was provided 

with straight bars adding in each end four extra stirrups spaced 120mm. 

6.2.2 Concrete 
Beams A and B were designed for a cylinder concrete strength of 60MPa, although 

several deviations from this target were obtained due to errors from the Readymix 

suppliers. Beams C and D were designed for a cylinder concrete strength of 40MPa. Two 

types of course aggregate were used for beams A and B; namely normal gravel and 

limestone aggregates. The “normal gravel” referred to in this work corresponds to marine 

pebbles or bench gravel, which has a siliceous nature. This type of aggregate is obtained 

from natural gravel pits, which are commonly found in Southern England. On the other 

hand, limestone aggregate is a crushed stone from a carbonated rock. 

Special attention was paid when designing the concrete mixes to optimise the concrete 

strength at which the limestone aggregate would fracture at the crack while in the gravel 

specimens the crack went round the aggregate. Several trial mixes were tested in the lab 

before casting the definite specimens in order to assess the concrete strength at which 

only the limestone aggregate would fracture completely. A slump test of 180mm was set 

as target due to the high workability required for the short span beams with stirrups, 

which were cast vertically. Brazilian splitting test showed that for the limestone concrete 

with cylinder strengths as low as 50MPa the limestone aggregate fractured. In the gravel 

aggregate concrete, only a small fraction (~30%) of the aggregate fractured, which in 

general corresponded to sandstone particles (white aggregates in Figure 6.2 left). 

 

 

 

 

 

 

Figure 6.2: Crack surfaces of cylinders after Brazilian test (Left- gravel; Right- limestone) 

The final mix designs are summarised in Table 6.2. Although the mix design was 

identical for mixes 1 and 3, the concrete strength was slightly different for both mixes, as 
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shown in Figure 6.3. In addition, the concrete strength varied considerably for mixes 3 

and 4, even though the only difference between the mixes was the type of coarse 

aggregate. The low strength observed in mix 4 might have been due to insufficient water 

content required in the mix for hydration. 

 Mix constituents 
and proportions 

(kg/m3) 

Mix 1 
[06/03/07] 

Mix 2 
[22/03/07] 

Mix 3 
[01/08/07] 

Mix 4 
[08/08/07] 

Mix 5 
[08/05/08] 

CEM I 42,5 R 400 350 400 400 390 
GGBS - Slag 100 87.5 100 100 - 

Coarse aggregate limestone gravel limestone gravel gravel 
10mm gravel - 1051 - 1051 940 

10mm limestone 1051 - 1051 - - 
Marine sand 610 670 610 610 750 

CSP313 RMC 4.32 2.6 4.32 4.32 2.34 
Microsilica+ 40 35 40 40 - 

Water 140 138 140 140 200 
 
Notes: Proportions given in dry aggregate 

Mixes 1 and 2 = Short span beams (beams A) + Slender beams without stirrups (beams B0) 
 Mixes 3 and 4 = Slender beams with stirrups (beams B) + Push-off tests 
 Mix 5 = Slender beams with stirrups (beams C and D) 
 + Microsilica is given in proportions of dry weight 

Table 6.2: Mix designs used for beam and push-off specimens 

The concrete strength was obtained by crushing cubes (100mm) and cylinders (4” 

diameter and 10” height), which were cured in under two different conditions: water (20˚) 

and air exposed with same temperature and moisture conditions as the test specimens. 

The compressive strength development over time was also monitored as shown in Figure 

6.3. Compressive strengths adopted in the analysis (chapter 7 and 8) related to cylinders 

which were cured in water and crushed around the day of the test. The tensile strength of 

the concrete was obtained by splitting cylinders (6” diameter and 9” height) in a standard 

Brazilian test arrangement.  

Table 6.3 summarises the results of all the control specimens for mixes 1 to 5. In all 

cases, the specimens were tested well after 28 days, where the strength had reached the 

plateau shown in Figure 6.3. Mixes 1 and 2 were used for casting the short span beams 

and slender beams with no stirrups while 3 and 4 were used in slender beams with stirrups 

as well as the push-off test. Lastly, mix 5 was used in beams C and D 
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Note: Mix 4** - cube strength was excessively low (cylinder strengths seemed more realistic) 

Figure 6.3: Cube strength development (fcc) over time (Mixes 1 to 5) 

 

 
Notes: +Mix 1:  values relate to day 133 after casting (testing of beams AL) 
  BL01-BL02 were tested on the 87 and 89 day respectively 

++Mix 2: values relate to day 104 after casting (testing of beams AG) 
  BG01-BG02 were tested on the 68 and 70 day respectively 
 

Table 6.3: Material properties obtained from control specimens 

 

  Mix 1 (Limestone) Mix 2 (Gravel) 
Avg. Surf. Dried Density 2352 kg/m3 2302 kg/m3 

Compression Curing Num. fc
+ [MPa] Num. fc

++ [MPa] 
air 3 65.27 3 90.76 Cube [100mm] water 2 78.56 3 90.38 
air 3 54.43 3 84.67 Cylinder [4″ x 10″] water 3 68.44 3 80.20 

Tension Curing Num. fct
+ [MPa] Num. fct

++ [MPa] 
air 3 3.72 3 4.16 Cylinder [6″ x 9″] water 3 4.86 3 5.67 

E-value Curing Num. Ec 
[GPa] ν Num. Ec 

[GPa] ν 

Cylinder [4″ x 10″] air 1 34.97 0.20 1 42.61 0.16 
Comp. over time Curing Num. Day fc Num. Day fc 

water 1 7 48.36 1 7 63.55 
water 1 14 60.32 - - - 
water 1 28 70.13 1 28 84.07 Cube [100mm] 

water 2 87 77.47 1 68 90.22 
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  Mix 3 (Limestone) Mix 4 (Gravel) 
Avg. Surf. Dried Density 2330.70 kg/m3 2059.24 kg/m3 

Compression Curing Num. fc
+ [MPa] Num. fc

++ [MPa] 
air 2 60.21 2 31.70 

water 3 60.30 3 30.37 Cube [100mm] 
poorly* 2 41.64 2 23.22 

air 3 49.66 3 32.50 Cylinder [4″ x 10″] water 3 53.11 3 31.70 
Tension Curing Num. fct

+  [MPa] Num. fct
++ [MPa] 

air 3 3.48 3 2.53 Cylinder [6″ x 9″] water 3 3.79 3 2.80 

E-value Curing Num. Ec 
[GPa] ν Num. Ec 

[GPa] ν 

Cylinder [4″ x 10″] air - - - 1 27.21 0.17 
Comp. over time Curing Num. Day fc Num. Day fc 

water 1 5 37.5 1 7 20.08
water 1 14 52.18 1 15 22.46
water 2 29 55.81 1 28 27.67

air 2 120 59.68 2 126 31.69
Cube [100mm] 

water 3 120 61.21 3 126 32.27
Cylinder [4″ x 10″] water 3 120 55.05 3 126 33.66
Cylinder [6″ x 9″] water 3 120 55.13 3 126 27.04

 
Notes: +Mix 3:  values relate to day 57 after casting (testing of beams BL) 

PL specimens were tested around 120 days after casting 
++Mix 4: values relate to day 64 after casting (testing of beams BG) 

PG specimens were tested around 126 days after casting 
 

  Mix 5 (Gravel) 
Avg. Surf. Dried Density 2331.09 kg/m3 

Compression Curing Num. fc
+ [MPa] 

air 3 56.15 Cube [100mm] water 2 55.55 
air 3 46.82 Cylinder [4″ x 10″] water 3 49.35 

Tension Curing Num. fct
+ [MPa] 

Cylinder [6″ x 9″] water 3 3.16 
Comp. over time Curing Num. Day fc 

water 1 4 34.56 
water 1 7 41.07 
water 2 14 46.45 
water 2 28 51.99 

Cube [100mm] 

water 2 62++ 57.84 
 
Notes: +Mix 5:  values relate to day 50 after casting (testing of beams C) 

++Mix 5: beams D were tested around 60 days after casting 

Table 6.3(Cont.): Material properties obtained from control specimens 
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The ratio between cube and cylinder strength (fc’/ fcc) was different for each mix and 

varied between 0.83 and 0.95. This variation justified testing cylinders in addition to 

cubes. EC2 and BS8110 apply cylinder and cube strengths respectively, so this approach 

seemed more accurate than using a constant conversion factor. The need of testing 

cylinder and cube control specimens for high strength concretes has been raised by 

authors such as Larrard et al. [126].  

Mix 4 had significant anomalies regarding cube strengths with a fc’/ fcc ratio of 1. This 

mix had reduced density (11% lower than the rest) due to air entrapment. The Poisson 

ratio was similar for all mixes (ν = 0.20-0.18). Low values of ν could have explained the 

higher value for fc’/ fcc ratio according to Larrard et al. [126], but ν in mix 4 was similar to 

the other mixes. In order to obtain further information about the real uniaxial strength of 

mix 4, cylinders with a different size (6” by 9”), which are usually used for Brazilian 

tests, were crushed in compression. The results are shown in Table 6.3 and had a good 

correlation with the 4” diameter cylinder strengths. Hence, cube strengths for mix 4 were 

neglected in the analysis of specimens made with mix 4. 

Another important aspect that was observed while testing the control specimens was the 

influence of proper curing of cube specimens. Air cured cube specimens for mix 1 had a 

significantly lower strength (15%) in comparison with the water cured ones, as shown in 

Table 6.3. This was not consistent with the rest of the mixes, where air and water cured 

specimens had similar strengths. The reason for this discrepancy in cube strengths in mix 

1, was most likely due to poor curing during first days. Additional cubes were tested for 

mixes 3 and 4 that were intentionally poorly cured under normal room conditions without 

keeping good moisture levels. The results for these poorly cured cubes (see Table 6.3) 

showed strength reductions up to 30%, which is even larger than those observed for mix 

1. 
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6.3 Short span beams (Beams A)  

6.3.1 General aspects 
A total of 8 short span beams (beams A) were tested, which were 3m long and had a shear 

span to effective depth of 1.5. The beams were simply supported and were loaded 

monotonically at midspan. The clear shear span to effective depth ratios (av/d) in all the 

specimens were 1.12 and 1.04 for the left and right spans respectively, since different 

plate sizes were used for each support; plates were 125mm and 200mm as shown in 

Figure 6.4. The aim of using different plate sizes was to study the influence of the bottom 

node geometry on the strength. In addition, failure was encouraged in the span with larger 

av/d ratio, which had more instrumentation. 

Four cases of transverse reinforcement were tested, see Figures 6.4 and 6.5: 

1. Specimens AG0, AL0: no web reinforcement (ρv = 0%) 

2. Specimens AG2, AL2: four T8 stirrups (ρv = 0.22%) 

3. Specimens AG3, AL3: six T8 stirrups (ρv = 0.34%) 

4. Specimens AG4, AL4: eight T8 stirrups (ρv = 0.45%) 

The beams had a central span of 1320mm, measured between centrelines of the supports. 

Rollers were placed under the bearing plates to allow horizontal displacements and 

pinned rotation. The thickness of the bearing plates were 75mm for the left plate, 65mm 

for the right plate and 30mm for the loading plate in order to assure an uniform stress 

distribution under the plate. 

 

 

 

 

 

 

 

Figure 6.4: General dimensions of short span beams (Beams AG0 and AL0) 
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Figure 6.5: Position of stirrups in beams AG2 to AG4 and AL2 to AL4  

The longitudinal reinforcement consisted of two layers of two T25 each (ρl = 3.32%) in 

order to avoid flexural failure. Two T20 bars were placed on the top to hang the stirrups 

as shown in Figure 6.5. Four extra stirrups were placed every 120mm at the ends of the 

beams to provide adequate anchorage. Four beams (AL0-AL4) were cast using mix 2 

with limestone aggregate concrete (see section 6.2.2). Mix 1, which had gravel aggregate, 

was used for the remaining beams (AG0 to AG4). 
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6.3.2 Manufacture and curing 
The beams were cast vertically in wood moulds in groups of four (AG0-AG4 and AL0-

AL4), see Figure 6.6. Two internal vibrators were used to compact the concrete. The 

control cubes and cylinders were vibrated on a standard vibrating table. All specimens 

were covered with polythene sheets until stripping of the moulds as shown in Figure 6.7. 

The control specimens were taken out of the moulds the following day while the beams 

were stripped two days after casting. The beams were then covered with wet Hessian and 

polythene sheets, which were watered weekly to keep adequate moisture levels for proper 

curing. The control cubes and cylinders were cured as described in section 6.2.2. 

 

 

 

 

 

 

 

 

Figure 6.6: Left - Moulds for beams AL4 to AL0 (left to right); Right - Casting of gravel beams 

 

 

 

 

 

 

 

 

Figure 6.7: Gravel aggregate concrete beams before stripping (AG0-AG4; B0L1-B0L2) 
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6.3.3 Instrumentation 
A 2500kN capacity load cell was allocated under the hydraulic jack, see Figure 6.8, to 

record the total load and another one (1000kN capacity) was placed under the right 

support to assess any possible asymmetries in the rig. Deflections, strains and relative 

crack displacements were monitored in the beams using: 

1. Linear variable displacement transducers (LVTDs) 

2. Demec readings (150mm and 250mm Demec gauges) 

3. Strain gauges at the reinforcement bars (transverse and longitudinal) 

Global displacements 

A total of 7 LVTDs were placed at the beam to monitor global deflections as shown in 

Figure 6.8. Transducers #1 and #2 recorded the vertical deflection at the centre point 

relative to the supports and floor respectively. Out-of-plane deflections were measured 

with LVTD #3. Transducers #4 and #5, which were placed at 480mm from the centre in 

both spans, were used to record vertical deflections near the plate relative to the ground, 

see Figure 6.8. Finally, the beam rotation at the support was measured by LVTDs #6 and 

#7 placed at the left end of the beam.  

 

 

 

 

 

 

 

 

Figure 6.8: Position of LVTDs in the short span beam tests 

Strains at the centre section and direct strut 

The horizontal strains at the central section were obtained at six points using Demec 

gauges. Two of these points corresponded with the longitudinal reinforcement as shown 

in Figure 6.9.a. 

Frame used 
to measure defl. 
relative to supports 



Chapter 6 – Beam Tests 

174 

One grid of 150mm Demec targets was placed with the purpose of monitoring 

longitudinal and transverse strains along the direct strut of the left span (av/d of 1.12). In 

order to make direct comparisons between different specimens, the grid shown in Figure 

6.9.a for the direct strut (line AB), which was obtained from the strut-and-tie model of the 

beam without stirrups, was kept constant for all the beams. 

Strains in the reinforcement bars 
In addition, Demec targets were placed to control strains at every stirrup, see Figure 6.9.b. 

The strains of the longitudinal reinforcement were also recorded, (Figure 6.9.a). The 

readings from the Demec gauges could be compared in some specimens with readings 

from strain gauges located at the same position as the centroid between two Demec 

targets. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.9: a) Demec grid used to obtain strains at the central section (hollow marks) and direct 

strut (filled marks); b) Demec grid used to obtain strains in the stirrups  

Beams AG0, AL0, AG3 and AL3 were instrumented with strain gauges as shown in 

Figure 6.10. Strain gauges 1 to 10 were placed in pairs at bottom and top of the same 

reinforcement bar to take flexure into account. The main objective of these measurements 

was to assess the strain distribution along the longitudinal reinforcement, verified Demec 
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readings and detect any potential yielding of the reinforcement steel. Strain gauges 11 to 

16 were only placed on one side of the stirrup. Readings 11, 13 and 16 corresponded to 

points near the critical crack while points 12, 14 and 15 were far from this crack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: a) Strain gauges for beams AG0 and AL0; b) Strain gauges for beams AG3 and AL3 

 
Relative crack displacements 

The predominant crack was studied in terms of its relative displacements: opening and 

sliding. Three methods were applied: 

1. Grid of Cross Demec gauges 

2. Cross LVTDs 

3. Microscopic ruler (crack opening only) 

The first two methods were also used in the push-off tests presented in this work; see 

section 4.2.3. Additionally, the measurements obtained from the crosses were compared 

with simple visual readings using a microscopic ruler with a precision of 1/26mm. In 

general, readings using Demec, LVTDs and visual methods were in very good agreement. 

Although the cross LVTDs seems the most optimal procedure, since it provides 
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continuous readings, the other methods were also found very useful due to their simplicity 

and reliability. 

The cross Demec targets (250mm gauge) were placed before testing to cover the area 

where the main crack was most likely to appear, see Figure 6.11, which is along the line 

that connects the inner edges of the loading and support plates. On the other side of the 

beam, two LVTDs crosses (150mm length) were placed on the critical shear span as 

shown in Figures 6.8 and 6.12. 

 

 

 

 

 

Figure 6.11: Grid of cross Demec (250mm gauge) used to obtain relative crack displacements 

 

 

 

 

 

 

 

 

Figure 6.12: Cross LVTDs used on one side of the beam 
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6.3.4 Results 
Summary of experimental results 

Table 6.4 summarises the experimental results obtained for the short span beams. With 

the exception of beams AG4 & AL2, failure occurred on the span with higher av/d ratio. 

In addition, the ultimate load for beam AL2 exceeded the one for AL3, which was not 

expected. In Table 6.4, δctr is the measured deflection at failure under the loading plate 

relative to the supports; Pcr and Pult are the loads at which the critical shear crack 

appeared and at failure respectively. 

Beam fc
’  

[MPa] 
fs 

[MPa] stirrups av/d 
(critical)

δ ctr 
[mm]

Pcr 
[kN] 

Pult 
[kN] Failure 

AG0 80.20 550 0 1.12 2.37 250 651.53 Sh. Prop 
AG2 80.20 550 2T8 1.12 3.84 300 1126.05 Sh. Comp. 
AG3 80.20 550 3T8 1.12 4.37 200 1309.21 Sh. Comp* 
AG4 80.20 550 4T8 1.04 4.57 300 1414.20 Sh. Comp* 
AL0 68.44 550 0 1.12 2.87 230 731.01 Sh. Comp. 
AL2 68.44 550 2T8 1.04 3.95 400 1063.79 Sh. Comp. 
AL3 68.44 550 3T8 1.12 3.68 173 961.46 Sh. Prop.  
AL4 68.44 550 4T8 1.12 4.21 270 1204.39 Sh. Comp. 

 
Note: Failure: Sh. Prop. – Shear Proper; Sh. Comp. – Shear Compression; Sh. Comp* - Shear Compression 
and longitudinal reinforcement near yielding 

Table 6.4: Summary of experimental results of short span beams (Beams A) 

Type of Failure and Crack pattern 

All beams failed in shear, although the type of failure was slightly different for each 

specimen. Beams AG0 and AL3 had shear proper type of failure with the main diagonal 

crack crossing the direct strut from early load stages. This crack connected the inner 

edges of loading and support plates. On the other hand, beams that failed in shear 

compression, the diagonal crack was slightly flatter and did not extend to the ends until 

near failure, where the concrete under loading plate crushed completely. In beams AG3 

and AG4, the longitudinal reinforcement started to yield near failure, which was due to 

crushing of the direct strut (shear compression failure). 

Cracks were measured in each span at both sides (North and South) showing symmetrical 

results. Several parallel cracks to the main diagonal crack were observed, especially as the 

number of stirrups was increased. Angles between the main diagonal crack with respect to 

the longitudinal reinforcement were steeper for the shear span with smaller av/d as 

expected. 
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Figure 6.13: Crack pattern in the gravel short span beams (North side) 
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Figure 6.14: Crack pattern in the limestone short span beams (North side) 
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Secondary shear cracks (see circle mark in beam AG4, Figure 6.13), which ran parallel 

and below the main diagonal crack, originated almost simultaneously to the formation of 

the main diagonal crack. These cracks, which extended to the bottom into flexural cracks, 

relate to the indirect strut that fans out from the top node to the bottom of the stirrups. 

Flexural cracks formed in all cases after the shear cracks had developed. In general two 

stages were observed; one first stage around 400kN where first flexural cracks formed, 

and one second stage around 600kN where old flexural cracks propagated to the top and 

new flexural cracks originated. In all cases the main diagonal crack was independent from 

these flexural cracks. 

Load-deflection curves 

Vertical deflections were very small, between 2 and 5mm. Figure 6.15 shows the load-

deflection curves for beams AG and AL, taken from transducer 1 (Figure 6.8). The out-

of-plane deformations measured were negligible (<0.1mm). This confirmed that the 

loading was applied correctly without no-eccentricity in the out-of-plane direction. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Note: deflections given at the centre of the beam, measured relative to frame 

Figure 6.15: Load-deflection curves for short span beams 

The horizontal displacement and rotation of the beam were monitored at the end of the 

shear span (av/d of 1.12) using transducers #6 (top) and #7 (bottom), refer to Figure 6.8. 

Figure 6.16 shows the global displacements with respect to the middle height fibre of the 

beam. The horizontal displacement is considered positive outwards the centre of the beam 

and rotation of the plane is positive for sagging and negative for hogging. An interesting 

aspect that can be highlighted from end displacements shown in Figure 6.16, is the 

different behaviour in beams AG4 and AL2 after reaching the ultimate load in 

comparison with the rest of the specimens. The horizontal displacement and the rotation 
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measured in AG4 and AL2 kept increasing after reaching the ultimate load, which is 

opposite to the rest of the beams where the displacements changed direction. This trend 

confirms that failure occurred in the shear span with av/d of 1.04 in beams AG4 and AL2 

and agrees with general kinematics described in Figure 6.17. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Horizontal displacement (H) and rotation (see Figure 6.17 for sign criteria)  

Figure 6.16: End movements of beams AG and AB 

 
           
 
 

         Critical span av/d 1.12 (left) 
 
 
 
 
 
 
Critical span av/d 1.04 (right) 
Figure 6.17: General kinematics of short span beams after failure 
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Strains at central section 

The strains at the central section of the beam, which were measured with the Demec 

gauges, are shown in Figure 6.18 for AG and AL beams. The measurements are compared 

with readings from the strain gauges 7-8 and 5-6 for beams A0 and A3 (Figure 6.10). In 

general, the readings from the Demec gauge were slightly larger (10%) than those 

obtained from strain gauges, which could be due to bond-slip between the concrete and 

reinforcement. However, in beam AG0 Demec and strain gauge readings are almost 

identical (Figure 6.18). The oscillations of strains along the height obtained with the 

Demec gauge, especially at the bottom of AG3 and at 150mm from the bottom in AL3, 

were due to crack bypassing the Demec gauge, as shown in Figure 6.13 and 6.14. 

 

 
 
 
 
 
 
 
 
 
 
 
a) Beam AG0      b) Beam AG2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) Beam AG3      d) Beam AG4  
Figure 6.18: Strains at the central section of the beam AG and AL 
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e) Beam AL0      f) Beam AL2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
g) Beam AL3      h) Beam AL4 
Figure 6.18 (Cont.): Strains at the central section of the beam AG and AL 

Strains in stirrups 

The stirrups yielded (εy=2.75‰) before failure as shown in Figure 6.19. The Demec 

gauge readings shown in Figure 6.19 are average values in the sector where the main 

diagonal crack crossed the stirrup and therefore where strains reached their maximum 

value. The strains in the stirrups increased more rapidly after the main diagonal had 

originated. The readings recorded at sectors of the stirrup that were not crossed by the 

main diagonal crack were negligible. This was confirmed by strain gauges 12 and 15 

(Figure 6.10), which were placed at the stirrup away from the diagonal crack. In general 

the strains were slightly larger in stirrups at middle shear span than nearer the supports. 

The stirrups of the right span (av/d=1.04), which are drawn as dashed lines in Figure 6.19, 

did not yield except for AG4 and AL2, where this span was critical. In general, Demec 

readings were consistent with the data obtained from the strain gauges. 
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a) Beam AG2            b) Beam AL2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) Beam AG3      d) Beam AL3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e) Beam AG4      f) Beam AL4 
 
Note: SG#- strain gauge at stirrup # (stirrups are labelled from left to right):  
          Refer to strain gauges 11, 13 and 16 (Figure 6.10) 

Figure 6.19: Strains at critical section of stirrups for AG and AL beams  
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Strains in the longitudinal reinforcement 

The tensile strains in the longitudinal reinforcement bars are shown in Figure 6.20. The 

experimental data suggest that the longitudinal steel started to yield (εy=2.90‰) at failure 

only in beams AG3 and AG4. The readings from the strain gauges, which are available 

for beams A1 and A3, show a more uniform profile than the Demec gauge readings 

(Figure 6.20). However in several points both readings were very similar. The variations 

in the Demec readings seem to be related with flexural cracks crossing the Demec gauge. 

The relatively low strains obtained with the Demec gauge at the central section of AG3 

were not consistent with Demec readings in adjacent sectors. This suggests that strain 

gauge readings seem more realistic than the Demec readings for the central section of 

beam AG3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notation: SG# – strain gauge at load # (kN) 

Figure 6.20: Strains of longitudinal reinforcement in beams AG and AL 
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Notation: SG# – strain gauge at load # (kN) 
 

Figure 6.20 (Cont.): Strains of longitudinal reinforcement in beams AG and AL 
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Notation: SG# – strain gauge at load # (kN) 
 

Figure 6.20 (Cont.): Strains of longitudinal reinforcement in beams AG and AL 
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The strains obtained by the strain gauges in beams A0 were uniform along the 

longitudinal rebar and drop to zero on the outer side of the bearing plate (Figure 6.21). 

For beams with three stirrups the strains increased slightly at the first sector of the rebar 

near the inner edge of the plate but were constant for the rest of the rebar (Figure 6.20). In 

beam AG3, strain gauges 3/4 placed at the centre of the critical shear span recorded same 

readings as strain gauges 5/6 located at the centre of the beam. Unfortunately for beam 

AL3, the readings were influence by strain gauge 3, which was faulty during the test, and 

a direct comparison with AG3 could not be made. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: A0- strain gauges 1,2 at the anchorage zone had values close to zero 
          A0- strain gauges 5,6 were faulty during test 
          AL3- strain gauge 3 was faulty during test (readings of strain gauge 4 are shown) 
 

Figure 6.21: Strain readings from strain gauges at longitudinal reinforcement bars 
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Strains at direct strut (longitudinal and transverse) 

Figure 6.22 shows the longitudinal and transverse profiles of the compressive strains of 

the direct strut according to the Demec grid described in Figure 6.9. The origin of the 

longitudinal section corresponds to the bottom node (point A, Figure 6.9) and the 

transverse section is measured at 375mm from this origin. The transverse profiles 

generally had the maximum value at the centre line of the direct strut. This is true for all 

beams except for AL0 and AL3 where the maximum was at the reading below the centre 

line. The reason behind this was that for beams AL0 and AL3, this sector was crossed by 

a shear crack (Figure 6.14). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Transverse section measured at the middle of the strut (350mm from point A), refer to Figure 6.9 

 

Figure 6.22: Longitudinal strains along direct strut (transverse and longitudinal sections) 
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Note: Transverse section measured at the middle of the strut (350mm from point A), refer to Figure 6.9 
 
 
Figure 6.22 (Cont.): Longitudinal strains along direct strut (transverse and longitudinal sections) 
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Note: Transverse section measured at the middle of the strut (350mm from point A), refer to Figure 6.9 
 
Figure 6.22 (Cont.): Longitudinal strains along direct strut (transverse and longitudinal sections) 
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Relative crack displacements 

The crack opening (w) and sliding (s) near failure are shown in Table 6.5 and Figure 6.23. 

These results refer to the shear span with av/d of 1.12, which was critical for all the beams 

except for AG4 and AL2. In some specimens the readings from the Demec/LVTD crosses 

were influenced by additional shear cracks that formed at later load stages. Table 6.5 

summarises the number of cracks that went through each cross and the deviation α from 

the 45˚ reference plane with respect the longitudinal reinforcement. In Figure 6.23, 

measurements from crosses of targets, which were only crossed by one crack, are 

highlighted in red. Readings from crosses where three points of the cross of targets were 

at the same side of the crack were ignored. 

As shown in Figure 6.23, crack opening was the predominant mode over crack sliding. 

The relative crack displacements were very similar for both gravel and limestone 

aggregate concrete beams. The δw/δs ratio was almost linear and very similar for all 

beams, regardless the type of aggregate used. The average value for δw/δs was around 3. 

Beams AG4 and AL2 had a larger δw/δs ratio due to the fact that failure occurred on the 

other shear span (av/d of 1.04) hence crack sliding was not mobilized. 

 
  (a) TOP 

DEMEC 
(b) BOT. 
DEMEC 

(c) TOP 
LVTD 

(d) BOT. 
LVTD 

Distance from bottom 339.33mm 162.5mm 243.72mm 87.5mm 

Beam wfailure 
[mm] 

sfailure 
[mm] Cracks α 

[˚] Cracks α 
[˚] Cracks α 

[˚] Cracks α [˚]

AG0 1.22(a) 0.57(a) 1 3 2 8 1 8 2 6-17
AG2 1.40(c) 0.56(c) 1 4 2 2 1 2 - 3 
AG3 1.22(a) 0.40(a) 1xx 2 3+ 6 1+ 4 2+ 17 
AG4 1.03(c) 0.12(c) 2 0 2+ 8 1 3 2 2 
AL0 1.15(a) 0.41(a) 1 11 1+ 16 0 - 2+ 15 
AL2 1.35(c) 0.28(c) 3 5 2 23 1 4 1 11 
AL3 1.30(a) 0.45(a) 1 7 2 1 2 6 2+ 11 
AL4 0.94(c) 0.31(c) 1 6 3 5 1 5 2 7 

 
Note- + Three points on one side of the crack (readings are neglected) 

xx In beam AG3 only one crack went through the cross until load 730kN 
- Beam AG2 had a faulty transducer at the bottom cross 
α>0 for cracks flatter than 45º 

 

Table 6.5: Summary of relative crack displacements near failure, number of cracks going through 

the Demec/LVTD crosses and deviation α with respect the 45˚ plane 
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a) Beam AG0 (Pult = 651.53kN) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Beam AG2 (Pult = 1126.05kN) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) Beam AG3 (Pult = 1309.21kN) 
Figure 6.23: Crack opening (w) and sliding (s) in beams A 
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d) Beam AG4 (Pult =1414.20kN) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e) Beam AL0 (Pult = 731.01kN) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f) Beam AL2 (Pult = 1063.79kN) 
Figure 6.23 (Cont.): Crack opening (w) and sliding (s) in beams A 
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g) Beam AL3 (Pult = 961.46kN) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
h) Beam AL4 (Pult = 1204.39kN) 
Figure 6.23 (Cont.): Crack opening (w) and sliding (s) measured in beams A 

The crack opening of AG4 and AL2 was similar than the rest of the beams, although the 

diagonal crack at the shear span of av/d=1.12 closed after reaching the peak load (Figure 

6.23). In the shear span with an av/d ratio of 1.04 the relative crack displacements were 

monitored only with two Demec crosses. The values recorded for w and s (refer to Figure 

6.24) were approximately half of those obtained at the other shear span with a w/s ratio 

equal to 3, which is similar to the other shear span. The main diagonal crack in the shear 

span with av/d of 1.04 was steeper, with values of α generally lower than in the other 

shear span. 
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a) Gravel beams     b) Limestone beams 
Figure 6.24: Crack opening and sliding in the av/d 1.04 shear span of beams A 

In general there was a good agreement between Demec and LVTD readings, as shown in 

Figure 6.23. Crack openings were validated by visual readings, marked as circles in 

Figures 6.23 and 6.24, which were in excellent agreement with the other types of 

measurements. In beam AG3 (Figure 6.23.c), the visual readings agreed with the values 

obtained from the Demec gauges until a load of 700kN. At this load, a new diagonal 

crack formed, which caused the previous crack to remain with a constant w as the new 

crack got wider. This explains the difference between the values of w measured by the 

Demec gauge and optical ruler in beam AG3, since the former included both cracks while 

the later only included the original crack. 

Visual local readings of the main diagonal crack of beam AL4 at different points, showed 

that the crack opening was constant through the height of the beam (Figure 6.25). The 

readings were in good agreement with the results provided by the top LVTD and Demec 

crosses, as shown in Figure 6.23. Only visual reading 3, located at the stirrup, provided 

lower values of w. Closer examination of the crack showed that the reading in point 3 

were influenced by a secondary crack that had formed near the stirrup, see Figure 6.25. 

Similar secondary cracks to the one shown in Figure 6.25, were found in other beams at 

points where the stirrups crossed the shear cracks. Visual readings of the crack opening 

should be avoided in such local points. 
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Note: TOP LVTD placed on the South side of the beam at similar position as visual point 3 

Figure 6.25: Crack opening of main diagonal crack of AL4 at different beam heights (North Side) 
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6.4 Slender beams without stirrups (Beams B0) 

6.4.1 General aspects 
Four slender beams without transverse reinforcement, which are denoted as beams B0, 

were designed and tested by the author to fail in shear. Two of these beams (BG01 and 

BG02), were cast using normal aggregate concrete. The remaining two beams (BL01 and 

BL02) were made of limestone aggregate concrete. The beams were cast using the same 

concretes as for the short span beams, i.e. mix 1 for BG0 beams and mix 2 for BL0 

beams, see section 6.2.2 for further details.  

Beams B0 were all identical and were loaded at the centre span as shown in Figure 6.26. 

The cross section was the same as for the short span beams except for the longitudinal 

reinforcement, which consisted of 2T20 bars (ρl = 1%), see Figure 6.26. The amount of 

longitudinal reinforcement provided was sufficient in order to avoid flexural failure. The 

shear span to effective depth ratio a/d was 3.46 to avoid any shear strength contribution 

due to arching action. 

       

         Cross section (beams B0)→ 

 

 

 

 

 

 

 

 

Figure 6.26: Slender beams without stirrups (Beams B0) 

The central span was 3200mm long, measured between centrelines of the supports. The 

same rollers supports as for the short span beams were placed under the bearing plates to 

allow horizontal displacements and pinned rotation. The thickness of the bearing plates 

were 75mm for the left plate, 65mm for the right plate and 30mm for the loading plate.  

135
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6.4.2 Manufacture and curing 
The beams were cast at the same time as the short span beams. The same procedure 

described in section 6.3.2 applies for the manufacture and curing of the slender beams 

without stirrups. 

6.4.3 Instrumentation 
The instrumentation consisted of two load cells (1000kN), one placed under the hydraulic 

jack and the other located under one support, in order to assess any potential asymmetries 

in the rig. Vertical and side displacements were monitored using LVTDs transducers. 

A total of seven LVTDs transducers were applied, see Figure 6.26: six (#1-6) for 

measuring the vertical displacements along the beam and one (#7) to control side 

displacements at the centre. Transducers #1-3 measured deflections relative to the 

supports, while transducers #4-6 took measurements relative to the floor. 

6.4.4 Results 
Summary of experimental results 

The type of failure was similar for all beams, regardless the type of aggregate used; all 

beams had a very brittle behaviour. Identical specimens BG01/BG02 and BL01/BL02 had 

very similar failure loads as shown in Table 6.6. Flexural cracks formed at early load 

stages of around 50% of the ultimate load. Failure occurred suddenly at Pult when the 

diagonal shear crack developed from a previous flexural crack. The deflection under the 

loading plate (δcentre) given in Table 6.6 was measured relative to the support. 

 

Beam fc
’  

[MPa] 
fsl  

[MPa] 
ρl 

[%] a/d δ centre 
[mm] 

Pcr,flex 
[kN] 

Pult  
[kN] Failure 

BG01 80.20 580 1 3.46 4.14 56.2 122.63 Diag. Tens
BG02 80.20 580 1 3.46 4.70 50.0 126.22 Diag. Tens
BL01 68.44 580 1 3.46 3.58 50.0 93.72 Diag. Tens
BL02 68.44 580 1 3.46 4.27 50.0 108.14 Diag. Tens

 
Table 6.6: Summary of experimental results of slender beams without shear reinforcement 

(Failure: Diagonal Tension) 
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Type of Failure and Crack pattern 

The first flexural cracks that formed were completely vertical and reached in most cases 

the middle height of the beam. As the load was increased, the outer flexural cracks turned 

into flexural-shear cracks, which were inclined towards the centre of the beam at the top 

and were shorter than the central flexural cracks, see Figures 6.27 to 6.30. 

The type of failure was the same for all the beams and corresponded to a typical brittle 

shear failure (diagonal tension failure) along the main shear crack. The critical crack 

initiated at a previous flexural-shear crack and propagated suddenly to the load and 

support plates (Figure 6.27). The main diagonal crack reached the support plate through a 

horizontal splitting crack, which formed due to the loss of bond and dowel action along 

the longitudinal reinforcement. 

 

 

 

 

 

 

Figure 6.27: Diagonal tension failure along main shear crack (Beam BL01) 

The beams failed in either shear span, BG01/BL01 on the right span and BG02/BL02 on 

the left span from north side, which showed a good symmetric arrangement in the loading 

rig. After removing the top halve of the beam the crack surfaces showed two different 

types of roughness (Figure 6.28). In the limestone concrete specimens the aggregate 

fracture while the crack only went through a fraction of the aggregate for the gravel 

specimens, as shown in Figure 6.28. An estimated figure of the percentage of the gravel 

aggregate that fractured at the crack surface is 30% (±5). 
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Figure 6.28: Crack surfaces: Left- Limestone aggregate beam; Right- Gravel aggregate beam 

Despite the difference in roughness between the limestone aggregate and gravel aggregate 

surface cracks, the geometry of the main diagonal crack was similar for all the beams, as 

shown in Figures 6.28 and 6.29. The only minor difference between limestone and gravel 

specimens, which is illustrated in Figure 6.29, was that the angle between the longitudinal 

reinforcement and the first section of the main diagonal crack was larger for the limestone 

beams than for the gravel aggregate beams. 

 

 

 

 

 

 

 

 

Figure 6.29: Relative position of main shear cracks (beams B0)  
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BG01 (North Side) 
 
 
 
 
 
 
 
 
 
 
BG02 (South Side) 
 
 
 
 
 
 
 
 
 
 
 
BL01 (North Side) 
 
 
 
 
 
 
 
 
 
 
 
BL02 (South Side) 
 
 
Figure 6.30: Crack pattern of slender beams without stirrups 
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The deflections under the load plate relative to the supports were between 4 and 5mm at 

failure (Figure 6.31). All beams had similar stiffness until failure. The deflections 

measured by the LVTDs relative to the floor were slightly higher than those measured 

relative to the support, which indicated that a bedding in settlement occurred at early load 

stages. At failure the difference between readings taken relative to the supports and floor 

was around 20-30%. 

 

 

 

 

 

 

 

Figure 6.31: Deflections at the centre of the beam, relative to the support 

The deflections at quarter points were approximately half as at the centre (Figure 6.32), 

with a symmetrical response with respect the centre line. Lateral deflection, monitored by 

transducer #7 (refer Figure 6.26) were negligible throughout the test. 

 

 

 

 

 

 

 

 

Figure 6.32: Vertical deflections relative to the supports at quarter points for BG02 & BL02 
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6.5 Slender continuous beams with stirrups (Beams B and C) 

6.5.1 General aspects 
A total of eight continuous beams (beams B and C) with a shear span over effective depth 

ratio a/d of 3.52 were tested (Table 6.7). The main parameter investigated in beams B was 

the type of aggregate used; “G” for gravel and “L” for limestone. In beams C, the width 

of the beam was increased from 135mm used for beams A and B to 160mm. The diameter 

of the stirrups was 10mm as opposed to 8mm, which was used in beams A and B.  

 

Beam Concrete 
Sect.6.2.2 

fc
’  

[MPa] 
fsl  

[MPa]
fs  

[MPa]
b 

[mm]
n 

stirrups
s 

[mm] 
ρv 

[%] 
BG1 Mix 3 31.70 580 550 135 10 T8@150 0.50 
BG2 Mix 3 31.70 580 550 135 16 T8@90 0.83 
BL1 Mix 4 53.11 580 550 135 10 T8@150 0.50 
BL2 Mix 4 53.11 580 550 135 16 T8@90 0.83 
CB1 Mix 5 49.35 580 600 160 5 10@300 0.33 
CB2 Mix 5 49.35 580 600 160 7 10@200 0.49 
CA1 Mix 5 49.35 580 600 160 5 10@300 0.33 
CA2 Mix 5 49.35 580 600 160 7 10@200 0.49 

 

Table 6.7: Material properties and shear reinforcement at the critical span 

An identical two point loading arrangement was used in tests B and C, in order to obtain a 

point of contra-flexure within the shear span as shown in Figure 6.33.a. This load 

arrangement gives rise to the bending moment distribution shown in Figure 6.33.b. This 

load configuration produced high shear forces, and minimised the hogging and sagging 

bending moments at critical sections. Another advantage of introducing a point of contra-

flexure was that the shear resisted by the compressive zone at the head of the shear crack 

was eliminated with the result that the beam was loaded in pure shear rather than flexural-

shear as in a simply supported beam. 
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a) Testing rig and cross section of beams 

 

 

 

 

b)   Shear Force Diagram       Bending Moment Diagram 
 
Note: Beams C were 4500mm long instead of 4000m shown in (a) for beams B. This leads to 820mm 
overhangs as opposed to 570mm in beams B shown in (a) 

Figure 6.33: Loading arrangements: a) Testing rig and cross section of beams; b) Shear force and 

bending moment diagrams 

The short shear spans had an av/d ratio of 1.05 and a shear force equal to 35% of the total 

load. However, they were not critical since they had larger shear reinforcement ratios plus 

strength was enhanced by arching action. The stirrups provided in the short spans in 

beams B were 2 leg stirrups of T8 every 90mm and 60mm for B1 and B2 beams 

respectively (Figure 6.34). An additional 2 stirrups for B1 and 3 stirrups for B2 were 

placed at the centre of each short shear span as shown in Figure 6.34, to strengthen these 

regions. In beams C, the spacing between stirrups in the short shear spans was half that in 

the critical span. 

The arrangement of longitudinal reinforcement in beams B and C was similar to that used 

in Beams A except that two layers of two T25 each were placed at the top of the beam 

(Figure 6.33.a). This symmetrical arrangement of longitudinal reinforcement allowed the 

beam to resist the anti-symmetric bending moment distribution, shown in Figure 6.33.b, 

without yielding of the longitudinal reinforcement bars. 
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Figure 6.34: Spacing between stirrups in beams B and C 

The specimens were supported on the rollers used for beams A and B0 that allowed 

rotation and horizontal displacements. The loads were applied through a loading beams. 

The concrete beam was restrained longitudinally at the cantilever loading point and 

released laterally at the other end using two PTFE layers under the central loading plate, 

see Figure 6.33.a. The forces were transmitted to the testing beam through knuckle 

bearings in order to allow rotation of the loading beam, although the deflection of the 

cantilever and centre load points were expected to be very similar. All the loading and 

support plates in contact with the testing beam were 200mm long. 

The loading beam, which consisted of a universal column 305x305x240 (S355) had a 

total dead load of 720kg. The dead load of the loading beam was not transmitted to the 

supports of the testing beam evenly, due to the position of the loads. Instead, 80% of the 

self weight of the loading beam was taken by the support nearer the cantilever end. 

However, the dead load of the loading beam was negligible compared with the total load 
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applied and therefore the internal stresses is well represented by the diagrams shown in 

Figure 6.33.b. This was confirmed by the load readings from the load cells, which were 

set to zero after the loading beam was placed on top of the testing beam. 

Beams B and C were pre-cracked and then loaded monotonically to failure, as opposed to 

beams B0 and A, which were taken directly to failure. Pre-cracking the specimen was 

necessary in order to place the instrumentation around the critical crack since the exact 

location of this crack was uncertain a priori. 

6.5.2 Manufacture and curing 
Due to the large amount of reinforcement provided in beams B, the specimens were cast 

horizontally, (Figure 6.35). Beams B were cast in two groups of two (BG1/BG2 and 

BL1/BL2) and vibrated with a standard 1” head vibrator. Beams C were cast vertically 

(Figure 6.35) along with beams D. The control cubes and cylinders were cast and cured in 

the same manner as for beams B0 and A, see section 6.2.2. Same methods were adopted 

for curing the specimens as for beams B0 and A. 

 

 

 

 

 

 

 

Figure 6.35: Cast of beams B (left) and beams C-D (right) 

6.5.3 Instrumentation 
In order to control that the load was applied correctly, three load cells were used, as 

shown in Figure 6.33.a. First one, which had 2500kN capacity, was located under the 

hydraulic jack to monitor the total loading. The second and third load cells (1000kN 

capacity) were placed at the cantilever load point and right support; both readings should 

be equal to 35% of the total load. 
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In a similar manner as in the short span beams (beams A) deflections, strains and relative 

crack displacements were monitored using different methods: 

1. Linear variable displacement transducers (LVTDs) 

2. Demec readings (150mm Demec gauge) 

3. Strain gauges at the reinforcement bars (only at longitudinal reinforcement bars) 

4. Digital photogrammetric surveying 

Digital photogrammetric surveying 

Digital photogrammetric surveying, which is based on digital image processing, was 

introduced for beams B and C tests and provided useful information of global 

displacements. This monitoring technique was also used in the push-off tests, see section 

4.2.3 for further details. The computer software required to analyse the digital 

photographs was developed and calibrated by McCarthy & Tsang [108]. Similarly as in 

the push-off tests, experimental results were compared with more conventional methods 

(LVTD, Demec and strain gauging). 

The setup for the photogrammetric surveying consisted of four digital cameras, which 

were placed on the north face of the beam as shown in Figure 6.36. Cameras 2 and 3 (C2, 

C3) covered the critical shear span while C1 and C4 captured both extreme short shear 

spans. The working distances for each camera were 880mm, 750mm, 850mm and 915mm 

for C1, C2, C3 and C4 respectively. The height measured from floor to lens was 900mm. 

In beams C, only the critical shear span was monitored using photogrametric targets. 

 
 
 
 
 
 
 
 
 
a) Beams B 
 
 
 
Note- Cameras used: C1 – FujiFilm FinePix S5500 (4MG); C2 – Canon PowerShot S70 (7.1MG); C3 – 

Sony Cybershot DSC-F707 (5MG); C4 – Olympus mju 410 (4MG) 
 
Figure 6.36: Test setup for digital photogrammetric surveying 
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b) Beams C 
Note-Cameras used: C2 – Canon PowerShot S70 (7.1MG); C3 – Sony Cybershot DSC-F707 (5MG) 

Figure 6.36 (Cont.): Test setup for digital photogrammetric surveying 

The grid of moving targets was an orthogonal regular grid throughout the entire beam 

with 75mm spacing for beams B and 150mm for beams C (with a 25mm cover), refer to 

Figure 6.36. The fixed referenced targets had horizontal spacings of 780-750-680-680mm 

for cameras C1 to C4 respectively, while the vertical distance between the reference 

points was around 450mm. Digital pictures were taken manually at each load step for 

both pre-crack and normal loading stages. Even though adequate lighting was provided by 

five halogen lamps, which produced uniform white light, the lighting conditions changed 

from one test to another due to unavoidable light variations in the laboratory.  

Global displacements 

The photogrammetric survey was complemented with traditional LVTDs measurements 

to monitor global displacements of the beams. A total of 7 LVTD transducers were placed 

in the beam, (Figure 6.37). Transducers #1 and #3 were placed under the central loading 

plate and measured vertical displacements relative to the supports and floor respectively. 

LVTD #7 measured relative vertical displacements to the supports at the central section of 

the critical shear span. Side deflections were controlled by transducer #2, which showed 

that the out-of-plane displacements were negligible. The vertical movement at the 

cantilever end was measured relative to the floor by transducer #4. Similar as in beams A, 

two transducers (#5,6) were place at simply supported end to calculate horizontal and end 

rotation movements. 

 
 
 
 
 
 
 
 
 
Figure 6.37: Position of LVTD transducers in beams B and C 
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Strains at sections of maximum bending moments and in the reinforcement bars 

The horizontal strains were measured with a Demec gauge at sections of maximum 

bending moments at five different heights (Figure 6.38). The Demec grid located at the 

critical shear span, shown in Figure 6.38, allowed to measure the strains in the stirrups 

and longitudinal reinforcement. Although the centroid of the reinforcement did not 

coincide exactly with the position of the Demec targets in the longitudinal reinforcement 

(Figure 6.38), the distance between them was negligible. Similar happened with some 

stirrups in beams B2. The extreme short span beams were also instrumented with Demec 

targets in order to assess the strains along the outer longitudinal reinforcement and at two 

central stirrups.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 6.38: Demec grids- a) Beams B1; b) Beams B2 (strain gauges); c) Beams C1; d) Beams C2 

In addition, 10 strain gauges were attached to the longitudinal reinforcement in beams B2, 

as illustrated in Figure 6.38.b. The purpose was to control the maximum tensile strains 

(strain gauges 1-2) and confirm readings at the centre of the critical shear span, where the 

bending moment is zero (strain gauges 3-10). The strain gauges were placed in pairs, one 

on top and the other on the bottom of the reinforcement bar, to take flexure into account. 
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Relative crack displacements 

The crack opening and sliding were monitored using three different methods, similarly as 

in beams A (see section 6.3.3): crosses of Demec targets, crosses of LVTDs and crosses 

of photogrammetric targets. The first two methods were effective, while the 

photogrammetric approach only provided reliable answers in some specimens with large 

crack widths (beam BL1).  

The dense demec grid shown in Figure 6.38.a and b for beams B allowed monitoring 

several of the initial and main shear cracks without knowing their location a priori. 

However, this process was time consuming and a simpler mesh was adopted for beams C 

(Figure 6.38.c and d); additional demec crosses were attached to beams C once the shear 

cracks had formed. On the other side of the beam (South side), three crosses of LVTDs 

(70mm gauge length) were placed after pre-cracking the specimen at different levels of 

the critical cracks and other shear cracks (Figure 6.39). Only two crosses of LVTDs were 

available for beams C. 

 

 

 

 

 

 

 

 

Figure 6.39: Cross of LVTDs placed after pre-cracking the beam (South Side, BG1) 
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6.5.4 Results 
Summary of experimental results 

Table 6.8 summarises the most important experimental values obtained for beams B and 

C. Beams failed in either strut crushing or excessive straining of the stirrups; the type of 

failure is described in further detailed in next section. In all the beams the stirrups yielded 

at failure. The longitudinal reinforcement remained in the elastic range and the overall 

asymmetrical behaviour (deflections and reactions) was satisfactory reproduced. 

In Table 6.8, δ*
centre is the vertical deflection measured relative to the floor, under the 

central load point at the ultimate load (Pult). Pcr is the total load at which the first shear 

crack was observed and Punl the load at which the beam was unloaded. 

Beam fc
’  

[MPa]
ρv.fsv 

[MPa] 
δ*

centre 
[mm] 

Pcr 
[kN] 

Punl 
[kN] 

Pult  
[kN] 

Shear 
Failure 

BG1 31.70 2.73 5.29 300 550 950.63 Shear-comp.* 
BG2 31.70 4.55 5.43 300 600 1074.13 Crack widening*
BL1 53.11 2.73 4.90 400 500 1169.09 Crack widening 
BL2 53.11 4.55 6.02 300 700 1593.93 Shear-comp. 
CB1 49.35 1.96 3.14 400 500 1029.34 Crack widening 
CB2 49.35 2.94 5.99 450 900 1429.02 Crack widening 
CA1 49.35 1.96 4.23 400 500 979.85 Crack widening 
CA2 49.35 2.94 4.76 450 1000 1395.54 Crack widening 

 
Note: * Failure of these beams was accompanied with bond cracking 

Table 6.8: Summary of experimental results of Beams B and C 

Crack pattern and type of failure 

The crack pattern at early and middle stages of loading was similar for all beams and only 

the development of these cracks near failure was different. At early load stages (around 

300kN) initial shear cracks formed, which were oriented 45º or steeper, and formed a 

clear fan shape from the loading points. These cracks are labelled as cracks 1 in Figure 

6.40. At higher loads, pure flexural cracks started forming under the points of maximum 

bending moments (cracks 3 in Figure 6.40). Two main shear cracks (cracks 2), which 

were flatter than shear cracks 1 (around 35º), formed at intermediate loading. At this load 

stage, the beam was unloaded and instrumentation was placed around cracks 2. In beams 

with larger number of stirrups (beams B2), cracks 2 were smeared out into several closely 

spaced parallel cracks, see Figure 6.41 and 6.42. The crack pattern of the critical shear 

span of beams B and C is given in Figures 6.41, 6.42 and 6.49. 



Chapter 6 – Beam Tests 

213 

 

 

 

 

Figure 6.40: Typical crack pattern in beams B and C (beam CA2) 
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Note: numbers relate to load (x100kN) at which crack formed. Critical cracks are highlighted 

Figure 6.41: Crack pattern of beams B at critical span 
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Note: numbers relate to load (x100kN) at which crack formed. Critical cracks are highlighted 

Figure 6.42: Crack pattern of beams C at critical span 

The crack pattern in the short shear spans was similar to those described in section 6.3.4 

for the short span beams. However, these cracks did not become critical in beams B-C.  

It is important to highlight that the inclination and position of the cracks were very similar 

in the limestone (BL) and gravel (BG) beams as shown in Figure 6.41. The only 

difference was that a larger amount of cracks appeared in the limestone beams compared 

with the gravel ones. At failure, beams BG had a splitting type of crack along the 

longitudinal reinforcement, which initiated at the start of the shear crack (around the point 
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of contra-flexure), see Figure 6.41. In the literature this is often denoted as “bond failure”, 

although this term is subjective since it can occur in combination with other types of shear 

failures. 

In beams CA1, CB1 and BL1, which had the lowest stirrup indexes, failure was due to 

excessive straining of the stirrups crossed by the main diagonal crack, which is denoted as 

“crack widening” in Table 6.8. At failure, the diagonal crack extended to the loading 

point and started widening quite considerably. The load reached its peak value and 

remained constant for a short period of time as the crack got wider.  

Beams CA2/CB2 had a similar behaviour but several shear cracks got wider 

simultaneously (Figure 6.42) as opposed to one in beams C1 and BL1. Well after 

reaching the failure load, new cracks formed at top and bottom of the beam along the 

flexural reinforcement and in many cases the concrete cover was push out. This was very 

explosive for beams CA1 and CA2 since many of the stirrups crossed by the critical crack 

fractured at this stage, see Figure 6.43. The concrete cover was pushed out in some cases 

due to failure of the anchorage length of the stirrups. The anchorage of the stirrups was 

staggered in order to avoid weak points but it remains questionable whether this could 

have had an influence on the ultimate load. It is noteworthy that the failure loads of beams 

CB were very similar to their equivalent beams CA. 

 

 

 

 

 

 

 

Figure 6.43: Left- necking of stirrups; Centre- fracture of stirrup; Right- spalling of concrete cover 

due to anchorage failure of stirrups 

Beam BG2 and BL2 failed due to shear-compression. Once the ultimate load was reached 

in beam BL2, the diagonal strut split in the out-of-plane direction. This led to spalling of 

the concrete at the top and bottom and detaching of the lateral walls of the beam from the 

main core (Figure 6.44). On the other hand, beam BG2 the strut split at the level of the 
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reinforcement in a typical horizontal bond crack. This was confirmed by two additional 

cracks, which were observed at top and bottom faces of the beam (Figure 6.44). These 

cracks ran longitudinally at middle of the width of the beam and were located 

immediately above/below the horizontal bond cracks with similar length. 

 

 

 

 

 

 

 

 

Figure 6.44: Post-failure cracks: Left- beam BL2; Right- beam BG2 

Load-deflection curves 

The maximum vertical deflections (~6mm) were registered under the two loading points, 

which were very similar to each other as expected. The deflections at the cantilever 

loading point were slightly lower (10-30%) than those measured at the central loading 

point, see Figure 6.45. The deflections shown in Figure 6.45 are given relative to the floor 

for beams B in order to compare the results with deflections at the cantilever loading 

point and photogrammetric targets.  

 

 

 

 

 

 
 
 
 
 
Note: deflections are measured relative to the floor 

Figure 6.45: Vertical displacements of beams B at loading points and centre of critical span 



Chapter 6 – Beam Tests 

217 

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12

Deflection at C. Load [mm]

L
oa

d 
[k

N
]

Beams CA
Beams CB

CB2

CB1

CA1

CA2

0

200

400

600

800

1000

1200

1400

1600

0 2 4

Deflection at Centre [mm]

L
oa

d 
[k

N
]

CA1

CA2

CB1

CB2

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9 10

Deflection [mm]

L
oa

d 
[k

N
]

BL1-Cantilever
BL1-Centre
BL1-C.Load
BL2- Cantilever
BL2-Centre
BL2-C.Load

Limestone (BL)

BL1

Cant.

BL2BL2

BL1

Cant.

C.Load

C.Load

 

 

 

 

 

 

 

 

Figure 6.45 (Cont.): Vertical displacements of beams B at loading points and centre of critical 

span 

It is important to highlight that the curves shown in Figures 6.45 and 6.46 correspond to 

loading once the beams had already been pre-cracked and therefore the change in stiffness 

at early load stages is not reflected. The LVTD readings were in good agreement with 

photogrammetric measurements, which are shown as dots in Figure 6.45. Deflections at 

the centre of the critical span were small in both beams B and C (see Figures 6.45 and 

6.47), except for beam BG2 where they were similar to the ones at the cantilever end. 

Beams with fewer amount of stirrups (beams C and BL1) had a load plateau near failure, 

as shown in Figures 6.45 and 6.46. Beams CB had a slightly higher ductility than beams 

CA, although the difference was not significant. 

 
 

 

 

 

 

 

 

Note: deflections are measured relative to the frame 

Figure 6.46: Vertical displacements of beams C at central loading point and centre of critical span 
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The overall kinematics of the beams can be clearly seen in Figure 6.47, which was 

obtained from the photogrammetric analysis. The horizontal and end rotation, given by 

transducers #5 and 6, confirmed the values shown in Figure 6.47 (deflected shape is 

scaled by 50). The horizontal displacement (H) and end rotation for beams B are shown in 

Figure 6.48. Results for beams C are not shown in Figure 6.48 for clarity, although the 

data followed the same path for H and end rotation and so can be easily extrapolated 

using their ultimate load. Lastly, the out-of-plane deformations, measured by transducer 

#2, were negligible (<0.1mm) as for beams A and B0. 

 
 
 
 
 
 
 
 
 
 
 
  Distance from inner edge of cantilever load plate [mm]  
 
Note: Scaled by 50 

Figure 6.47: Global displacements of beam BL2 at failure (1500kN) 

 

 

 

 

 

 

 

Note: Sign criteria: H>0 outwards and Rotation >0 for sagging (relative to mid-height fibre), see Figue 6.47 
H and Rotation in beams C followed the same path as beams B, results can be extrapolated using the 
corresponding ultimate load 

  Figure 6.48: Horizontal displacement and rotation of simply supported end (beams B) 

Figure 6.49 shows the photos taken from the beam test inmediatly before failure. As 

explain in next section the position of the cracks had an effect on Demec readings. 
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Figure 6.49: Photogrammetric monitoring in beams B and C 
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Figure 6.49: Photogrammetric monitoring in beams B and C 
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Strains at sections with maximum bending moments 

The horizontal strains, which were measured with the Demec gauge, at points of 

maximum bending moments are shown in Figure 6.50 and 6.51 for beams B and C 

respectively. The experimental data showed that the longitudinal reinforcement did not 

yield in any of the beams. The maximum compression strain recorded was 1.5 ‰ in BL2. 

In many cases, the demec readings at the outer reinforcement were relatively low 

compared with the rest of the cross section. This was confirmed by strain gauges available 

in beams B2, which provided slightly higher values than the demec gauges. Similarly as 

in beams A, the oscillations in the strain profiles were due to crack bypassing the demec 

gauge readings; see circle mark in Figure 6.49 for beam BG1 and corresponding strain 

readings in Figure 6.50. Beams C showed more uniform strain profiles (Figure 6.50). 

According to the experimental data shown in Figure 6.51 the depth of the neutral fibre in 

beams C was around 150mm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: strain gauge readings marked as black triangles in beams B2 (red at failure) 

Figure 6.50: Horizontal strains at sections of maximum bending moments (beams B) 
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Note: strain gauge readings marked as black triangles in beams B2 (red at failure) 

Figure 6.50 (Cont.): Horizontal strains at sections of maximum bending moments (beams B) 

 

 

 

 

 

 

 

 

 

Figure 6.51: Horizontal strains at sections of maximum bending moments (beams C) 
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Figure 6.51 (Cont.): Horizontal strains at sections of maximum bending moments (beams C)  
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Strains in stirrups 

According to the demec gauge readings, the stirrups had the maximum strains at the level 

where they were crossed by the main shear cracks (Figure 6.52). For beams B, refer to 

Figure 8.33. Three readings were taken per stirrup, which relate to sectors A to C (top to 

bottom); results are shown for the sector with highest strains, which is highlighted. All the 

central stirrups in beams B and C yielded at failure (Figures 6.52 and 8.33). However the 

strains were lower in beam BG2, which had the highest stirrup index. In BG2, only 

central stirrups S5, 6, 7 and 9 seemed to yield. The yielding strain of the stirrups was 

2.75‰ and 3‰ for beams B and C respectively.  

In all cases, the first stirrup in the shear span nearest to the loading plate was significantly 

less effective than the other stirrups in the shear span (Figure 6.52 and 8.33). This effect 

was most significant in beams B, where the outer stirrups were close to the supports. The 

stirrups in the short spans did not yield in any of the beams tested, with maximum strain 

values of 2.45 ‰, although this is an average value so the peak may have been greater. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 6.52: Maximum strains in stirrups in the critical shear span (beams C) 
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Figure 6.52 (Cont.): Maximum strains in stirrups in the critical shear span (beams C) 

The variation of strain along the stirrup was dependant on the number of shear cracks 

crossing the stirrup. In beams with larger ρv ratios, stirrups at the centre of the critical 

span, which were crossed by at least three shear cracks, had an uniform strain distribution 

as shown in Figure 6.53. In stirrups closer to the supports, the strains began to localize 

more towards the compression head.  

 

 

 

CB1 at 900kN 

 

 

 

CB2 at 1300kN 
 

Figure 6.53: Strain distribution along stirrups in beams CB (strains in ‰) 



Chapter 6 – Beam Tests 

226 

Strains in the longitudinal reinforcement 

Figure 6.54 shows the strain distribution along the longitudinal reinforcement, between 

centre lines of the bearing plates at the critical span, which was provided by the Demec 

gauge. The readings had high fluctuations along the reinforcement bar, especially near 

failure at the inner layers. Again, these oscillations were due to the presence of cracks 

crossing the Demec gauge. 

In spite of the scatter in the Demec readings shown in Figure 6.54, the results were fairly 

symmetrical with respect to the top and bottom layers. According to experimental data 

shown in Figure 6.54, the longitudinal reinforcement working in tension extended a 

length of around 270mm from the point of contra-flexure (M=0 at 770mm from the centre 

line of the support, Figure 6.54). This length was consistent in all beams tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.54: Strains in the longitudinal reinforcement (Demec gauge readings) 
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Figure 6.54 (Cont.): Strains in the longitudinal reinforcement (Demec gauge readings) 
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Figure 6.54 (Cont.): Strains in the longitudinal reinforcement (Demec gauge readings) 
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The experimental data from the strain gauges, which were placed in beams B2 (Figure 

6.55), seemed to be more representative than readings from the Demec gauge. The values 

recorded by the strain gauges under the central loading point (SG 1-2) were around 40% 

larger than those obtained from the Demec gauge, as shown in Figure 6.55. However, the 

strains remained on the elastic range, even for the most heavily loaded beam BL2. 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 6.55: Strains in the longitudinal reinforcement in beam B2 (strain gauge readings) 
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Relative crack  displacements 

Figures 6.56 and 6.57 show the crack opening and sliding obtained experimentally for 

beams B and C respectively. The results, which relate to the loading after the beam had 

been pre-cracked, are divided into two groups according to the type of crack; namely 

crack 1 and 2 (refer to Figure 6.40). Crack 1 refer to the steeper cracks that formed at the 

extremes of the shear span, while cracks 2 corresponded to the flatter shear cracks that 

formed at later load stages. Only Demec readings with one crack going through the 

Demec cross were considered. Sliding is taken as positive when the block below the crack 

moved downwards with respect the block above. 

The predominant mode (opening or sliding) of the cracks varied depending on the type of 

crack and loading stage. At early load stages, the cracks that formed at the pre-cracking 

stage reopened, hence the predominant mode was opening over sliding. The ratio (δw/δs) 

at this stage varied between 3 and 4, see Figures 6.56-6.57. Once the load reached the 

point at which the beam was unloaded at the pre-cracking stage, the δw/δs ratio 

decreased. In the majority of the cases, the sliding increased significantly and the δw/δs 

ratio became closer to 1.5. The largest crack widths at the critical crack were recorded in 

beams C (~1.25mm). In general, crack widths were around 0.75-1mm near failure. 

Measurements of crack opening and sliding showed fairly constant values along the 

cracks, as shown in Figures 6.56 and 6.57. These results, along with data from the Push-

off tests, were applied in order to estimate the shear stresses transmitted at the cracks by 

means of aggregate interlock (see section 8.3.3). 

In general, visual readings taken with the microscopic ruler had an excellent agreement 

with Demec and LVTD measurements, as shown in Figures 6.56 and 6.57. In addition, 

readings from the photogrammetric analysis were used to assess the crack opening and 

sliding. Although the results were reasonable in some beams (see BL1 in Figure 6.56), 

large oscillations of these measurements along cracks were obtained in many others. 

These results were unrealistic in many cases and were inconsistent with neither visual nor 

LVTD data, which showed much more uniform values. This inaccuracy in the 

photogrammetric measurements was not observed in the push-off tests shown in chapter 

4. This suggests that errors were probably induced due an excessive working distance 

between the camera and the beam, which was required on the other hand in order to cover 

the entire shear span. Beam BL1, in which the results were acceptable, the grid of targets 

was dense (75mm) and the crack widths were considerably wide. 
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Notation: Cracks 1 are the first shear cracks to appear, which are steeper than cracks 2 (refer to Figure 6.40) 
  Types of readings: T- transducers (small cross); D- demec (large cross); V- visual (circle) 

Figure 6.56: Crack opening and sliding in beams B 
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Notation: Cracks 1 are the first shear cracks to appear, which are steeper than cracks 2 (refer to Figure 6.40) 
  Types of readings: T- transducers (small cross); D- demec (large cross); V- visual (circle) 

Figure 6.56 (Cont.): Crack opening and sliding in beams B 
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Notation: Cracks 1 are the first shear cracks to appear, which are steeper than cracks 2 (refer to Figure 6.40) 
  Types of readings: T- transducers (small cross); D- demec (large cross); V- visual (circle) 

Figure 6.57: Crack opening and sliding in beams C 
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Notation: Cracks 1 are the first shear cracks to appear, which are steeper than cracks 2 (refer to Figure 6.40) 
  Types of readings: T- transducers (small cross); D- demec (large cross); V- visual (circle) 

Figure 6.57 (Cont.): Crack opening and sliding in beams C 

Note (beam CB2): visual readings 
V1/V3 were identical to V2. 
Similarly, V5/V6 were equal to V4. 
Transducer T2 provided very 
similar values to T1. 
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6.6 Slender beams with stirrups (Beams D) 

6.6.1 General aspects 
An additional two beams (beams DB1 and DA1), which contained same shear 

reinforcement ratio and type of stirrups as beams CB1 and CA1, were tested in order to 

assess the influence of the type of loading in the shear response. Beams D were simply 

supported, as beams B0, and so two additional T25 reinforcement bars at the bottom 

(refer to Figure 6.58) were required to avoid yielding of the flexural reinforcement. The 

central span was 3040mm long (a/d=3.68), measured between centrelines of the supports. 

The loading and support plates used were identical as for beams C.  

 

   

 

 

 

Note: Sect 2 is placed at a distance of 425mm (~d=412.5mm) from the edge of the loading plate 
         Sect 3 is placed at the centre of the shear span; Sect 4 is 245mm from the centre of the support  

Figure 6.58: Slender beams with stirrups (Beams D) 

Beams D were cast along with beams C using the same concrete, refer to mix 5 in section 

6.2.2. The main geometrical/material properties and experimental results of beams D are 

summarised in Figure 6.58 and Table 6.9. 

Beam fc
’  

[MPa] 
fsl  

[MPa] 
ρl 

[%] 
ρv.fsv 

[MPa]
δ centre 
[mm] 

Pcr 
[kN] 

Punl  
[kN] 

Pult  
[kN] 

DA1 49.35 580 4.46 1.96 14.87 200 400 622.74 
DB1 49.35 580 4.46 1.96 13.84 200 400 598.43 

 
Note: deflection at peak load δcentre is given relative to the floor  

Table 6.9: Summary of experimental results of slender beams with shear reinforcement  

6.6.2 Manufacture and curing 
Same procedure described for beams C (see section 6.5.2) applies for the manufacture and 

curing of the slender beams with stirrups. 
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6.6.3 Instrumentation 
Similarly as in beams B0, load was monitored by two load cells (1000kN), one placed 

under the hydraulic jack and the other located under one support. Vertical displacements 

were recorded at centre and quarter points of the length of the beam with respect the 

supports, using a similar frame as in beams B0 (see Figure 6.26). In addition, deflections 

at the centre of the beam were measured relative to the floor. Lastly, two transducers were 

placed at the end of the beam to measure horizontal displacements and rotation similarly 

as in beams A, B and C (see Figures 6.8 and 6.37). 

A grid of Demec discs was used (see Figure 6.58) to measure horizontal strains at several 

levels of the beam. Measurements include several sections along the beam (refer to Figure 

6.58); central section of the beam (Sect 1), section at a distance from the edge of the 

loading plate approximately equal to the effective depth (Sect 2), central section of the 

shear span (Sect 3) and section near the supports (Sect 4). Strains in the longitudinal 

reinforcement were also monitored with the Demec gauge. Crack opening and sliding 

were measured in a similar manner as in beams A, B and C; Demec and LVTD crosses 

were placed after pre-cracking the specimens (see Table 6.9 for load at which beam was 

unloaded Punl). 

6.6.4 Results 
Type of failure and crack pattern 

Equally as in beams C, the ultimate loads in beams DA and DB were very similar to each 

other (see Table 6.9). Failure in beams D was due to excessive straining of the stirrups 

crossed by the critical crack in a similar fashion as beams C. Stirrups fractured in both 

beams DA1 and DB1. 

The crack patter was rather different in beams D compared with beams B or C, which was 

expected due to the interaction between bending and shear. The crack patterns of beams 

DA1 and DB1 are shown in Figure 6.59; thin lines represent cracks that formed after 

reaching the ultimate load. First shear cracks to appear (200-300kN), had an inclination 

with respect the longitudinal reinforcement of around 45º. At loads near failure (500-

550kN) these steep cracks were either crossed by new flatter shear cracks or they 

extended towards the supports with a much flatter angle (Figure 6.59). The presence of 

flatter cracks crossing previous steeper cracks indicated a clear strut reorientation to 

mobilize more stirrups. It is well documented in beam tests found in the literature that 
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new cracks can cross previous shear cracks due to this strut reorientation. However this 

was not observed in any of other beam tests carried in this work (beams A, B and C). 

 

 

 

 

 

 

 

 

 

 

a) Beam DB1 (Pult=598.43kN) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) Beam DA1 (Pult=622.74kN) 

Note: numbers relate to load (x100kN) at which crack formed. Critical cracks are highlighted. Thin lines 
refer to cracks that formed at failure 

Figure 6.59: Crack pattern in beams D 
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The load-deflections curves shown in Figure 6.60, were almost identical for beam DA1 

and DB1, reaching a maximum deflection at the centre of around 13mm. These values are 

around three times larger those obtained with similar shear forces in beam C1, which had 

a point of contra-flexure. The measurements taken relative to the floor in beams D were 

similar to those taken relative to the frame. Vertical deflections at quarter points were 

around half the values at the centre. 

  

 

 

 

 

 

 
 
Note: deflections are measured relative to the frame 

Figure 6.60: Vertical displacements of beams D (loading after pre-cracking the specimens) 

Similarly as in beams A (see Figure 6.17), the end displacements (horizontal and rotation) 

measured experimentally, clearly showed which shear span was critical. Beam DB1 failed 

at the shear span where the transducers were placed, and so the horizontal displacements 

changed sign at failure. This indicated that once the beam started failing, the block above 

the critical crack started moving inwards, as opposed to outwards during normal loading. 

 

 

 

 

 

 

 

Figure 6.61: End displacements (horizontal and rotation) of beams D 
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Strains at different sections along the beam 

The horizontal strains measured at different heights and sections of the beam were similar 

for beams DB1 and DA1, as shown in Figure 6.62. The results are shown at different 

sections of the critical shear span (Sect 1 to 4, according to Figure 6.58). The critical 

crack formed at a distance approximately equal to the effective depth of the beam, 

measured from the edge of the loading plate. The maximum compression strains 

registered at the centre of the beam were 2‰. In tension, the maximum strains obtained at 

the lower reinforcement layers were near the yielding point. The horizontal tensile strains 

at section of almost zero bending moments were around 0.75-1‰. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Note: Results are shown for different sections of the critical shear span: Max bending (Sect 1), Effective  
          depth (Sect 2), Centre shear span (Sect 3) and M=0 (Sect 4); refer to Figure 6.58 

Figure 6.62: Horizontal strains at different sections in beams D 
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Strains in stirrups 

Stirrups at the centre of the shear span yielded at failure. In both beams DA1 and DB1 

several stirrups that were crossed by the critical shear crack fractured; for example stirrup 

S8 in beam DB1 (see Figure 6.63). The strain readings from the Demec gauge at the 

critical shear span (Figure 6.63) indicated that the outer stirrups were less effective, 

similar as in beams A, B and C. The results are plotted for the sector of the stirrup that 

was crossed by the main shear crack and hence had the highest strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.63: Maximum strains in stirrups in the critical shear span (beams D) 
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Strains in the longitudinal reinforcement 

Again, strain readings along the longitudinal reinforcement taken with the Demec gauge 

had large oscillations especially at the centre of the shear span (see Figure 6.64). This was 

worse in beam DB1 than in beam DA1, where the results seemed more realistic. As 

mentioned earlier, the strains were near the yielding point at the centre of beam DA1. 

 

 

 

 

 

 

 

Figure 6.64: Strains in the longitudinal reinforcement (Demec gauge readings) 

 

Relative crack displacements 

The crack opening and sliding at different shear cracks are shown in Figure 6.65 for both 

shear spans. Only Demec readings with one crack going through the Demec cross were 

considered and again sliding was taken as positive when the block below the crack moved 

downwards with respect the block above. 

Similarly as in beams B and C, the crack opened more rapidly at early load stages until 

the same load at which the beam was unloaded was reached. Again, the δw/δs ratio after 

the pre-cracking load was reached was generally around 1.5 and decreased down to 1 at 

failure, as shown in Figure 6.66. The magnitude of the crack widths was similar as in 

beams C1 (0.75-1mm at failure). Measurements were validated by visual readings taken 

with the optical ruler. 
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*Note (DA1): Readings from Transducer T2 are dubious due to the proximity of the crack to one end of the 
cross. Data from D1 seems more reliable. 

 

 

 

 

 

 

 

 

 

 

 

 

Notation:  Types of readings: T- transducers (small cross); D- demec (large cross); V- visual (circle) 
 

Figure 6.65: Crack opening and sliding in beams D at critical and not critical shear spans 
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*Note (DA1): Readings from transducer T2 are dubious due to the proximity of the crack to one end of the 
                       cross. Data from D1 seems more reliable. 
Notation:  Types of readings: T- transducers (small cross); D- demec (large cross); V- visual (circle) 
    Refer to Figure 6.65 for exact location at which measurements were taken 

Figure 6.66: Crack opening and sliding variations in beams D 

6.7 Conclusions 
Valuable experimental data has been obtained from a total of 22 beam tests regarding 

ultimate loads, strains, crack patterns and opening/sliding of shear cracks. Tests consisted 

of several series which covered a wide range of shear reinforcement ratios, geometries 

and load arrangements; tests included short span and slender beams (with and without 

stirrups) and continuous beams with stirrups. Although all beams failed in shear, several 

types of shear failing mechanisms were observed depending on the beam slenderness, 

shear reinforcement ratio and concrete strength. 

As expected, the crack pattern was significantly different between these beam series. The 

critical shear cracks in the short span beams and continuous beams remained independent 

from flexural cracks, which was not the case for the simply supported beams. Shear 

cracks that formed near failure crossed previous 45º shear cracks in the simply supported 

beams with stirrups. However, this did not occur in identical beams loaded with a point of 

contra-flexure. The critical shear crack remained stable until failure in all beams tested, 

except in the slender beams without stirrups, where failure occurred immediately after the 

main diagonal crack formed. 

Geometrical aspects, such as the size of the bearing plates or exact location of the shear 

reinforcement, were found to be critical in many of the beam tests. These parameters, 

which are in many cases not reported by researchers, can have an influence on the 

ultimate load if they are not detailed properly. The relative position of the stirrups can be 
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critical since stirrups nearer the supports are less effective than those placed at the centre 

of the shear span, as shown by the strain readings obtained experimentally. On the other 

hand, the different size of the bearing plates used at the supports of the short span beams 

tested, showed that failure can be forced in one of the shear spans by increasing the size 

of one plate from 125 to 200mm. Lastly, the experimental results from the control 

specimens tested showed the relevance of testing cylinders in addition to cube specimens, 

since the transformation factor between them was not constant, as assumed in practice. 

The type of aggregate used had a significant influence on the crack roughness. Aggregate 

fractured at cracks in beams made with limestone aggregate (fc
’=68MPa and 53MPa), 

which resulted on much smoother cracks than equivalent beams made with gravel 

(fc
’=80MPa and 31MPa), where the crack went round the aggregate. This occurred in 

beams independently of the load arrangement and amount of shear reinforcement used in 

the test. The consequences of aggregate fracture on the shear stresses transmitted along 

cracks in the beams, is studied in chapters 7 and 8 in light of data (crack opening and 

sliding) provided by the push-off and beam tests.  

In general, crack opening (w) was predominant over crack sliding (s). However, the δw/δs 

ratio was considerably larger in short span beams (δw/δs=3), independently of the type of 

aggregate used. In general the δw/δs ratio in slender beams with stirrups was around 1.5. 

Crack opening readings at different heights of the beam indicated that the crack width 

was fairly uniform along its length, especially once the crack had fully developed. 

Measurements taken in the tests were validated using different techniques, combining 

conventional with more innovative methods, such as digital photogrammetry. Strains 

were measured with either strain or Demec gauges. Both types of measurements were in 

good agreement in most of the cases. However, measurements along the flexural 

reinforcement were highly influenced by the presence of flexural cracks resulting in large 

oscillations in the Demec gauge data. Visual readings of the crack openings were 

consistent with the experimental data from either Demec or LVTDs crosses. Digital 

photogrammetry was found to be a useful tool since it allowed to measure deflections at 

several points of the beam. Measurements had an excellent agreement with traditional 

LVTDs placed along the beam. However, this method was not accurate enough in order 

to neither obtain reliable readings for strains nor relative crack displacements, due to the 

large working distance required. Although digital photogrammetry still has considerable 

margin for improvement, the results shown in this work look quite promising.



 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 7 - Analysis of Short Span Beams 
 

7.1 Introduction 
There are many instances, in the design of concrete structures, where loads are applied 

within 2d of the supports. Typical examples include corbels, pile caps, hammerhead piers, 

deep beams and short span beams. Early experimental and analytical work by Kani [127], 

Zsutty [128] and Regan [129] showed that the shear strength of reinforced concrete beams 

is highly influenced by the location of the load with respect the support. It was observed 

that shear strength increases significantly due to arching action when loads are applied 

within approximately twice the beams effective depth of the support. Design codes such 

as BS8110 allow for arching action by increasing the basic shear strength of the concrete 

by a factor 1/β equal to 2d/av, where av is the clear shear span and d is the effective depth 

as defined in Figure 7.1. EC2 adopts the alternative approach of reducing the component 

of shear force due to loads applied within 2d of the support by the factor β. 

Considerable experimental work has been carried out over the past 50 years into the shear 

behaviour of RC beams, with particular emphasis on slender beams with shear span to 

effective depth ratios (av/d) higher than 2 and on deep beams with av/d lower than 1. Short 

span beams with av/d ratios ranging from 1 to 2, have been studied to a lesser extent. 

Early work by Clark [130] and Zsutty [128] provided the first empirical formulations for 

short span beams, which failed in diagonal tension type of failure, that led to design 

equations used in the ACI codes. 

The behaviour of short span beams is significantly different from normal and deep beams. 

In short span beams the diagonal crack forms independently of the flexural cracks and 

remains stable until failure. The diagonal crack typically runs in a straight line from the 
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inner edges of the loading plates (see Figure 7.1). Shear strength and ductility can be 

enhanced by adding transverse reinforcement. Vertical stirrups have been shown to be 

more efficient than horizontal links for av/d larger than 1 (Kong & Robins [131]). Design 

codes usually recommend that horizontal stirrups are used in beams with av/d less than 

0.5. Vertical stirrups increase the shear strength if they cross the diagonal shear crack and 

are considered effective for design purposes if placed within the central three quarters of 

the clear shear span av. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1: Typical crack pattern in short span beams (Beam AL3) 

Two main load paths are commonly distinguished in short span beams with stirrups (see 

Figure 7.1) as discussed by Walraven & Lehwalter [132], Marti [133], Regan [129], 

Schlaich & Schaffer [35]. Firstly, a proportion of the load is transmitted directly from the 

loading plate to the support through a direct strut (Strut I). The second load path is the 

truss mechanism provided by the stirrups (Strut II–stirrups–Strut III). The main 

uncertainty is the percentage of load that is carried by each load path since the system is 

statically indeterminate. In addition, the influence of aggregate interlock and how the load 

is transmitted through the crack is unclear. The sensitivity of the shear strength 

predictions of short span beams to parameters such as the size of the bearing plates, 

concrete cover to the flexural reinforcement and anchorage length depends significantly 

on the method of analysis. 

In this chapter, several design methods for short span beams with and without stirrups that 

are available in MC90, BS8110 and EC2 are investigated. A simple strut-and-tie model 

(STM) is presented to estimate the shear strength of short span beams which gives a good 
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correlation with experimental results. The STM model for short span beams is consistent 

with the EC2 recommendations for strut-and-tie models. The model is also shown to give 

reasonable predictions of the failure load of short span beams reinforced in shear with 

externally-bonded carbon fibre reinforced polymer sheets (CFRP). The influence of the 

crack development into the effective strength of the direct strut is investigated, along with 

the consequences of aggregate fracture. The analytical results from the STM models are 

compared with the experimental results of beams A and numerical predictions from the 

author’s non-linear finite element models (NLFEA). 
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= 
R=fcst/fcnt 

7.2 Short span beams without transverse reinforcement 
Transverse reinforcement is often not required for strength in short span beams due to the 

enhanced shear strength provided by arching action. The entire load is transferred to the 

support in a direct strut as shown in Figure 7.2 in beams where stirrups are not provided. 

Despite the simplicity of the strut-and-tie model (STM) shown in Figure 7.2, there are 

several uncertainties in terms of load redistribution after the diagonal crack has formed. In 

addition, although the assumptions made in the strut-and-tie model in terms of geometry 

and effectiveness material strength factors are practical for design purposes, they are a 

stark representation of the real behaviour. 

 

 

 

 

 
 
 
 
 
 
 

Figure 7.2: Strut-and-tie model for a short span beam without stirrups 

According to Regan [129], two major types of failure can occur in short span beams: 

1. Shear-compression failure: due to crushing of the diagonal strut over the inclined 

crack. 

2. Shear-proper failure: the diagonal crack runs straight from the inner edges of the 

support to the loading plate, separating the beam into two parts.  

Other types of failure are related to local effects such as bearing failure or loss of dowel 

action following the developments of a crack along the flexural reinforcement adjacent to 

the support. Local failures can be avoided by providing sufficient bearing length at the 

support/loading plates and sufficient anchorage length respectively. 
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7.2.1 Existing design methods 
The design method suggested in EC2 and BS8110 for short span beams without 

transverse reinforcement is a sectional method based on empirical formulations. All shear 

resisting components such as shear at the compression zone, aggregate interlock and 

dowel action are assessed in one single term VRd,c, which represents the shear strength of 

the beam without transverse reinforcement. VRd,c is given by the empirical equations (7.1) 

and (7.2) below in EC2 and BS8110 respectively. Equations (7.1) and (7.2) take into 

account size effects, dowel action, shear resisted in the compression zone and concrete 

strength. 

  ( ) ( )bddfECV cklcRd .2001..100.18.0)2( 31
, += ρ    … (7.1) 

 ( ) ( ) bddfBSV culcRd .400..100.27.0)8110( 4131
, ρ=    … (7.2) 

where ρl = Asl/(bd) ; fck = cylinder strength; fcu = cube strength; d = effective strength; and 

b = width of the member. 

BS8110 takes into account the increase in strength due to arching action by increasing 

VRd,c by an “enhancement” factor equal to 2d/av where d is the effective depth and av is the 

clear shear span. EC2 adopts an alternative approach of reducing the design shear force 

by β=av/2d. 

EC2 permits the use of the strut-and-tie method for designing short span beams as an 

alternative approach to its empirical formula. This raises the question whether to apply 

strut-and-tie provisions or Venhanced for design since both approaches can produce 

significantly different solutions. 

7.2.2 Proposed Strut-and-Tie model 
The simple strut-and-tie model shown in Figure 7.2, which is similar to that proposed by 

Vollum & Tay [134] amongst others, was used by the author to estimate the strength of 

short span beams without stirrups. The stresses in the nodes were assumed to be non-

hydrostatic, hence the normal stresses at each face were different. The dimensions of the 

bottom node are defined by the bearing length lb and the concrete cover c. In addition, the 

width of the direct strut was estimated from the geometry of the bottom node. The strut-

and-tie model is applicable to beams with either one or two symmetrically placed 

concentrated loads. 
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In the strut-and-tie model shown in Figure 7.2, expression (7.3) is obtained from stating 

equilibrium at the top node. 

2
.tan.4 t

cnt
xbfP θ=        … (7.3) 

where θtan.
2

*adxt −=  and 
( )

4
2.* lpt nl

aa
−

−= ; nlp = number of loading points (1 or 2).  

The load P is the total load applied so the shear force V is equal to P/2 for both cases of 

one and two loading points. The notation fcnb and fcnt refers to the concrete strength at the 

bottom and top nodes while fcsb and fcst correspond to the concrete strength of the strut at 

the top and bottom respectively (refer to Figure 7.2). These concrete strength values were 

taken from the latest EC2 draft and were compared with previous recommended values 

suggested in MC90 or Collins & Mitchell [11], see Table 7.1. 

Method Uncracked (top) Cracked (bottom) 

STM-MC90 fcst = fcnt = 0.85(1-fck/250).fck fcsb = fcnb = 0.6(1-fck/250).fck 

STM-Collins* fcst = fcnt = fck fcsb = fcnb = fck/(0.8+170.ε1*) 

Strut without transv. tension 
fcst = fck 

Strut with transv. tension 
fcsb = 0.6(1-fck/250).fck STM-EC2 

Node (C-C) 
fcnt = (1-fck/250).fck 

Node (C-T) 
fcnb = 0.85(1-fck/250).fck 

 
Note: * ε1 = εL+(εL+0.002).cot2θ where εL is the strain in the tie (Collins & Mitchell [11]) 

Table 7.1: Concrete strengths applied in the STM 

In order to solve for P and θ in equation (7.3), an additional equation is needed. This 

relationship is obtained from the failure mode taken into account. Six different modes of 

failure were considered in order to obtain the shear strength. However, the critical failure 

mode was in most cases crushing in the strut (Mode 2). The failure modes examined are 

listed below: 

Mode 1: Flexure. 

θtan..21 ylsl fAP =        … (7.4) 

Mode 2: Crushing in strut at bottom node. 

bfclP csbb .).2sin.sin.(2 2
2 θθ +=      … (7.5) 
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Mode 3: Crushing at rear face at the bottom node. 

 θtan...43 bfcP cnb=        … (7.6) 

Mode 4: Bearing failure at bottom node. 

 blfP bcnb ..24 =         … (7.7) 

Mode 5: Crushing in strut at top node. 
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−

=







+=   … (7.8) 

Mode 6: Bearing failure at top node. 

blfnP tcntlp ..6 =        … (7.9) 

Iterating for different values of θ, a converged solution is found for each failure mode that 

satisfied both equation (7.3) and the corresponding mode of failure constraint (7.4 to 7.9). 

From the three references shown in Table 7.1, only EC2 distinguishes between an 

effective concrete strength for the strut and nodes. If the concrete strengths suggested by 

MC90 or Collins & Mitchell’s [11] formula are applied, Mode 5 coincides with Mode 6. 

This can be seen clearly by taking fcst = fcnt in equations 7.8 and 7.9. The proposal by 

Collins & Mitchell [11] relates the concrete strength of the strut to the tensile strain of the 

tie in order to satisfy compatibility of deformations at the bottom node. A converged 

solution similar to STM-MC90 prediction was obtained using the softening model 

suggested by Collins & Mitchell [11]. 

The critical failure mode predicted by the three methods investigated varied as shown in 

Tables 7.2 to 7.4. In general, the governing failure mode predicted by STM-EC2 was 

Mode 2, which corresponds to strut crushing at the bottom node. On the other hand, Mode 

3 (failing of the rear face of the bottom node) was critical in STM-MC90 and STM-

Collins approaches. This type of failure mode is generally neglected by the codes and no 

check is required as long as the reinforcement anchorage length is sufficient. Neglecting 

Mode 3 in the STM-MC90 approach results in identical results to STM-EC2 since Mode 

2 becomes critical in both; on the other hand the STM-Collins predictions showed a slight 

improvement, as shown in the next section. 
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Mode 5: Beam BI-1 (Mathey & Moody)

According to STM, failure is governed by the bottom node. As reported by Vollum & Tay 

[134], it is not clear whether this is consistent with experimental evidence since failure 

generally occurs by crushing of the concrete at the top node. In addition, it is debatable 

which value of the effective concrete strength should be used for the strut at the top node. 

No solution is generally found for Mode 5 (strut crushing at the top node) using EC2 

concrete strengths shown in Table 7.1. This can be explained by solving analytically 

equations (7.3) and (7.8). A cubic relationship F(tanθ) is obtained, see equation (7.10), in 

which R is the ratio between fcst/fcnt assumed. The roots of equation (7.10) provide the 

solution to the problem; at least one root is a real number. However, depending on the 

coefficients of the cubic equation, the root can become negative. This is usually the case 

for R>1 using normal values of lt, a* and d (see Figure 7.3). 

  ( )R
a
d

a
ltRn

R
a
dF lp −−








+−+−= 1tan.

4
..

1tantan)(tan **
2

*
3 θθθθ   … (7.10) 

As discussed earlier, for MC90 and Collins & Mitchell’s [11] formulas, Mode 5 is 

equivalent to Mode 6 (bearing failure at top plate) since R=1. On the other hand, the value 

of R in EC2 according to Table 7.1 would be 1/ν where ν =(1-fck/250); R values of 1.2 are 

obtained for concretes of 40MPa. As discussed earlier, these values of R can be 

problematic and only cases with very small load plates would lead to a solution in the 

STM (see Figure 7.3). In addition, it is debatable whether the same strut effective factor 

should be used for the top and bottom nodes (R=0.6). This alternative interpretation 

would generally leads to a solution as shown in Figure 7.3. Results using this alternative 

approach are discussed in next the section. 

 

 

 

 

 

 

 
Note: Beam BI-1 tested by Mathey & Watsein [135] (lb=lt=89mm, a*=610mm, fck=25.8MPa) 

Figure 7.3: Converged solutions in STM for Mode 5 (strut crushing at the top node) 
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av/d <1

Author Beam av/d d 
[mm]

b 
[mm]

fc' 
[MPa]

ρ l 
[%]

Ptest 
[kN] 4- EC2 5- 

BS8110
Walraven V711 0.69 160 250 18 1.52 330 0.64 M6 0.76 M4 0.93 M2 0.77 0.78
& Lehwalter V022 0.72 360 250 20 1.13 540 0.85 M6 0.87 M2 0.93 M2 0.82 0.78

V511 0.73 560 250 20 1.12 700 0.90 M2 0.85 M2 0.97 M2 0.88 0.82
V411 0.73 740 250 19 1.10 730 1.18 M2 1.12 M2 1.25 M2 1.05 0.96
V211 0.73 930 250 20 1.08 1010 1.07 M2 1.01 M2 1.13 M2 0.92 0.83

Smith 0A0-44 0.67 305 102 20 1.93 280 0.78 M2 0.74 M3 0.83 M3 0.74 0.71
& Vantsiotis 0A0-48 0.67 305 102 21 1.93 272 0.82 M2 0.78 M3 0.87 M3 0.77 0.73
Tan et al II-1/1.00 0.85 443 110 78 2.58 510 1.33 M2 1.28 M3 1.54 M3 0.73 0.75
Kong S-10 0.83 216 76 23 1.75 220 0.56 M2 0.46 M3 - - 0.44 0.42

D-10 0.83 216 76 24 1.75 238 0.52 M1 0.44 M3 - - 0.41 0.39
S-15 0.52 343 76 28 1.10 416 0.45 M2 0.41 M4 - - 0.48 0.45
D-15 0.52 343 76 28 1.10 474 0.40 M2 0.36 M4 - - 0.42 0.40

Oh H4300 0.94 500 130 49 1.56 675 0.92 M1 0.80 M3 0.86 M2 0.51 0.48
& Shin N4200 0.54 500 130 24 1.56 530 0.82 M2 0.82 M3 1.02 M2 0.89 0.83

H4200 0.54 500 130 49 1.56 802 1.00 M2 0.99 M3 1.15 M1 0.75 0.70
Clark D0-1 0.94 390 203 26 0.98 443 0.90 M1 0.88 M1 0.90 M1 0.69 0.65

D0-3 0.94 390 203 26 0.98 446 0.89 M1 0.88 M1 0.90 M1 0.68 0.65
Tan & Lu I-500/0.5 0.34 444 140 49 2.60 1700 0.48 M2 0.39 M4 0.81 M5 0.41 0.62

I-500/0.75 0.62 444 140 43 2.60 1400 0.47 M2 0.42 M4 0.68 M3 0.38 0.39
I-500/1.0 0.90 444 140 37 2.60 1140 0.45 M2 0.42 M3 0.49 M3 0.31 0.32

Zhan & Tan 2DB35 0.95 314 80 27 1.25 170 0.79 M2 0.72 M4 0.82 M2 0.66 0.63
2DB50 0.93 459 80 32 1.15 271 0.73 M2 0.72 M2 0.77 M2 0.58 0.55
2DB70 0.92 650 80 25 1.28 311 0.66 M2 0.66 M2 0.75 M2 0.65 0.60

2DB100 0.92 926 80 31 1.26 483 0.74 M2 0.74 M2 0.82 M2 0.60 0.53
3DB35b 0.95 314 80 27 1.25 170 0.79 M2 0.72 M4 0.82 M2 0.66 0.63
3DB50b 0.94 454 115 28 1.28 334 0.80 M2 0.78 M4 0.85 M2 0.66 0.62
3DB70b 0.93 642 160 29 1.22 721 0.69 M2 0.69 M2 0.75 M2 0.56 0.52

3DB100b 0.94 904 230 29 1.20 1344 0.84 M2 0.80 M4 0.87 M2 0.57 0.51

Total = 28 4- EC2 5- 
BS8110

max value = 0.95 930 250 78 2.60 Mean 0.64 0.62
min value = 0.34 160 76 18 0.98 SD 0.18 0.16

COV % 28.59 26.31

1- STM - 
EC2

2- STM - 
MC90

3- STM - 
Collins

Pcalc/Ptest ¦ F.M

29.52 31.10 22.84

0.77 0.73 0.90
0.210.230.23

Pcalc/Ptest
1- STM - 

EC2
2- STM - 

MC90
3- STM - 
Collins

7.2.3 Performance of existing design methods compared to proposed 
strut-and-tie model (Experimental validation) 

A total of 104 beams without stirrups, from fourteen different researchers [130-132, 134-

146] including the authors (see Tables 7.2 to 7.4) were analysed using the design methods 

described in sections 7.2.1 and 7.2.2. The majority of the beams studied corresponded to 

short span beams (67) although 15 deep beams with av/d<1 and 9 more slender beams 

with av/d>2 were included in the analysis in order to verify the range of validity of the 

design methods. Results are summarized in Tables 7.2, 7.3 and 7.4 (γc=1). 

The strut-and-tie methods (1-3 in Tables 7.2-7.4) were found to be more accurate than the 

sectional approaches described in section 7.2.1 (4-5 in Tables 7.2-7.4). In addition, the 

EC2 recommended values for the effective concrete strengths in the STM, provided better 

estimates of the ultimate strength than the MC90 and Collins & Mitchell [11] approaches, 

which gave more conservative results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  FM – Critical failure mode (M1- flexure, M2- crushing in strut at bottom node, M3- crushing at rear 
face at the bottom node, M4- bearing failure at bottom node, M5- crushing in strut at top node, M6- 
bearing failure at top node 

Table 7.2: Summary of analysis of experimental data of beams without stirrups (av/d <1) 
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2 >av/d >1

Author Beam av/d d 
[mm]

b 
[mm]

fc' 
[MPa]

ρ l 
[%]

Ptest 
[kN] 4- EC2 5- 

BS8110
Mathey BI-1 1.29 403 203 26 3.05 626 0.64 M2 0.58 M3 0.55 M3 0.46 0.50
& Watsein BI-2 1.29 403 203 23 3.05 621 0.59 M2 0.54 M3 0.50 M3 0.45 0.49

BII-3 1.29 403 203 22 1.88 524 0.67 M2 0.61 M3 0.54 M3 0.51 0.49
BII-4 1.29 403 203 27 1.88 626 0.67 M2 0.60 M3 0.53 M3 0.46 0.43
BIII-5 1.29 403 203 26 1.85 577 0.70 M2 0.64 M3 0.56 M3 0.49 0.46
BIII-6 1.29 403 203 26 1.85 581 0.70 M2 0.63 M3 0.55 M3 0.49 0.46
BIV-7 1.29 403 203 25 1.86 582 0.66 M2 0.60 M3 0.53 M3 0.48 0.45
BIV-8 1.29 403 203 25 1.86 608 0.65 M2 0.59 M3 0.52 M3 0.46 0.44
BV-9 1.29 403 203 24 1.16 448 0.83 M2 0.75 M3 0.60 M3 0.52 0.49

BV-10 1.29 403 203 27 1.16 537 0.79 M2 0.72 M3 0.57 M3 0.46 0.43
BVI-11 1.29 403 203 26 1.17 448 0.90 M2 0.81 M3 0.65 M3 0.54 0.51
BVI-12 1.29 403 203 26 1.17 537 0.75 M2 0.68 M3 0.55 M3 0.45 0.43
BV-13 1.29 403 203 23 0.75 445 0.81 M2 0.73 M3 0.54 M3 0.45 0.43
BV14 1.29 403 203 27 0.75 448 0.94 M2 0.85 M3 0.61 M3 0.47 0.45

BVI-15 1.29 403 203 26 0.75 359 1.13 M2 1.02 M3 0.73 M3 0.58 0.55
BVI-16 1.29 403 203 23 0.75 377 0.97 M2 0.88 M3 0.64 M3 0.53 0.51

Moodey et al III-24a 1.14 533 178 18 2.72 592 0.71 M2 0.54 M3 0.50 M3 0.54 0.56
III-24b 1.14 533 178 21 2.72 605 0.79 M2 0.61 M3 0.56 M3 0.55 0.57
III-25a 1.14 533 178 25 3.46 534 1.05 M2 0.80 M3 0.76 M3 0.66 0.71
III-25b 1.14 533 178 18 3.46 578 0.71 M2 0.54 M3 0.51 M3 0.54 0.58
III-26a 1.14 533 178 22 4.25 841 0.60 M2 0.46 M3 0.44 M3 0.40 0.43
III-26b 1.14 533 178 21 4.25 792 0.61 M2 0.46 M3 0.45 M3 0.42 0.45
III-27a 1.14 533 178 22 2.72 694 0.72 M2 0.55 M3 0.50 M3 0.49 0.50
III-27b 1.14 533 178 23 2.72 712 0.74 M2 0.57 M3 0.52 M3 0.49 0.50
III-28a 1.14 533 178 24 3.46 605 0.89 M2 0.68 M3 0.64 M3 0.58 0.62
III-28b 1.14 533 178 23 3.46 681 0.76 M2 0.58 M3 0.55 M3 0.51 0.54
III-29a 1.14 533 178 22 4.25 778 0.65 M2 0.50 M3 0.48 M3 0.44 0.47
III-29b 1.14 533 178 25 4.25 872 0.65 M2 0.50 M3 0.48 M3 0.41 0.44

Walraven V311 1.25 930 250 16 1.69 735 0.76 M3 0.54 M3 0.53 M3 0.80 0.72
Lehwalter V321 1.25 930 250 16 1.69 778 0.71 M3 0.51 M3 0.49 M3 0.75 0.67

V322 1.25 930 250 14 1.69 752 0.66 M3 0.47 M3 0.46 M3 0.75 0.67
V811 1.25 160 250 19 1.90 281 0.81 M2 0.73 M4 0.58 M4 0.54 0.55

Leonhardt et al. 2 1.10 270 190 21 2.07 531 0.52 M2 0.48 M3 0.42 M3 0.41 0.40
Placas R4 1.99 272 152 34 1.46 302 0.51 M2 0.48 M3 0.28 M3 0.34 0.33

R5 1.99 272 152 34 0.97 169 0.92 M2 0.86 M3 0.46 M3 0.53 0.51
R6 1.99 272 152 34 1.46 249 0.63 M2 0.59 M3 0.34 M3 0.41 0.40

Vollum & Tay 1 1.14 180 100 44 2.23 137 1.05 M2 0.83 M3 0.95 M3 0.74 0.76
2 1.14 180 100 44 2.23 201 0.71 M2 0.56 M3 0.65 M3 0.50 0.52
3 1.14 180 100 44 1.26 145 0.99 M2 0.78 M3 0.79 M3 0.60 0.59
4 1.28 160 100 44 2.51 161 1.19 M2 1.12 M3 0.88 M3 0.50 0.55
7 1.14 180 100 25 2.23 135 0.66 M2 0.52 M3 0.61 M3 0.62 0.64
8 1.14 180 100 25 2.23 165 0.54 M2 0.43 M3 0.50 M3 0.51 0.52
9 1.14 180 100 25 2.23 178 0.50 M2 0.39 M3 0.46 M3 0.47 0.48

10 1.21 180 100 25 2.23 180 0.39 M2 0.37 M4 0.38 M2 0.44 0.45
11 1.21 180 100 25 2.23 134 0.52 M2 0.50 M4 0.51 M2 0.59 0.61
12 1.21 180 100 25 2.23 133 0.53 M2 0.51 M4 0.51 M2 0.59 0.61

Reyer de Ortiz 1 1.10 363 150 51 1.80 560 0.82 M3 0.59 M3 0.54 M3 0.50 0.48
2 1.24 363 150 36 1.80 440 0.75 M2 0.57 M3 0.52 M3 0.50 0.48
3 1.38 326 150 32 2.06 310 0.89 M2 0.69 M3 0.56 M3 0.59 0.57

3B 1.38 326 150 49 2.06 580 0.67 M2 0.52 M3 0.43 M3 0.36 0.35
4 1.38 326 150 33 2.06 490 0.84 M2 0.78 M3 0.57 M3 0.38 0.36

Smith 0C0-50 1.16 305 102 21 1.93 232 0.69 M2 0.60 M3 0.52 M3 0.51 0.49
& Vantsiotis 0B0-49 1.16 305 102 22 1.93 298 0.56 M2 0.49 M3 0.42 M3 0.41 0.39

0D0-47 1.75 305 102 20 1.93 148 0.75 M2 0.64 M3 0.41 M3 0.53 0.50
Chen et al 1-500/1.5 1.46 444 140 42 2.60 680 0.60 M2 0.52 M3 0.44 M3 0.33 0.34

2-1000/1.5 1.53 884 140 39 2.60 940 0.78 M2 0.74 M3 0.61 M3 0.39 0.38
3-1400/1.5 1.55 1243 140 44 2.60 1380 0.76 M2 0.75 M3 0.62 M4 0.36 0.35
4-1750/1.5 1.56 1559 140 43 2.60 940 1.32 M2 1.22 M4 1.03 M4 0.64 0.60

Tan et al III-1/1.50 1.41 443 110 78 2.58 370 1.34 M2 1.18 M3 1.05 M3 0.60 0.62
Clark B0-1 1.72 390 203 24 0.98 242 0.98 M1 0.96 M1 0.71 M3 0.67 0.63

B0-2 1.72 390 203 24 0.98 188 1.26 M1 1.24 M1 0.68 M3 0.86 0.82
B0-3 1.72 390 203 24 0.98 256 0.92 M1 0.91 M1 0.77 M3 0.63 0.60
C0-1 1.33 390 203 25 0.98 349 0.85 M1 0.84 M1 1.00 M3 0.61 0.58
C0-3 1.33 390 203 24 0.98 334 0.89 M1 0.87 M1 0.72 M3 0.63 0.59

De Cossio et al. L-1 1.41 252 152 21 3.36 232 0.90 M2 0.67 M3 0.47 M3 0.56 0.61
Sagaseta AG0 1.12 438 135 80 3.33 652 1.27 M2 1.10 M3 1.21 M3 0.53 0.57
& Vollum AL0 1.12 438 135 68 3.33 731 1.04 M2 0.90 M3 0.96 M3 0.45 0.49

Total = 67 4- EC2 5- 
BS8110

max value = 1.99 1559 250 80 4.25 Mean 0.52 0.52
min value = 1.10 160 100 14 0.75 SD 0.11 0.10

COV % 20.83 19.83

Pcalc/Ptest
1- STM - 

EC2
2- STM - 

MC90
3- STM - 
Collins

26.08 29.85 29.98

0.79 0.68 0.59
0.180.200.21

1- STM - 
EC2

2- STM - 
MC90

3- STM - 
Collins

Pcalc/Ptest ¦ F.M
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.3: Summary of analysis of experimental data of beams without stirrups (2> av/d >1) 
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av/d >2

Author Beam av/d d 
[mm]

b 
[mm]

fc' 
[MPa]

ρ l 
[%]

Ptest 
[kN] 4- EC2 5- 

BS8110
Clark A0-1 2.11 390 203 22 0.98 178 1.13 M1 1.11 M1 0.71 M3 0.72 0.72

A0-2 2.11 390 203 26 0.98 216 0.94 M1 0.93 M1 0.68 M3 0.63 0.63
De Cossio L-2 2.41 252 152 22 3.36 151 0.90 M2 0.70 M3 0.31 M3 0.61 0.67
& Siess L-2a 2.41 252 152 37 3.36 160 1.28 M1 1.06 M3 0.47 M3 0.68 0.75

L-3 3.42 252 152 28 3.36 107 1.17 M2 0.95 M3 0.28 M3 0.94 1.03
L-4 4.43 252 152 26 3.36 102 0.88 M2 0.73 M3 0.15 M3 0.95 1.05
L-5 5.43 252 152 28 3.36 102 0.78 M2 0.66 M3 0.10 M3 0.98 1.08

Sagaseta BG0 3.01 465 135 80 1.00 124 1.66 M1 1.41 M3 0.55 M3 1.30 1.22
& Vollum BL0 3.01 465 135 68 1.00 101 2.04 M1 1.59 M3 0.60 M3 1.52 1.43

Total = 9 4- EC2 5- 
BS8110

max value = 5.43 465 203 80 3.36 Mean 0.93 0.95
min value = 2.11 252 135 22 0.98 SD 0.31 0.27

COV % 33.76 28.86

Pcalc/Ptest
1- STM - 

EC2
2- STM - 

MC90
3- STM - 
Collins

34.46 31.30 53.23

1.20 1.02 0.43
0.230.320.41

1- STM - 
EC2

2- STM - 
MC90

3- STM - 
Collins

Pcalc/Ptest ¦ F.M

 

 

 

 

 

 

Note:  Results for beams BG0 and BL0 are averaged values from B0-1 and B0-2 beams 

Table 7.4: Summary of analysis of experimental data of beams without stirrups (av/d >2), where 

STM is no longer valid 

Mode 5 (crushing of the strut at the top node) was not considered for the predictions of 

STM-EC2 shown in Tables 7.2 to 7.4, since converged solutions were rarely found. As 

discussed in previous section, this was due to the assumed fcst/fcnt ratio (Table 7.1). The 

alternative option of taking same effective strength (0.6νfck) for the top and bottom of the 

strut, provided rather conservative predictions; mean value of Pcalc/Ptest=0.57 and a 

coefficient of variation (COV) of 16% for beams with av/d=1–2. This suggests that using 

the bottom node geometry in order to assess the strut width is sensible since it is simpler 

and provides better predictions than using the geometry of the top node, which is not 

totally defined from geometric considerations. 

As discussed in previous section, Mode 3 (failure of the rear face of the bottom node) was 

only critical in STM-MC90 and STM-Collins approaches. If this mode is neglected, 

STM-MC90 provides identical solutions to STM-EC2. The predictions from the STM-

Collins approach neglecting Mode 3, improved slightly from those shown in Tables 7.2 to 

7.4; an average value of Pcalc/Ptest equal to 0.65 and a coefficient of variation of 28% was 

obtained for beams with av/d=1–2. 

Even though the strut-and-tie predictions were in general more reasonable than those 

provided by empirical formulas (7.1) and (7.2), a large scatter was observed in the STM 

predictions of short span beams without stirrups. The average value for Pcalc/Ptest using the 

STM-EC2 for the 67 beams analysed was 0.79, although the coefficient of variation was 

26.6% and the ultimate load was overestimated for several beams such as beam AG0 (see 

Table 7.3). The EC2 empirical method provided results which were more conservative 

than the STM (average Pcalc/Ptest = 0.52) but had a slightly lower COV equal to 21.1%. 
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Very similar results to the EC2 empirical formula were obtained using the BS8110 

formula, although the cube strength had to be estimated in most of the cases from cylinder 

tests. Unless cube strengths were available a conversion cylinder-cube strength factor of 

0.8 was assumed.  

The main reason for the large scatter in the STM predictions was that the effective 

concrete strength assumed in the direct strut was most likely overestimated in some 

specimens. It appears that beams, which exhibited a particularly lower strength such as 

beam AG0 tested in this work, the strength of the direct strut was highly influenced by the 

position of the diagonal crack. Beams with a shear proper type of failure in which the 

diagonal crack crossed the direct strut completely can exhibit a reduced strength, see 

further discussion in section 7.5.2. An interesting example is shown for beams AG0 and 

AL0 in which the first specimen failed at a lower ultimate load than second one even 

though the concrete was 17% stronger. The position of the main diagonal crack in beam 

AL0 allowed the direct strut to sustain higher loads than AG0 in which the direct strut 

was crossed completely by the diagonal crack since early load stages. The development of 

the main diagonal shear crack depends on factors such as the initial state of stress (creep 

and shrinkage) or load history. These parameters that affect the crack development are 

difficult to have control over them and justify the use of empirical based formulas such as 

EC2 formula (7.1).  

The previous analysis was carried out with a material factor of safety (γc) of 1.0. Despite 

the large scatter observed in the strut-and-tie models, predictions are considered to be safe 

for beams with av/d between 1 and 2 and concrete strengths up to 80MPa.  

 

 

 

 

 

 

 

Figure 7.4: Performance of EC2 and STM methods for short span beams without stirrups 

(1<av/d<2) 
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The use of the material safety factors in the STM can compensate for the uncertainties in 

the effective concrete strength assumed as shown in Figure 7.4, leaving a reasonable 

margin for safety. The overall factor of safety (FOS) provided by EC2 can be estimated as 

2.14, assuming dead load equal to live load (1.35+1.5)/2=1.42 and a material factor of 

safety for the concrete of 1.5. The FOS for ACI and CSA standards are 1.87 and 2.12 

respectively (Collins et al. [12]). Using STM-EC2 approach in beams with av/d between 1 

and 2, the maximum value for Pcalc/Ptest was 1.34, which still allows for a FOS of 1.58 

according to EC2 provisions. Similar margins of safety were obtained using STM-Collins 

approach, although the predictions became more conservative with increasing av/d, as 

shown in Figure 7.4. 

All the design methods that were examined, showed a very similar performance for the 15 

deeper beams with av/d<1 than for beams with av/d between 1 and 2. This similar 

performance was unexpected since some of the beams had av/d ratios as low as 0.34. On 

the other hand, the results for more slender beams with av/d>2 using the STM-EC2 model 

were not satisfactory since an even larger scatter in the results was obtained than for 

beams with av/d between 1 and 2. In some cases such as beams B0 tested by the author, 

which had high concrete strength (80MPa) and depth of 462mm, the overall FOS 

obtained was almost zero when using STM-EC2 method (see Figure 7.5). 

 

 

 

 

 

 

 

 

 

Figure 7.5: Shear strength predictions for slender beams with av/d>2 (refer to Table 7.4) 

The poor performance of the STM for more slender beams was expected since the 

diagonal crack restricts quite considerably the formation of the direct strut for such 
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geometry (Muttoni & Schwartz [147]). It is widely accepted that for a/d>3.0, sectional 

approaches provide more accurate predictions than strut-and-tie models. Surprisingly, the 

predicted strength of some of the slender beams analysed with av/d up to 5.5 using STM-

EC2 was near the experimental value (Figure 7.5). However, these beams, which were 

tested by De Cossio & Siess [146], had significantly low values of d and fc. As shown in 

Table 7.4, the ultimate strength of the slender beams is generally overestimated using 

strut-and-tie models STM-EC2 and STM-MC90, as opposed to the STM-Collins 

approach, where the strength is clearly underestimated. The softening model suggested by 

Collins & Mitchell [11] seemed inadequate for such beams since the high transverse 

tensile strains induced in the strut by the tie result in an excessive reduction in concrete 

strength.  

The empirical formulas provided more sensible results than STM models, which seems 

reasonable since equations (7.1) and (7.2) were originally calibrated for slender beams. 

The enhancement factor β was limited to 1 for beams with an av/d larger than 2 as 

specified in EC2. The accuracy of these empirical formulas regarding fc, d and the type of 

aggregate, is discussed in more detail in chapter 8. 

Demerit Point Classification 

The different design methods investigated for short span beams with av/d between 1 and 2 

were compared with each other using the “Demerit Point Classification” system proposed 

by Collins [148]. This simple approach is based on assigning marks (DP- Demerit Point) 

to each range of Ptest/Pcalc. This marking system has been used by other researchers, such 

as Cladera [24] amongst others, to compare shear design provisions given by different 

codes. The total demerit point score is obtained by summing the products of the 

percentage of specimens within each range of Ptest/Pcalc by the demerit point (DP) for that 

range, see Table 7.5. Predictions within the range of Ptest/Pcalc=0.85-1.30 are considered 

appropriate and so DP equals to zero. Predictions within the unsafe region are penalized 

more intensively than those on the conservative side (refer to Table 7.5).  

The demerit point classification for the short span beams (av/d=1–2) without stirrups is 

shown in Table 7.5 and Figure 7.6. As expected, the strut-and-tie models had the lowest 

value of DP compared to EC2 and BS8110 approaches, which had a large number of 

specimens on the conservative side (see Table 7.5). 

 



  Chapter 7 – Analysis of Short Span Beams 
 

259 

Ptest/Pcalc av/d: 1 - 2 DP
STM- 
EC2

STM- 
MC90

STM- 
Collins EC2 BS8110

<0.5 Extremely dangerous 10 0 0 0 0 0
0.5-0.65 Dangerous 5 0 0 0 0 0

0.65-0.85 Low safety 2 7 4 1 0 0
0.85-1.30 Appropiate safety 0 36 24 13 3 1
1.30-2.00 Conservative 1 54 55 58 52 52

>2.00 Extremely conservative 2 3 16 27 45 46
TOTAL DP 75 97 115 142 145
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Table 7.5: Demerit point classification for short span beams 
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b) Results from Cladera [24]        c) Refer to data in Table 7.3 
 

Figure 7.6: Demerit point classification of beams without stirrups for different design methods: a) 

DP of beams with av/d =1-2; b) Results obtained by Cladera [24] for slender beams using EC2 and 

Response 2000; c) Results obtained in this work for short span beams using EC2 and STM 

approaches 
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It is of interest to compare the results with those obtained by Cladera [24] for more 

slender beams with a/d between 2.5 and 7.4, using EC2 and Response 2000. The total 

value of DP obtained by Cladera using EC2 was less than half the one obtained in this 

work for short span beams. This difference in the total value of DP reflects the excessive 

level of conservatism in EC2 method for short span beams, as shown in Figure 7.6. These 

results suggest that there is still some margin for improvement in the β factor used in 

EC2. 

Although the Demerit Point Classification system proposed by Collins [148] is a practical 

approach to compare the performance of different design methods it can be argued that 

the approach does not reflect the differences in material and load factors used in the 

codes. According to the author this method seem suitable for comparing the accuracy of 

different design formulas, but it can be misleading if margins of safety are to be 

compared, since the Ptest/Pcalc ratio applied for the comparison does not consider any 

factors of safety. For example, the high DP mark obtained using the BS8110 method (see 

Table 7.5), which is due to an excessive level of conservatism, does not reflect that the 

material factor of safety used in BS8110 is considerably lower (γc=1.25) than the other 

codes examined (γc=1.5/1.54 for EC2/CSA codes). This difference might be compensated 

by lower load factors of safety but again this is not reflected in DP mark. A more rigorous 

comparison including safety factors is not always straightforward, as shown in sections 

7.3.5 and 8.3.2, especially for beams with stirrups since partial factors of safety are 

applied to concrete and steel separately. As discussed in chapter 2, the assumptions made 

regarding Vc and Vs vary significantly according to the design method used. 

A possible alternative is suggested by the author, which consists of modifying the 

Demerit Point Classification system proposed by Collins [148] by using parameter Ptest/Pd 

instead of Ptest/Pcalc, where Pd is the design strength, including material and load factors. 

Table 7.6 shows a possible scoring scenario proposed by the author. The limits for the 

different ranges proposed shown in Table 7.6 seem reasonable, although they are open to 

discussion. These ranges of  Ptest/Pd  were obtained from multlipying the original values 

of Ptest/Pd suggested by Collins [148] by a constant factor of around 1.75, which was 

estimated from overall factors of safety used in CSA for slender beams with stirrups (see 

section 8.3.3). For members without stirrups the factor of 1.75 used to obtain the critical 

values of Ptest/Pd shown in Table 7.6, could be increased since the material factors are 
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STM

Ptest/Pd av/d: 1-2 DP
STM- 
EC2 EC2 BS8110

<1.0 Extremely dangerous 10 0 0 0
1.0-1.15 Dangerous 5 0 0 0
1.15-1.5 Low safety 2 0 0 0
1.5-2.3 Appropiate safety 0 19 0 1
2.3-3.5 Conservative 1 63 16 39

>3.5 Extremely conservative 2 18 84 60
TOTAL DP 99 184 158

Sectional

generally higher for such instances. For simplicity, same ranges of Ptest/Pd were finally 

adopted for both cases of beams with and without shear reinforcement. 

As shown in Table 7.6, the demerit mark obtained by the BS8110 method using the 

modified demerit point system becomes lower than for EC2, which results from the lower 

material factors of safety assumed, as discussed earlier. The results shown in Table 7.6 

were obtained assuming γc equal to 1.5 and 1.25 for EC2 and BS8110 methods 

respectively. In addition, dead load was assumed to be equal to live load, which results on 

load factors of 1.42 and 1.5 for EC2 and BS8110 respectively. Results from the STM-

Collins approach are not shown since the method combines formulas from two different 

codes, i.e. strength at the nodes from STM provisions according to EC2 and Collins & 

Mitchell [11] formula for the effective strength of the strut.  

 

 

 

 

 

 

Note: Pd design load using material and load factors (DL=LL; γload=1.42/1.5 and γc =1.5/1.25 for 
         EC2/BS8110 design codes)  

Table 7.6: Modified Demerit Point Classification by using overall factors of safety 
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7.3 Short span beams with transverse reinforcement 
Transverse reinforcement should be provided in short span beams in cases when the 

applied shear force is greater than VRd,c. The shear strength and ductility of short span 

beam specimens is increased by vertical shear reinforcement. Design codes provide 

nominal shear reinforcement in order to assure ductile behaviour. EC2 defines a minimum 

shear reinforcement ratio of ρwmin = 0.08fc
0.5/fy. On the other hand BS8110 requires a 

minimum design shear resistance provided by the links of 0.4N/mm2 if the applied shear 

stress is larger than half of the shear resisted by the concrete (vc=VRd,c/bd). 

The load transfer mechanism in a short span beam with stirrups becomes statically 

indeterminate internally due to the additional load path provided by the transverse 

reinforcement. Following EC2 recommendations, only stirrups placed within the central 

three quarters of the clear shear span (av) were considered to contribute into the shear 

strength, which are denoted as “effective” stirrups. It is convenient to define the amount 

of transverse reinforcement in short span beams in terms of the stirrup index 

SI=nAswfy/(bh fc
’), where n = number of effective stirrups, Asw = area of steel provided by 

each stirrup, fy = yield strength of steel, b = width, h = height, fc
’ = cylinder strength of 

concrete. 

7.3.1 Existing design methods 
MC90 

One of the earliest formulas for estimating the force carried by vertical stirrups for point 

loads near the supports was provided by Schlaich et al. [35] and was also included in the 

model code MC90. Expression (7.11), which also takes into account axial tension, is a 

linear interpolation of the shear carried by the stirrups (Fw), between the borderline cases 

Fw = F, for a/z = 2, and Fw = 0, for a/z = 0.5. If a/z>2 the beam is considered to be outside 

the short span beam behaviour range while in the other boundary case, a/z>0.5, the entire 

shear force is carried by the direct strut.  

F
FN

zaF
Sd

w .
/3
1/.2

−
−

=        … (7.11) 

where Fw is the shear carried by the stirrups, F is the total shear, a is the distance between 

centre load points, z is the lever arm which is taken as 0.9 times the effective depth and 

NSd is the axial tension (positive for tension).  



  Chapter 7 – Analysis of Short Span Beams 
 

263 

It is noteworthy that equation (7.11) is only dependent on a/z and not the stirrup index SI, 

which is inconsistent with the experimental results presented in sections 7.3.5. 

Furthermore, the lever arm z is assumed constant in equation (7.11) and independent of 

SI, which seems to be unrealistic. 

Standard Truss (BS8110 and first draft of EC2) 

BS8110, as well as earlier drafts of EC2, proposes a design method for short span beams 

based on a traditional truss approach (Vc+Vs) with a concrete (Vc) and steel (Vs) 

components. The concrete component Vc, which is estimated from equations (7.1) or 

(7.2), is enhanced by factor 2d/av in order to take into account arching action. EC2 limits 

this factor to a maximum of 4, which corresponds to cases where av/d equals to 0.5. In 

short span beams, the stirrups contribution Vs is calculated as nAswfy. For the analysis of 

the experimental database equation (7.1) is adopted in the calculations and referred to as 

(Vc+Vs) method. 

An alternative approach to the standard truss method is to calculate the enhanced concrete 

component using a strut-and-tie model with no stirrups, instead of empirical equations 

(7.1-7.2) and then add the Vs term. In this work this is referred to as the Vc(STM)+Vs 

method. The shear strength calculated in this manner is clearly overestimated, especially 

for higher values of SI, since the contribution of the direct strut, which is assumed 

constant and equal to Vc(STM), appears to reduce as the SI increases. 

EC2 

The approach suggested in EC2 for designing short span beams consists of reducing the 

component of shear force due to loads applied within 2d of the support by a factor β = 

av/2d. This shear reduced value is limited by the yielding capacity of the stirrups located 

in the effective shear span. In the analysis of the experimental database of short span 

beams using EC2 approach presented in section 7.3.5, the strength of the beam was taken 

not lower than the strength of the beam without stirrups obtained from equation (7.1).  
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7.3.2 Proposed Strut-and-Tie model 
Short span beams can be considered as a discontinuity region, thus EC2 allows short span 

beams to be designed using the strut-and-tie method (STM). The sensitivity of the 

predictions from the STM and the other design methods described in the previous section, 

to geometrical and material properties differ significantly. The STM is a transparent 

approach but various assumptions need to be made regarding the geometry of the nodes, 

the width of the struts and the concrete strength. The predictions of strut-and-tie models 

are dependent on these assumptions in addition to geometrical parameters such as the 

length of bearing plates and the concrete cover to the main tensile reinforcement. 

The strut-and-tie model for short span beams presented in this section is consistent with 

the recommendations for STM made in EC2. The models are applicable to symmetrically 

loaded beams with either one or two point loads. The bearing stress under the loading and 

supporting plates were limited to νfcd and 0.85νfcd respectively as recommended in EC2 

for compression-compression (CC) and compression-tension (CT) nodes in strut-and-tie 

models. The nodes were assumed to be non-hydrostatic and the bearing stress was 

considered constant under the plate. The previous assumptions are consistent with the 

strut-and-tie model suggested in section 7.2.2 for short span beams without shear 

reinforcement. 

The load paths in the strut-and-tie model proposed for short span beams with stirrups 

consist of a direct strut (strut I) and a truss system (strut II-stirrups-strut III), as shown in 

Figure 7.1. In order to simplify the problem of internal statical indeterminacy, the stirrups 

were assumed to yield at failure. This assumption is justified by the experimental work of 

Clark [130], Regan [149], and the author amongst others for beams with a stirrup index 

(SI) up to at least 0.1. 

The strength of strut I is affected by the diagonal crack and transverse tensile strains 

induced by the stirrups crossing it. Strut II, which is equilibrated by the stirrups, is 

affected by flexural cracks that decrease its strength. The third compressive stress field, 

strut III, is fan shaped like strut II, but the concrete in this region is essentially uncracked. 

The geometry of the strut-and-tie model is defined in Figure 7.7. 

In the strut-and-tie model, λ is the fraction of the shear force taken by the direct strut 

(strut I) defined in equation (7.12). The remaining fraction of the load (1-λ) is taken by 

the stirrups ∑n
SiT

1
, where TSi is tensile force carried by each stirrup assuming it has 
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yielded (TSi =Aswfy) and n is the number of effective stirrups. In a similar manner, β is the 

fraction of the total tensile force T transmitted to the bottom node by the direct strut (Td), 

see equation (7.13). 

( ) ∑−
=

n

SiTP
1

.
1

2
λ

        … (7.12) 

TTd β=         … (7.13) 

The geometry of the bottom node is defined once λ and β are known, since the other 

dimensions are given; namely length of the bearing plate (lb) and 2c (see Figure 7.7). 

 

 

 

 

 

 

 

a) STM geometry     b) Node stresses and failure mode 

Figure 7.7: Strut-and-tie model definition for short span beams with vertical shear reinforcement 

(example for one point loading and two stirrups; nlp=1 and n=2) 

The tensile force in the reinforcement at the bottom node (T) can be divided into two 

components T = Ti
’ + Td, where Ti

’ is the force transmitted by the indirect strut III and Td 

is force transmitted by the direct strut. Both components are given by the equations (7.14) 

and (7.15). Equation (7.13) can be written in terms of Ti
’ and Td, see equation (7.16). 

∑ ′=
n

iSii TT
1

' cot. φ        … (7.14) 

∑−
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Sid TT
1

.cot.
1

θ
λ

λ       … (7.15) 

ββ −
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'
id TT         … (7.16) 
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where φi
’ = angles to the horizontal made by lines drawn from the top of each stirrup i to 

the bottom node as shown in Figure 7.7, and θ = angle of the centreline of the direct strut 

to the horizontal. 

Stresses at the rear face of the top node are assumed to be plastic (fcnt=νfcd), which is 

consistent with the strut-and-tie model presented for beams without stirrups. Hence the 

inclinations of the struts θ and φi
’ can be written in terms of the geometry, Ti

’ and Td, as 

shown in equations (7.17) and (7.18). 
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where av = clear shear span, nlp = number of loading points at the top of the beam (1 or 2), 

lb–lt = length of bottom–top bearing plate, h = height, c = distance to centroid of 

longitudinal reinforcement, fcnt = concrete stress at the top node, n = number of stirrups, b 

= width, i = stirrup number, Si = distance from stirrup to rear face of the top node, Ci
’ = 

vertical distance from top of the beam to start of centreline of indirect strut III at stirrup i. 

For simplicity, the top boundary of strut III was assumed to be linear in order to estimate 

Ci
’, see equation (7.19). This assumption has no significant effect on the angle φi

’. 

v

lptiv

cnt

i
i a

nlSa
bf
TC

2/
.

'
' +−
=       … (7.19) 

So far only geometric relationships and equilibrium at the nodes have been considered. 

Similarly as in the STM without stirrups, an additional condition must be considered from 

the mode of failure in order to obtain the ultimate load. Two failure modes were 

considered in the estimation of the ultimate load; namely crushing of the direct strut and 

failure at the bearing plates. The ultimate load was taken as the lowest value 

corresponding to these modes of failure. The critical failure mode in the majority of the 

beams studied was crushing of the direct strut. In addition, the tensile force T in the 

longitudinal reinforcement must be verified to be lower than the yielding capacity to 

avoid flexural failure. 
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The strength of the direct strut is governed by the product of its cross-sectional area and 

the effective concrete strength. In general good predictions were obtained using the 

effectiveness factor 0.6ν defined in EC2, where ν=(1-fck/250). The effectiveness factor 

accounts for the reduction in concrete compressive strength due to transverse tensile 

strain. Alternatively, as discussed for short span beams without stirrups, Collins & 

Mitchell [11] suggested a value for the effective concrete strength of the strut related to 

the strain in the longitudinal reinforcement. This alternative model was also investigated 

and compared with EC2 recommended value; results are discussed in detail in section 3.4. 

In general, good predictions were obtained for the ultimate load if the width of the strut 

(wstrut) was estimated from the geometry of the bottom node, see equation (7.20). 

θβθλ cos2sin clw bstrut +=        … (7.20) 

Limiting the stress in the strut to 0.6νfcd and imposing vertical equilibrium at the bottom 

node leads to equation (7.21).  

( ) cdb

n

Si fbclT νθβθλ
λ

λ 6.0..2sinsin.
1

2

1
+=

− ∑     … (7.21) 

The system of non-linear equations (7.14 to 7.19 and 7.21) presented can be used to solve 

for P or Asw in design or analysis of short span beams respectively. However, as in most 

of strut-and-tie models, in order to find a converged solution an iterative process is 

required. In the following section an iterative algorithm is presented to solve this system 

of equations in a simple manner, which could be easily implemented in a subroutine or 

spreadsheet. 
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7.3.3 Simplified strut-and-tie model: design and analysis equations 
The strut-and-tie model for short span beams is defined in its most general form by the 

system of equations given in previous section, which takes into account the spacing of the 

vertical reinforcement. In practice, stirrups are distributed uniformly and centred with 

respect the clear shear span. The system of equations (7.14 to 7.19 and 7.21) can be 

simplified for this particular case where the resultant of the stirrups is located at the centre 

of the clear shear span. Failure is assumed to occur due to crushing of the direct strut 

assuming the strut width from the geometry of the bottom node. The stresses under the 

loading and supporting plates must be limited to νfcd and 0.85νfcd respectively. 

Firstly, equation (7.16) can be written in terms of the inclination of the direct and indirect 

struts reaching the bottom node to assure uniform stresses at the rear face of the bottom 

node. The previous relationship can be written as shown in equation (7.22). 

( ) ( ) θ
φ

β
β

λ
λ

cot
cot.

11

'

−
=

−
      … (7.22) 

In the simplified strut-and-tie model, the resultant of the stirrup forces is placed at a 

distance S1 equal to (lt.nlp/2+av/2) and C1
’ = Ti

’/2bfcnt, refer to Figure 7.7. Equation (7.18) 

can be simplified into equation (7.23) 
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Lastly, the value of β can be obtained from the failure mode assumed given by equation 

(7.21), which results in equation (7.24). 
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Equations (7.22 to 7.24) above can be used along with equations (7.14, 7.15, 7.17), in the 

following iterative algorithm where λi and cotθi are solved. In order to ease the iterative 

process, it is recommended to take initial guess values (0<λ0<1 and cotθ0 ~av/d) so that βi 

estimated in the first step is positive. 
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- Step 1: Estimate λi and cotθi 

- Step 2: Calculate βi 
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- Step 3: Calculate tensile forces Ti
’ and Td 
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- Step 5: Check for convergence 

        if toleranceii >−+ λλ 1  and toleranceii >−+ θθ cotcot 1  go back to Step 1 

        otherwise go to Step 6 

- Step 6: Calculate solution 

Analysis : 
1
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    if λi+1<0 Change section size, fcd, lt or lb (stirrups might not yield) 

    if λi+1>1 No stirrups required (provide minimum quantity of shear reinforcement) 
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In the analysis of experimental data shown in sections 3.4 and 3.5 the use of either the 

most general STM formulation for short span beams with stirrups or the simplified 

version described above, give very similar answers. The simplified STM model provides 

good predictions of the ultimate strength although it is not valid for high stirrup indexes, 

where λ becomes almost zero. As described in next section, this is due to the fact that for 

high SI the direct strut disappears and the strut-and-tie model do no longer applies. In 

addition, the assumption of yielding of the stirrups can be questionable for such large 

values of SI. 

Stirrup index at the limit case in the STM, where the direct strut vanishes (λ=0)  

In order to calculate limit case λ =0 in the STM, in which the direct strut vanishes 

completely, the infinitesimal strut width can be written as shown in equation (7.25). Ratio 

δβ/δλ is obtained from differentiating equation (7.22) and substituting λ=0 and β=0, see 

equation (7.26). 

θδβθδλδ cos.2sin. clw b +=       … (7.25) 
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Similarly as in equation (7.21), if the stress in the strut is limited to 0.6νfcd and vertical 

equilibrium is stated, this results in equation (7.27). 
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If λ =0 and β =0 subsequently Td =0 and so expressions for cotφ’, cotθ and Ti
’ can be 

simplified as shown in equations (7.28). 
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A simple approach to solve for Pmax would be iterating for ∆ in equations (7.27) and 

(7.28) until Ti
’=Pmax/2.cotφ’. The entire shear force is taken by the stirrups (λ = 0), so 

SImax can be defined as Pmax/(2bhfcd). By solving equation (7.27) and (7.28) it can be seen 
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that the results obtained for SImax are independent of b. This would also be the case for the 

concrete strength fcd, if parameter SImax was defined in terms of νfcd. However, this is not 

usually the case and so values of SImax defined in this manner have to be corrected by a 

factor of ν to account for different concrete strengths (see Figure 7.8). 

According to equations (7.27) and (7.28) the main parameters influencing the magnitude 

of SImax at which the direct strut vanishes, are purely geometrical (av, lb, h, c). A 

parametric analysis was performed for beams AG (av/d=1.13, fcd=80.2MPa, SImax=1.20), 

in order to investigate the relevance of each of these parameters separately. As shown in 

Figure 7.8, SImax reduces as av/d increases, although the rate varied depending on which 

parameter was modified. For example, changes in the length of the bearing plates were 

found to have a significantly larger effect on SImax than increasing the clear shear span 

while keeping d constant. Increasing the total height of the specimen, while keeping the 

d/c ratio constant, had a similar effect as decreasing av, as shown in Figure 7.8 

 

 

 

 

 

 

 

 
Note: Additional parameter in AG: av=660mm, h=500mm, lb=125mm 

Figure 7.8: Parametric analysis of SImax (λ=0) for different values of av/d in beams AG, by 

changing clear shear span (av), length of the bearing plate (lb) and height of the beam (h) 

Although the proposed STM is only applicable for beams with SI<SImax, normal values of 

the stirrup index (see section 7.3.5) are in most of the cases bellow this threshold value. 

Only specimens with either av/d ratios close to 2, low concrete strengths, small bearing 

plates and large number of stirrups can produce values of the stirrup index large enough 

to have λ=0. In such instances, it is also questionable whether all stirrups would yield at 

failure. 
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7.3.4 Experimental evidence 
A database was gathered from previous experimental work [129, 130, 134, 137, 140, 150-

154] in order to validate the strut-and-tie model and compare its performance with 

existing design methods for short span beams. Only beams failing in shear were included 

in the database, neglecting specimens with a flexural failure or local failure at the 

supports. The type of failure mode generally reported was shear-compression and shear-

proper (diagonal tension). However in many instances it was not specified which type of 

shear failure prevailed and only a “shear” failure was reported. Several difficulties were 

observed in developing a reliable database since in many cases important information was 

not reported.  

Bearing plates 

Firstly, the importance of the bearing plates has often been neglected. Many researchers 

omitted to give the size of the bearing plates, which is required in the STM. Furthermore 

some beam tests have been carried out using rollers for the supports, see section 7.3.6. 

These tests were excluded from the main database to avoid possible deviations due to 

bearing failure under the rollers. According to these considerations it seems questionable 

whether the widely used a/d ratio, where a is the distance measured between the 

centrelines of the load and support, should be applied to classify beam test results. In 

slender beams the size of the bearing plates becomes less relevant since the failure 

mechanism is located away from the supports. In addition, the difference between a/d and 

av/d is smaller in slender beam than in short span beams. 

Shear reinforcement ratio 

The second difficulty in developing the database was that the shear reinforcement ratio 

(ρw) was given in some references in terms of the distance between stirrups (s) without 

giving the exact position of the reinforcement bars. This can lead to errors when 

calculating the ultimate strength since the value of ρw defined in terms of s does not 

consider whether the stirrups are effective or not, i.e. the stirrups crosses the main 

diagonal crack. In order to avoid misinterpretation of the data of short span beams, it is 

recommended that ρw is given in terms of the area of stirrups located within the clear 

shear span (av).  
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Lateral stability 

An additional aspect which must be considered when gathering experimental data on 

short span beams is the slenderness in the out-of-plane direction (h/b~4, l/b~20) of the 

specimens tested. The question arises of whether lateral stability could have had an 

influence on the results. Kotsovos & Pavlovic [155] have argued that for very slim cross-

sections the stresses induced by unintended out-of-plane action may have a significant 

effect on the beam strength, being out-of-plane actions the primary cause of size effects. 

The most slender beams included in the database were near the boundary limit 

recommended by EC2, which separates cases where second order effects should be 

considered. However, the nominal shear strengths of the most critical beams according to 

EC2 recommendations on lateral stability were no lower than the average values, which 

suggest that lateral effects were unimportant in the beams analysed. 

Further evidence is provided by recent work carried by Zhang & Tan [140] who 

investigated out-of-plane deflections (δ) as a possible source for size effect in deep beams 

(av/d=0.95). Their most slender specimens were 1000mm high with a slenderness ratio of 

(h/b=12.5, l/b=37.5), which is considerably more slender than the remaining specimens 

implemented in the database. Measurements of the out-of-plane deflections showed 

relatively small values (δ/h around 2:10000), which are similar to the lateral deflections 

measured in beams A with (h/b=3.7, l/b=9.8). Zhang & Tan [140] concluded from their 

experimental work that unintended out-of-plane actions have an insignificant effect on 

shear strengths “under a properly-controlled testing environment”. In the author’s 

opinion, a clearer line should be established to distinguish cases where out-of-bound 

deflections can become critical. As pointed out by Zhang & Tan [140], the h/b ratios 

observed in tests could range from 0.5 (Kani [156]) to around 10 in most general cases 

and up to 67 (Kong et al. [157]). 

Type of aggregate 

Lastly, information is seldom if ever given on either the type of aggregate or whether it 

had fracture. These uncertainties, which can have an influence on the roughness of the 

crack surface, motivated the experimental work carried for beams A and are further 

discussed in section 7.5. 
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7.3.5 Performance of existing design methods compared with proposed 
STM model (Experimental validation) 

Ultimately, the experimental database used to validate the strut-and-tie model proposed 

for short span beams with stirrups consisted of 143 beams of which 47 had an av/d ratio 

between 1 and 2. The performance of the methods suggested in MC90, BS8110 and EC2 

was also examined. The results of the 143 beams analysed from [129, 130, 134, 137, 140, 

150-154] are summarised in Tables 7.7(a)-(b)-(c), for which material factors of safety has 

been taken as 1. 

The clear shear span to effective depth ratio (av/d) of interest was between 1 and 2, 

although some beams with av/d out of this range were also included in order to assess the 

accuracy of the methods for boundary cases, refer to Tables 7.7(b) and (c). The majority 

of the beams included in the database had bearing plates at top and bottom of equal 

lengths (lt.nlp/2lb = 1). A few cases were investigated with lt.nlp/2lb ratios around 0.5 and 

1.5. For either cases the STM predictions did not differ much from beams with lt.nlp/2lb = 

1. The influence of the 2lb/(lt.nlp) ratio was only noticeable in beams with lt.nlp/2lb >1.5, 

especially for beams without stirrups, where the predictions were slightly conservative 

since the width of the strut was estimated from the geometry of the bottom node. 

According to Table 7.7(a) the simple strut-and-tie model provided more accurate 

predictions of the ultimate strength of short span beams with stirrups than the other design 

methods considered. The performance of the strut-and-tie model was very similar using 

both the simplified and more general formulation, which takes into account the actual 

position of the stirrups. The actual position of the stirrups relative to the clear shear span 

was only known in 119 beams out of the 143 beams shown in Tables 7.7. An average 

value of Pcalc/Ptest of 0.91 and coefficient of variation of 10.9% for av/d between 1 and 2 

was obtained using the general formulation for the STM. Equally, the values for Pcalc/Ptest 

and their coefficient of variations were 0.83 (26.5%) for av/d <1 and 1.37 (27.3%) for av/d 

>2. 

As shown in Table 7.7(a) for beams with 2>av/d >1, the predictions of the strut-and-tie 

model using either Collins & Mitchell’s [11] formula or EC2 effective concrete strength 

of the direct strut, were very similar. However for values of av/d outside this range, the 

predictions of the two models were somewhat different, as shown in Tables 7.7(b) and 

(c). 
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2 >av/d >1

Author Beam av/d d    
[mm]

b 
[mm]

fc' 
[MPa] SI Ptest 

[kN] MC90 Vc+Vs Vc-STM 
+Vs EC2

Lehwalter V3511/3 1.25 560 250 17 0.154 970 0.73 1.19 1.17 1.30 - - - -
Regan J6 1.57 272 152 32 0.046 292 0.32 0.89 1.13 0.58 0.87 M2 0.71 M2

J10 1.10 272 152 32 0.031 272 0.30 0.99 1.25 0.66 1.05 M2 0.99 M2
J17 1.10 272 152 40 0.054 530 0.34 0.74 0.94 0.68 0.72 M2 0.70 M2
J19 1.10 272 152 35 0.028 366 0.22 0.75 0.98 0.51 0.84 M2 0.78 M2
J20 1.10 272 152 35 0.028 320 0.25 0.86 1.14 0.58 0.97 M2 0.91 M2
J8 1.68 254 152 34 0.029 370 0.16 0.59 0.94 0.34 0.81 M2 0.64 M2

Tan E-1.62-3.23 1.30 463 110 51 0.042 440 0.45 0.96 1.30 0.83 1.06 M2 0.92 M2
Tan et al III-2N/1.50 1.41 443 110 78 0.052 670 0.53 1.00 1.40 0.94 1.10 M2 1.08 M2

III-2S/1.50 1.41 443 110 78 0.066 800 0.56 0.98 1.32 0.99 0.99 M2 1.00 M2
Vollum 5 1.14 180 100 44 0.058 220 0.40 0.92 1.11 0.81 0.83 M2 0.84 M2
& Tay 6 1.14 180 100 44 0.115 250 0.70 1.21 1.38 1.42 0.87 M2 0.93 M2
Clark B1-1 1.72 390 203 23 0.065 558 0.35 0.87 1.11 0.59 0.83 M2 0.71 M2

B1-2 1.72 390 203 25 0.060 513 0.38 0.96 1.26 0.64 0.95 M2 0.81 M2
B1-3 1.72 390 203 24 0.064 570 0.34 0.86 1.10 0.57 0.82 M2 0.70 M2
B1-4 1.72 390 203 23 0.065 536 0.36 0.91 1.16 0.61 0.86 M2 0.74 M2
B1-5 1.72 390 203 25 0.062 483 0.40 1.02 1.32 0.68 0.99 M2 0.84 M2
B2-1 1.72 390 203 23 0.109 602 0.54 1.12 1.34 0.91 0.90 M2 0.81 M2
B2-2 1.72 390 203 26 0.096 644 0.50 1.06 1.31 0.85 0.90 M2 0.81 M2
B2-3 1.72 390 203 25 0.101 670 0.49 1.01 1.24 0.81 0.84 M2 0.76 M2
B6-1 1.72 390 203 42 0.036 759 0.26 0.70 1.11 0.43 0.91 M2 0.72 M2
C1-1 1.33 390 203 26 0.039 555 0.29 0.83 1.14 0.51 0.95 M2 0.84 M2
C1-2 1.33 390 203 26 0.038 622 0.26 0.74 1.04 0.45 0.86 M2 0.76 M2
C1-3 1.33 390 203 24 0.042 492 0.33 0.92 1.24 0.57 1.02 M2 0.90 M2
C1-4 1.33 390 203 29 0.035 572 0.28 0.83 1.20 0.50 1.01 M2 0.88 M2
C2-1 1.33 390 203 24 0.064 580 0.42 0.94 1.20 0.73 0.92 M2 0.85 M2
C2-2 1.33 390 203 25 0.061 602 0.40 0.92 1.19 0.70 0.92 M2 0.84 M2
C2-4 1.33 390 203 27 0.056 576 0.42 0.97 1.30 0.73 1.01 M2 0.92 M2
C3-1 1.33 390 203 14 0.072 447 0.36 0.92 1.00 0.63 0.75 M2 0.72 M2
C3-2 1.33 390 203 14 0.073 401 0.41 1.02 1.10 0.70 0.83 M2 0.79 M2
C3-3 1.33 390 203 14 0.073 376 0.43 1.09 1.18 0.75 0.89 M2 0.85 M2
C4-1 1.33 390 203 24 0.041 619 0.26 0.74 1.00 0.46 0.82 M4 0.76 M2
C6-2 1.33 390 203 45 0.022 848 0.19 0.61 0.94 0.39 0.94 M2 0.84 M2
C6-3 1.33 390 203 45 0.023 870 0.19 0.59 0.92 0.38 0.91 M2 0.81 M2
C6-4 1.33 390 203 48 0.021 857 0.19 0.61 0.94 0.39 0.97 M2 0.86 M2
D1-6 1.66 314 152 28 0.029 349 0.19 0.68 1.10 0.41 0.95 M2 0.73 M2
D1-7 1.66 314 152 28 0.029 358 0.18 0.66 1.08 0.40 0.94 M2 0.72 M2
D1-8 1.66 314 152 28 0.029 372 0.18 0.64 1.03 0.38 0.90 M2 0.69 M2
E1-2 1.74 314 152 30 0.080 444 0.42 0.95 1.31 0.73 0.96 M2 0.82 M2

Kong S5-4 1.64 292 250 89 0.011 953 0.12 0.53 1.05 0.35 1.14 M2 0.83 M2
& Rangan S5-5 1.40 292 250 89 0.008 1147 0.09 0.45 0.94 0.34 1.04 M2 0.81 M2
Sagaseta AG2 1.13 438 135 80 0.020 1126 0.18 0.50 0.94 0.35 0.82 M2 0.84 M2
& Vollum AG3 1.13 438 135 80 0.031 1309 0.23 0.52 0.89 0.45 0.73 M2 0.77 M2

AG4 1.13 438 135 80 0.041 1414 0.28 0.56 0.90 0.56 0.71 M2 0.75 M2
AL2 1.13 438 135 68 0.024 1064 0.19 0.51 0.92 0.37 0.79 M2 0.80 M2
AL3 1.13 438 135 68 0.036 961 0.31 0.68 1.14 0.61 0.92 M2 0.95 M2
AL4 1.13 438 135 68 0.048 1204 0.33 0.64 1.00 0.65 0.77 M2 0.81 M2

Total = 47 MC90 Vc+Vs Vc-STM 
+Vs EC2

max value = 1.74 560 250 89 0.154 Mean 0.33 0.82 1.12 0.62
min value = 1.10 180 100 14 0.008 SD 0.14 0.20 0.15 0.23

COV % 42.16 24.12 12.96 37.66

0.82
0.09

11.05

0.90
0.10
11.03

Pcalc/Ptest

STM-Collins

STM-Collins

STM-EC2

STM-EC2

Pcalc/Ptest ¦ F.M 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  STM-EC2 – using simplified formulas (section 3.3) 

FM – Critical failure mode (M1- flexure, M2- crushing in strut at bottom node, M4- bearing failure 
at bottom node, M6- bearing failure at top node) 
SI=nAswfy/(bh fc

’) 
“-“ STM not applicable (λ<0) 

 

Table 7.7(a): Summary of experimental database of short span beams with stirrups (2>av/d>1) 
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av/d<1

Author Beam av/d d    
[mm]

b 
[mm]

fc' 
[MPa] SI Ptest 

[kN] MC90 Vc+Vs Vc-STM 
+Vs EC2

Lehwalter V411/3 0.75 740 250 19 0.083 1330 0.63 1.02 1.06 1.23 0.60 M6 0.60 M6
V411/4 0.75 740 250 16 0.049 934 0.45 1.09 1.07 0.90 0.74 M6 0.74 M6
S511/3 0.75 560 250 18 0.087 1064 0.60 0.99 0.96 1.18 0.55 M6 0.55 M6
V511/4 0.75 560 250 18 0.038 930 0.29 0.84 0.80 0.58 0.62 M6 0.62 M6
V022/3 0.75 360 250 18 0.085 760 0.56 0.96 0.92 1.10 0.50 M6 0.50 M6
V022/4 0.75 360 250 17 0.033 634 0.24 0.82 0.74 0.64 0.57 M6 0.57 M6
V711/3 0.75 160 250 17 0.066 414 0.37 0.82 0.66 0.73 0.39 M6 0.39 M6
V711/4 0.75 160 250 18 0.027 414 0.16 0.68 0.53 0.56 0.41 M6 0.41 M6
W511/3 0.75 560 250 20 0.079 1160 0.55 0.93 0.93 1.08 0.56 M6 0.56 M6
V511/3 0.75 560 250 17 0.092 1004 0.63 1.04 0.99 1.25 0.55 M6 0.55 M6
V2511/3 0.25 560 250 16 0.034 1050 0.40 0.89 0.64 0.74 0.49 M6 0.49 M6
W2511/3 0.25 560 250 21 0.025 1196 0.35 0.84 0.68 0.71 0.55 M6 0.55 M6

Regan J15 0.64 272 152 33 0.015 412 0.15 0.87 0.93 0.76 0.85 M2 1.01 M2
Tan D-1.08-2.15 0.76 463 110 48 0.022 540 0.27 0.80 1.15 0.58 1.07 M2 1.12 M2

C-0.81-2.15 0.49 463 110 51 0.021 806 0.24 0.75 0.95 0.60 0.86 M2 1.01 M2
C-0.81-3.23 0.49 463 110 44 0.024 800 0.25 0.72 0.87 0.59 0.78 M2 0.92 M2
B-0.54-2.15 0.22 463 110 56 0.019 936 0.31 0.66 1.01 0.53 0.91 M2 1.30 M4
B-0.54-3.23 0.22 463 110 46 0.023 890 0.33 0.66 0.94 0.53 0.83 M2 1.18 M4
B-0.54-4.30 0.22 463 110 54 0.020 1000 0.29 0.61 0.93 0.49 0.83 M2 1.19 M4

Tan et al. II-2N/1.00 0.85 443 110 78 0.039 1040 0.38 0.68 0.97 0.76 0.78 M2 0.93 M2
I-2N/0.75 0.56 443 110 56 0.072 1520 0.47 0.62 0.72 0.84 0.50 M2 0.54 M4

Kong 1-10 0.82 216 76 22 0.194 180 1.03 1.42 1.54 1.08 0.92 M2 1.07 M2
et al. 2-10 0.82 216 76 20 0.078 200 0.35 0.76 0.84 0.74 0.66 M2 0.69 M2

1-15 0.52 343 76 21 0.131 328 0.90 1.05 0.95 0.93 0.54 M2 0.58 M4
2-15 0.52 343 76 23 0.046 280 0.39 0.88 0.78 0.83 0.61 M2 0.73 M4
1-20 0.38 470 76 21 0.099 380 1.06 1.00 0.85 1.10 0.46 M2 - -
2-20 0.38 470 76 20 0.040 432 0.35 0.64 0.49 0.56 0.37 M2 0.42 M4
1-25 0.30 597 76 25 0.068 448 1.14 0.93 0.77 1.35 0.44 M2 - -
2-25 0.30 597 76 19 0.034 448 0.43 0.66 0.46 0.54 0.33 M2 - -
1-30 0.25 724 76 22 0.065 478 1.30 0.90 0.68 1.35 0.36 M2 - -
2-30 0.25 724 76 19 0.027 498 0.47 0.64 0.42 0.52 0.30 M2 - -

De Pavia G33S-12 0.50 203 76 20 0.061 169 0.34 1.09 0.89 0.99 0.80 M2 0.89 M2
et al. G33S-32 0.50 203 76 20 0.060 203 0.28 0.96 0.74 0.83 0.67 M2 0.79 M2
Clark D1-1 0.94 390 203 26 0.039 602 0.36 0.91 1.24 0.66 1.05 M2 1.06 M2

D1-3 0.94 390 203 25 0.041 513 0.42 1.06 1.39 0.78 1.16 M2 1.19 M2
D2-1 0.94 390 203 24 0.063 580 0.56 1.09 1.38 1.03 1.07 M2 1.12 M2
D2-2 0.94 390 203 26 0.059 624 0.52 1.03 1.34 0.96 1.05 M2 1.09 M4
D3-1 0.94 390 203 28 0.072 790 0.55 0.98 1.23 1.01 0.93 M2 0.97 M4
D4-1 0.94 390 203 23 0.110 624 0.87 1.31 1.55 1.60 1.03 M2 1.03 M2

Zhang 1DB35bw 0.95 313 80 26 0.066 199 0.58 1.03 1.13 1.02 0.81 M2 0.83 M4
& Tan 1DB50bw 0.94 454 115 27 0.061 373 0.63 1.10 1.21 1.10 0.96 M4 0.96 M4

1DB70bw 0.93 642 160 28 0.059 854 0.54 0.91 1.01 0.94 0.74 M2 0.84 M4
1DB100bw 0.94 904 230 29 0.065 1550 0.68 1.05 1.27 1.18 0.75 M2 0.90 M2

Total = 43 MC90 Vc+Vs Vc-STM 
+Vs EC2

max value = 0.95 904 250 78 0.194 Mean 0.50 0.90 0.94 0.87
min value = 0.22 160 76 16 0.015 SD 0.26 0.19 0.27 0.27

COV % 52.31 20.57 29.11 31.34

Pcalc/Ptest

STM-Collins

STM-Collins

STM-EC2

STM-EC2

Pcalc/Ptest ¦ F.M

0.81
0.26

32.22

0.70
0.23

33.51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note:  STM-EC2 – using simplified formulas (section 3.3) 

FM – Critical failure mode (M1- flexure, M2- crushing in strut at bottom node, M4- bearing failure 
at bottom node, M6- bearing failure at top node) 
SI=nAswfy/(bh fc

’) 
“-“ STM not applicable (λ<0) 
 

Table 7.7(b): Summary of experimental database of deep beams with stirrups (av/d <1) 
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av/d >2

Author Beam av/d d    
[mm]

b 
[mm]

fc' 
[MPa] SI Ptest 

[kN] MC90 Vc+Vs Vc-STM 
+Vs EC2

Clark A1-1 2.11 390 203 25 0.082 445 0.49 1.25 1.54 0.84 0.90 M6 0.86 M2
A1-2 2.11 390 203 24 0.086 418 0.52 1.32 1.61 0.90 0.92 M6 - -
A1-3 2.11 390 203 23 0.086 445 0.49 1.24 1.50 0.84 0.86 M6 - -
A1-4 2.11 390 203 25 0.082 489 0.44 1.14 1.40 0.77 0.82 M6 - -
D2-6 2.14 314 152 30 0.110 337 0.62 1.47 1.85 1.12 1.25 M2 - -
D2-7 2.14 314 152 28 0.114 315 0.67 1.57 1.96 1.20 1.31 M2 - -
D2-8 2.14 314 152 26 0.124 337 0.62 1.46 1.78 1.12 1.17 M2 - -
D4-1 2.14 314 152 27 0.089 337 0.47 1.19 1.53 0.84 1.07 M2 0.86 M2
D4-2 2.14 314 152 26 0.095 337 0.47 1.18 1.49 0.84 1.04 M2 - -
D4-3 2.14 314 152 22 0.110 330 0.48 1.19 1.43 0.85 0.97 M2 - -
D5-1 2.14 314 152 28 0.058 292 0.36 1.05 1.44 0.64 1.10 M2 0.82 M2
D5-2 2.14 314 152 29 0.056 315 0.33 0.98 1.37 0.60 1.06 M2 0.78 M2
D5-3 2.14 314 152 27 0.060 315 0.33 0.97 1.33 0.60 1.01 M2 0.76 M2

Sarsam et al. AS2-N 2.07 235 180 39 0.022 379 0.12 0.55 0.84 0.33 0.72 M2 0.45 M2
AS2-H 2.07 232 180 76 0.011 402 0.11 0.59 1.18 0.38 1.08 M2 0.64 M2
AS3-N 2.07 235 180 40 0.032 398 0.17 0.63 0.91 0.32 0.75 M2 0.50 M2
AS3-H 2.07 235 180 72 0.018 398 0.17 0.70 1.23 0.39 1.06 M2 0.67 M2
BS2-H 2.07 233 180 74 0.011 447 0.10 0.53 1.04 0.34 0.94 M2 0.59 M2
BS3-H 2.07 233 180 73 0.017 456 0.15 0.61 1.11 0.34 0.96 M2 0.63 M2
BS4-H 2.07 233 180 80 0.021 414 0.22 0.78 1.36 0.40 1.16 M2 0.79 M2
CS2-H 2.07 233 180 70 0.012 494 0.09 0.47 0.92 0.31 0.83 M2 0.53 M2
CS3-H 2.07 233 180 74 0.017 494 0.14 0.56 1.02 0.31 0.90 M2 0.60 M2
CS4-H 2.07 233 180 76 0.022 441 0.20 0.72 1.25 0.37 1.06 M2 0.74 M2

Kong S1-1 2.16 292 250 64 0.020 457 0.26 1.01 1.88 0.53 1.68 M2 1.06 M2
& Rangan S1-2 2.16 292 250 64 0.020 417 0.28 1.10 2.06 0.58 1.84 M2 1.16 M2

S1-3 2.16 292 250 64 0.020 412 0.29 1.12 2.08 0.59 1.86 M2 1.17 M2
S1-4 2.16 292 250 64 0.020 556 0.21 0.83 1.55 0.43 1.38 M2 0.87 M2
S1-5 2.16 292 250 64 0.020 507 0.23 0.91 1.70 0.48 1.51 M2 0.95 M2
S1-6 2.16 292 250 64 0.020 448 0.26 1.03 1.92 0.54 1.71 M2 1.08 M2
S2-1 2.16 292 250 73 0.010 521 0.14 0.74 1.50 0.48 1.50 M2 0.89 M2
S2-2 2.16 292 250 73 0.010 465 0.15 0.82 1.68 0.54 1.68 M2 0.99 M2
S2-3 2.16 292 250 73 0.017 507 0.23 0.93 1.71 0.50 1.62 M2 1.02 M2
S2-4 2.16 292 250 73 0.017 439 0.27 1.07 1.98 0.58 1.87 M2 1.18 M2
S2-5 2.16 292 250 73 0.021 564 0.25 0.91 1.61 0.46 1.49 M2 0.97 M2
S3-1 2.15 297 250 67 0.013 418 0.21 0.94 1.36 0.56 1.74 M2 0.97 M2
S3-2 2.15 297 250 67 0.013 356 0.24 1.10 1.60 0.66 2.04 M2 1.15 M2
S3-3 2.15 293 250 67 0.013 457 0.19 0.89 1.76 0.54 1.66 M2 1.01 M2
S3-4 2.15 293 250 67 0.013 350 0.25 1.16 2.30 0.71 2.16 M2 1.31 M2
S3-5 2.16 287 250 67 0.013 593 0.14 0.68 1.48 0.41 1.34 M2 0.84 M2
S3-6 2.16 287 250 67 0.013 566 0.15 0.71 1.55 0.43 1.41 M2 0.88 M2
S4-1 2.29 524 250 87 0.015 708 0.30 1.16 2.01 0.60 1.71 M2 1.20 M2
S4-2 2.27 428 250 87 0.014 1146 0.14 0.58 1.11 0.32 0.97 M2 0.65 M2
S4-3 2.20 332 250 87 0.015 487 0.29 1.15 2.15 0.61 2.10 M2 1.35 M2
S4-4 2.16 292 250 87 0.014 516 0.23 0.94 1.70 0.52 1.74 M2 1.10 M2
S4-6 2.02 198 250 87 0.012 406 0.17 0.81 1.38 0.49 1.84 M2 1.09 M2
S5-2 2.40 292 250 89 0.017 520 0.25 1.02 1.66 0.52 1.64 M2 1.02 M2
S5-3 2.16 292 250 89 0.014 488 0.24 1.00 1.80 0.55 1.86 M2 1.18 M2
S8-1 2.16 292 250 75 0.010 544 0.13 0.71 1.48 0.47 1.49 M2 0.90 M2
S8-2 2.16 292 250 75 0.013 502 0.19 0.86 1.69 0.51 1.66 M2 1.03 M2
S8-3 2.16 292 250 75 0.017 619 0.19 0.76 1.44 0.41 1.37 M2 0.87 M2
S8-4 2.16 292 250 75 0.017 532 0.22 0.89 1.68 0.48 1.60 M2 1.02 M2
S8-5 2.16 292 250 75 0.020 578 0.24 0.89 1.62 0.45 1.50 M2 0.98 M2
S8-6 2.16 292 250 75 0.023 568 0.29 0.99 1.72 0.54 1.57 M2 1.04 M2

Total = 53 MC90 Vc+Vs Vc-STM 
+Vs EC2

max value = 2.40 524 250 89 0.124 Mean 0.27 0.94 1.55 0.57
min value = 2.02 198 152 22 0.010 SD 0.14 0.25 0.33 0.21

COV % 52.25 27.06 21.03 36.88

Pcalc/Ptest

STM-Collins

STM-Collins

STM-EC2

STM-EC2

Pcalc/Ptest ¦ F.M

0.91
0.22

23.86

1.37
0.39

28.30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:  *STM-EC2 – using simplified formulas (section 3.3) 
FM – Critical failure mode (M1- flexure, M2- crushing in strut at bottom node, M4- bearing failure 
at bottom node, M6- bearing failure at top node) 
SI=nAswfy/(bh fc

’) 
 “-“ STM not applicable (λ<0) 

Table 7.7(c): Summary of experimental database of beams with stirrups (av/d >2) 
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                Mean -  COV.
MC90            0.33 - 42.2% 
Vc+Vs           0.82 - 24.1%
Vc(STM)+Vs  1.12 - 13.0%
EC2               0.62 - 37.7%
STM-EC2       0.90 - 11.0%
STM-Collins  0.82 - 11.1%

It is noteworthy that EC2 and standard truss (Vc+Vs) predictions for beams with 1<av/d<2, 

had a considerable scatter with a coefficient of variance of 37.7% and 24.1% respectively. 

These values are significantly larger than those obtained using the strut-and-tie models 

proposed (COV=11%). The reason behind this large scatter is related to the stirrup index 

SI. The predictions of the standard truss and EC2 methods were highly dependent to the 

stirrup index, as shown in Figure 7.9. The results obtained using MC90 formula and 

alternative method Vc(STM)+Vs showed a similar trend to the standard truss and EC2 

methods. However, the shear strength was clearly underestimated using MC90 formula as 

opposed to the alternative method Vc(STM)+Vs where the strength was clearly 

overestimated.  

 

 

 

 

 

 

 

 

 

Note: refer to data in Table 7.7(a) 

Figure 7.9: Performance of design methods of short span beams (1<av/d<2) with stirrups; namely 

MC90 formula, standard truss (Vc+Vs) method, alternative standard truss (Vc(STM)+Vs) method 

and strut-and-tie method (STM) 

The performance of the suggested strut-and-tie model was independent of SI due to the 

fact that the fraction of load taken by the direct strut (λ) decreases as SI increases. The 

reduction of the contribution of the direct strut as SI increases predicted by the strut-and-

tie model was in agreement with experimental evidence (see Figure 7.10). Softening 

models, which are commonly used in strut-and-tie modelling, have a similar philosophy 

since the effective concrete strength of the struts is reduced by transverse forces 

introduced by stirrups. The direct strut in the STM model developed by the author shown 

in Figure 7.7 becomes steeper as the stirrup index increases resulting in an increase of 
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strength. The increase in strength due to this reorientation of the direct strut is possible in 

the STM model up to a certain value of SI=SImax where λ becomes 0 and the direct strut 

vanishes. As described in section 7.3.3, this limit case is dependent on the geometry of the 

specimen (mainly lb and av/d). As shown in Figure 7.10, only one beam out of 143 

investigated, had a stirrup index greater than SImax, so this shows that vanishing of the 

direct strut is not generally a problem and so the proposed STM is applicable to the 

majority of the cases. Usual values of SImax ranges from 0.1 to 0.2 depending on the 

concrete strength (factor ν) and main dimensions of the beam. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.10: Influence of stirrup index in: a) Nominal shear carried by the direct strut (Vnc), beams 

with 1<av/d<2; b) Beams where λ=0 due to SI>SImax 

Although not much experimental data is available of short beams with SI higher than 

0.10, the results shown in Figure 7.9 suggest that EC2 and standard truss approaches can 

produce predictions on the unsafe side for large values of SI. However, the two beams 

shown in Figure 7.9, which have the highest Pcalc/Ptest ratio using the EC2 method, were 

only 6 and 10% below the maximum applied shear force allowed in EC2 (0.5bd0.6νfc
’). 

Hence, the worse Pcalc/Ptest could be extrapolated to be somewhere around 1.5, while for 

the lowest SI analysed Pcalc/Ptest was as low as 0.4. As described in section 7.2.3, EC2 

allows for an overall factor of safety (FOS) of 2.14, assuming DL=LL and a material 

factor of safety for concrete of 1.5. This implies that the FOS can vary from 5.35 for 

beams with low SI to 1.43 for beams with SI up to 0.15. This large variation of the FOS 

seems rather inconsistent, although the predictions are on the safe side. On the other hand, 

the strut-and-tie model proposed, which is consistent with EC2 specifications, the FOS is 

fairly constant; FOSmin=1.88 for SI=0.01 and FOSavg.=2.38. 
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                       Mean - COV.(%)    
                         av/d < 1           av/d : 1 - 2      av/d > 2
 Vc+Vs             0.90 - 20.6        0.82 - 24.1     0.94 - 27.0
 EC2                 0.87 - 31.3        0.62 - 37.6     0.57 - 36.9
 STM-EC2         0.70 - 33.5        0.90 - 11.0     1.37 - 28.3
 STM-Collins    0.81 - 32.2        0.82 - 11.0     0.91 - 23.8

Kong & Rangan

The influence of the clear shear span to effective depth ratio (av/d) on the performance of 

the design methods is shown in Figure 7.11. All design methods captured the increase in 

shear strength as av/d decreases. However, the STM using EC2 was more sensitive to 

variations of the inclination of the direct strut, which resulted from changes in av/d, than 

the rest of the methods. As shown in Figure 7.11, for av/d ratios lower than 1, with a very 

steep direct strut, the STM models tended to underestimate the strength. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 7.11: Pcalc/Ptest variation with av/d for (Vc+Vs), EC2, STM-EC2 and STM-Collins methods 

Again, the large scatter shown in Figure 7.11 for EC2 method is due to variations in SI, 

which extends to beams with av/d up to 2.5. The coefficient of variation remained 

constant with av/d for EC2 and (Vc+Vs) methods, while for the strut-and-tie models COV 

was significantly lower for beams with av/d between 1 and 2. Standard truss (Vc+Vs) 

predictions had a fairly constant performance with av/d, and the scatter in the data was 

primarily due to changes in SI. EC2 method became less conservative with decreasing 

av/d. 

According to Figure 7.11 the strength of the beams seemed to be overestimated using the 

STM-EC2 approach for av/d larger than 2, which might be due to the reduced angle 

between the direct strut and the tie. It is widely accepted that strut-and-tie models are not 

suitable for such configurations since the transverse strains induced in the strut would be 

excessive. However, there is a large number of beams with av/d slightly larger than 2 for 

which the STM model still provided reasonable answers, see beams from Clark [130] 
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(av/d =2.14; a/d=2.43) or Sarsam & Al-Musawi [154] (av/d=2.07; a/d=2.5) in Table 

7.7(c). On the other hand, the strength of beams tested by Kong & Rangan [152] with av/d 

equal to 2.2 (a/d=2.5) were clearly overestimated using the strut-and-tie model. It is 

questionable whether the low strengths obtained in Kong & Rangan’s tests were simply 

related to their av/d ratio. Unless further experimental data of beams with av/d close to 

2.5-3.0 is provided, it seems reasonable and consistent with design codes to recommend 

the limit of av/d of 2 for the STM using EC2 effective strength. The rather unsafe 

predictions using STM-EC2 method for beams with av/d larger than 2, could be mitigated 

by using Collins & Mitchell’s [11] formula, which seems to provide more accurate 

predictions for beams with av/d between 2.0 and 2.5. However, Collins & Mitchell’s [11] 

formula can become rather conservative for larger ratios of av/d, which worsens for beams 

without stirrups (see section 7.2.3) since the direct strut in the STM become even flatter. 

This is not problematic, since for such instances sectional models govern over STM 

predictions. 

Demerit Point Classification 

In order to compare the performance of the different shear design methods for the three 

ranges of av/d investigated (see Figure 7.12), Collins [148] “Demerit Points (DP) 

Classification” approach was applied, in a similar manner as in section 7.2.3. Results are 

shown in Figure 7.12 and Table 7.8. 

 

 

 

 

 

 

 

 

 

Figure 7.12: Demerit Points classification of shear methods according to Collins [148] for 

different ranges of av/d (beams with stirrups) 
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Ptest/Pcalc av/d<1 DP MC90 Vc+Vs Vc(STM)  
+Vs EC2 STM-

EC2
STM-
Collins

<0.5 Extremely dangerous 10 0 0 0 0 0 0
0.5-0.65 Dangerous 5 0 0 5 2 0 0

0.65-0.85 Low safety 2 2 5 16 14 0 11
0.85-1.30 Appropiate safety 0 12 67 53 40 42 45
1.30-2.00 Conservative 1 28 28 19 42 37 34

>2.00 Extremely conservative 2 58 0 7 2 21 11
TOTAL DP 149 37 88 86 79 76

Ptest/Pcalc av/d: 1 - 2 DP MC90 Vc+Vs Vc(STM)  
+Vs EC2 STM-

EC2
STM-
Collins

<0.5 Extremely dangerous 10 0 0 0 0 0 0
0.5-0.65 Dangerous 5 0 0 0 0 0 0

0.65-0.85 Low safety 2 0 4 38 4 0 0
0.85-1.30 Appropiate safety 0 0 53 62 15 89 65
1.30-2.00 Conservative 1 13 40 0 47 11 35

>2.00 Extremely conservative 2 87 2 0 34 0 0
TOTAL DP 187 53 77 123 11 35

Ptest/Pcalc av/d>2 DP MC90 Vc+Vs Vc(STM)  
+Vs EC2 STM-

EC2
STM-
Collins

<0.5 Extremely dangerous 10 0 0 9 0 6 0
0.5-0.65 Dangerous 5 0 2 43 0 32 0

0.65-0.85 Low safety 2 0 15 34 2 21 13
0.85-1.30 Appropiate safety 0 0 55 13 17 38 62
1.30-2.00 Conservative 1 8 26 0 38 4 20

>2.00 Extremely conservative 2 92 2 0 43 0 4
TOTAL DP 192 70 379 128 262 56

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.8: Demerit point classification for beams with stirrups; refer to Tables 7.7(a)-(b)-(c) 

The demerit point classification confirmed the strut-and-tie models to be the most suitable 

approach for beams with an av/d range between 1 and 2. However for the STM-EC2 

approach, the value of DP increased considerably for av/d>2, while STM-Collins model 

provided a more uniform performance. The demerit point classification also showed that 

MC90 and Vc(STM)+Vs approaches were not acceptable for being extremely conservative 

for the former method or with low safety for the latter method. 

Cladera [24] carried out a similar analysis for an experimental database of 124 beams 

with stirrups and a/d ratio from 2.5 to 5.0, to study the performance of several design 

standards (EHE, EC2, AASHTO, ACI11-5, ACI11-3 and Response 2000). In his analysis 

using EC2, the sectional approach was applied as opposed to the simple method related 

for short span beams applied here (see section 7.3.1), which takes into account the actual 

amount of stirrups within the shear span. These two approaches provide very similar 

answers for beams with a/d between 2 and 2.5 and low amount of shear reinforcement 

(cotθ =2.5). The total demerit score for EC2 (DP-EC2=136) obtained by Cladera [24] is 
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STM

Ptest/Pd av/d: 1 - 2 DP Vc+Vs EC2 STM-EC2

<1.0 Extremely dangerous 10 0 0 0
1.0-1.15 Dangerous 5 0 0 0
1.15-1.5 Low safety 2 4 2 0
1.5-2.3 Appropiate safety 0 53 32 78
2.3-3.5 Conservative 1 36 38 22

>3.5 Extremely conservative 2 6 28 0
TOTAL DP 57 98 22

Sectional

similar to the one obtained in this work for beams with av/d between 2 and 2.5, as shown 

in Figure 7.12. The value of DP-EC2 obtained by Cladera [24] was the highest from all 

the methods reviewed while the lowest demerit score was obtained using Response 2000 

(DP-Resp.200=26). Cladera’s conclusions are further discussed with regards the analysis 

of slender beams in chapter 8. 

As discussed in section 7.2.3, the Demerit Point system does not reflect the influence of 

the different material and load factors of safety used in design codes. Hence, it could be 

argued that values shown in Table 7.8 are not representative in order to establish a 

comparison in terms of safety by the different design methods. The modified Demerit 

Point system classification proposed in section 7.2.3 was performed in which material and 

load factors of safety were applied (see Table 7.9). Again, only approaches based on one 

single design code were examined to apply consistent material and load factors of safety. 

As shown in Table 7.9, both STM and Vc+Vs methods, which are based on EC2 and 

BS8110 codes respectively, had a fairly similar DP mark as in the original Demerit Point 

method proposed by Collins [148] (Table 7.8). However, the mark obtained using EC2 

was considerably lower. The improvement in the overall factors of safety in EC2 simple 

formula was due to lower material factors used, since the design shear force is factored by 

γs only. 

 

 

 

 

 

 

Note: Pd design load using material and load factors (DL=LL; γload=1.42/1.5, γc =1.5/1.25 and γs =1.15/1.15 
          for EC2/BS8110 design codes)  
 

Table 7.9: Modified demerit point classification for short span beams with stirrups 
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7.3.6 Other applications: CFRP reinforced beams 
Fibre Reinforced Polymer (FRP) composites are commonly used to strengthen concrete 

structures which have been subjected to structural damage, deterioration or changes in 

their design loads. An example of such applications is the use of externally bonded 

Carbon Fibre Reinforced Polymer CFRP sheets as shear reinforcement. Recent fib 

publication [158] describes some of the research that has been carried out in the past on 

CFRP used as externally bonded reinforcement. The strut-and-tie model described in 

section 7.3.2 was adapted to estimate the ultimate strength of short span beams which had 

been strengthened in shear using CFRP sheets to the full depth of the beam. In order to 

validate the STM model, experimental data provided by Imran Bukhari was used. The 

author is grateful to Bukhari for letting him include some of the experimental data in this 

section, which has not been published. 

According to researchers such as Bukhari et al. [159], Berset [160] or Uji [161] amongst 

others, CFRP sheets have been shown to be efficient to increase the shear capacity of a 

section providing an alternative solution to traditional steel shear reinforcement. Two 

main challenges were faced in modelling Bukhari’s beams; namely idealized the CFRP 

into equivalent ties and modelling the roller support in the STM. In addition, the a/d ratio 

in the beams was close to 2, which is near the limit of range of validity of the STM model 

for short span beams.  

Idealization of CFRP sheets in the strut-and-tie model 

The tensile stress assumed in the CFRP sheets at failure in the STM can be estimated on 

the basis of the “effective strain” concept (εfe). According to Taljsten [162], Triantafillou 

[163] or Triantafillou & Antonopoulos [164] the tensile stress reached in the external FRP 

at shear failure is lower than the tensile fracture strain (εfu=0.0015). The fraction R= εfe/εfu 

is difficult to assess accurately and experimental formulas are commonly applied, which 

are generally given in terms of the axial rigidity of the FRP (ρfEf) and the shear strength 

of the concrete (fcm
2/3). However, there are design aids in which the axial rigidity of the 

FRP is not taken into account, see Concrete Society Technical Report TR55 [165]. 

Current research is focused towards the development of improved design formulas to 

estimate parameter R, although this is not the main concern of this work. In order to 

illustrate the performance of the STM model developed, R was estimated taking the least 

value given by TR55 approach and empirical formula suggested by Bukhari et al. [159]. 
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The CFRP sheets were taken into account in the STM model as four “equivalent stirrups”, 

which were located at quarter points along the length of shear span reinforced with CFRP 

sheet, as shown in Figure 7.13. The shear contribution of each equivalent stirrup was 

calculated as the effective area of each strip (see Figure 7.13) times the tensile stress 

assumed for the CFRP. Only the CFRP sheet within the central three quarters of the clear 

shear span was considered effective as assumed in beams with steel stirrups. This 

assumption, which is consistent with EC2 design recommendations, seemed reasonable 

since the strength of specimens C5, C8 and C9, which had a small amount of CFRP sheet 

outside the central three quarters of the clear shear span, was not significantly 

underestimated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.13: STM model for CFRP strengthened short span beam 

Modelling of the roller support 

Several assumptions had to be made regarding the geometry of the bottom node since the 

specimens were supported on rollers (see Figure 7.13). In order to assess the accuracy of 

these geometrical assumptions similar beam tests with vertical steel stirrups carried by 

Shin et al. [166] were examined. The beams tested by Shin et al. [166] were also 

supported on rollers and had an av/d ratio of 1.5 and 2.0, which were similar to beams 

tested by Buckhari. Beams which failed due to local crushing of the concrete at the 

support were not considered in the analysis. The bottom node was modelled assuming an 

equivalent bearing plate length lb,eff =2c.cotα (see Figure 7.13), where α is the dispersion 

angle measured from roller centreline to the flexural reinforcement relative to the 

horizontal. 
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An optimal value for the dispersion angle α equal to 48.9˚ was obtained from the analysis 

of Shin’s 16 test results. In the STM a value of 50˚ was assumed, which was on the 

conservative side. The average Pcalc/Ptest ratio obtained for the 16 beams tested by Shin et 

al. [166] using the STM was 0.98 with a standard deviation of 0.10. 

Predictions of ultimate strength 

The strut-and-tie model developed by the author provided reasonable predictions of the 

shear strength of the six beams tested by Bukhari (Figure 7.14), which were strengthened 

with externally-bonded CFRP to the full depth. The concrete strength was around 50MPa 

and d was equal to 305mm. The average Pcalc/Ptest ratio for the six beams analysed was 

1.03 with a standard deviation of 0.10. The STM predictions were accurate despite 

specimens had a clear shear span to effective depth of 2, which is in the limit of validity 

of the STM model. The ultimate strength was slightly overestimated for beams C6 and 

C11, which was probably due to premature failure caused by debonding of the CFRP 

sheets. Nevertheless, the STM provided safe estimations of the ultimate strength of all the 

beams once standard material factors of safety were applied (γc=1.5 and γf=1.35). 

 

 

 

 

 

 

 

 
Note: (Left) The ultimate load was estimated using Khalifa, Triantafillou and Zhang’s empirical equations 
          for Vf, while Vc was taken from the control beam without shear reinforcement 

Figure 7.14: Left – Predictions of beams tested by Bukhari; Right – Vc component estimated for 

each method (Vc=Vtest-Vf using empirical approaches; Vc=λVcalc for STM) 

Alternatively, the ultimate strength of concrete beams that have been strengthened using 

externally bonded CFRP sheets can be estimated using the more traditional superposition 

method Vc+Vf. This approach, which is based on the classical truss model, requires the 

contribution of the CFRP (Vf ) to be estimated from statistical regression of empirical 

data, see Khalifa [167], Triantafillou [163] or Zhang & Hsu [168] models. In addition, Vc 
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is assumed to be constant in the classical truss model, which is obtained generally from 

the control beam without web reinforcement. As discussed earlier, the shear component 

of the direct strut (Vc=λV) in the strut-and-tie model presented here, reduces as the stirrup 

index increases. 

In order to compare these assumptions the concrete component Vc was obtained for each 

method, as shown in Figure 7.14 (right). For design methods based on the superposition 

concept, Vc was estimated by subtracting the calculated Vf from the ultimate shear 

strength obtained in the experiments. The results obtained from this analysis showed that 

the Vc component decreased with increasing SI, as predicted in the STM (see Figure 

7.14). Although the concrete component seemed to be overestimated in the 

superimposition methods, the ultimate loads obtained were similar to the STM 

predictions. This suggested that the reduction factor R derived empirically in the 

superposition methods must compensate to some extent for this overestimation of the 

concrete component. Moreover, in design cases Vc has to be estimated using empirical 

formulae such as the one described in section 7.2.1, which usually provide conservative 

predictions as shown in Figure 7.4 using EC2 formula. 
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7.4 NLFEA of short span beams 
A Non-Linear Finite Element Analysis of beams A using different smeared cracking 

elements was performed in order to validate the strut-and-tie model suggested for short 

span beams. Once the smeared cracking models have been shown to be consistent with 

the empirical data, interface elements were implemented into the mesh (see section 7.5.3) 

in order to study the influence of aggregate interlock action at the main diagonal shear 

crack. 

The fundamentals of the NLFEA models applied in this section are described in more 

detailed in chapter 3. For the preliminary analysis using only smeared cracking elements 

the following three cracking models were examined: 

1. Total Strain Fixed angle (Tot. Str. Fix) 

2. Total Strain Rotating angle (Tot. Str. Rot) 

3. Multi-directional fixed angle (Mult. Fix) 

7.4.1 Description of NLFE models 
Beams AG and AL were modelled with an orthogonal grid of 8-node quadrilateral plane 

stress elements, as shown in Figure 7.15. The load was applied through a bearing plate 

with displacement control equal in all the nodes at the top. Similar results were obtained 

with a load control applying a pressure load on top of the plate. The beam was supported 

on pin rollers which allowed for horizontal and pin rotation as shown in Figure 7.15. 

 
 
 
 
 
 
 
Figure 7.15: Finite element mesh and boundary conditions of short span beam (beam A0) 

The material properties used in the finite element model are summarized in Table 7.10. 

The Young’s modulus (Ec) used in the model, along with the concrete compressive (fc)  

and tensile (fct) strengths were obtained experimentally whilst the remaining parameters 

had to be estimated. The reinforcement was modelled as discrete embedded elements, 

shown as dashed lines in Figure 7.15, with a perfect plasticity (Von Misses) constitutive 
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model. In order to avoid stress concentrations at the loading points, the loading plates 

were included in the model, which were assigned with a steel perfect plasticity material. 

Concrete AG AL Steel Plates Long 
reinf. 

Shear 
Reinf. 

Ec [MPa] 42608 34969 Es [GPa] 200 200 200 
ν 0.2* 0.2* ν 0.3 0.3 0.3 

fct [MPa] 5.7 4.9 fy [MPa] 500 580 550 
Gf [N/mm] 0.113 0.101 
fc [MPa] 80.2 68.4  

 
Notes: * For the Total Strain models ν = 0 
                 + An estimated value of Gc = 100Gf was assumed, where Gf (MC90)=Gfo.(fcm/fcmo)0.7 
         Values of Ec, fc, fct and fy were obtained experimentally 

Table 7.10: Material properties in the NLFEA of beams AG and AL 

In all the models a Hordijk [79] softening curve, which is defined by Gf, was adopted for 

tension and a parabolic relationship for compression, see chapter 3. In addition, the 

compression softening algorithm from Vecchio and Collins (VC1993) was implemented 

in the Total Strain models, while for the multi-fix model the concrete strength was not 

reduced. Surprisingly, the strength of short span beams analysed using the multi-fix 

model was not overestimated. As shown in section 5.4, the same did not apply for shear 

panel tests. In the multi-fixed angle model a threshold angle value (α) was taken as 60º, 

although in some of the gravel beams (AG3) with higher concrete strength α was 

increased to 75 º to avoid numerical instabilities. For the fixed angle model a constant 

shear retention factor (β) of 0.1 was adopted. 

The solver used in the increment-iterative procedure was a standard Newton-Raphson 

with an energy based converged norm criteria, see chapter 3. The size of each 

displacement increment was kept fixed to 0.1mm which provided a converged solution 

within a few iterations. Only the multi-fixed crack model showed numerical difficulties 

near failure which could not be overcome by using other types of solvers such a Quasi-

Newton (secant) procedure or the Constant method, described in chapter 3. 

The size of the load/displacement increment had a minor influence on the ultimate load 

predicted by the model. Increments in the ultimate load up to 10% were detected for cases 

were an excessive step size was adopted. Adaptive loading algorithms in combination 

with arc-length method, described in chapter 3 were also investigated. In order to 

obtained optimal solutions the parameters required by these algorithms had to be 
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modified for each beam and constitutive model. For simplicity fixed increment steps were 

finally adopted, which provided reliable solutions. 

7.4.2 NLFEA results and comparison with other design methods 
In general the ultimate loads were predicted satisfactory by the NLFEA although several 

assumptions were required regarding the tensile strength of the elements. The results of 

the NLFEA are compared in Table 7.11 with the predictions from EC2 and proposed 

STM design methods for short span beams with and without stirrups. 

  Vcalc/Vtest 

Beam Vtest  
[kN] EC2 STM NLFEA 

Tot. Fix 
NLFEA 
Tot. Rot 

NLFEA 
Mult-Fix

AG0 325.76 0.53 1.28 0.97 0.97 0.95 
AG2 563.02 0.35 0.79 0.79 0.65 0.90 
AG3 654.60 0.45 0.69 0.71 0.59+ 0.82 
AG4 707.10 0.56 0.66 0.70 0.67 0.53+ 

AL0 365.50 0.45 1.04 0.80 0.97 0.80 
AL2 531.89 0.37 0.76 0.75 0.65 0.98 
AL3 480.73 0.61 0.87 0.89 0.76 0.97 
AL4 602.19 0.65 0.71 0.71 0.74 0.83 

 Mean 0.50 0.85 0.79 0.75 0.84 
 SD 0.11 0.21 0.10 0.15 0.14 
 COV % 22.00 24.70 12.65 20.00 17.27 

 
Note:  +Analysis stopped prematurely 

NLFE results are shown for reduced values of fct = 2.95MPa (AG) and 2.70MPa (AL) 

Table 7.11: NLFEA prediction for beams A compared with EC2 and STM methods 

The accuracy of the predicted failure load of the short span beams was improved if the 

concrete tensile strength fct was reduced in the NLFEA, unlike the slender beams without 

stirrups where the converse was not always true. Reducing fct to 2.95 and 2.70MPa for the 

AG and AL series of beams respectively in accordance with the Bresler & Scordelis [169] 

formula 0.33(fc
’)0.5 was found to significantly improve the predictions of crack 

development and ultimate load. These improvements were more noticeable in beams 

without stirrups (A0). The load-deflection response became excessively stiff when the 

measured values of fct given in Table 7.10 were used in the analysis. This over-stiff 

behaviour arose since the principle shear crack in the NLFEA formed below the actual 

position of the crack in the tests and had a break point in the middle where the slope 

changed suddenly, as shown in Figure 7.16. 
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Figure 7.16: Influence of tensile strength on crack pattern predicted in NLFEA 

Variations in the shear retention factor β assumed in the total fixed and multi-fixed 

models were also investigated. As shown in Figure 7.17, the initial value assumed of 0.1 

for the shear retention factor seemed to give best predictions. Higher values of β of 0.2 or 

0.4 incorrectly predicted a diagonal shear crack that was clearly above the one observed 

experimentally, as shown in Figure 7.17. In addition the predicted shear crack was flatter 

and the ultimate load was clearly over predicted. 

 

 

 

 

 

        

            Crack pattern for multi-fix (β=0.4) 

 

Figure 7.17: Influence of shear retention factor in NLFE predictions (beam AG0) 

From the numerical analysis using the three smeared cracking models, the multi-fixed 

model gave the best predictions, although the total strain models were more robust 

numerically. The total strain fixed and rotating models provided very similar results to 

each other due to the limited crack rotation within the shear span of short span beams. 

The total strain models exhibited a spurious post-failure response due to the formation of 

new cracks on top of the main diagonal crack near the loading plate, see Figure 7.18.  The 

latter cracks were similar to the ones observed in the experiments after the peak load had 
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been reached. Good predictions of the load-deflection curves were obtained up to failure 

for most of the beams. However in some specimens the ultimate load was underestimated 

due to local failure of the elements near the loading plate. No attempt was made to 

improve the predictions of the ultimate load since the primary aim of the analysis was to 

investigate which of the smeared crack models was most suitable for implementation into 

the combined smeared/discrete crack models described in section 7.5.3. To overcome this 

premature failure, a possible approach is to strengthen the elements adjacent to the 

loading plate, as shown in section 7.5.3. This could be justified by the confinement 

introduced by the loading plate, which enhances the concrete strength in this region. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.18: Load-deflection response predicted by NLFE model in beam AL4 and post-failure 

behaviour predicted in Total Strain Fixed model 

Comparison between NLFE and STM predictions 

An important aspect that needs to be mentioned is the difference in stress distribution 

under the loading plates assumed in STM and NLFE models. The stresses under the load 

plate were assumed constant in the strut-and-tie model. However, the non-linear-finite 

element analysis suggested that there is a concentration of stresses at the edge of the 

loading plate, as shown in Figure 7.19. The cracks which formed in the tests near the edge 

of the loading platens at failure could indicate a certain degree of stress concentration in 

that area, although additional experimental evidence is not available. The concentration of 

stresses predicted in the FE model depended on the stiffness assumed for the loading 

platen and smeared cracking model applied for the concrete. Considerations on modelling 

of loading plates in FE are described in section 3.5.3. 
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As a consequence of the concentration of stresses near the edge of the loading plate in the 

NLFEA, a slightly steeper strut than the one predicted in the strut-and-tie model was 

obtained, as shown in Figure 7.19. Even so, in particular cases such as in beam AL4 the 

numerical predictions were in excellent agreement with the strut-and-tie model, where the 

direct strut in both cases almost matched. 

 
 
 
 
 
 
 
 
 
 
Figure 7.19: Principal compressive stresses predicted in the NLFEA (Mult. Fix) and 

superimposition of experimental crack pattern and STM (beams AG0 and AL4) 

The width of the direct strut is assumed to be almost constant in the strut-and-tie model. 

This assumption was examined in the light of the numerical results from the NLFEA and 

strain readings obtained from demec gauge reading in beams A (see Figure 6.8). Figure 

7.20 shows the transverse profile of compressive strains at the middle cross section of the 

direct strut, which was measured by the Demec gauge. The empirical results of the 

compressive strains are compared with NLFE and STM predictions. The compressive 

strains obtained in the NLFEA had a reasonable correlation with the experimental data, 

although the ultimate loads predicted by the STM and NLFE were generally lower than 

the experimental values. As expected, peak values for the compressive strains were 

observed near the centreline of the direct strut. The gradient of strains along the transverse 

section of the strut was slightly exaggerated in the NLFEA. In general, the widths 

predicted for the direct struts in the STM of beams A varied from 170mm (A0) to around 

90mm (A4). The maximum variation of the compression strains obtained experimentally 

for the largest strut width obtained in the STM was around 35% of the peak strain. Hence 

the strains along the idealized strut can be considered constant. The variation in the strut 

width along the direction of the strut predicted by the NLFEA was negligible. 
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Note:  εc (STM) = 0.6νfcd/Ec = 0.00079 (Gravel), = 0.00096 (Limestone) 
              STM overestimated the strength of beam AG0 to 834kN, hence STM results are not shown 
              Test values were obtained with a Demec gauge at three points (see Figure 6.8) 
 NLFEA (Multi-fixed model); results are mean values obtained for three elements crossing the strut 

Figure 7.20: Comparison of numerical and experimental strains at the main strut, variation along 

transverse section 

Tensile strains in shear reinforcement 

The NLFEA predicted yielding of the shear reinforcement prior to failure, which was in 

agreement with Demec and strain gauge readings, shown in chapter 6. The highest 

stresses in the stirrups were predicted in the NLFEA at the level where the diagonal crack 

originated, which is also in agreement with experimental evidence. Figure 7.21 shows the 

strains measured by strain gauges 13 (at the crack) and 14 (90mm above the crack) at the 

central stirrup of beam AG3 in comparison with numerical predictions. In the light of 

these numerical and experimental results, the assumption made in the strut-and-tie model 

regarding the force transmitted by the stirrups, which is determined by their yielding 

strength, could be confirmed for beams A. 
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Figure 7.21: Comparison of experimental and numerical predictions of strain developments of the 

central stirrup at two different heights 

A good agreement between experimental data and NLFE predictions of strains in stirrups 

was also obtained at different heights of the stirrups. Figure 7.22 shows the strain 

distribution along the stirrups measured in beams A3 using both demec and strain gauges 

at the load step in which the last demec reading could be taken. The strain distribution had 

maximum values where the main shear crack crossed the stirrup. Demec reading were 

greater at this sector of the stirrup than NLFE and experimental values, which could be 

due to bond-slip. As described in section 3.4.1, perfect bond between the concrete and 

steel is assumed in the embedded reinforcement elements adopted in the NLFEA. In 

addition, tension stiffening is modelled with residual tension in the concrete after 

cracking, by means of the Hordijk [79] softening model. Although both of these 

assumptions are not entirely accurate, predictions were sensible without having to 

introduce interface elements to model bond more realistically 

 

 

 

 

 

 
 
Note: failure loads for beams AG3 and AL3 are 1309kN and 961kN respectively 

Figure 7.22: Variation of strains at different heights of the stirrups (beams AG3 and AL3)  
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Tensile strains along the flexural reinforcement 

The tensile strain in the flexural reinforcement (εs) predicted by the NLFEA was slightly 

smaller than the experimental values obtained from the strain gauges located in beams A0 

and A3, as show in Figure 7.23. The strains predicted in the NLFEA remained in the 

elastic domain in all the beams. However, in beams AG3 and AG4 the strain gauge and 

Demec readings showed that the flexural reinforcement had started to yield near failure. 

 

 

 

 

 

 

 
Note: NLFEA (Multi-fixed model) 
          X = distance along flexural reinforcement measured from the inner edge of the support 

Figure 7.23: Comparison of numerical and experimental tensile strains at centre (X=597mm) and 

inner edge of support (X=0) for beams AL0 and AG3 

It is generally believed that the tensile strain along the flexural reinforcement of short 

span beams is reasonably constant. A small gradient in the tensile strains was observed 

from the strain gauge reading located along the flexural reinforcement, see Figure 7.24. In 

the strut-and-tie model proposed by the author, the strains along the tie are constant only 

in short beams without stirrups. According to the STM model, a reduced gradient in the 

tensile strains is expected in short span beams with stirrups. In particular, in the STM 

model suggested, where the position of each stirrup is considered, εs is assumed constant 

between each stirrup, as shown in Figure 7.24. The gradient in the tensile strains along the 

flexural reinforcement predicted by the STM model was in good agreement with NLFEA 

and empirical values for beams with stirrups. 

In beams without stirrups the gradient could only be obtained empirically for beam AG0 

due to a faulty strain gauge in beam AL0. Although the STM assumes a constant value of 

εs, the gradient observed in AG0 was insignificant compared to the remaining beams. The 

NLFEA predicted a gradient of εs in beams without stirrups, which would develop only in 

the third of the clear shear span nearest the support, as shown in Figure 7.24.  
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This prediction is not consistent with the STM model, and it does not seem to agree with 

the empirical results, although more information from additional data points along the 

reinforcement would be desirable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  Results are shown for the same load step except for beams A0 where the STM overestimated the 
ultimate strength. X = distance along flexural reinforcement measured from the inner edge of the 
support. NLFEA (Multi-fixed model) 

Figure 7.24: Comparison of predicted and experimental gradient of tensile strains along the 

flexural reinforcement from the inner edge of the support to the centre of the beam (beams A0 and 

A3) 
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7.5 Considerations of shear stresses transmitted at the main 
shear crack 

7.5.1 Experimental evidence 
The early formation of the diagonal shear crack observed in short span beams, raises the 

question of whether the shear that develops along the crack surface by means of aggregate 

interlock can become critical. The limitation of shear carrying capacity of the shear crack 

appears to be more critical in beams without stirrups since the additional truss load path 

provided by the stirrups is not present. According to the experimental evidence provided 

by beams A, the location of the critical shear crack with respect the direct strut can be 

critical such as in beams AG0 and AL3. Beam AG0 failed at a lower load than beam 

AL0, which had lower concrete strength and smoother crack surface. Furthermore, the 

ultimate load of beam AL3 was lower than beam AL2, which had fewer stirrups.  These 

apparent contradictions could only be explained by the relative position of the diagonal 

shear crack with respect the direct strut and could justify the large scatter detected in 

experimental data of short span beams, especially for beams without stirrups. 

The relatively large crack openings recorded compared with the sliding suggested that the 

shear carrying capacity of the diagonal crack was limited. However, results from the 

push-off test revealed that considerable shear stresses could still be transmitted, even for 

cases where the aggregate fractured at the crack. In order to provide further evidence 

about the shear developed at the diagonal crack, analytical and numerical methods were 

performed, see sections 7.5.2 and 7.5.3. 

The shear stresses at the diagonal crack (τcr) were interpolated from the push-off tests 

using the crack opening and sliding recorded at failure. Unfortunately, only limestone 

short span beams and push-off specimens could be correlated (see Table 7.12) due to their 

similar concrete strengths. On the contrary, gravel concrete short span beams had a 

considerably larger concrete strength compared to equivalent push-off specimens 

(fc
’=80.2MPa as opposed to 31.7MPa) and so the correlation was dubious. The 

interpolation surfaces (w-s-τcr) obtained in section 4.3, were applied to both short span 

and slender beams; beams A and B respectively. However, this approach seemed more 

appropriate for beams B (see Chapter 8), which had a more similar δw/δs ratio to push-off 

tests than beams A. In addition, the concrete used was the same for push-off tests and 

beams B.  
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Table 7.12 summarizes the results obtained for beams AL. The interpolated surfaces and 

main drawbacks of this approach are described in section 4.3. 

 Test Interp.  

Beam v=V/bwd
[MPa] 

w 
[mm] 

s 
[mm] 

τcr
* 

[MPa] τcr
*/v 

AL0 6.19 1.15 0.41 3.70 0.60 
AL2 9.01 1.35 0.28 3.70 0.41 
AL3 8.14 1.30 0.45 3.64 0.45 
AL4 10.20 0.94 0.31 3.75 0.37 

 
Note: * results interpolated from push-off tests (specimens PL); refer to section 4.3 
          - Relative crack displacements (refer to Table 6.5); readings shown for AL2 and AL4 were taken at 
          mid-depth by LVTD crosses, while for AL0 and AL3 the readings relate to Demec cross at 340mm 
          from the bottom 
          - Results for beams AG are not shown due to the large difference in fc

’ compared to push-off test data  

Table 7.12: Interpolated shear stresses at the diagonal crack of beams AL 

The shear transferred by the main diagonal crack is highly sensitive to the angle β 

between the crack plane and the direct strut, as shown in Figure 7.25. As an order of 

magnitude, the shear stresses estimated in beams A, which are shown in Table 7.12, 

corresponded to values of β between 5˚ and 10˚. Due to the irregularities in the profile of 

the diagonal crack it seemed unreasonable to try to estimate the actual shear stresses at 

each point at the crack. Although, average values of the crack inclination could be 

assumed in order to obtain a mean value for τcr. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: fc = 0.6νfcd = 32.68MPa (Gravel), = 29.82MPa (Limestone) 

Figure 7.25: Sensitivity of shear stresses at the crack (τcr) to the angle β between centreline of 

direct strut and crack plane 
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a) Shear Compression 

b) Shear Proper 

As shown in Figure 7.26, the inclination of the main crack was fairly parallel to the direct 

strut for low-middle load stages in all beams A, except AG0 and AL3. Near failure, a 

crushing type of crack, which was steeper than the shear crack, originated under the 

loading point. This shear-compression type of failure, which was common in all beams A 

except AG0 and AL3, allowed most of the load carried by the direct strut to be 

transmitted above the main diagonal crack. However in beams AG0 and AL3 load was 

forced to be transferred through the main diagonal crack since the direct strut was crossed 

completely by the crack, which is usually referred to as shear proper failure, from early 

load stages as shown in Figure 7.26. This restriction in the load path in beams AG0 and 

AL3 explained the lower strengths obtained experimentally, especially in AG0. The lower 

strengths in beams AG0 and AL3 are discussed in next section in the light of a modified 

strut-and-tie model which incorporates a shear friction constraint at the critical crack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.26: Crack pattern in relation with direct strut in STM model (beams A) 
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Considerations regarding the crack opening-sliding ratio (suggested relationship) 

As mentioned earlier the crack opening-sliding ratio obtained experimentally was 

relatively large (δw/δs~3) compared with in general the slender beams tested, as shown in 

Figure 7.27. The difference is even larger with respect push-off tests, in which δw/δs is 

well described by MC90 formula (w = 0.6s2/3), as discussed in section 4.2.4. 

The crack dilatancy observed in short span beams was consistent with NLFE predictions 

obtained in section 7.5.3, which are also shown in Figure 7.27. According to most crack 

dilatancy models, such large values of δw/δs result in very small shear stresses at the 

crack, which could be considerably lower than those obtained from interpolating push-off 

test data shown in Table 7.12. In order to illustrate this, Walraven and Reinhardt’s [46] 

linear aggregate interlock model was used to estimate the minimum sliding (So) required 

to activate the shear stresses in the crack. This limit in crack slip So was calculated for 

each load taking the crack opening obtained in the experiment. The values obtained in the 

experiments for sliding were lower than So as shown in Figure 7.27, which indicated that 

shear stresses at the crack according to this model were negligible. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.27: Crack opening-sliding relationship for beams A compared with analytical models and 

representative test results from slender beams and push-off tests (MC90) 
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The δw/δs ratio in beams A could be estimated as 3 as shown in Figure 7.27. An 

analytical expression was obtained for the crack dilatancy of beams A, from fitting 

experimental data, as shown in Figure 7.28. A linear and parabolic fit were applied for 

crack opening and sliding respectively. The formulas are valid up to a maximum opening 

and sliding of 1.27mm and 0.5mm respectively. As shown in Figure 7.28, the fit 

overestimated slightly the crack displacements for beam AL4. However this 

overestimation was consistent for both w and s and so the overall crack dilatancy δw/δs 

was not significantly different to the remaining beams considered for the curve fitting.  

 

 

 

 

 

 

 

Note: Only beams A considered which failed in same shear span (av/d=1.12); refer to section 6.3.4 
          V/Vmax ratio between shear and ultimate shear load measured in the test 

Figure 7.28: Curve fitting of crack displacements in beams A; estimation of crack dilatancy 

Equating V/Vmax in both equations obtained in Figure 7.28 leads to a simple relationship 

between w and s given by equation (7.29). 

 ( )ws .785.011.5.0 −−=       …(7.29) 

Equation (7.29) fitted experimental data from beams A reasonably well, which also 

seemed consistent with predictions from the NLFEA obtained in section 7.5.3 (see Figure 

7.27). Nevertheless, equation (7.29) should only be considered as a reference, since it has 

been derived for a particular beam geometry and concrete strength. Additional 

experimental data would be required to obtain a more general relationship. 
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Observations regarding the type of aggregate 

One important aspect observed in short beams A was that the influence of aggregate 

fracture seemed to be insignificant and design methods provided similar performances for 

both limestone and gravel specimens. An interesting example is provided by the already 

mentioned performance of beam AG0 compared with AL0, where the former had higher 

concrete strength and rougher crack surface and still failed at lower failure load than AL0. 

In addition, it seemed clear that higher shear stresses must have developed along the main 

crack in beam AG0 than in AL0, since identical crack opening and sliding were measured 

in both beams.  

This example clearly showed that the position of the diagonal crack in beams A0 had a 

more important role in this case than the reduction in the roughness of crack surface due 

to fracture of the aggregate. Unfortunately, additional experimental evidence is not 

available for beams with larger member depths in which the crack at failure would 

probably be wider. For the beam heights tested (h=500mm), the crack widths at the main 

shear crack of the short span beam were around 1 to 1.25mm near failure, as shown in 

Figure 7.27. 
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7.5.2 Analytical predictions: STM with shear friction 
In order to quantify the possible reduction in strength due to the influence of the diagonal 

crack, the direct strut in the STM model can be idealized as a compression member 

similar to a slant test specimen shown in Figure 7.29. It is widely accepted that a “shear 

friction” relationship τ = C+µσ (Coulomb failure criteria) can be applied to predict the 

failure of slant tests with a preformed crack, see Climaco & Regan [113]. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.29: Idealization of direct strut to slant tests; example of slant test for β =30º (adapted 

from Climaco and Regan [113]) 

In the strut-and-tie model described in sections 7.2.2 and 7.3.2 the effective concrete 

strength of the strut (fc,eff) was taken from plasticity as recommended in EC2, which 

assumes a constant value of 0.6νfcd. It has been shown that this effectiveness parameter 

for the concrete provides in general good correlation with experimental data and only in a 

few specimens such as beam AG0 the strength could be overestimated. 

An alternative approach to assuming a constant value of fc,eff would be limiting the 

effective strength of the direct strut according to a shear friction relationship such as 

equation (7.30). 

µβ
β

−
+

=−
cot

cot1.)(
2

, cfrictionshearf effc     …(7.30) 

where β is the angle between the strut and the crack plane β=α–θ. 

In this alternative approach, which is denoted as STM-(eqn.7.30), the inclination of the 

diagonal crack (α) would have to be assumed. For beams A the angle of the crack α could 

be taken directly from the tests (αtest), as shown in Figure 7.30. Alternatively a reference 

value for the inclination of the crack (αref) can be estimated from the geometry of the 
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beam αref = a.tan(h/av), refer to Figure 7.29. The value of αref was very similar to the 

experimental one for beams AG0 and AL3. Even though the reference value αref =45.5º 

provided a safe low boundary of the ultimate strength of the strut, the inclination of the 

main diagonal crack was in some cases significantly flatter. As shown in Figure 7.30, 

beam AL0 presented two different crack inclinations and so it was dubious which angle 

should be adopted in the analysis. The remaining beams had a more uniform profile and 

so the value of was more certain than for beam AL0. 

  

 

 

 

 

 

 

 

 

 

Figure 7.30: Measurements of inclination of the main shear crack in beams A 

The value applied in equation (7.30) for the cohesion (c) was taken as 0.625fct, as 

recommended in EC2. This estimated value for c was similar to the one applied in the 

shear friction approach for slender beams described in chapter 8. Similarly, the friction 

used in equation (7.30) was taken as 1.06 and 0.95 for gravel and limestone beams 

respectively. It must be highlighted that both c and µ assumed are approximated values 

since the concrete strength of the push-off specimens used to obtain µ (see section 4.4) 

was different than in the beams A, especially for the gravel specimens. However, the 

values assumed ultimately for equation (7.30) are in agreement with most design codes 

and can be used to assess a reasonable boundary of the effective concrete strength of the 

strut. The variation of the effective concrete strength given by equation (7.30) is shown in 

relation to angle β in Figure 7.31. For low values of β the concrete strength should be 

limited to the uniaxial strength of the concrete fcd. 
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Figure 7.31: Effective concrete strength (fc,eff) according to shear friction model 

As shown in Figure 7.32, the prediction of the ultimate strength of beam AG0 was 

improved by introducing equation (7.30), whilst a similar strength was obtained for beam 

AL3 with larger SI. The shear friction constraint given by equation (7.30) becomes less 

restrictive in the STM as the stirrup index increases, since the direct strut becomes steeper 

and more parallel to the crack plane. Figure 7.32 illustrates the range where the shear 

friction restriction can be critical in beams A. The prediction obtained from the STM with 

friction model was variable depending on the inclination of the crack assumed. In general 

the results were similar using either αtest or αref. 

The lower bound of the crack inclination of around 35º, which is shown in Figure 7.32, 

corresponds to cases where the diagonal crack was almost parallel to the direct strut. In 

such instances with high values of SI, equation (7.30) had to be limited by the uniaxial 

strength fcd. The higher bound of the crack inclination shown in Figure 7.32 was taken as 

55º, which relates to the steepest segment of the diagonal crack observed at the top, see 

beam AG2 in Figure 7.30. Using this rather large value of α in the shear friction model 

provided excessively low predictions, as shown in Figure 7.32. It seems unrealistic to 

assume such a large value of α in the model since the crack at the top, which formed near 

failure, is caused by crushing of the concrete rather than shearing. 
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Figure 7.32: Predictions of STM with shear friction constraint at diagonal crack 

In beam AL0, the strength predicted by STM-(eqn.7.30) using αtest was clearly 

overestimated since the inclination of the crack was essentially parallel to the strut. On the 

other hand for the remaining beams the predictions did not differ much from the original 

strut-and-tie model suggested, as shown in Figure 7.32. The shear stresses predicted at the 

crack by the STM-(eqn.7.30) approach varied between 3 and 4MPa, see Table 7.13, 

which are in agreement with interpolated values from the push-off tests (Table 7.12). The 

critical shear stresses predicted were slightly higher for beams AG than for beams AL, 

which resulted from being the concrete strength of beams AG higher than in beams AL. 
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  STM-(eq. 7.30) αref STM-(eq. 7.30) αtest STM (0.6νfc
’) 

Beam αtest 
[˚] Pcalc/Ptest τcr 

[MPa] Pcalc/Ptest
τcr 

[MPa] Pcalc/Ptest τcr
+ 

[MPa] 
AL0 56.00* 0.69 3.76 0.52 4.86* 1.04 6.08 
AL2 40.82 0.63 3.60 0.82 3.39 0.79 5.72 
AL3 45.00 0.78 3.55 0.79 3.53 0.92 5.80 
AL4 39.00 0.68 3.51 0.97 3.29 0.77 5.89 
AG0 42.00 0.92 4.53 1.12 4.23 1.27 5.07 
AG2 43.15 0.67 4.34 0.76 4.18 0.82 4.74 
AG3 47.00 0.64 4.27 0.59 4.38 0.73 4.87 
AG4 42.00 0.64 4.21 0.76 4.03 0.71 5.24 

 
Note:  αref = 45.43˚ 

*High value of α assumed in the analysis. The crack was inclined 33˚ in most of its length see 
Figure 7.32, which results on a τcr of 3.20 MPa with a Pcalc/Ptest of 1.86 
+τcr = σ.cotβ/(1+cot2β) where σ =0.6νfcd and β =αtest-θ 

 

Table 7.13: Shear stresses estimated at the shear crack 

It is significant to highlight that neither plastic nor shear friction solutions adopted in the 

STM model so far take into account for size effects. Although there is not a general 

agreement on size effects for short span beams, as discussed in section 7.6, the question 

could be raised of whether it is reasonable to ignore the influence of larger crack widths 

in STM predictions of large members. A possible solution would be to apply a different 

shear friction formula in the STM, in which the crack width would be considered such as 

the one used in the MCFT or Swiss design formulas for shear, which are based on the 

Critical Shear Crack Theory. These formulas relate the critical shear to (fc)0.5, crack width 

and aggregate size. Moreover, this would also allow to take into account aggregate 

fracture, by taking a=0 as proposed by Collins et al. [31, 32]. An example of this 

alternative approach to equation (7.30) is shown in Figure 7.33, in which formula 

proposed by Muttoni [170] was adopted. 

As shown in Figure 7.33, the predictions using sensible values of w and a were not 

dissimilar to those obtained using the shear friction approach. The strengths obtained 

assuming that the aggregate had fractured (a=0) were around 40% lower than predicted 

using a=10mm, as shown in Figure 7.33.  
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Figure 7.33: STM with shear constraint at the crack using Critical Shear Crack Theory formulas 

The shear friction approaches described in this section are transparent and can be practical 

to demonstrate the relative low strengths obtained for some of the specimens tested 

(beams AG0 and AL3). However, two main difficulties would arise if the STM-

(eqn.7.30) approach was to be used in a design basis. Firstly, the predictions are highly 

influenced by the cohesion and friction parameters applied, which are in general difficult 

to estimate in case experimental data is not available. Secondly, the position of the main 

diagonal crack would have to be assumed. Although the reference angle αref could give a 

good lower bound estimate for fc,eff, it has been shown that the actual position of the crack 

can varied significantly and so the strength could be clearly underestimated. The 

parameters that can influence the position of the crack such as load history of initial stress 

states are difficult to take into consideration. Lastly, size effects and crack widths are 

neglected. As it has been shown, more elaborate shear friction relationships can be 

implemented, which could account for additional aspects such as aggregate fracture. 

However, crack widths would have to be estimated analytically increasing the level of 

complexity of the model.  

In conclusion, the STM suggested, which limits the concrete strength of the strut to 

0.6νfcd, seems to be a more reasonable approach for design purposes than alternative 

methods described in this section using shear friction formulas. As shown in section 8.3.3, 

similar approaches can be adopted for more slender beams, in this case using a truss with 

crack friction method.  
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7.5.3 NLFEA predictions using combined discrete/smeared cracking 
elements  

In order to provide further evidence regarding the crack opening/sliding and shear stresses 

of the main diagonal crack, a NLFEA, which combined smeared and discrete cracking, 

was performed. Linear interface elements were introduced in the finite element mesh to 

model aggregate interlock behaviour more accurately. For the remaining elements of the 

mesh, smeared cracking models were applied, which had been previously validated in 

section 7.4. For the interface elements several discrete cracking formulations, described in 

chapter 3, were investigated, although a simple discrete crack model was finally adopted. 

As shown in this section, the crack opening and sliding were satisfactorily reproduced by 

the FE models, although several assumptions were necessary to find a balance between 

realistic behaviour and numerical stability. 

Definition of combined smeared/discrete NLFE models 

Figure 7.34 shows the FE mesh used, which combined line interface elements with a 

discrete crack model (line A–B) and smeared cracking model for the remaining elements. 

As reported by Feenstra et al. [53] numerical oscillations can occur in interface elements 

with small thicknesses that can be solved by applying Newton-Cotes quadrature elements. 

Hence a 6-node and 5-point Newton-Cotes integration scheme interface elements were 

applied. After the validation process of the smeared cracking models shown in section 

7.4, the multidirectional-fixed smeared crack model was finally chosen for the concrete 

elements. The reinforcement was modelled with embedded elements assuming perfect 

bonding between the steel and the concrete. Especial considerations, which are discussed 

below, had to be made regarding the normal and transverse stiffness of the reinforcement 

elements crossing the interface plane. For the remaining elements, all material properties 

for steel and concrete were identical to the NLFE models shown in section 7.4, see Table 

7.10. Only few additional considerations on the smeared cracking models, which are 

described below, were necessary in order to obtain a satisfactory combined performance 

of the smeared and discrete cracking elements. 

An initial analysis was made to investigate the effect of refining the meshes shown in 

Figures 7.15 and 7.34, on the predicted response of the beams. In this analysis, the 

interface elements were given a large value of fct to ensure that the discrete crack 

remained closed. The other material properties were kept the same as in the previous 
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analyses with only smeared cracking. The ultimate loads and stiffness of the specimens 

were found to be similar for both the smeared/discrete and smeared crack models. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.34: FE mesh of combined smeared/discrete model for beam AL4 

Considerations for the discrete crack model in the interface elements 

In order to keep the model numerically stable, a simple discrete crack constitutive model 

was initially adopted for the interface elements in which cracking was initiated when the 

concrete tensile strength was reached. In this model, which is designated as “Discrete 

Crack model” in chapter 3 (see section 3.2.2), the tensile and shear stresses were assumed 

to be uncoupled in the open crack. A linear softening curve was used for cracked concrete 

in tension once cracking had initiated.  

In a preliminary analysis a constant shear retention factor of zero was assumed, which 

provided reasonable estimations of the crack opening and sliding. However, as it is shown 

in next section, this can result in high concentration of stresses at the ends of the discrete 

crack (points A and B in Figure 7.34). Hence, a more realistic value of the aggregate 

interlock stiffness after cracking (DT) was applied in further analysis, which was 

estimated using simple formula suggested by Hamadi & Regan [19] (DT =k/w). As shown 

in section 4.5, this formula provided reasonable predictions of push-off tests carried in 

this work; recommended value of k =5.4MPa for gravel specimens given by Hamadi & 

Regan [19] seemed also valid for limestone specimens tested by the author. For 

simplicity, a constant value of DT was adopted in the NLFEA, which was estimated for a 

crack opening of 1.25mm. This value corresponds to average crack widths observed in 

beams A near failure. According to these assumptions, the final parameters used in the 

NLFEA are summarized in Table 7.14. 

 

INTERFACE ELEMENTS 

SMEARED CRACKING ELEMENTS 

A 

B 
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Discrete 
Crack Model AG AL  Ddw 

[N/mm3]
Dai 

[N/mm3] 
DI [N/mm3] 213040 174840 A0 0.00 4.32 
DII [N/mm3] 88767 72850 A2 1.80* 2.50* 

fct [MPa] 2.95 2.00 A3 2.33 2.00 
Gf [N/mm] 0.113 0.101 A4 3.50 0.82 

DT [N/mm3] 4.32 4.32    
 
Note:  D = elastic stiffness (I- normal; II- shear); estimated as DI = Ec/h and DII = G/h where h = 0.2mm. 
 DT =overhall shear stiffness; Ddw =dowel action contribution estimated by DIANA for given  
              ,lfr=150mm, crack angle 45.43º and stirrup spacing; Dai = DT –Ddw 
              *In A2, Ddw was taken as 0 for all interface elements except for adjacent elements to stirrups, for 
 which the values shown were applied 

Table 7.14: Material properties of interface elements in NLFEA 

Considerations for reinforced elements crossing the crack interface 

The normal and shear stiffness of the reinforcement elements crossing the crack interface 

were taken into account through the free-length parameter (lfr), described in more detail in 

section 3.4.2. The value of lfr applied to the longitudinal reinforcement was taken equal to 

0.2mm, which restrained the crack from opening and sliding at those local points. This 

assumption was necessary for numerical stability reasons. However, the assumption 

seemed realistic, since the shear crack observed in the experiments did not reach both top 

and bottom ends until near failure. As discussed in next sections, the diagonal crack 

propagation to top and bottom ends near failure was assigned to the smeared cracking 

elements surrounding the interface elements.  

A value of lfr of 150mm was assumed for the shear reinforcement crossing the interface 

elements. This value of lfr was estimated from the crack widths obtained experimentally at 

which the stirrups began to yield (w~0.4mm). This preliminary guess allowed for a 

constant slip to be obtained along the crack in most of the beams. As described in section 

3.4.2, DIANA assumes that the tangential stiffness introduced by embedded 

reinforcement crossing interface elements (Ddw), which is attributed to dowel action, is 

half the normal stiffness. The contribution of Ddw estimated in this manner is considerably 

larger compared to analytical models developed from empirical data. Alternative 

solutions are using truss or spring elements, as discussed in section 3.4.2, although they 

can introduce several difficulties into the model. Hence, a simpler approach was finally 

adopted, which consisted in reducing the value of the shear stiffness of the interface 

elements after cracking (Dai=DT–Ddw) to account for the stiffness already provided by 

embedded reinforcement elements, see Table 7.14. 
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Beams with stirrups evenly distributed along the crack (A3 and A4) Dai was taken equal 

for all elements, while for beam A2 Dai was only reduced in interface elements adjacent 

to the stirrups. This was necessary in order to obtain an uniform shear stiffness along the 

discrete crack. The values shown in Table 7.14 for the shear stiffness component Ddw 

were estimated using DIANA’s formula (see section 3.4.2), which can be expressed in 

terms of the free length parameter and shear reinforcement ratio defined along the crack 

surface Ddw=Es/(2lfr)ρck. The shear reinforcement ratio ρck was estimated using the stirrup 

spacing and crack angle for beams A3 and A4, where stirrups were evenly distributed. As 

mentioned earlier, for beam A2 stiffness Es/(2lfr) was smeared out to the interface 

elements adjacent to the stirrup. 

Additional considerations for the smeared cracking models 

The tensile strength of the interface elements had an important role in activating the 

discrete crack. In order to ensure that the discrete crack would open in preference to 

cracking in the smeared crack elements nearby, the tensile strength of the interface 

elements was taken as around half that of the smeared crack elements. The reduced value 

of fct, which is suggested in section 7.4 for the smeared cracking elements, was not 

necessary since the formation of the discrete crack had already been encouraged by 

reducing the tensile strength of the interface elements. Therefore the tensile strengths 

from the cylinder splitting tests were adopted in the smeared cracking elements. 

A Hordijk [79] tension softening model was used for the smeared cracking elements in 

beams with little shear reinforcement (beams A0-A2). As mentioned earlier numerical 

difficulties were found in the beams with large number of stirrups crossing the crack 

interface due to excessive local cracking of the smeared crack elements near the stirrups 

at the level of the discrete crack (see Figure 7.34). This problem was overcome partially 

by using a linear softening for tension in the smeared elements instead of the Hordijk 

relationship [79]. In addition, the fracture energy was increased to 0.15 N/mm in the 

smeared elements of beams with large amounts of stirrups to account for tension 

stiffening effects. These modifications to the tensile behaviour of the smeared cracking 

elements influenced the load at the initiation of the discrete crack and the numerical 

stability of the analysis but not the ultimate load.  
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NLFEA results for beams without stirrups 

The numerical predictions of the crack opening w and sliding s (Figure 7.35) were in 

excellent agreement with experimental results. In addition, the vertical deflections were 

better predicted using the discrete/smeared model than the pure smeared crack model, as 

shown in Figure 7.35. However, the ultimate strength of beam AG0 was over predicted. 

The numerical load-deflection curve indicated a change in stiffness at the load where 

failure occurred (point A in Figure 7.35), which was due to the propagation of the 

diagonal crack to the supports. The propagation of the main crack occurred though the 

smeared cracking elements right next to the interface plane due to considerations of the 

reinforced elements crossing the interface plane, which have been discussed previously. 

 

 

  

 

 

 

 

Figure 7.35: Comparison of numerical and experimental load-deflection curves and crack 

opening/sliding of beam AG0 

The predicted crack opening and sliding shown in Figure 7.35 relate to the interface 

element nearest to the cross LVTD, which was located at mid-height of the beam. The 

crack opening and sliding obtained experimentally from beam AL0, which are not shown 

in order to simplify the figures, were very similar to those obtained from beam AG0. 

Figure 7.36 shows that the crack opening and sliding predicted was reasonably constant 

along the discrete crack that became active. Interface elements crossed by longitudinal 

reinforcement remained inactive thus both crack opening and sliding were negligible. 
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Figure 7.36: NLFE predictions of crack opening and sliding along interface plane 

Close examination of the shear stresses predicted along the discrete crack that became 

active in beam AG0 (Figure 7.37), showed that the maximum values of τcr occurred at the 

top of the crack. This maximum value of τcr at load point A was equal to 4.33MPa at 

loads near failure, which agreed with the shear threshold value predicted by the STM-

shear friction model described in section 7.5.2. In order to establish a reasonable 

comparison between the STM-shear friction model and the NLFEA, the reference crack 

inclination angle (αref) was adopted in the STM (see Figure 7.29). The shear stress at the 

crack predicted by the NLFEA at a load of 579kN, which corresponded to the ultimate 

load according to the STM, was 3.85MPa as opposed to 4.34MPa obtained in the STM 

(see Table 7.13). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.37: NLFE predictions shear stresses along active discrete crack compared with shear 

friction threshold value 

In view of these results it seems clear that since no shear limit was imposed at the 

diagonal crack in the NLFEA, failure was governed by crushing of the strut rather than 
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failure at the shear crack itself. Furthermore, the ultimate load predicted in the NLFEA 

(922kN) was more consistent with the standard strut-and-tie prediction (830kN) than with 

the experimental value (651kN) or the STM with shear friction approach. In addition, the 

predicted load-deflection path between points A and B shown in Figure 7.35, had similar 

stiffness as the one observed in AG0 before failure. This stiffness also agreed with beam 

AL0, which had weaker concrete but failed at higher load due to crushing of the strut.  

The effect of changing the shear retention factor β in the interface elements was 

examined. The objective of this analysis was to verify the sensitivity of the numerical 

predictions to the assumed parameter DT (Table 7.14). Assuming values of the aggregate 

interlock stiffness (Dai) equal to zero resulted in a premature failure at load point C 

(Figure 7.35), which was due to excessive concentration of compressive stresses at the 

element near the edge of the loading plate. Figure 7.38 shows the change in inclination of 

the principal compressive stress trajectories for different values of Dai. It can be seen in 

Figure 7.38 (left) that assuming Dai=0 lead to the entire load being transferred near the 

edges of the loading plates, where the discrete crack remained closed. 

In order to avoid premature failure for such cases, the strength of the concrete at the 

elements near the loading plate was enhanced. For simplicity the concrete strength was 

factored by three for these elements.  

 

 
 
 
 
 
 
 
 
 
 
Figure 7.38: Principal compressive stress trajectories in the NLFEA for cases of zero and normal 

aggregate interlock stiffness assumptions 

The predictions of crack opening and sliding using Dai = 0, which are shown in Figure 

7.35, were slightly higher than in the previous analysis, although the results were still 

acceptable. On the contrary, high values of the aggregate interlock stiffness resulted in a 

clear underestimation of w and s, especially on the crack slip. The results of the 

Dai = 0 N/mm3 Dai (AG0)= 4.32 N/mm3 

Load = 650kN Load = 650kN 
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parametric analysis are shown in Figure 7.35 for Dai equal to two and four times the 

stiffness assumed in the first analysis (Table 7.14). The parametric analysis concluded 

that the values assumed initially for Dai provided optimal predictions of w and s for beams 

A0. In addition, the principal stress trajectories had a better agreement with the STM than 

when low values of Dai were used, which resulted in high concentration of stresses. The 

strut width predicted in the NLFEA and principal compressive stress trajectories were 

consistent with the STM, as shown in Figure 7.38. 

NLFEA results for beams with stirrups 

Good numerical estimations of crack opening and slip were also obtained for beams with 

stirrups as shown in Figure 7.39, although the slip was slightly overestimated for beams 

with large number of stirrups, such as beam AL4. A better performance of the NLFE 

model was achieved if the concrete strength of the elements adjacent to the loading platen 

was factored, results denoted as “high fc”. An enhancement factor of three was adopted in 

order to assess the crack opening and sliding at loads near failure. As shown in Figure 

7.39 the slip was clearly over predicted if the strength of these elements was not 

enhanced. This overestimation of the slip resulted from excessive cracking of the smeared 

cracking elements surrounding the interface plane at the top of the beam. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.39: Comparison of numerical and experimental load-deflection curves and crack 

opening/sliding of beams AG2, AL3 and AL4 
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Figure 7.39 (Cont.): Comparison of numerical and experimental load-deflection curves and crack 

opening/sliding of beams AG2, AL3 and AL4 

The large concentration of stresses at the edge of the loading plate predicted in the 

NLFEA of short beams with stirrups seemed to be related to the geometry of the top node 

as opposed to values of Dai assumed in the model. In view of the results obtained for short 

beam without stirrups, low values of Dai were avoided and average values shown in Table 

7.14 were used in the NLFEA.  

Figure 7.40 shows the principle compressive stress trajectories of beams AG3 compared 

with AG0 predicted by the NLFEA; the strut-and-tie model proposed has been 

superimposed. The slightly steeper direct strut, assumed in the STM for beam AG3, was 

consistent with NLFE predictions (Figure 7.40). In addition, the geometry of top and 

bottom nodes was similar in both models. 

 

 

 

 

 

 

 

Figure 7.40: Principle compressive stress trajectories predicted in the NLFEA compared with 

STM for beams with and without stirrups (beams AG3 and AG0) 

 

Load = 1230kN Load = 650kN 

DT (AG)= 4.32N/mm3

AG0AG3 
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The crack opening obtained was constant along the discrete crack for early load stages, 

while for higher loads w was considerably smaller at points where the stirrups crossed the 

discrete crack, as shown in Figure 7.41. As mentioned earlier, these local variations in the 

crack width were expected since no bond-slip was taken into account in the NLFE model. 

The sliding was constant along the crack throughout the loading, as shown in Figure 7.41 

for beams AL3 and AL4. However, the crack slip predicted in beam AL4 was only 

mobilized until a distance of 500mm from the bottom, which corresponded to the stirrup 

closer to the loading point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Pult (AL3) =961kN and Pult (AL4) =1204kN 

Figure 7.41: NLFE predictions of crack opening and sliding along interface plane (beams AL3 

and AL4) 
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As discussed in previous section, beam AL3 had an unusually low strength in comparison 

the rest of beams AL. The shear stresses at the main diagonal crack predicted in the 

NLFEA are shown in Figure 7.42 for the interface elements that became active. The 

magnitude of the shear stresses obtained was similar to those for beam AG0, see Figure 

7.37. Moreover, the shear stress predicted at the crack in beam AL3 was in good 

agreement with those obtained from the STM–shear friction model. Figure 7.42 shows a 

similar distribution of shear stresses along the discrete crack in beam AL3 as in beam 

AG0. The value assumed in the NLFE model for Dai did not have a significant effect on 

the predictions of τcr, as shown in Figure 7.42. The results are shown for a load of 750kN, 

which corresponds to the ultimate load according to the STM. The NLFE prediction for 

the max τcr at failure load of 960kN was only 5% higher than the ones shown in Figure 

7.42. The shear stress interpolated from the push-off tests for beam AL3 was 3.64MPa, 

which is slightly higher than the values predicted in the NLFEA and STM model (see 

Figure 7.42). 

 

 

 

 

 

 

 

 
Note: results shown for load of 750kN (Pult =961kN) 
         Interpolated results for shear stress at the crack were obtained from (w, s) data from Demec crosses 

Figure 7.42: NLFE predictions shear stresses along active discrete crack compared with shear 

friction threshold value 

The shear stresses obtained in the NLFEA were in reasonable agreement with previous 

estimations, although clear values of τcr could not be obtained for all specimens tested due 

to numerical oscillations in beams with large number of stirrups. These numerical 

difficulties were due to discontinuities in the crack slip along the interface plane, which 

were similar to the one shown in Figure 7.41 at the top of beam AL4. These local effects 

were aggravated for beams AG with a higher concrete strength. 
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Final remarks about NLFE predictions 

Several simplifications were assumed regarding bond-slip, dowel action and aggregate 

interlock behaviour in the NLFEA. However reasonable predictions were obtained for 

crack opening and slip at the shear diagonal crack of short span beams. In addition, even 

though the inclination of the main crack in the NLFEA was assumed constant, the 

numerical predictions of w and s were still acceptable for beams such as AL0, where this 

assumption could be more dubious (Figure 7.30).  

The numerical predictions supported the low values obtained experimentally for crack 

slip compared with crack opening, discussed in section 7.5.1 (see Figure 7.27). These 

reduced values of s compared to w justified the use of simple discrete crack model as 

opposed to a more realistic crack dilatancy model, in which shear stiffness is a function of 

the crack displacements. In addition, although a constant shear retention factor was 

applied at the discrete crack, the shear stresses predicted in the NLFE model were in a 

similar range to those given in the STM-shear friction model. 
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7.6 Additional considerations on short span beams 
As shown in previous sections the sensitivity of the ultimate strength predictions of short 

span beams to different geometrical and material parameters varies significantly 

depending on the design method applied. In this chapter, the influence of parameters such 

as the clear shear span to effective depth ratio (av/d) or stirrup index on shear strength 

predictions has been shown. In this section additional considerations are made regarding 

bearing plates, size effects and relative position of stirrups. 

Bearing plates 

As discussed in section 7.3.4, the influence of the bearing plates on the ultimate strength 

of short span beams is ignored in many cases. The influence of using roller supports in 

beam tests was also discussed and an approximated approach was suggested by the author 

to include them in the STM (see section 7.3.6). However, the existing design methods for 

short span beams, which are described in sections 7.2.1 and 7.3.1, are inconsistent with 

each other with regards the influence of the size of bearing plates. 

The strut-and-tie models are very sensitive to changes in the length of the plates since the 

inclination and width of the direct strut are highly dependent on these geometrical 

constraints. On the other hand, equation (7.11) in MC90 ignores completely the size of 

the bearing plates. The remaining methods reviewed consider the size of the bearing 

plates indirectly through the enhancement factor β, which increases linearly with the 

length of the plates. Furthermore, the standard truss method applies factor β to the 

concrete component only and so the influence of the size of the bearing plates is 

independent of the stirrup index, which is not the case for the rest of the design methods. 

Unfortunately there is a lack of experimental data which provides clear evidence 

regarding the consequences of changing the size of the plates in short span beams since 

the bearing plates were generally kept constant within each set of beam tests. A group of 

eight beams was selected from the database with similar a/d (1.49-1.56) and SI (0.04-

0.06) in order to avoid dispersions in the predictions (see Figure 7.43). The beams had 

different relative bearing lengths with respect the shear span (a/av = 1.17-1.35-1.45). A 

parametric analysis was performed for each design method, changing the size of both 

support and load plates simultaneously for beams C2-4 (Clark [130]), which had average 

values of the SI. The results from the author’s parametric analysis showed an increase in 

strength due to reducing av whilst keeping a/d constant, which was in good agreement 
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with the strut-and-tie model predictions. Values of a/av below 1.1 corresponded to failure 

of the bearing plates, which is taken into account in the strut-and-tie based methods as 

shown in Figure 7.43. 

 

 

 

 

 

 

 

 

 
Note: parametric analysis carried out by changing bearing plates in beam C2-4 (Clark [130]); 
         Experimental results from data base shown in Table 7.7(a) 
         lb/d ratio is 0.22 for all beams except for AL4 and AG4 where lb/d is 0.28 and 0.45 respectively 
         c/d ratio was similar in all beams (0.17-0.12) 

Figure 7.43: Influence of size of bearing plates (a/av) for beams with similar SI and a/d ratios  

Short span beam tests carried in this work showed that failure could be encourage in one 

of the shear spans by increasing the bearing plate of the other span by 37.5% 

(lb,left=125mm, lb,right=200mm). This difference in the size of the bearing plates results in a 

20% increase in strength according to the STM as opposed to 8% if the simplified EC2 

method is applied. Of the 8 beams tested, 6 failed in the shear span with smaller bearing 

plate and only two on the span with lb,right =200mm. 

Walraven and Lehwalter [171] derived interpolated surfaces from the basis of test results 

of short span beams without stirrups, in which various sizes, a/d ratios and support widths 

were tested (see Figure 7.44). The maximum stresses in the concrete struts were 

calculated using a STM model with hydrostatic nodes, as shown in Figure 7.44. The 

interpolated surfaces provided showed that the stresses in the strut decrease with 

increasing a/d and lb/d, although they were in general higher than the constant νfc limit 

used in practice. As reported by Walraven [23], this limit seemed valid for members with 

a/d<2, depths up to 1m and lb up to around 0.25d. 
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Figure 7.44: Maximum stresses in concrete struts according to experimental data (adapted from 

Walraven & Lehwalter [171]) 

It is interesting to highlight in Figure 7.44 that the rate at which stresses decreased with 

increasing lb/d was not linear. Hence ultimate failure load must have increased slightly by 

increasing lb, which is consistent with the results obtained in the parametric analysis 

shown in Figure 7.43. 

Size effect 

The reduction of shear strength of reinforced concrete beams with increasing the size of 

the member, also know as “size effect”, was first raised by Kani [127] in the mid-1960s. 

Currently, design provisions are being revised with regards size effects since as reported 

by Collins et al. [12], old design codes have been shown to be inadequate in this matter. 

Researchers have justified size effect by means of different factors influencing the shear 

behaviour of reinforced concrete beams. Taylor [172] suggested that keeping the 

aggregate size while increasing the beam size would decrease the aggregate interlock 

contribution hence size effect would occur. However, tests carried out by Walraven [173] 

using lightweight aggregate, which fractured at cracks, was also subjected to size effects. 

In view of these results and further experiments, Walraven & Lehwalter [132] suggested 

that size effect was primary due to the rate of crack formation rather than aggregate 

interlock. According to Walraven & Lehwalter [132], the energy-release of larger 

members is greater compared with smaller beams hence the crack pattern developed 

much faster in larger beams. In addition, the capacity of cracks to transmit tensile forces 

is significantly lower for larger specimens since cracks are considerably wider. Several 

size effects factors have been proposed by different researchers, such as Bazant & Kim 

lb/d
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linear 

lb 
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[174] or Fujita et al. [175].  Tests carried by Fujita et al. [175] for high-strength concrete 

showed size effect to be related directly with the concrete strength fc. 

On the other hand, the modified compression field theory (MCFT) developed by Collins 

& Vecchio [8], size effect is assumed to be caused by the loss of shear stress transmitting 

capacity of wide crack for deeper members, due to larger crack spacing. This brings back 

to Taylor’s premise of aggregate interlock as main reason for size effect. On the basis of 

the MCFT authors such as Sherwood et al. [176], Lubell et al. [30], Bentz & Collins [177] 

support the idea of aggregate interlock capacity as the main parameter for size effect. 

Lastly, another possible cause for size effect, which was reported by Kotsovos & Pavlovic 

[155] (see section 7.3.4), is related to unintended out-of-plane actions induced in very 

slender members. 

Although there is not a general agreement for explaining size effect in RC beams, it is 

widely accepted that it can be significant, especially for cases such as slender beams 

(a/d>3.0) without stirrups. Furthermore, size effect is believed to be mitigated in beams 

with stirrups due to closely spaced cracks with lower crack widths (Collins & Kuchma 

[178]). As reported by Tan & Lu [139], less experimental data is available regarding size 

effects on short span beams compared with slender beams. As described in previous 

section, especial attention must be paid into the size of the bearing plates since in many 

instances the length of the bearing plates were kept constant while changing the member 

depth. In such instances, it can be questionable whether the decrease in shear strength is a 

measure of size effect or a consequence of variations in the av/d ratio. According to Zhang 

& Tan [140], this might have been the problem in several sets of experimental data 

(Collins & Kuchma [178], Tan & Lu [139], Yang et al. [179]). 

Early experimental work carried out by Walraven & Lehwalter [132] suggested that short 

span beams are subjected to size effects equally as slender beams. According to their 

work, size effect in short span beams is related to the direct strut component only and not 

to the load path provided by stirrups. As shown in Figure 7.45, the interpolated surface of 

maximum stresses in the strut for different a/d and lb/d ratios, was considerably lower for 

members with d=1m compared to 300mm, which is shown in Figure 7.44. In view of 

these results, empirical equations with the enhancement factor β=2d/av were introduced in 

EC2 as an alternative method to STM. Attempts have been made to include size effect 

factors into STM models (see example in STM model proposed by Zhang & Tan [140]), 

although these types of approaches have yet not been implemented in design codes. 
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Note: refer to Figure 7.44 for members with d=300mm 

Figure 7.45: Maximum stresses in concrete struts according to experimental data of members with 

depths of 1m (taken from Walraven & Lehwalter [171]) 

The performance of the predictions from the strut-and-tie models described in sections 

7.2.3 and 7.3.5 for cases with and without stirrups were investigated for different effective 

depths. The predictions of the proposed strut-and-tie model for short span beams with 

stirrups did not seem to be influenced by the effective depth, as shown in Figure 7.46 

(left). This supports Walraven & Lehwalter’s [132] findings for short span beams with 

stirrups.  

On the other hand, the STM strength predictions of beams without stirrups tested by 

Walraven & Lehwalter [132] (see Table 7.2) became less conservative for larger values of 

d. According to the authors these beam tests showed a significant size effect. However, 

the STM applied to more recent results provided by Zhan & Tan [140] (av/d=0.94) with 

similar beam heights, did not show such a pronounced size effect (see Figure 7.46). 

 

 

 

 

 

 

a)       b) 

Figure 7.46: Size effect on short span beams; a) beams with stirrups (0.75<av/d<2; Table 7.7); b) 

beams without stirrups (tests by Walraven & Lehwalter [132] and  Zhang & Tan [140]) 
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The difference between predictions of Walraven & Lehwalter’s and Zhan & Tan’s test 

(Figure 7.46.b) might seem contradictory regarding the relevance of size effect, since both 

sets of experiments had similar fc (20-30MPa), longitudinal reinforcement ratios (~1.2%) 

and a/d (1-1.1%). In addition, the bearing plates were scaled appropriately in both sets of 

beams so that lb/d was maintain constant; lb/d were around 0.30 and 0.15 in beams tested 

by Walraven & Lehwalter [132] and Zhang & Tan [140] respectively. These variations in 

relative size of the bearing plates could justify that the Pcalc/Ptest ratio was generally higher 

for Walraven & Lehwalter’s beams using the STM (Figure 7.46.b). Moreover, according 

to Figure 7.44(left) stresses in the strut could be overestimated using the constant value of 

νfc for a/d=1 and lb/d=0.30, as in beams tested by Walraven & Lehwalter [132]. 

Most importantly, beam with lowest value of d (V711, see Figure 7.46.b), which had the 

lowest Pcalc/Ptest ratio, had a considerably large value of the concrete cover (c/d=0.25). 

The c/d ratio of beam V7110 was three times larger than for the deeper beams, which 

explains the conservative prediction of this beam using the STM model. This raises the 

question of whether the data shown in Figure 7.46.b is reflecting a size effect problem or 

not. 

Recent experimental and analytical work carried in Toronto by Uzel et al. [180] on large 

footing with no stirrups and a/d between 1 and 3, seem to suggested that size effect is 

much less critical in beams with a direct strut action than slender beams. Authors such as 

Collins [181] believe that size effect is unimportant for short span beams, since failure is 

generally governed by crushing of the direct strut and not by the lost of shear stress 

capacity along the main diagonal crack. Although this assumption might be true for a 

large number of cases, it seems questionable for others, such as beams AG0 and AL3 

tested in this work, in which a shear proper type of failure was obtained (see section 7.5). 

In the author’s opinion, the relative position of the main diagonal crack respect the direct 

strut, which seems difficult to predict a priori, could have an effect not only on the 

ultimate strength but also on size effect considerations. According to the author, 

additional experimental data from short beams failing in a shear proper type of failure and 

different beam depths is required in order to verify this hypothesis. 
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Relative position of stirrups 

One aspect that is generally ignored in the design of short span beams is the relative 

position of the stirrups within the effective shear span. The only restriction regarding the 

location of the stirrups is that they must lie within the effective shear span in order to be 

mobilized when crossed by the main diagonal crack. Design codes usually recommend a 

uniform distribution of the transverse reinforcement, which also enhances ductility and 

control over the crack width. 

From the design methods discussed in this chapter only the proposed strut-and-tie model 

makes allowance for changing the actual position of the stirrups. Parametrical analysis of 

the strut-and-tie model showed that changes in the position of the stirrups within the 

effective shear span had a small effect, less than 1%, on the predictions of the ultimate 

load. The highest strength scenario was obtained by placing the stirrups towards the 

support, with a small spacing between the stirrups. Even for this extremely odd scenario, 

the strut-and-tie model predicted only a 0.78% increase in strength from the normal case 

with uniform stirrup distribution along the clear shear span. 

No experimental evidence could be found regarding the influence of changing the 

position of the stirrups in short span beams, although the parametric study supported the 

idea that a non-uniform distribution of the stirrups did not offer any particular advantage 

in terms of strength compared to the conventional uniform layout. 
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7.7 Conclusions  
Design codes make the allowance of applying alternative design methods for short span 

beams in order to take into consideration the enhancement in shear strength due to 

arching action. According to the analysis of the experimental database gathered of short 

span beams it was concluded that existing design equations for short span beams with and 

without stirrups were in general over conservative. The strut-and-tie model proposed 

provided better predictions of the ultimate shear strength, although a large scatter was 

found for short span beams without stirrups. This scatter was most likely due to the 

influence of the position of the main diagonal crack with respect the direct strut. A 

modified STM was examined, in which a shear friction relationship was implemented in 

the model. This approach provided a formal explanation for the low strength of beams 

AG0 and AL3. Furthermore, if a more elaborate crack friction relationship was applied, 

aspects such as crack width and aggregate size could also be taken into account. 

However, up-to-date these alternative techniques implemented in STM, seem not suitable 

for design purposes due to excessive uncertainties in the material and geometrical 

parameters involved. 

The sensitivity of different design parameters such as the clear span to effective depth 

ratio or the stirrup index were examined for the proposed STM model and compared with 

existing design methods. The performance of EC2 simple approach for short span beams 

with stirrups was highly dependent on the stirrup index. Similar problem was observed in 

MC90 simplified formula, which provided rather conservative results. The STM 

overcame this dependency between the predictions and SI due to the fact that the 

contribution of the direct strut reduces as SI increases. On the contrary, the STM was 

sensitive to variation on av/d. According to experimental data, the range of validity of av/d 

in the STM was confirmed between 1 and 2. In addition, yielding of the stirrups was 

assumed in the STM. The proposed STM for short span beams with stirrups is not 

applicable for large values of SI, in which the direct strut vanishes (λ=0). However, the 

critical value of SImax at which λ=0 is significantly larger than general stirrup indeces 

provided in practice; only one beam out of 143 investigated had a stirrup index greater 

than SImax. The strut-and-tie model for short span beams developed by the author was also 

applicable to short span beams strengthened in shear with externally bonded CFRP sheets 

to the full depth of the beam. 
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The NLFEA performed for short span beams A, showed that ultimate loads and crack 

patterns could be estimated accurately. However, the sensitivity of the numerical 

predictions to material parameters such as tensile strength was considerable. The multi-

directional fixed smeared crack model was finally chosen between all the smeared 

cracking models examined, although the model faced numerical difficulties near failure. 

The implementation of interface elements with discrete crack formulation was required in 

order to assess the relative crack displacements and shear stresses along the crack. 

Although the predictions of w and s were reasonable, several assumptions had to be made 

regarding aggregate interlock behaviour, dowel action and bond-slip in order to avoid 

numerical instabilities. 

In view of the experimental and analytical results, the influence of the fracture of the 

aggregate was insignificant for beams A. Design methods examined, including the 

proposed STM, had similar performance for limestone and gravel beams. Other aspects 

such as the location of the shear crack in relation to the direct strut seemed to have a more 

important role on the ultimate strength than the roughness of the main crack in beams A. 

The crack opening-sliding ratio obtained at the main diagonal crack was around 3, which 

is considerably larger than in slender beams or push-off tests (δw/δs~1). This large value 

of δw/δs, which was in agreement with predictions from the NLFEA, suggested that the 

shear stresses developed at the crack by means of aggregate interlock were small. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 8 - Analysis of Slender Beams 
 

8.1 Introduction 
Extensive experimental and numerical research has been carried out in the past into shear 

behaviour of RC slender beams, especially for beams without stirrups. According to 

experimental work of slender beams without stirrups, three main shear-carrying 

mechanisms have been reported; namely shear carried at the compression head, aggregate 

interlock action and dowel action. The contribution of each mechanism is not clearly 

understood, although it is generally accepted that aggregate interlock action along the 

crack surface is critical at failure due to the formation of the diagonal shear crack from a 

previous flexural crack. According to experimental evidence from Taylor [1] or Regan et 

al. [4], there seems little doubt that shear strength is reduced in beams without stirrups 

due to aggregate fracture at the crack. However, the influence of aggregate fracture is less 

clear in beams with stirrups due to lack of appropriate test data. 

In addition, most of experimental data available of slender beams with stirrups consists of 

simply supported beams where there is a clear interaction between bending and shear. 

Moreover, the shear strength of beams loaded at mid-span has the unavoidable 

contribution of shear at the compression head, which is generally difficult to estimate. 

Empirical data of continuous beams with stirrups, which were critical in shear, are rarely 

found in the literature. Design methods, such as the variable strut inclination method 

suggested in EC2, have been validated using simply supported beams but few using 

beams with a point of contra-flexure. To the best of the author’s knowledge the influence 

of aggregate fracture into the shear strength of continuous beams with stirrups has not yet 

been investigated. 
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In this chapter the experimental results of beams B0, B, C and D (see chapter 6) are 

analysed using proposed design methods in EC2, BS8110 and CSA, as well as numerical 

predictions from non-linear finite element models developed by the author. An 

experimental database of continuous beams tested by other authors was gathered to verify 

the results obtained from beams B and C. The results were also compared with traditional 

simply supported beam tests found in the literature, similar to beams D tested in this 

work. 

The crack pattern and crack dilatancy at the main shear cracks were modelled numerically 

using NLFEA and analytically using discrete crack truss models. Results are compared 

with those obtained for short span beams, which are discussed in previous chapter. In 

order to estimate the shear stresses at the crack in beams B, the test data from the push-off 

tests shown in chapter 4 was interpolated. These empirical interpolated values were used 

to validate analytical discrete approaches developed. The discrete crack-slip model 

presented for shear panels (see section 5.5) was adapted in order to predict the relative 

crack displacements and stresses along shear cracks in continuous beams. On the other 

hand, predictions of shear stresses at the crack from truss models with crack friction are 

also discussed. 
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8.2 Analysis of slender beams without shear reinforcement 
(Beams B0) 

8.2.1 Comparison between test results, EC2 empirical formula and 
MCFT; influence of aggregate fracture 

The experimental results from slender beam without shear reinforcement (beams B0) 

showed a good correlation with previous tests from Regan et al. [4] with similar type of 

aggregate. As described in chapter 6, the type of failure observed for limestone and 

normal gravel beams were identical to each other. Failure occurred suddenly after the 

formation of the critical diagonal crack, which extended horizontally into the compression 

zone and along the flexural reinforcement towards the support. The failure crack surface 

was smoother for BL0 than for BG0 due to aggregate splitting at the crack of the 

limestone aggregate. The crack patterns were similar between limestone and gravel 

specimens with the only exception that the angle at which the diagonal crack met the 

horizontal dowel crack was slightly steeper for the limestone beams than for the gravel 

beams, as described in chapter 6. 

The influence of aggregate fracture on shear strength prediction of slender beams without 

stirrups was examined at first using the EC2 empirical formula (8.1), applying no partial 

material safety factors:  

( ) ( )bddfECV clcRd .2001..100.18.0)2( 31'
, += ρ    … (8.1) 

where ρl = longitudinal reinforcement ratio; fc
’ = cylinder compressive strength; d = 

effective depth; and b = width. 

Table 8.1 summarizes the predictions of the ultimate strength of beams B0 using 

characteristic strengths (γi=1). Predictions are shown in Table 8.1 for both cases of 

ignoring and considering the limitation on the concrete strength of 60MPa, as 

recommended in the UK National Annex. As expected from Regan’s experiments, the 

Vtest/Vcalc ratio was lower than 1 for all beams B0 tested. The limitation on the concrete 

strength to 60MPa had a noticeable improvement on the predictions of the gravel beams, 

which had a concrete strength of 80.2MPa. However the limitation of concrete strength 

showed to be inefficient for the limestone beams since fc
’ was only 68.4MPa. Whilst safe, 

the limit on the concrete strength seems inconsistent with experimental evidence, since 

this constraint was only effective for the gravel beams, where only a small portion of the 
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course aggregate fractured at the crack (~30%), and not in limestone specimens where all 

aggregate particles fractured. Hence, this supports Regan’s [4] conclusion in which the 

fc
’≤60MPa limitation should be considered as a compromise solution before a more 

rational approach is developed. 

 
   EC2 empirical formula Response 2000 

Beam Vtest 
[kN] 

Vflex 
[kN] Vtest/Vcalc 

Vtest/Vcalc 
[fc’≤60MPa] 

Vtest/Vcalc 
[aeff=10mm] 

Vtest/Vcalc 
[aeff =0] 

BG0-1 61.31 100 0.76 (1.14) 0.84 (1.26) 0.88 (1.34) 0.94 (1.44) 
BG0-2 63.11 100 0.78 (1.17) 0.86 (1.29) 0.91 (1.38) 0.97 (1.48) 
BL0-1 46.86 98.5 0.61 (0.91) 0.64 (0.96) 0.71 (1.08) 0.76 (1.16) 
BL0-2 54.07 98.5 0.71 (1.06) 0.74 (1.11) 0.82 (1.25) 0.88 (1.34) 

 Avg. BG0 0.77 (1.15) 0.85 (1.27) 0.89 (1.36) 0.95 (1.46) 
  BL0 0.66 (0.98) 0.69 (1.03) 0.76 (1.16) 0.82 (1.25) 

 
Note: values in parenthesis correspond to design values (EC2: γc =1.5; CSA: γc =1.53) 
Parameters adopted in Response 2000: base curve (Popovic/Thorenfeld/Collins), Comp. Softening (Vecchio 
& Collins 1986), Tension Stiffening (Bentz 1999), crack spacing (auto), fct and εc

’ (auto) 

Table 8.1: Predictions of ultimate strength using EC2 empirical formula 

As shown in Table 8.1, the Vcalc/Vtest ratio using equation (8.1) was 16% larger for the 

limestone beams than for the normal gravel beams due to fracture of the aggregate. These 

results were consistent with Regan’s [4] findings for beams with similar fc
’ and d, as 

shown in Figure 8.1. The interpolated surfaces proposed by Regan clearly illustrate that 

the predictions worsens for higher beam depths and concrete strengths.  

 

 

 

 

 

 

 

Figure 8.1: Correlation of experimental results of beams B0 with interpolated surfaces (Vtest/Vcalc-

fc-d) proposed by Regan [4] for limestone and gravel aggregate concrete beams without stirrups 

using EC2 empirical formula 
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Predictions from sectional approach using Response 2000 (Table 8.1), which is based on 

MCFT, are more accurate than EC2 empirical formula, although the Vtest/Vcalc ratio was 

still lower than 1 for all beams (no material factors of safety applied). The crack spacing 

predicted using CEB-FIB [6] formulas implemented in MCFT, were in agreement with 

experimental values. Moreover, the maximum vertical deflections predicted were between 

4 and 5mm, as observed in the tests. 

Again, predictions using Response 2000 are shown for two distinctive cases; firstly with 

an effective aggregate size (aeff) equal to 10mm and secondly with aeff equal to zero. The 

second case corresponds to the CSA recommendations for the given concrete strengths, 

while the former (aeff =10mm) would be assuming that the aggregate did not fracture at 

the crack independently of fc
’, which was the case for beams BG0. As shown by figures in 

Table 8.1, reducing aeff provided a similar improvement of the Vtest/Vcalc ratio for all 

beams, which seemed to be more rational than the simpler approach suggested for EC2. 

The Vtest/Vcalc ratio is very similar for BG0 and BL0 if aeff is taken as 10mm for the gravel 

and zero for the limestone beam, as suggested by observed behaviour. 

In view of these results it can be concluded that both EC2 and MCFT constraints applied 

to deal with aggregate fracture, which are based on concrete strength rather than type of 

aggregate, can be used to obtain safer design strengths. However, these approaches are 

not necessarily consistent with experimental data, as shown for beam BG0. Although to 

be fair, MCFT approach seems more rational from a theoretical perspective. In addition, 

this approach was more effective than EC2 method for beam BL0 in which the aggregate 

fractured completely. 
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8.2.2 Predictions of NLFEA using smeared cracking models 
Numerical simulations using a non-linear finite element analysis of beams B0 were 

carried by the author using the three smeared cracking approaches described in chapter 3: 

total strain fixed crack model, total strain rotating crack model, multi-fixed crack model. 

A shear retention factor β of 0.1 was used in both totally fixed and multi-fixed models. 

The threshold angle (α) was selected as 30˚ in the multi-fixed model, according 

considerations made for multi-directional fixed models in section 3.2.1. The remaining 

material properties considered in the models are summarized on Table 8.2. The concrete 

elastic modulus (Ec), tensile strength (fct), compressive strength (fc
’) and the steel yield 

strength (fy) were obtained experimentally whilst the remaining parameters had to be 

estimated. The stress-strain models used were the Hordijk softening curve for tension and 

the parabolic curve proposed by Feenstra [82], which are defined by respective tension 

and compression fracture energy, see section 3.3. 

Concrete BG0 BL0 Steel Plates Long 
reinf. 

Ec [MPa] 42608 34969 Es [GPa] 200 200 
ν 0.2* 0.2* ν 0.3 0.3 

fct [MPa] 5.7 4.9 fy [MPa] 500 580 
Gf [N/mm] 0.113 0.101 
fc [MPa] 80.2 68.4  

 
Notes:  * For the Total Strain models ν = 0 

+ An estimated value of Gc = 100Gf was assumed, where Gf (MC90)=Gfo.(fcm/fcmo)0.7 

Table 8.2: Material properties in NLFEA 

The total strain fixed crack model incorrectly predicted flexural failure and consequently 

overestimated the failure load (Figure 8.2). The use of totally fixed crack models within a 

total strain formulation can give inconsistent results in cases where cracks cross previous 

cracks with different inclinations. On the other hand, the total strain rotating and multi-

fixed models predicted the ultimate load and mode of failure satisfactory as shown in 

Figure 8.2. However, numerical difficulties were faced at loads near experimental failure, 

which needs further discussion.  

The iterative procedure in the multi-fixed model diverged on the last load step, although 

the ultimate load corresponding to the last converged load step was very similar to the 

experimental value, as shown in Table 8.2. Divergence of the iterative process in a 

NLFEA is not always related to failure (Borst & Nauta [67]), although in this case it 

appears to be related to the sudden formation of the diagonal crack. 
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   Vtest/Vcalc 

Beam Ptest
* 

[kN] 
Pflex

 

[kN] 
NLFEA 
Tot. Fix 

NLFEA 
Tot. Rot 

NLFEA 
Mult-fix 

BG0 124.42 200 0.57 1.02 1.01 
BL0 100.92 197 0.45 1.06 0.87 

Mean/Std.Dev. 0.51/0.08 1.04/0.02 0.94/0.10 
 
Note: Ptest

* is the average value of beams B01 and B02 
          In the total strain rotating model the failure load is taken at load step where the diagonal crack was   
          predicted (see circle mark); load branch above this load is denoted as “post-failure behaviour” 
 

Figure 8.2: Performance of smeared cracking models for slender beams without shear 

reinforcement 

The total strain rotating model provided sensible predictions for the failure load and crack 

pattern but the predicted post-failure response was unrealistic as shown in Figure 8.2. It is 

important to note that failure in the total strain rotating model was assumed at load step in 

which the diagonal crack was predicted to form. This critical step also corresponded to a 

considerable increase in vertical deflection; refer to circle mark in Figure 8.2. A 

considerable amount of load was predicted to be carried after this point, which was not 

consistent with experimental evidence. This spurious load branch, which is partially 

shown in Figure 8.2, is denoted as “post-failure behaviour”.  

The increment in load obtained in the post-failure branch was accompanied with the 

development of a horizontal smeared crack along the longitudinal reinforcement as shown 

in Figure 8.3. This suggests that the spurious load mechanism obtained seems to be 

related to the complete debonding of the concrete from the longitudinal reinforcement at 

failure not being reflected in the NLFE model. This is further supported by NLFEA of 

small scale beams carried by Ueda [182], which showed that a discrete horizontal crack 
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along the reinforcement had to be introduced in the model in order to obtain reasonable 

failure loads. 

 

 

 

 

 

Figure 8.3: NLFEA (total strain rotating) crack pattern predictions, post-failure behaviour 

Experimental data from the post-peak branch is rarely available for slender beams without 

stirrups. Experimental work from Chana [183], which included high-speed recording of 

crack widths at the dowel and diagonal cracks, showed that after the peak load was 

reached the dowel crack opened up at approximately twice the rate as the diagonal crack. 

At loads lower the peak value, the dowel crack started to open right before the diagonal 

crack and both continued opening at a similar rate until failure. 

Regarding the influence of parameters assumed on numerical predictions, the concrete 

tensile strength (fct) had a significant effect, as shown in Figure 8.2. This observation 

agreed with Vecchio & Shim [98] conclusions. In the previous analyses, fct shown in 

Table 8.2 was obtained from the split cylinder test. Adopting this value for fct provided a 

sensible estimate of the ultimate load but the first flexural cracks formed later in the 

analysis than in the tests. The prediction of the initial crack development was improved if 

the tensile strength was reduced to fct=0.33(fc
’)1/2 as recommended by Bresler & Scordelis 

[169] but the ultimate load was underestimated in some cases such as beam BG02 (see 

“Tot. Rot low fct” in Figure 8.2). 

It can be concluded that despite the numerical difficulties faced and assumptions made by 

the smeared cracking models applied, the NLFE estimations of the ultimate strength 

(Figure 8.2) were reasonable. The NLFEA presented here did not model the effect of 

aggregate fracture. Hence, it could be expected that predictions for BL0 to be less 

conservative than those obtained for BG0. However, this was only true using the multi-fix 

model. This was probably due to the difference in concrete properties between both set of 

beams assigned in the numerical models such as fc or fct, which had a significant effect on 

the numerical predictions. 

Experimental

NLFEABG01
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8.3 Analysis of slender beams with shear reinforcement 
(Beams B, C and D) 

8.3.1 Influence of the load arrangement: continuous beams 
Experimental evidence 

Most of the available experimental data on beam tests with shear reinforcement 

correspond to simply supported beams with a high flexural capacity in order to ensure a 

shear type of failure. “T” or “I” cross sections with thin webs were generally applied in 

order to avoid flexural failure due to their high efficiency. Rectangular sections can also 

be adopted, such as beams D tested in this work, although flexural reinforcement had to 

be distributed in three layers. Beam tests designed using either type of cross sections have 

been widely used to validate analytical models such as the standard truss method or the 

more recent variable strut inclination method (EC2), as shown in Figure 8.4, which was 

taken from Walraven [23]. 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  ρw = ρv  = Asw/(s.bw) 
fc1 = νfc

’ 
z = 0.9d, No material factors of safety applied 

Figure 8.4: Validation of variable inclination strut method (adapted from Walraven [23]) 
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Cont. Beams

Author Beam a/d d    
[mm]

b 
[mm]

fc' 
[MPa]

fy   
[MPa]

ρl   
[MPa] ρfy/νfc ρ/ρmin 

[EC2]
Vtest 
[kN] EC2 BS8810 CSA

Ramirez 1-NWLA 4.95 308 356 46.2 520 2.33 0.090 6.7 1308.0 1.16 0.84 0.86
et al. 2-NWLB 4.95 308 356 46.2 520 2.33 0.090 6.7 1455.0 1.04 0.76 0.77

3-NWLC 4.98 306 356 46.6 472 2.37 0.082 6.0 1263.0 1.08 0.82 0.84
4-NWLD 4.98 306 356 45.8 472 2.37 0.055 4.1 1044.0 0.87 0.80 0.84
5-LWLA 4.95 308 356 43.4 520 2.33 0.095 6.9 984.0 1.54 1.12 1.13
6-LWLB 4.95 308 356 43.0 520 2.33 0.096 6.9 1116.0 1.35 0.99 1.00
7-LWLC 4.98 306 356 43.4 472 2.37 0.086 6.3 1071.0 1.27 0.97 0.99
8-LWLD 4.98 306 356 44.3 472 2.37 0.057 4.1 840.0 1.08 0.99 1.04
9-NWLD 4.98 306 356 40.0 472 2.37 0.061 4.3 930.0 0.98 0.90 0.92

10-NWHD 4.98 306 356 60.1 472 2.37 0.045 3.5 1077.0 0.84 0.77 0.85
11-LWHD 4.98 306 356 72.3 472 2.37 0.040 3.2 1188.0 0.76 0.70 0.77
12-NWHD 4.98 306 356 75.2 472 2.37 0.039 3.2 1191.0 0.76 0.70 0.77

Regan J-18 3.75 271 152 31.3(+) - 1.46 0.070 2.6 163.0 0.65 0.58 -

Vcalc/Vtest

Beams B & C, described in chapter 6, were loaded at two points, one of them at a 

cantilever end, in order to have a point of contra-flexure at the shear critical span (see 

Figure 6.33). This load arrangement reduces considerably the shear contribution at the 

compression head and relates to structural cases with pure shear action rather than 

combined shear-flexure behaviour of a simply supported beam. Experimental data of 

beam tests critical in shear with a point of contra-flexure are less common than simply 

supported beam tests. Tests carried by Ramirez et al. [184] or Regan [149] (Table 8.3) 

had a similar load arrangement to beams B & C, although the shear reinforcement ratios 

were lower. As shown in Tables 8.3 and 8.4, all beams considered had stirrup ratios 

greater than minimum requirements by EC2 and BS8110 (see section 7.3); beams with 

lower amounts of stirrups had at least twice these minimum values. 

Watanabe & Lee [185] referred to a series of 95 beam tests similar to beams B & C 

carried in Japan in the early 90s by several researchers. Unfortunately only data of 56 

specimens (Table 8.4) could be retrieved from this source, refer to [186-190]. Useful 

information was obtained about ultimate strength and crack patterns from these tests, 

although the references were in Japanese and so the interpretation of the results was very 

limited. The cross section and reinforcement arrangement in the Japanese beams were 

very similar to beams B & C, although the type of aggregate used is unknown. The cracks 

in these tests might have been wider than in beams tested in this work since very high 

yield strength steel was generally used for the stirrups as shown in Table 8.4. 

 

 

 

 

 

 

 

 
Note: for slender beams the stirrup ratio ρ is defined as Aswfy/(bs) 
          (+) estimated from cube strength (assuming fc

’=0.8fcc) 
         Beams LW tested by Ramirez et al. refer to light-weight aggregate concrete 

Table 8.3: Continuous beams with stirrups tested by Ramirez et al. [184] and Regan [149] 
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Cont. Beams

Author Beam a/d d    
[mm]

b 
[mm]

fc' 
[MPa]

fy   
[MPa]

ρl   
[MPa] ρfy/νfc ρ/ρmin 

[EC2]
Vtest 
[kN] EC2 BS8810 CSA

Kagami F-90-041* 4.44 360 200 38.3 922 1.73 0.207 8.1 268.21 1.92* 1.39* 1.25*
et al. E-90-041* 4.64 345 200 38.3 922 2.41 0.207 8.1 325.59 1.52* 1.13* 1.08*

B-90-041 4.76 336 200 38.3 922 3.09 0.207 8.1 374.25 1.27 0.97 0.98
G-90-041 4.85 330 200 38.3 922 3.78 0.207 8.1 374.25 1.25 0.96 1.01
H-90-041 4.80 333 200 38.3 922 3.15 0.207 8.1 350.22 1.35 1.03 1.04
E-30-041 4.64 345 200 38.3 225 2.41 0.051 2.0 223.08 0.68 0.70 0.74
G-30-041 4.85 330 200 38.3 225 3.78 0.051 2.0 216.02 0.68 0.73 0.81

Kokusho B-210-6.0 3.53 340 180 21.2 1386 3.11 0.374 11.8 241.33 1.29 1.31 1.21
et al. B-210-7.4 3.53 340 180 21.2 1478 3.11 0.564 17.8 279.59 1.15 1.13 1.04

B-210-9.2 3.53 340 180 21.2 1458 3.11 0.890 28.1 321.77 1.00 0.98 0.91
B-210-11.0 3.53 340 180 21.2 1488 3.11 1.278 40.4 356.10 0.90 0.88 0.82
B-360-4.1 3.53 340 180 39.0 1448 3.11 0.108 4.3 625.88 0.97 0.71 0.78
B-360-5.1 3.53 340 180 39.0 1478 3.11 0.170 6.7 721.39 1.17 0.83 0.89
B-360-6.0 3.53 340 180 39.0 1386 3.11 0.220 8.7 757.96 1.23 0.96 1.00
B-360-7.4 3.53 340 180 39.0 1478 3.11 0.332 13.1 762.03 1.39 1.04 1.29
B-360-9.2 3.53 340 180 39.0 1458 3.11 0.524 20.7 953.04 1.18 0.83 1.17
B-360-11.0 3.53 340 180 39.0 1488 3.11 0.753 29.8 1056.68 1.07 0.75 1.05
B-570-4.1 3.53 340 180 56.0 1448 3.11 0.082 3.6 300.19 0.98 0.72 0.82
B-570-6.0 3.53 340 180 56.0 1386 3.11 0.167 7.3 416.93 1.28 0.84 0.89
B-570-7.4 3.53 340 180 56.0 1478 3.11 0.252 11.0 485.60 1.28 0.79 0.99
B-570-9.2 3.53 340 180 56.0 1458 3.11 0.398 17.3 549.36 1.28 0.70 1.17
B-570-11.0 3.53 340 180 56.0 1488 3.11 0.571 24.9 593.51 1.21 0.64 1.30

Matsuzaki C-210-0.19 3.57 336 200 23.9 710 2.83 0.104 3.5 254.08 0.80 0.68 0.76
et al. C-210-0.40 3.57 336 200 23.9 710 2.83 0.220 7.3 320.79 1.01 0.85 0.93

C-210-0.59 3.57 336 200 23.9 751 2.83 0.342 11.3 329.62 1.13 1.11 1.09
C-210-0.89 3.57 336 200 23.9 751 2.83 0.516 17.1 377.69 1.04 0.97 0.95
C-210-1.18 3.57 336 200 23.9 751 2.83 0.685 22.7 423.79 0.92 0.87 0.85
C-360-0.19 3.57 336 200 38.4 706 2.83 0.069 2.7 259.18 0.78 0.70 0.79
C-360-0.89 3.57 336 200 38.4 756 2.83 0.345 13.6 462.05 1.21 0.91 1.16
C-360-1.18 3.57 336 200 38.4 756 2.83 0.457 18.0 525.82 1.12 0.80 1.11
C-570-0.40 3.57 336 200 68.5 710 2.83 0.095 4.3 441.45 0.97 0.64 0.73
C-570-0.59 3.57 336 200 68.5 751 2.83 0.149 6.7 588.60 1.09 0.66 0.72
C-570-0.89 3.57 336 200 68.5 751 2.83 0.224 10.1 652.37 1.15 0.64 0.83
H-210-1.18 3.57 336 200 23.9 751 2.83 0.685 22.7 437.53 0.89 0.84 0.82
U-210-1.18 3.57 336 200 23.9 751 2.83 0.685 22.7 412.02 0.95 0.89 0.88

Takagi et al. B-30-046 4.76 336 200 34.1 363 3.09 0.094 3.5 268.70 0.93 0.76 0.80
B-30-121 4.76 336 200 33.5 297 3.09 0.206 7.7 403.19 1.06 0.83 0.84
B-60-030 4.76 336 200 33.9 512 3.09 0.087 3.3 249.37 0.92 0.79 0.83
B-60-059 4.76 336 200 34.3 576 3.09 0.192 7.3 410.55 1.03 0.79 0.80
B-80-019 4.76 336 200 34.7 900 3.09 0.098 3.7 277.52 0.96 0.76 0.80

B-80-022S 4.76 336 200 35.0 856 3.09 0.093 3.5 274.48 0.92 0.75 0.79
B-80-046 4.76 336 200 35.0 937 3.09 0.237 9.0 377.69 1.23 1.01 1.01

B-80-058S 4.76 336 200 35.1 875 3.09 0.286 10.9 418.49 1.18 1.00 1.03
B-80-059 4.76 336 200 35.1 937 3.09 0.306 11.7 462.35 1.09 0.91 0.97

B-80-110S 4.76 336 200 35.2 835 3.09 0.556 21.3 527.88 1.04 0.80 1.01
B-80-121 4.76 336 200 35.2 934 3.09 0.622 23.8 507.47 1.08 0.83 1.05

B-120-019 4.76 336 200 35.9 1104 3.09 0.117 4.5 324.22 1.00 0.73 0.77
B-120-030 4.76 336 200 36.2 1104 3.09 0.177 6.8 386.81 1.11 0.81 0.83
B-120-059 4.76 336 200 36.1 1103 3.09 0.352 13.6 474.90 1.13 0.88 1.05
B-120-121 4.76 336 200 36.2 1108 3.09 0.721 27.8 540.83 1.04 0.78 1.01
B-150-019 4.76 336 200 36.3 1284 3.09 0.135 5.2 311.66 1.22 0.84 0.88
B-1.5-022 3.57 336 200 36.7 856 3.09 0.089 3.4 281.55 0.90 0.73 0.78
B-1.5-058 3.57 336 200 36.8 875 3.09 0.275 10.7 439.19 1.16 0.96 0.98
B-1.5-110 3.57 336 200 36.9 835 3.09 0.535 20.8 531.60 1.07 0.79 1.05

Simokaichi B1 3.46 260 150 63.8 376 3.06 0.041 1.8 158.16 0.65 0.65 0.77
et al. B2 3.46 260 150 63.8 929 3.06 0.274 12.2 444.82 1.00 0.55 0.78

Total = 69 including beams in Table 8.3
Summary of results*

EC2 BS8810 CSA

max value = 4.85 360 200 68.5 1488 3.78 1.278 40.4 Mean 1.06 0.84 0.93
min value = 3.46 260 150 21.2 225 1.73 0.041 1.8 SD 0.19 0.14 0.14

COV % 17.68 17.09 15.42

Vcalc/Vtest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: *Bond failure (results are neglected); summary table refers to the remaining 67 beams 

Table 8.4: Continuous beams with stirrups (test carried by Japanese researchers)  
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Differences in ultimate strength and crack pattern 

The experimental data from the 69 beams shown in Tables 8.3 and 8.4, was consistent 

with results from beams B & C. Several differences were observed between the shear 

behaviour of simply supported beam tests and beams with a point of contra-flexure. The 

ultimate strength and crack pattern seemed to be influenced by the type of loading. 

Ultimate load 
The ultimate shear strength of beams B & C was significantly lower than those shown in 

Figure 8.4, which were simply supported and had a flanged compression head. This 

reduction in strength in beams B & C was in agreement with experimental data shown in 

Tables 8.3 and 8.4. This is clearly shown in Figure 8.5, where the strength of continuous 

beams was generally under the predicted strength curve suggested in EC2, as opposed to 

simply supported beams shown in Figure 8.4, where points were clearly above it. This 

disagreement between both sets of experimental data, seems to worsen for higher values 

of shear stresses. The shear strength of simply supported beam with a rectangular section, 

which was tested in this work (see beam D in section 6.6), was similar to equivalent 

continuous beam. This suggests that the difference between Figure 8.4 and 8.5 results 

might be mainly due to the compression flange.  

The shear force resisted by the compression flange at failure can be estimated using 

equation (8.2), suggested by Placas & Regan [143]. Equation (8.2) takes into account the 

rigidity of the flange, although the formula had not been validated for neither lightweight 

nor high-strength concrete. Despite this limitation, equation (8.2) was applied in order to 

obtain an order of magnitude of the shear carried by the flange.  

( ) ffwcucu hhbfV ..5.11.0 3/2 λ+=      … (8.2) 

where λ = 1.0 if [(bf -bw) > 3hf] and λ = (bf -bw)/3hf if [(bf -bw) < 3hf] 

Figure 8.5 compares the results of beams tested with a point of contra-flexure (black 

squares) with simply supported beams (white circles). The simply supported beams 

shown in Figure 8.5 correspond to tests by Hamadi & Regan [19] and Walraven [10], 

which had a “T” and “I” section respectively. The estimated shear contribution carried at 

the flanged Vcu has been subtracted from the total shear force, which is represented by 

triangle markers in Figure 8.5. The results obtained showed a reasonable correlation, 

especially for values of ρvfy/νfc
’<0.4, which seems to suggest that flanged sections can 

provide a significant contribution to shear strength. According to this analysis the shear 
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carried by the flange Vcu had a contribution to the total strength that varied from 10 to 

20% for the 14 simply supported beams considered. 

 

 

 

 

 

 

 

 

 
Note: Refer to Tables 8.3 and 8.4 for data of beams with point of contra-flexure 

 Figure 8.5: Ultimate shear strength with ρvfy/νfc
’ for simply supported and continuous beams; 

contribution of shear carried at the flanges (Vcu) in simply supported beams 

In order to investigate the influence of compression flanges on shear behaviour of 

reinforced concrete beams, two beam test series were carried out by Regan [149], which 

consisted of simply supported beams with similar dimensions, concrete strengths and 

amount of stirrups. The results shown in Figure 8.6 correspond to beams with vertical 

stirrups and a/d ratios between 3.4 and 3.6.  

Again the contribution of the compression flange is observed (Figure 8.6), although in 

two of the beam tests, which had low transverse flange reinforcement, premature failure 

occurred at the flange. For the remaining beams, the strength was generally greater 

compared with equivalent beams with a rectangular section, the figure of 10-20% 

estimated previously was in good agreement with the experimental data. These results 

further support the relevance of flanged sections, although more experimental data of 

beams with higher stirrups indexes would be desirable. 
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Note: experimental data from Regan [149] 

Figure 8.6: Ultimate shear strength for simply supported beams with rectangular and T sections 

Differences in crack pattern 
The crack pattern was also influenced by the type of loading. Experimental evidence 

shows that in simply supported beams failing in shear, initial 45˚ shear cracks form at 

early load stages at the mid-height of the web along the shear span (Figure 8.7). However, 

in beams B & C, these cracks formed at a distance equal to the effective depth d from the 

loading points as part of the fanned shape strut (Figure 8.8), while the central span 

remained uncracked. The difference in the stress fields between simply supported and 

continuous beams before cracking is clearly shown in Figure 8.9 adapted from Calavera 

[191].  

 

 

 

 

 

 

 

 

Figure 8.7: Crack pattern of simply supported beam; Top – T section (GT4, Hamadi & Regan 

[19]); Bottom – Rectangular section (beam DB1 tested in this work) 
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Figure 8.8: Typical crack pattern of continuous beam. Top – (BL1); Bottom – Bond split crack 

along flexural reinforcement (BG1) 

 

 

 

 

 

Figure 8.9: Compression and traction lines in simply supported and continuous beams before 

cracking (adapted from Calavera [191]) 

Once the preliminary shear cracks had developed, redistribution of stresses is required to 

stabilize the system. As the load increases and the stirrups begin to yield the strut changes 

its orientation in order to activate a larger number of stirrups and flatter cracks (35˚) may 

form. In the case of simply supported beams, these later cracks crossed the previous 45˚ 

ones as shown in Figure 8.7. On the other hand, in beams B & C, these newer cracks 

formed at the centre of the shear span, where the concrete was uncracked. Most likely 

these differences in the crack development resulted in a different contribution of 

aggregate interlock to the shear strength of the specimen. At failure, the behaviour of the 

main shear crack depended on the stirrup index (SI). Beams with lower SI, such as BL1, 

the crack got wider and failure was due to the complete lost of aggregate interlock while 

for the remaining beams crack slip was also mobilized. 

In some of the continuous beams examined (see Kagami et al. [186], Regan [19], or 

beams tested BG1-BG2), near failure the main diagonal shear crack extended to the ends 

along the main flexural steel in a bond splitting horizontal crack (see Figure 8.8 top). This 

type of bond failure does not appear to be related with the type of loading since similar 
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crack propagation was reported in simply supported beams such beams GT4-5 and LT4-5 

tested by Hamadi & Regan [19] (Figure 8.7 top). The ultimate load of the beams, which 

exhibited a bond split crack at failure, was not significantly lower than the rest of the 

beams, except for tests by Kagami et al. [186] which had considerably low flexural 

reinforcement ratios (ρl =1.73-2.4%). The beams by Kagami et al. [186] in which the 

ultimate strength appeared to be influenced by the low longitudinal reinforcement ratio 

corresponded to the lowest two data points in Figure 8.5 with ρvfy/νfc
’= 0.2. Even though 

in some beams bond failure was predominant, in other cases such as beams BG1 and 

BG2, failure seemed to occur as a combination of both shear and bond failures. 

NLFEA of simply supported and continuous beams 
In order to assess clearly the differences described above between simply supported and 

continuous beams, a simple comparative scenario with identical beams was established 

using a non-linear finite element analysis. Numerical predictions of crack pattern and 

stress redistributions of tested beams B were compared with identical beams without the 

load point applied at the cantilever end. These beams, for which no experimental data was 

available, are denoted as beams Bs. 

Two major changes were required in order to model beams Bs. Firstly, the width of the 

elements in the right short shear span had to be factored by three, in order to avoid failure 

in that span, which had twice the shear force in beams B. Secondly, the yield strength of 

the flexural reinforcement was increased to 980MPa and a compression flange was 

included (hf =125mm, bf =405mm) to avoid flexural failure. These changes in the cross 

section were required since the maximum bending moments in the simply supported 

beam Bs were twice as in continuous beam B. As a result from these changes in the cross 

section, the lever arm was around 5% larger in beams Bs than in beams B. 

In the NLFEA, the multi-fixed smeared crack model was adopted. Similar material 

properties as in beams A were applied see section 7.4. As shown in Figure 8.10, the 

different crack development obtained for simply supported beams Bs and continuous 

beams B was satisfactory reproduced by the NLFE models.  

As shown in Figure 8.10 the crack development predicted at a shear force of 360kN, 

which was near the experimental failure load in beam BL1, was much lower in beam 

BsL1. The predicted critical shear crack at the centre of the span clearly crossed the 

preliminary 45º shear crack (Figure 8.8), as observed in tests.  
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Figure 8.10: NLFE prediction of crack development in beams B and Bs 

The directions of the principle compressive stresses before cracking were similar to those 

shown in Figure 8.9. However, the struts in the continuous beams seemed considerably 

flatter than those in beams Bs, as shown in Figure 8.11. The truss system generally 

described for simply supported beams was clearly reproduced in the NLFEA, see Figure 

8.11 top. The vectors of the principle compressive stresses were orientated at 45º around 

preliminary shear cracks and were flatter between these cracks. In addition, arching action 

near the support was also captured in the NLFEA. 

 

 

 

 

 

 

 

 

 

Figure 8.11: Principle compressive stresses at ultimate loads for beams BL1 and BLs1 
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8.3.2 Comparison between predictions from variable strut inclination 
method (EC2), simple truss (BS8110) and MCFT 

Variable strut inclination method (EC2) 

As discussed in section 8.3.1, the variable inclination strut method (VSI) was applied to 

predict the ultimate strength of beams presented in Tables 8.3 and 8.4, along with 

continuous beams tested in this work (beams B & C). The VSI method produced 

satisfactory predictions of the ultimate strength of beams with ρfy/νfc’ ratios up to around 

0.15 (see Figure 8.12). Above this value, where the predicted cotθ becomes lower than 

2.5, the strength was generally overestimated. The Vcalc/Vtest ratio obtained for beams B, C 

& D are summarised in Table 8.5, in which no material factors of safety have been 

applied; for the remaining beams refer to Tables 8.3 and 8.4.  

As discussed in previous section, the overestimation of the ultimate strength seemed 

related with the type of loading in the test, in particular with the type of cross section 

used. However, parameters assumed in the VSI method such as the lever arm (z) or the 

effectiveness factor of the concrete (ν) had a significant influence on the shear strength 

predictions.  

 

 

 

 

 

 

 

 

 

 

Note: refer to Tables 8.3, 8.4 and 8.5 

Figure 8.12: Variable strut inclination method predictions for continuous beams 

In Figure 8.12, both design and characteristic strength curves using VSI are presented. As 

shown in Figure 8.12, the application of material factors of safety (1.5 and 1.15 for the 
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concrete and steel, EC2) still allows for a certain margin of safety, which seems to 

decrease quite considerably for beams with cotθ equal to 2.5. The ultimate strength of 

these beams is governed by yielding of the stirrups and so only steel material factor of 

safety is applied (1.15). In this range, only light-weight aggregate continuous beams 

tested by Ramirez et al. [184] were below the design curve. In addition, two beams from 

Kagami were below the design VSI curve in the plastic range, which could be explained 

to local bond failure. The accuracy of the predictions is discussed in further detailed in the 

next sections; the performance of other design codes such as BS8110 and CSA are also 

shown in Tables 8.3, 8.4 and 8.5. 

 

   VSI (EC2) BS8810 Respons. 
2000 MCFT (CSA) 

Beam SI= 
ρfy/νfc

’ 
Vtest 
[kN] Vcalc/Vtest cotθ Vcalc/Vtest Vcalc/Vtest Vcalc/Vtest cotθ

BG1 0.16 285.19 1.15 2.26 0.84 1.02 0.96 1.49
BG2 0.27 322.24 1.22 1.63 1.08 1.23 1.19 1.38
BL1 0.11 350.73 1.03 2.50 0.68 0.94 0.82 1.48
BL2 0.18 478.18 1.07 2.13 0.73 0.96 0.82 1.38
CB1 0.08 308.80 1.00 2.50 0.74 0.98 0.88 1.49
CA1 0.08 293.96 1.05 2.50 0.78 1.03 0.92 1.49
CB2 0.12 428.71 1.08 2.50 0.69 0.92 0.80 1.42
CA2 0.12 418.66 1.11 2.50 0.71 0.94 0.81 1.42

DB1* 0.08 311.37 0.94 2.50 0.70 0.98 0.81 1.43
DA1* 0.08 299.22 0.97 2.50 0.63 0.94 0.77 1.43

  Avg. 1.06  0.76 0.99 0.88  
  SD 0.08  0.13 0.09 0.12  
 COV (%) 7.93  16.73 9.26 14.18  

 
Note: no material factors of safety have been applied; *all specimens were continuous beams except for 
DB1/DA1.  
 
Additional assumptions are: 
   - In EC2 (VSI), z=0.9d 
   - In BS8110 cube strengths have been assumed as 0.8fc

’ and fcu<40MPa 
   - In Response 2000: base curve (Popovics/Thorenfeldt/Collins), Comp. Softening (Vecchio & Collins   

86), Tens. Stiffening (Bentz 99); aggregate size 10mm; no strain hardening considered for steel 
   - MCFT (CSA), design equations (2.18) & (2.19) with sze=300mm; Mf was taken not lower than Vdv  

Table 8.5: Summary of predictions of the ultimate strength of beams B, C & D using the variable 

strut inclination method (EC2), classical truss (BS8110) and MCFT (Response 2000 and general 

design equations CSA) 
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  Average (k) = 0.84
  St. Dev = 0.02
  num. beams = 72

The value assumed for the lever arm z=kd, had a significant influence on the prediction of 

the ultimate strength using the VSI. In design codes k is suggested to be taken as 0.9, 

although allowance is made to estimate this parameter more accurately. However, no 

general guidance is provided in order to assess z. A preliminary estimate of the lever arm 

could be obtained from the maximum flexural capacity of the section, but this approach 

would be problematic since it is dependent on the longitudinal reinforcement ratio.  

The lever arm estimated from the maximum flexural capacity of the section can differ 

from the actual value at failure especially in shear tests where beams are designed with a 

considerable safety margin from flexural failure. Hence, the lever arm was estimated at 

the section of maximum bending moments for the beams described in Tables 8.3 to 8.5, 

from first principles using the bending moment obtained experimentally. Reasonable 

predictions of the strains in the longitudinal reinforcement were obtained for beams BG2 

and BL2 in which a parabolic-rectangle relationship was assumed between strain and 

stresses at the concrete as suggested in EC2. The strains in the tensile reinforcement were 

60% and 86% of the yield strain for beams BG2 and BL2.  

The experimental values obtained for k from this analysis are shown in Figure 8.13, with 

an average value of 0.84. In particular k was equal to 0.86 for beams BL and BG. When 

analysing beams with a point of contra-flexure, Regan [3] suggested a lower value of k = 

0.8 in order to fit experimental data from Watanabe [192]. 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 8.13: Average values for factor k for beams with a point of contra-flexure 
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This conservative value of k=0.8 seems more consistent with experimental data shown in 

Figure 8.13 and provides a better estimate of the ultimate load of continuous beams when 

using the VSI (see Figure 8.14). For simply supported beams with and “I” or “T” section, 

such as beams Bs, described in section 8.3.1, the value of k=0.9 seems more suitable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.14: Predictions of variable strut inclination method for different lever arm assumptions 

(zflex=kflex.d, see Figure 8.13) 

A large group of the beams included in the experimental database had a stirrup index 

(SI=ρvfy/νfc
’) lower than 0.138 hence cotθ was limited to 2.5 in the VSI. This range of SI 

corresponds to a linear cut-off in the prediction curve. According to the VSI method, in 

such instances where the angle of the strut is restricted to 21.8º as in beam BL1, the shear 

strength is only governed by the yielding capacity of the stirrups within a length of 2.5z. 

Hence the influence of the concrete strength is ignored. On the other hand, shear design 

methods based on the standard truss model (Vc+Vs), such as in BS8110, fc
’ is taken into 

account to estimate the ultimate strength. 

The suggested VSI cut-off seemed to fit experimental data of continuous beams with low 

values of SI as shown in Figure 8.14. In addition, Figure 8.15 showed that the predictions 

for the continuous beams with low SI were not very sensitive to variations in fc
’ for 

concrete strengths up to 70MPa. Additional data of simply supported beams, which is also 

shown in Figure 8.15, seemed to suggest a reduction in the Ptest/Pcalc ratio as fc
’ increased. 

However, beam tests provided by Walraven & Stroband [10] still showed accurate 

predictions for concrete strengths as high as 115MPa using the cotθ=2.5 cut-off. As 
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described in next section, predictions of the ultimate strength using BS8110 and CSA 

were more conservative (Figure 8.15). This is particularly interesting since both of these 

codes apply both material factors of safety, one for concrete and one for steel, unlike EC2 

where only 1.15 for steel is applied. The question may arise of whether is sensible to have 

such a low material factor using EC2 for such cases, considering that the predictions are 

close to experimental values. 

 

 

 

 

 

 

 

 

 

 
Note: Continuous beams (data from Tables 8.3 and 8.4 for SI<0.138) 
          Simply supported beams: Hamadi & Regan [19], Walraven & Stroband [10], Vecchio & Shim [98] 

Figure 8.15: Influence of concrete strength in shear strength predictions using EC2, BS8110 and 

CSA methods for beams with cotθ=2.5 

Comparison with standard truss (BS8110) and MCFT predictions 

The ultimate strength of beams tested in this work was also estimated using standard truss 

method (BS8110) and MCFT (Response 2000 and CSA design equations), see results in 

Table 8.5. Average values of the Vcalc/Vtest ratio obtained for the 10 beams tested showed 

that the accuracy was highest using Response 2000, while the most conservative 

predictions were obtained using the BS8110 approach.  

The design equations proposed in CSA code provided a similar performance to more 

elaborate analysis using Response 2000. Hence, the CSA approach was adopted for 

estimating the shear strength of the remaining 69 beams shown in Tables 8.3 and 8.4. The 

performance of the different design methods varied for different ranges of ρfy/νfc
’. In 

order to compare the results with EC2 predictions three cases were investigated. Firstly, 
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Ptest/Pcalc ρfy/νfc'<0.11 DP
VSI- 
EC2 BS8110 CSA VSI- 

z=0.8d
<0.5 Extremely dangerous 10 0 0 0 0

0.5-0.65 Dangerous 5 0 0 0 0
0.65-0.85 Low safety 2 10 0 0 7
0.85-1.30 Appropiate safety 0 69 38 86 62
1.30-2.00 Conservative 1 21 62 14 31

>2.00 Extremely conservative 2 0 0 0 0
TOTAL DP 41 62 14 45

Ptest/Pcalc ρfy/νfc'>0.11 DP
VSI- 
EC2 BS8110 CSA VSI- 

z=0.8d
<0.5 Extremely dangerous 10 0 0 0 0

0.5-0.65 Dangerous 5 0 0 0 0
0.65-0.85 Low safety 2 35 2 9 4
0.85-1.30 Appropiate safety 0 65 76 89 96
1.30-2.00 Conservative 1 0 22 2 0

>2.00 Extremely conservative 2 0 0 0 0
TOTAL DP 70 26 20 9

Ptest/Pcalc ALL DP
VSI- 
EC2 BS8110 CSA VSI- 

z=0.8d
<0.5 Extremely dangerous 10 0 0 0 0

0.5-0.65 Dangerous 5 0 0 0 0
0.65-0.85 Low safety 2 25 1 5 5
0.85-1.30 Appropiate safety 0 67 61 88 83
1.30-2.00 Conservative 1 8 37 7 12

>2.00 Extremely conservative 2 0 0 0 0
TOTAL DP 59 40 18 23

beams with ρfy/νfc
’<0.11, which refers to cotθ=2.5 using material factors of safety 

according to EC2 (see Figure 8.12). Secondly, beams with ρfy/νfc
’>0.11, which relates to 

cases where cotθ<2.5. Thirdly, the overall performance was studied for all 75 continuous 

beams described in Tables 8.3, 8.4 and 8.5. 

Similarly as in the study of short span beams (see section 7.2.3 and 7.3.5), a Demerit 

Point Classification (Collins [148]) was carried out, using test data from 75 continuous 

beams shown in Tables 8.3 to 8.5. This classification system assumes that an appropriate 

level of safety is found for Ptest/Pcalc values between 0.85 and 1.30. A Demerit Point mark 

is assigned, as described in section 7.2.3, according to the percentage of specimens found 

at the different ranges of Ptest/Pcalc. Lowest values of DP indicate a better performance of 

the design method. The results obtained for the three design methods examined are 

summarized in Table 8.6 and Figure 8.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Total number of beam 75: ρfy/νfc
’<0.11 (29 beams), ρfy/νfc

’>0.11 (46 beams) 

Table 8.6: Demerit point classification for continuous beams 
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Figure 8.16: Demerit point classification proposed by Collins [148]; results for continuous beams 

Table 8.6 shows that the Canadian approach provides the lowest demerit point mark, with 

a noticeable constant performance for different values of the stirrup index. It is 

noteworthy that the critical section was assumed at a distance of 0.9d from the support, in 

which most of continuous beams examined had a M/V ratio lower than d. According to 

CSA approach M/V should not be taken less than d since the strain at the top chord might 

become tensile, which in turn would lead to an unconservative estimate of the strain at the 

mid-depth taken as εx=εt/2. 

EC2 and BS8110 perform very differently depending on the stirrup index. Classical truss 

approach (Vc+Vs), which is suggested in BS8110, provides rather conservative results for 

SI<0.11 compared to EC2 and CSA methods, which results in a DP mark equal to 70. A 

similar mark is obtained for EC2 method with SI>0.11, although in this case this is due to 

the fact that 35% of the specimens lay on the “low safety range” and not due to an 

excessive level of conservatism as in BS8110. This percentage is significantly large, in 

fact it is one of the largest observed in this work, see sections 7.2.3 and 7.3.5 for short 

span beams (av/d=1-2) with and without stirrups. 

As discussed earlier, assuming a lower value of the level arm equal to 0.8d improved the 

predictions considerably. This is clearly reflected on the demerit point classification 

shown in Table 8.6 and Figure 8.16 for beams with SI>0.11, where the performance of 

EC2(z=0.8d) is remarkable. In addition, for beams with SI<0.11 using EC2(z=0.8d), the 

DP mark is similar to EC2(z=0.9d), although the predictions become slightly more 

conservative. It can be argued that this is desirable, since as discussed earlier EC2 applies 

a lower material factor of safety for such cases compared to CSA and BS8110. 
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It is of interest to compare these values of demerit marks with those obtained by other 

authors. Cladera [24] gathered an experimental database of 123 simply supported beams 

with stirrups, in which the DP mark obtained using Response 2000 was 26. This is 

consistent with the one obtained here using CSA design equations, see Figure 8.16. On 

the other hand, Cladera obtained a considerably large value of DP (136) using EC2 

method, which was due to an excessive level of conservatism in the results. The beams 

studied by Cladera [24] were high strength concrete beams. Cladera [24] also observed 

that predictions became in general less conservative as the shear stresses increased, which 

is also in agreement with results shown in Table 8.6. 

As shown in sections 7.2.3 and 7.3.5 the Demerit Point system proposed by Collins [148] 

can be misleading, since the approach neglects the differences in material and load factors 

of safety applied in design codes. Hence, overall factors of safety need to be considered in 

order to obtain a more realistic comparison between the different design methods. 

Similarly as in sections 7.2.3 and 7.3.5, the design strength (Pd) of the beams investigated 

was obtained considering material and load factors of safety, assuming DL=LL (see 

Figure 8.17). The overall FOS (Ptest/Pd) for the 75 beams studied is shown in Figure 8.17. 

A modified Demerit Point Classification system suggested by the author is shown in 

Table 8.7, which is based on the Ptest/Pd ratio, as described in sections 7.2.3 and 7.3.5. 

 

 

 

 

 

 

 

 

 
Note: Dead Load=Live Load; EC2 (1.35+1.5)/2; BS8110 (1.4+1.6)/2; CSA (1.25+1.5)/2 
          Material factors of safety (γc/γs): EC2 (1.5/1.15); BS8110 (1.25/1.15); CSA (1.54/1.18) 

Figure 8.17: Summary of factors of safety of continuous beams using EC2, BS8110 and CSA 

Although the VSI (z=0.9d) predictions of continuous beams studied were not accurate for 

values of SI larger than around 0.11, the factors of safety shown in Figure 8.17 were still 
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ρfy/νfc'<0.11 Ptest/Pd
VSI- 
EC2 BS8110 CSA Ptest/Pcalc

VSI- 
EC2 BS8110 CSA

Extremely dangerous <1.0 0 0 0 <0.5 0 0 0
Dangerous 1.0-1.15 3 0 0 0.5-0.65 0 0 0
Low safety 1.15-1.5 10 0 4 0.65-0.85 10 0 0

Appropiate safety 1.5-2.3 72 34 96 0.85-1.30 69 38 86
Conservative 2.3-3.5 14 66 0 1.30-2.00 21 62 14

Extremely conservative >3.5 0 0 0 >2.00 0 0 0
TOTAL DP 52 66 7 41 62 14

WITH FOS NO FOS

ρfy/νfc'>0.11 Ptest/Pd
VSI- 
EC2 BS8110 CSA Ptest/Pcalc

VSI- 
EC2 BS8110 CSA

Extremely dangerous <1.0 0 0 0 <0.5 0 0 0
Dangerous 1.0-1.15 0 0 0 0.5-0.65 0 0 0
Low safety 1.15-1.5 4 2 2 0.65-0.85 35 2 9

Appropiate safety 1.5-2.3 89 72 87 0.85-1.30 65 76 89
Conservative 2.3-3.5 7 26 11 1.30-2.00 0 22 2

Extremely conservative >3.5 0 0 0 >2.00 0 0 0
TOTAL DP 15 30 15 70 26 20

WITH FOS NO FOS

ALL Ptest/Pd
VSI- 
EC2 BS8110 CSA Ptest/Pcalc

VSI- 
EC2 BS8110 CSA

Extremely dangerous <1.0 0 0 0 <0.5 0 0 0
Dangerous 1.0-1.15 1 0 0 0.5-0.65 0 0 0
Low safety 1.15-1.5 7 1 3 0.65-0.85 25 1 5

Appropiate safety 1.5-2.3 83 57 91 0.85-1.30 67 61 88
Conservative 2.3-3.5 9 41 7 1.30-2.00 8 37 7

Extremely conservative >3.5 0 0 0 >2.00 0 0 0
TOTAL DP 29 44 12 59 40 18

WITH FOS NO FOS

acceptable, except for some of the LWAC beams tested by Ramirez et al. [184]. This is 

highly inconsistent with the results obtained in the original Demerit Point Classification 

proposed by Collins [148] (see Table 8.6). The modified Demerit Point Classification 

approach presented here, reflects this improvement in FOS using the VSI method for 

stirrup indexes higher than 0.11; see reduction in DP mark in Table 8.7. On the other 

hand, the marks shown for both demerit point classifications (Table 8.7) were similar for 

the remaining design methods investigated. Lastly, it is noteworthy that both demerit 

point approaches showed that the FOS obtained using the VSI method were significantly 

lower for SI<0.11. From the beams tested in this work, the lowest FOS obtained was 1.56, 

which corresponded to beam CA1 using the VSI method. The average FOS obtained for 

the 8 continuous beams tested were 1.65/2.31/1.88 using EC2/BS8110/CSA design codes 

respectively; the COV were 4.4/13.6/8.3% using EC2/BS8110/CSA respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Dead Load=Live Load; EC2 (1.35+1.5)/2; BS8110 (1.4+1.6)/2; CSA (1.25+1.5)/2 
          Material factors of safety (γc/γs): EC2 (1.5/1.15); BS8110 (1.25/1.15); CSA (1.54/1.18) 

Table 8.7: Modified Demerit Point Classification proposed by the author 
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Parametric analysis of aggregate size using MCFT (Response 2000) 

In the shear strength predictions shown in previous section using CSA formulas, the 

effective crack spacing (sze) was assumed to be 300mm, which is the value recommended 

for members with shear reinforcement. On the other hand, members without shear 

reinforcement, allowance is made for estimating sze as a function of the crack spacing 

parameter and aggregate size (a). As discussed in section 8.2.1, this allows to take into 

account for aggregate fracture at cracks by reducing a. 

In order to investigate the effect of reducing the aggregate size in members with shear 

reinforcement, a parametric analysis was carried out for beams BL, using Response 2000. 

The aim was to assess the stirrup index at which aggregate fracture would be more critical 

according to MCFT. According to shear panels investigated in section 5.3.3, the influence 

of reducing the aggregate size using MCFT in members with shear reinforcement was 

insignificant. The results obtained from the parametric analysis for beams BL showed a 

similar conclusion as for shear panels (see Figure 8.18). The largest differences in shear 

strength between predictions using a=10mm and a=0 were 2.75% for beams without 

stirrups and 2.17% for SI about 0.16. 

 

 

 

 

 

 

 

 

 

Figure 8.18: Influence of aggregate size in MCFT predictions of continuous beams 

In the parametric analysis carried for beams BL, flexural failure was obtained at SI=0.26. 

However, the differences between a=10mm and a=0 curves were similar to that shown in 

Figure 8.18, if a higher yield strength of the longitudinal reinforcement was adopted in 

order to increase the load at which flexural failure occur. 
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8.3.3 Estimation of shear stresses at cracks 
In this section, the shear stresses carried along critical cracks in beams B were estimated 

initially from interpolating crack displacement and stress data from push-off tests. These 

experimental results are compared with predictions from different analytical models, 

which are further discussed in the following sections. These are: 

1. Equilibrium at the crack assuming angle of the strut from VSI and MCFT 

2. Variable strut inclination method with “shear friction” constraint 

3. Discrete crack-slip model 

4. NLFEA with smeared and discrete cracking elements 

The methods mentioned above, which are used to assess the shear at the crack (τcr) were 

based on analytical models, in which several parameters needed to be estimated and 

therefore variations in the solutions were expected. 

Experimental values of shear stresses according to push-off test data 

In order to estimate the shear stresses at the critical cracks in the beams from push-off test 

data, interpolated curves were obtained in section 4.3, which provided values of τcr for 

different crack opening (w) and slip (s) displacements. These curves were generated for 

the same concretes used for beams BL and BG, as well as for different shear 

reinforcement ratios. Interpolating the shear stresses at crack in beams from push-off test 

data can offer several advantages, although it can also bring several uncertainties, as 

described in section 4.3. Monitoring crack displacements was possible in beams with 

stirrups due to their more ductile behaviour compared to beams without stirrups, for 

which measuring w and s is complicated as pointed by Taylor [2]. 

One of the main differences between cracks measured in push-off tests and those obtained 

in beam tests is that the crack dilatancy (δw/δs) is considerably lower for the first type of 

tests (Figure 8.19). In addition, as shown in chapter 6 (sections 6.3.4 and 6.5.4), the crack 

widths were generally greater in short span beams, which resulted in δw/δs ratios of 

around 3. These values were considerably larger than slender beams with stirrups 

(δw/δs~1.5), which could result in a lower contribution of aggregate interlock action. 

These variations in the crack dilatancy are shown in Figure 8.19. In addition, the crack 

opening-slip relationships obtained experimentally were satisfactory reproduced by either 

non-linear finite element models and discrete crack slip model described in the next 

sections. The interpolated curve, which was obtained to fit the crack dilatancy observed in 
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short span beams tested in this work (section 7.5), is also shown in Figure 8.19 in order to 

illustrate the difference between cracks in slender beams, short span beams and push-off 

tests.  

 

 

 

 

 

 

 

 

 
Note:  relative crack displacements are shown up to peak load 
          Refer to section 7.5 for crack dilatancy relationship obtained for short span beams A 

Figure 8.19: Comparison between crack dilatancy of slender beams with stirrups (beams B, C and 

D), short span beams and push-off tests 

As shown in Figure 8.19, beam BL1 had a slightly different crack dilatancy compared to 

the remaining slender beams tested. Initially this was believed to be due to wider cracks 

related to the lower reinforcement ratio of BL1. However later experimental evidence 

from beams with similar stirrup indexes (beams CB1 and DB1) did not support this idea, 

as shown in Figure 8.19. The crack widths at failure observed in both beams C and D 

were of similar magnitude as those measured in beam BL1 (Figure 8.19), which might 

indicate that the problem is related perhaps to the crack slip measurements in BL1. 

The crack shear stresses obtained at failure load in beams B are summarised in Table 8.8. 

These figures were obtained from curves given in section 4.3 (see Figure 4.12), using 

crack displacements at failure shown in Table 8.8. The shear stresses at the crack shown 

in Table 8.8 were higher in beams BL than in beams BG, which was probably due to the 

significant difference in the concrete strength. It is interesting to note that the ratio 

between the shear estimated at the crack and the total shear (τcr/v), assuming a constant 

distribution along the section, was larger than the one obtained for short span beams (see 

Table 7.12). This further supports the idea that aggregate interlock had a lower 

contribution in short span beams tested compared to beams B. 
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 Test Interp.  

Beam v=V/bwd
[MPa] 

w 
[mm] 

s 
[mm] 

τcr 
[MPa] τcr/v 

BG1 4.83 0.55 0.35 3.15 0.65 
BG2 5.46 0.33 0.09 4.10 0.71 
BL1 5.94 1.02 0.31 3.75 0.63 
BL2 8.10 0.39 0.23 5.10* 0.63 

 
Note: *This value corresponds to push-off tests PL3, which provides a higher bound since had a slightly 
          larger reinforcement ratio; the actual crack had a reinforcement ratio between that provided to PL2 
          and PL3. A lower bound would correspond to PL2 (τcr=4.6MPa) 

Table 8.8: Interpolated shear at the crack (τcr) at failure in beams B from push-off test data 

In the following sections τcr is estimated using different analytical approaches. Firstly, 

results from smeared crack approaches are presented using the variable inclination strut 

truss and MCFT. Secondly, discrete approaches are adopted (Discrete crack-slip model 

and NLFEA). 

1- Equilibrium at the crack assuming angle of the strut from VSI and MCFT 

The shear and normal stresses at the crack can be estimated once the inclination of the 

crack (α) and the strut are known, as shown in Figure 8.20. The shear stresses at the crack 

can be estimated from the equilibrium conditions of a differential element at the crack, 

which leads to equation (8.3), see Hamadi & Regan [19]. The results for τcr are highly 

dependent on the difference in angle β assumed between the crack and the stress field. 

The inclination of the crack (α) was taken from the observed shear crack at mid-height of 

the beam, as shown in Figures 8.20 and 8.21. 

β
βστ 2cot1

cot.
+

=cr        … (8.3) 

where β=(α –θ). 

The angle of the strut (θ) was estimated with both the variable inclination strut method 

and the MCFT, see Table 8.5. In the VSI the inclination of the strut was given by the 

plastic solution in beams BG and BL2, while for the remaining beams cotθ was limited to 

2.5. An alternative approach for assessing θ is to assume that failure was governed by 

yielding of the stirrups without crushing of the struts. In this latter method, the 

experimental ultimate load was used to determine the inclination of the strut required to 

mobilize the sufficient stirrups to resist the entire shear force. The stirrups were assumed 

to be smeared out uniformly along the beam. 
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Figure 8.20: Crack pattern in relation with the inclination of the strut (θ) obtained from Vtest 

(Limestone beams) 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.21: Crack pattern in relation with the inclination of the strut (θ) obtained from Vtest 

(Gravel beams) 
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According to this analysis, the struts would only reached around 80% of their plastic 

capacity (νfc’) in beams B, see Figures 8.19 and 8.20. Both this approach and the VSI 

gave similar predictions of θ since shear strength predicted by the VSI method was close 

to the actual failure load. The largest difference in strut inclination was (5º) in BG2, with 

the lowest Vtest/Vcalc ratio. The inclination of the strut (θ) and crack (α) are summarized in 

Figures 8.20 and 8.21, which also show the crack pattern in relation with the orientation 

of the struts. As expected, the angle between the crack plane and strut direction decreased 

as the stirrup index increased, resulting in lower shear stresses at the crack. 

The MCFT was also used to estimate θ. The inclination of the struts predicted using CSA 

approach is considerably steeper than those obtained with EC2, as shown in Table 8.5. 

This is due to the fact that a concrete contribution is taken into account. As described by 

Bentz & Collins [177], CSA design equations provide similar predictions to MCFT, 

although a larger value of Vc is needed in the CSA approach to compensate for neglecting 

the limit of shear transfer capacity of the crack. Hence, it seems more sensible to estimate 

θ by solving the full set of equations in the MCFT (Response 2000) rather than using 

CSA design equations. The results obtained for θ and τcr at failure are summarized in 

Table 8.9 for both EC2 and MCFT approaches. 

 

 VSI 
 (at Vtest) 

MCFT (Response 2000) 
(at Vcalc except #, see Table 8.5) 

Tests 
(section 4.3) 

Eqn. 
(2.14) 

Beam θ 
[º] 

τcr
+ 

[MPa] 
θ 
[º] 

σ 
[MPa]

τcr
+ 

[MPa]
wMCFT 
[mm] 

w 
[mm] 

τcr
* 

[MPa] 
vci

** 

[MPa] 
BG1 26.97 2.28 27.34 13.70 2.27 0.82 0.55 3.15 4.56 
BG2 36.90 0.24 33.31# 12.62# 1.02# 0.36 0.33 4.10 6.14 
BL1 22.40 3.65 23.62 17.94 3.18 1.45 1.02 3.75 4.09 
BL2 26.83 3.14 29.22 20.60 2.06 0.72 0.39 5.10 6.49 

 
Note: +Shear stress obtained according to equation (8.3) 
          *Test values correspond to Table 8.8 which are estimated from push-off test data           
          MCFT (Response 2000): results shown for a section at a distance 0.9d from load point; w (average 

values); σ, θ obtained at mid-depth of section 
          #Values are given at load similar to experimental failure load, since Vcalc/Vtest=1.23 (Table 8.5) 
          **Equation (2.15) used in MCFT, taking experimental values of w. Normal crack stresses have been 

estimated assuming yielding of stirrups crossed by the crack (fci=2.47/3.36/2.31/3.25MPa for beams 
BG1/BG2/BL1/BL2 respectively) 

Table 8.9: Summary of predictions of using approaches based on inclination of strut  
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Table 8.9 shows that the inclinations of the strut were similar using VSI and MCFT. 

Hence, the shear stresses obtained along the crack were comparable using either 

approach. However, both predictions were lower than those obtained experimentally, 

especially for beams with larger number of stirrups (see Table 8.9). In particular, the 

inclination of the strut predicted for BG2 was almost parallel to the crack plane, which 

resulted in very low values of the shear stresses at the crack. 

Crack widths predicted by MCFT were around 50% greater than those obtained 

experimentally. As a result, the maximum shear stress capacity that can be transmitted 

along the crack according to MCFT equation (2.14) is underestimated. The last column in 

Table 8.9 shows the shear stresses estimated at the crack using MCFT equation (2.14) and 

(2.15). In order to get a more realistic estimate, the crack openings adopted in these 

equations were taken from the experimental values. In addition, the normal stresses at the 

crack were estimated assuming yielding of the stirrups, which were crossed by the crack; 

refer to Table 8.9. The shear stresses at the crack assessed in this manner, which are 

shown in Table 8.9, were closer to the values derived from the curves in section 4.3. 

It can be concluded that the approaches followed here to estimate the shear stresses at the 

crack must be considered as rought approximations primarily because the inclination of 

the strut had to be estimated analytically. In this work, the value of θ has not been 

measured experimentally, although several techniques are available. Firstly, principal 

strains could be measured experimentally by means of a rosette of transducers, which 

provide strains readings in three directions. The inclination of the principal stresses could 

be assumed to be equal to strains, which seems to be the basis of Walraven & Stroband 

[10] results for θ. Another approach was used by Hamadi & Regan [19], who calculated θ 

from equilibrium at the bottom chord of the truss using strains measured in longitudinal 

and shear reinforcement respectively. These approaches can provide reasonable values of 

the inclination of the strut, although they are approximate solutions. 

The second uncertainty in the values of τcr presented in Table 8.9 is that the inclination of 

the crack is not constant as assumed, which can produce high variations in the 

predictions. Even so, the crack patterns were in good agreement with the predictions from 

the variable strut inclination truss model, as shown in Figures 8.20 and 8.21. 
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σ≤νfc
’ 

Crack 

α 

(τ=C+µσn)

2- Variable strut inclination angle truss with “shear friction” constraint 

In many design codes such as EC2 or ACI-318 a “shear friction” relationship in the form 

of τ = C+µσ (Coulomb failure criteria) is suggested to design contact interfaces between 

two concrete surfaces. As discussed in section 4.4, the cohesion factor (C) is generally 

given as a function of the tensile strength of the concrete and the friction µ depends 

exclusively on the roughness of the interface. However, design codes can be inconsistent 

regarding recommended values for C and µ, which can complicate the use of this formula 

in more general shear design method since results are highly dependent on these 

parameters. For the particular case of beams B, the cohesion and friction were calibrated 

using push-off test data available (see Table 4.3); C(BG/BL1)=1.20/2.50MPa and 

µ(BG/BL)=1.06/0.95, these values are discussed in further detailed in section 4.4. 

As reported by Regan [3], recent German revisions to EC2 implemented in 

DIN1045:2000, seem to introduce this shear friction equation into the variable inclination 

strut model, being the limiting factor for intermediate shear reinforcement ratios. In this 

manner web failures due to crushing and sliding at the cracks are treated separately, as 

shown in Figure 8.22. A similar approach can be adopted in a strut-and-tie model, as 

shown in section 7.5.2, for short span beams. These types of approaches seem transparent 

and consistent with code guidelines, although as mentioned earlier the results are highly 

dependent on parameters C and µ assumed. 

The formulas derived by Regan [3] in which a shear friction equation was implemented 

into the VSI truss, could not be applied directly to beams B since they assumed a crack 

inclination of α = 45º and a friction µ equal to 1. The previous assumptions led to the 

exact linear solution v=V/bz=C+ρvfy. In a more general case shown in Figure 8.22, the 

system of equations (8.4 to 8.6) must be solved iteratively. Equations (8.4) and (8.5) 

relate to the variable strut inclination truss, with the stress in the strut (σ) limited to νfc
’. 

 

 

 

 
Note: σn (normal stresses at the crack) =σ /(1+cot2β), where β=α-θ 

Figure 8.22: Variable inclination strut method with shear friction condition at cracks 
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θ
θσ 2cot1

cot.
+

==
bz
Vv        … (8.4) 

θρ cot.. yv fv =        … (8.5) 

'
2

)(
cot

cot1. cffrictionshearc ν
µβ
βσ ≤−

−
+

=     … (8.6) 

where β = α−θ 

The shear friction condition, given by equation (8.6), is considerably less restrictive for 

35º inclined cracks such as those in beams B than for the 45º cracks studied by Regan or 

short span beams investigated in chapter 7. Figure 8.23 shows the results obtained for 

beams BG and BL with average crack inclinations of 37.5º and 34.5º respectively. The 

numerical results shown in Figure 8.23 seemed consistent with the experimental data 

except for beam BG2, which had the largest ρvfy/νfc’. The shear estimated at the crack 

(τcr) and the strut inclination (θ) are also shown in Figure 8.23.  

The predictions of the ultimate strength were reasonable for most of beams B, although 

they did not differ much from the standard VSI predictions. Therefore, the benefit of 

imposing a simplistic shear friction restriction into the VSI in this case was not 

significant. It is also noteworthy that simplified estimate of τcr provided by FIP [21], 

which is adopted in the truss with crack friction model (see section 2.4), were in good 

agreement with predictions from the VSI with shear friction approach (see Figure 8.23). 

 

 

 

 

 

 

 

 

 

Figure 8.23: VSI with shear friction constraint at the cracks in beams B 
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3- Discrete crack-slip model 

An alternative method to a shear friction formulation for limiting the shear strength in the 

beam by means of shear transfer across shear cracks is to apply a discrete approach using 

a crack slip model. The previous technique was developed by the author for shear panels 

with 45º inclined cracks and a pure shear stress state, see section 5.5. Strain compatibility 

and equilibrium of an element at the discrete crack is formulated in terms of the crack slip 

and opening. The main advantage of the crack-slip approach is that the shear stresses at 

the crack can be estimated in combination with the crack opening and sliding, which were 

obtained empirically. This seemed to be a more realistic approach than the shear friction 

model since relative crack displacements are taken into account. However, several 

difficulties arose from including realistically complex aspects such as aggregate interlock 

behaviour or tension stiffening into the model. Hence, several simplifications were 

necessary in the crack-slip model, which are discussed here and section 5.5. 

The crack-slip model was initially conceived for pure shear panels, although the crack 

pattern and stress fields at the centre of the critical span of beams B are in some extent 

similar to the panels, see Figure 8.24. This assumption does not apply for neither simply 

supported beams nor for regions closer to the loading points, where the compression 

stress fields are fanned shaped. The main difference between panels and beam tests is that 

panels are usually reinforced in two orthogonal directions whilst the webs of the beams 

have vertical reinforcement only. In addition, the cracks at the beams were flatter than the 

typical 45º cracks observed in a pure shear panel.  

 

 

  

 

 

 

 

 

Figure 8.24: Differential element used in the crack-slip model for continuous beams 
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The values for crack inclination (α) and diagonal spacing (Sθ) used in the crack-slip 

model were taken directly from the experiments of beams B. In a general case, these 

parameters can be estimated using approximate formulas available, which are function of 

the stirrup spacing, refer to CEB-FIB[6] formulas. In addition, the linear aggregate 

interlock model proposed by Walraven & Reinhardt [46] was adopted to relate 

normal/shear displacements and stresses at the crack. This aggregate interlock model, 

which had been validated in this work against push-off experimental data, provided 

sensible predictions of shear panel tests, as shown in section 5.5.3. 

The equilibrium and compatibility conditions shown in section 5.5.2 for the particular 

case of shear panels with 45º cracks can be generalized as shown by equations (8.7) to 

(8.13). The horizontal and vertical faces of the differential element shown in Figure 8.24 

have lengths equal to Lx=Sθ/(2sinα) and Ly=Sθ/(2cosα) respectively. The strains generated 

in both global x-y directions and local r-d axis, due to crack opening in the r direction are 

given by equations (8.7), (8.8) and (8.9). 

θ

ε
S
w

rcr =   and  0=dcrε       … (8.7) 

rcrdcrrcrcr εεεγ =−=        … (8.8) 

αε
θ

2sin.2
S
w

xcr =   and  αε
θ

2cos.2
S
w

ycr =     … (8.9) 

Similarly, the strains generated due to crack sliding s are given by equations (8.10) and 

(8.11). 

0=== crdcrrcr γεε        … (8.10) 

ααε
θ

cossin.2
S

s
xcr =   and  ααε

θ

cossin.2
S

s
ycr

−
=    … (8.11) 

Equilibrium conditions at the differential element shown in Figure 8.24 yield to the 

following expressions: 

 crncrxy ταστ =+ tan.        … (8.12) 

crsysyncrxy ταρσαστ −=+ cotcot.      … (8.13) 

where σsy=min[fy, Esm.εxcr] and Esm =enhanced value of the Young’s modulus 
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As discussed in section 5.5.3, the enhanced value of the Young’s modulus Esm due to 

tension stiffening can be estimated using approximate formulae such as proposed by Hsu 

[114]. For simplicity, Esm was taken as 1.5 times Es (200000MPa). In addition elastic 

strains in the concrete and bond-slip between the concrete and reinforcement were 

neglected. It is also important to note that the pre-cracked state is not taken into account. 

As already mentioned, the Walraven & Reinhardt [46] linear aggregate interlock 

relationship, see equations (2.28) and (2.29), were adopted to relate τcr and σncr in 

equations (8.12) and (8.13) to relative crack displacements w and s. 

The crack opening and slip can be solved numerically implementing equations (8.7) to 

(8.13) into a spreadsheet. The results obtained using the crack-slip model are summarised 

in Table 8.10. Surprisingly, the maximum shear stresses at the crack were similar to the 

ones obtained from the shear friction approach shown in Figure 8.23. These values are 

lower than those interpolated experimentally (Table 8.9). 

 

  Crack-slip model VSI Test 

 SI 
ρvfy/νfc 

τcr 
[MPa] 

w 
[mm] 

s 
[mm] 

θ 
[º] 

θ 
[º] 

w 
[mm] 

s 
[mm] 

τcr 
[MPa]

BG1 0.16 1.77 0.55 0.34 23.98 26.97 0.55 0.35 3.15 
BG2 0.27 2.39 0.55 0.43 21.32 36.90 0.29 0.15 4.10 
BL1 0.11 2.36 0.45 0.27 28.00 22.44 1.02 0.31 3.75 
BL2 0.18 3.57 0.25 0.18 26.19 26.83 0.39 0.23 5.10 

 
Note: Diagonal spacing Sθ adopted from tests observation (230/177/206/65mm) for beams  
          BG1/BG2/BL1/BL2 respectively 

Table 8.10: Crack-slip model predictions  

Similarly as in shear panels, the inclination of the strut θ was calculated from Mohr’s 

circle knowing points A(σsxρx, τxy) and B(σsyρy, -τxy), as shown in equation (5.22). In 

Beams B, σsx was zero since only vertical reinforcement was provided at the web. It is 

interesting to note that the inclination of the principle compression stresses predicted by 

the crack-slip model was consistent with the plasticity estimations for all beams B, except 

for BG2, which was considerably flatter (see Table 8.10). Figure 8.25 shows the predicted 

and experimental development of the crack opening and sliding through the loading 

(V/Vmax). 
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Note:  V/Vmax for “test” refers to the shear ratio applied in the span 
 V/Vmax for the “Crack slip” refers to the shear ratio at the crack 

Figure 8.25: Comparison between experimental and predicted crack opening and sliding 
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The crack opening and sliding predicted by the crack-slip method were reasonable in 

general as shown in Figure 8.25 and Table 8.10. The δw/δs ratio predicted was around 

1.5, as discussed at the beginning of this section (refer to Figure 8.19). The worse 

predictions were obtained for BG2 where w and s were overestimated. In addition, the 

relatively large crack opening in beam BL1 was not well captured by the crack-slip 

model. It must be highlighted that curves shown in Figure 8.25 refer to the tests of the 

pre-cracked beams and so the change in stiffness at early load stages is not reflected. This 

is consistent with the crack-slip model assumption, which does not take into account the 

pre-crack state, and so results were similar for early load stages. Yielding of the shear 

reinforcement was predicted in all the beams by the crack slip model, except for beam 

BG2. This did not agree with experimental evidence since according to Demec gauge 

readings stirrups yielded at failure in all beams B 

In view of these results it can be concluded that the crack-slip model provided better 

predictions for beams B with intermediate SI=ρvfy/νfc
’ (BG1, BL2). In extreme cases with 

high SI (BG2), where the w and s were small, the crack-slip model did not provide 

accurate results. This performance was expected since the crack-slip model suggested 

assumed that the shear strength is only limited by the shear transfer across the cracks. 

However, experimental evidence shows that the aggregate interlock action is mobilized 

only for intermediate ranges of SI. 
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4- NLFEA with smeared and discrete cracking elements 

The crack opening and sliding at the main shear crack were assessed using a non-linear 

finite element model, which combined discrete and smeared cracking elements, in a 

similar fashion as for short span beams A. The mesh applied for beams B, shown in 

Figure 8.26, was assembled after the position of the main shear cracks was obtained 

experimentally. As in the NLFEA of short span beams described in section 7.5.3, a 

preliminary analysis using smeared cracking elements only was performed. This analysis 

was required firstly to validate the smeared crack models and secondly to verify that the 

main shear cracks formed at a similar position as the discrete interface plane assumed. 

 

 

 

 

 

Figure 8.26: Finite element mesh of beams B, using discrete and smeared cracking elements 

Same types of elements were applied for beams B as in the short span beams models 

(refer to section 7.5.3). Analogously, the multi-fixed smeared crack model was chosen for 

the concrete and a perfect Von Misses plastic material was assumed for the embedded 

reinforcement elements. In addition, no bond-slip considerations were made and identical 

free-length values (lfr) were assigned to the reinforcement crossing the interface elements 

(refer to section 7.5.3).  

The splitting tensile strength was adopted for the smeared cracking elements. On the other 

hand, the interface elements were assumed to be pre-cracked (fct =0.1MPa), to be 

consistent with experimental data, which corresponded to a pre-cracked specimen. The 

interface elements crossed by longitudinal reinforcement remained inactive due to the low 

lfr assigned to the reinforcement. The material properties applied to steel and concrete are 

summarized in Table 8.11. Similarly as in the NLFEA of short span beams, the concrete 

strength of the elements near the bearing plates was enhanced in order to avoid local 

failure of these elements and allowing to obtain crack displacements at loads near failure 

load. 
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Concrete BG BL Steel Plates Long 
Reinf. 

Shear 
Reinf. 

Ec [MPa] 27215 36306 Es [GPa] 200 200 200 
ν 0.2 0.2 ν 0.3 0.3 0.3 

fct [MPa] 2.8 3.8 fy [MPa] 500 580 550 
Gf [N/mm]* 0.15 0.15 lfr [mm] - 0.2 150 

fc [MPa] 31.7 53.1     
 
Notes:  + An estimated value of Gc = 100Gf was assumed, where Gf (MC90)=Gfo.(fcm/fcmo)0.7 
 * A Hordijk tension softening was applied 

Table 8.11: Material properties in NLFEA of beams BG and BL 

Considerations of constitutive model for interface elements 

As discussed in section 7.5.3, the use of a simple discrete crack model where the shear 

and normal stresses were uncoupled, was justified for short span beams due to the 

relatively large crack opening compared with slip obtained. This assumption seemed 

more dubious for most of beams B, where the crack opening/slip relationship was lower. 

However, the performance obtained using the simpler discrete crack model was 

acceptable even for beams B, as it is shown in this section. Severe numerical difficulties 

were faced if a more complex crack dilatancy model was implemented in the NLFEA. For 

simplicity the discrete crack model was finally adopted, hence the shear stresses predicted 

in the NLFEA were only considered as a guidance value.  

The overall shear stiffness of the interface elements after cracking (DT) was initially 

estimated using Hamadi & Regan’s [19] expression for aggregate interlock stiffness 

DT =k/w. For simplicity a constant value of DT (Table 8.12) was adopted assuming an 

average crack width near failure of around 0.5mm. Unlike short span beams, experimental 

data regarding the shear stiffness at the crack was available from push-off tests given in 

chapter 4. As described in section 4.5, Hamadi & Regan’s [19] formula provided sensible 

predictions using a value of k equal to 5.4MPa for all specimens except for specimen 

PG2. Although the shear stiffness is generally assumed to be independent of the normal 

stresses at the crack, the value in this case seemed to be lower, as shown in Figure 8.27. 

Subsequently, k was assumed as 2.7MPa for BG2 and 5.4MPa for the remaining beams as 

shown in Table 8.12. The influence of changing DT in the predictions was examined in 

the NLFEA. 

As explained in section 3.4.2, modelling of reinforcement crossing discrete cracks is 

complicated. Simple approach adopted in DIANA, which is described in section 3.4.2, 

seems to overestimate the contribution of dowel action to the overall shear stiffness at the 
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interface. This can be compensated by reducing the shear stiffness assigned to interface 

elements (Dai) in order to have an equivalent overall stiffness (DT), which is measured in 

push-off tests. The dowel action stiffness (Ddw) assumed in the model can be calculated in 

terms of the free length parameter and shear reinforcement ratio defined along the crack 

surface Ddw=Es/(2lfr)ρck. The decomposition of DT into Ddw and Dai components finally 

adopted in the models is shown in Table 8.12.  

Parameters BG1 BG2 BL1 BL2 

DI [N/mm3] 136070 136070 181530 181530 
DII [N/mm3] 56698 56698 75637 75637 

fct [MPa] 0.1 0.1 0.1 0.1 
Gf [N/mm] 0.054 0.054 0.084 0.084 

DT *[N/mm3] 5.4 10.8 10.8 10.8 
Ddw [N/mm3] 2.78 4.64 2.78 4.64 
Dai [N/mm3] 2.6 6.2 8.0 6.2 

 
Note:  D = elastic stiffness (I- normal; II- shear); estimated as DI = Ec/h and DII = G/h where h = 0.2mm. 
 DT

* = overall shear stiffness at the discrete crack assuming DT=k/w where w=0.5mm and 
k=2.7(BG1)/5.4MPa for remaining beams 

 Ddw = dowel action contribution estimated by DIANA for given lfr=150mm, crack angle (33º) and 
stirrup spacing (Es=200000MPa) 

 Dai = shear stiffness assigned to interface elements (Dai = DT -Ddw) 
 

Table 8.12: Material properties in the NLFEA of beams BG and BL 

 

 

 

 

 

 

 

 

 
 
Note:  Specimens P2-P3 had similar reinforcement ratio crossing the crack to beams B1-B2 respectively 
           Test data corresponds to first load cycle (see section 4.2.4) 

Figure 8.27: Estimation of overall shear stiffness of cracks from push-off test data 
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NLFEA predictions for beams B 
The numerical predictions of the crack opening and sliding at the central shear cracks 

(Cracks II in Figure 8.26) had a good correlation with experimental data, as shown in 

Figures 8.28, 8.29 and 8.30. The estimated crack slip was constant through the discrete 

plane in all beams as shown in Figure 8.28 for beam BL1, which is consistent with 

experimental data from either cross LVTDs, photogrammetric targets and Demec crosses 

placed at the crack. Similarly as in beams A, the crack opening predicted in the NLFEA 

was uniform along the interface plane for early load stages while for loads near failure w 

was considerably lower at interface elements crossed by shear links. As shown in Figure 

8.28, interface elements crossed by longitudinal reinforcement were not active. This was 

intentional (refer to value of lfr in Table 8.11) and the crack propagation in this region was 

relied upon the smeared cracking elements. As discussed in section 7.5.3, this approach 

was required in order to keep the model numerically stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: Plane A-B is defined in Figure 8.26 

Figure 8.28: Numerical and experimental crack displacements along discrete crack plane A-B of 

beam BL1 (results shown for DT =10.8N/mm3) 



  Chapter 8 – Analysis of Slender Beams 

375 

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7

VERT.DISPL. [mm]

L
O

A
D

 [k
N

]

BG1 Test
NLFEA
NLFEA (Smeared)

BG1

0

200

400

600

800

1000

1200

0.00 0.25 0.50 0.75 1.00

CRACK OPENING [mm]

BG1 Test
NLFEA

BG1

0

200

400

600

800

1000

1200

0.00 0.13 0.25 0.38 0.50

CRACK SLIDING [mm]

BG1 Test
NLFEA
MIN SLIP (So)

BG1

Ddw = 2.78N/mm3

DT = 2.78

DT = 13.6 DT = 5.4

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7

VERT.DISPL. [mm]

L
O

A
D

 [k
N

]

BG2 Test
NLFEA
NLFEA (Smeared)

BG2

0

200

400

600

800

1000

1200

1400

0.00 0.25 0.50 0.75 1.00

CRACK OPENING [mm]

BG2 Test
NLFEA

BG2

0

200

400

600

800

1000

1200

1400

0.00 0.13 0.25 0.38 0.50

CRACK SLIDING [mm]

BG2 Test
NLFEA
MIN SLIP (So)

BG2

Ddw = 4.64N/mm3

DT = 4.64

DT = 15.44 DT = 10.8

In addition, the load-deflection response was satisfactorily reproduced by the FE models, 

although the solution was very similar to the model using smeared cracking elements only 

(Figure 8.29 and 8.30). In general the crack opening w was slightly overestimated, 

especially for beams with higher stirrup indexes. The predicted crack openings were 

independent from changes in the shear stiffness at the discrete crack. However, the same 

was not true for the crack slip. 

The crack sliding was slightly under-predicted in beams BG, especially for high values of 

DT, see Figure 8.29. Better predictions of s were obtained in beams BG by reducing DT. 

On the contrary, in beams BL the opposite was true, especially for beam BL2. The good 

predictions obtained for beams BG using low values of DT suggested that the struts must 

had been almost parallel to the crack in those beams. This implied that a lower shear 

forces was transferred along the crack in beams BG compared to BL. This conclusion 

seems consistent with both interpolated shear stresses from push-off tests and analytical 

predictions given in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

Note: NLFEA results relate to values of DT shown in Table 8.12 unless stated 

Figure 8.29: Comparison of numerical and experimental load-deflection curves and crack 

opening/sliding of beams BG 
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Despite the small discrepancies in w and s shown in Figures 8.29 and 8.30, the NLFEA 

reflected two important aspects observed in the experiments regarding the δw/δs ratio. 

Firstly, the relatively large opening measured in beam BL1 (δw/δs=3), which had the 

lowest SI, was confirmed by the numerical analysis. Moreover, the predicted and 

experimental values of w and s for beam BG2, which had the highest SI, were 

considerably small (Figure 8.29). Secondly, for higher SI a change in the slope was also 

predicted (see Figure 8.19) in the w-s curve from early load stages, where the crack re-

opened (δw/δs=3), to near failure, where crack slip was mobilized (δw/δs=1). These 

results were consistent with the predictions from the crack-slip model presented in 

previous section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note: NLFEA results relate to values of DT shown in Table 8.12 unless stated 

Figure 8.30: Comparison of numerical and experimental load-deflection curves and crack 

opening/sliding of beams BL 
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NLFEA predictions of crack shear stresses 
The crack shear stresses predicted along the discrete plane (Crack II) were uniform 

throughout the loading, as shown in Figure 8.31 for the interface elements that became 

active. The values obtained for τcr were highly dependent on the shear stiffness assumed 

in the analysis (DT). The stresses shown in Figure 8.31, include the contribution of 

stirrups crossing the interface, which for the case of BL2 (DT =26.3N/mm3) was around 

20% of the total shear stress τcr. It could be debatable whether the shear stresses obtained 

from the NLFEA are realistic, since the DT was assumed constant. A consequence of this 

assumption is that increase of crack slip observed at failure due to crack widening could 

not be reproduced accurately; instead a linear response is predicted as shown in Figures 

8.29 and 8.30. Nevertheless, useful information regarding crack displacements and 

stresses was still obtained by providing different values of DT. 

As mentioned earlier, the crack slip of beams BG was predicted more accurately 

assuming relatively low values of DT, which results on minor shear stresses τcr at the 

crack. On the contrary, the prediction of the crack slip in beams BL was improved 

considerably assuming higher values of the aggregate interlock stiffness (DT~25N/mm3), 

as shown in Figure 8.31. The shear stresses predicted in the NLFEA for beam BL2 at 

loads near the experimental failure load, using optimal values of DT, were around 3.5MPa 

(see Figure 8.28), which has a good agreement with crack-slip model predictions shown 

in previous section (see Table 8.10). 

 

 

 

 

 

 

Note: Results of shear stresses at the crack shown for beam BL2 (left), using optimal values of DT 
according to Figure 8.30; Shear stresses include contribution from stirrups crossing the crack 

Figure 8.31: Shear stresses along discrete crack. Left – τcr distribution along interface elements 

that became active (BL2); Right – τcr at experimental failure load for different values of aggregate 

interlock stiffness 
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The shear stresses were estimated using a more realistic crack dilatancy model such as the 

linear aggregate interlock relationship (Walraven & Reinhardt [46]). The experimental 

values of the crack opening and sliding were assumed in order to obtain the aggregate 

interlock shear stiffness and the corresponding shear stress for each load, see Figure 8.32. 

According to the linear aggregate interlock relationship, τcr was zero for beams with large 

crack opening compared with sliding i.e. beams A and beam BL1. 

The results shown in Figure 8.32 were comparable to those obtained from the NLFEA 

assuming a constant value of DT. Furthermore, the shear stiffness near failure was similar 

to the optimal values shown in Figure 8.31. It can be concluded that the benefit of using 

crack dilatancy models instead of the simpler approach (DT constant), is dubious in this 

case, since the increase in accuracy does not seem to compensate for numerical 

difficulties faced by the crack dilatancy models. 

 

 

 

 

 

 

 

Note: DT = D22 in the crack dilatancy model 

Figure 8.32: Shear stresses and stiffness assumed by linear aggregate interlock relationship 

(Walraven & Reinhardt [46]) 

Strain predictions in the shear reinforcement 

The strain predicted by the NLFEA supported that stirrups had yielded at failure. The 

NLFEA showed lower strains in the shear links in beam BG2, which also agreed with 

experimental evidence. Figure 8.33 shows the average strain readings from the Demec 

gauge compared to numerical results at gauss points immediately next to the discrete 

cracks. In general the Demec readings were slightly larger than those predicted in the 

NLFEA as shown in Figures 8.33 and 8.34. The experimental values shown in Figure 

8.33 relate to the sector of the stirrup with highest strains, which is highlighted. 
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Figure 8.33: Experimental and numerical predictions of strains in stirrups 
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As described in section 6.5.4, the maximum strains were obtained at sectors of the stirrup 

which were crossed by the main shear crack (see Figure 8.33). The distribution of strains 

along stirrups predicted in the NLFEA was in good agreement with test data. This is 

clearly shown in Figure 8.34 for the last load step in which Demec readings were taken 

before failure; results refer to stirrups S6/S7/S8 (beams B1) and S9/S11/S13 (beams B2) 

see Figure 8.33. These stirrups were at similar distance with respect the loading point at 

the central span (around d), and were crossed by the main shear crack, as shown in Figure 

8.33. 

The strains measured using the Demec gauge were fairly similar for symmetrical stirrups, 

which was satisfactory reproduced in the NLFEA. In addition, the predicted strains of the 

first two stirrups closer to the loading points were negligible, as observed experimentally 

(see Figure 8.33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.34: Distribution of strains over height of stirrups for beams B1 and B2 
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Strain predictions in the longitudinal reinforcement 
The strains in the flexural reinforcement obtained in the NLFEA were in good agreement 

with experimental data from strain gauges located at points of maximum and minimum 

bending moments, as shown in Figure 8.35. Moreover, the strain predictions using 

bending theory for a cracked section at the location of maximum bending moments 

(loading points) were satisfactory. The longitudinal strains at the centre of the shear span 

(M=0) were around half those at Mmax, which was accurately predicted by both the 

NLFEA and the curtailment rule (T=Vcotθ/2) used in EC2. In order to estimate εs using 

the curtailment rule z was taken as 0.8d, according to section 8.3.2.  

 

 

 

 

 

 

 

 

Figure 8.35: Experimental and numerical predictions of the strains in the flexural reinforcement at 

points of maximum and minimum bending moments 

 

 

 

 



  Chapter 8 – Analysis of Slender Beams 

382 

8.4 Conclusions  
The influence of aggregate fracture on the shear strength of slender beams was found to 

be more critical in beams without stirrups (B0), where aggregate interlock action seemed 

predominant, compared to continuous beams B with stirrups. The experimental results of 

beams B0 were in good agreement with previous experimental data from Regan et al. [4] 

with similar concrete strengths and effective depths. The Vcalc/Vtest ratio was 16% higher 

in limestone beams than in gravel beams due to cracking of the coarse aggregate.  

Imposing a limit to the concrete strength of 60MPa in the shear design equations, as 

recommended in the UK National Annex, slightly improved the predicted strength for 

beams BG, which had a concrete strength of 80.2MPa. However, the same was not true 

for beams BL, which had a lower concrete strength (68.4MPa). For this case MCFT 

approach, in which the aggregate size is reduced linearly according to fc
’, was more 

effective. Although both EC2 and MCFT approaches for dealing with aggregate fracture 

provided safer design strengths, they were not necessarily consistent with experimental 

evidence such as beam BG, in which the crack went round the aggregate. 

The NLFEA of beams B0 using smeared cracking elements provided sensible estimations 

of the crack pattern, deflections and ultimate loads. However the influence of the 

aggregate fracture or the post-failure behaviour of beams B0 could not be assessed by the 

NLFEA using smeared cracking elements only. In order to model these aspects 

accurately, a discrete crack approach seems necessary. 

The main shear cracks of continuous beams tested with a point of contra-flexure were 

significantly flatter (~33º) compared with simply supported beams. The difference in the 

crack pattern could have had an influence of the contribution of the aggregate interlock 

action to the shear strength of the beam. Additional experimental evidence from other 

researchers showed that the shear strength of beams with a point of contra-flexure was 

considerably lower than traditional simply supported beams. The higher strength observed 

in simply supported beams, which usually had a flanged section, was probably due to the 

shear strength resisted at the compression head. The variable strut inclination method, 

suggested in EC2, seems to provide safe predictions for simply supported beams 

assuming values of z equal to 0.9d, as recommended in EC2. However, the shear strength 

was clearly overestimated in continuous beams and a value of z =0.8d provided a 

significant improvement in the predictions. This suggested lower estimate for the lever 
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arm of continuous beams with symmetrical reinforcement was more consistent with 

experimental evidence of the 72 beams studied, in which the average lever arm at failure 

was 0.84d. 

The comparative study between EC2, BS8110 and CSA design methods for the 

continuous beams investigated, showed that the first two approaches had a significantly 

different performance depending on the stirrup index (SI=ρfy/νfc
’). The predictions using 

CSA design formulas were accurate for all ranges of SI. On the contrary, for low values 

of the stirrup index (cotθ=2.5), EC2 provided more accurate predictions than BS8110. 

The analysis showed that EC2 provides lower factors of safety than CSA and BS8110 for 

continuous beams with stirrups indices lower than 0.11. In addition, the study of the 

performance of different design method by means of the Demerit Point Classification 

system proposed by Collins [148] showed that the results can be misleading. This is due 

to neglecting the effect of different material and load factors used in the design codes. 

According to the author, in order to compare the different design methods the influence of 

material and load factors should be taken into account. Hence, the modified Demerit Point 

Classification system proposed by the author seems a rational approach, although the 

marking scheme proposed is opened to discussion. 

The aggregate interlock shear stresses at the main shear crack in the continuous beams B 

were interpolated from crack displacements and stress data obtained from push-off test 

using identical concrete and similar reinforcement ratios. These values were compared to 

four different techniques based on smeared and discrete crack approaches; these were 

equilibrium at the crack estimating the strut inclination, VSI with shear friction, discrete 

crack-slip model and NLFEA. As expected, the estimations of τcr varied for each method, 

since different simplifications were assumed in each approach. However, the predictions 

of τcr were in a similar range of magnitude. In addition, the crack opening and sliding at 

the main shear crack could be reproduced accurately by both proposed discrete crack-slip 

method and NLFEA (discrete/smeared cracking). In general, predicted values of crack 

width, at which shear at the crack started to reduce were around 0.3-0.5mm for both 

gravel and limestone specimens. These values were in good agreement with experimental 

data. In addition, the crack opening/sliding ratio obtained was in general much lower 

(δw/δs~1.5) than the one obtained for short span beams A (δw/δs~3) due to smaller values 

of w. The relatively low values of δw/δs obtained in slender beams with stirrups, implied 

a higher contribution of aggregate interlock action compared to short span beams. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

CHAPTER 9 – Conclusions 
 

9.1 Summary 
The thesis presents the details of experimental and analytical studies into the influence of 

crack roughness and aggregate fracture on the behaviour of RC beams failing in shear. 

Various commonly used design methods for shear are reviewed and assessed against a 

large database of experimental results, including the author’s tests in which gravel and 

limestone aggregates were used. The effect of the reduction in aggregate interlock due to 

aggregate fracture has been investigated experimentally and numerically in short span and 

slender beams failing in shear.  

The study focused firstly on isolated cracks, which were analysed by means of push-off 

tests carried by the author. Subsequently, in-plane pure shear stress states were 

investigated using shear panel test data available in the literature. Analytical smeared and 

discrete crack models were validated against these simple test arrangements. However, 

information regarding the type of aggregate or whether it had fractured was not available 

to the author for these panels. Lastly, the experimental results obtained from a total of 22 

beam tests carried in this work were analysed and compared with previous experimental 

data from other researchers. The shear stresses transmitted along critical shear cracks 

were estimated from interpolating the data obtained from push-off tests. These results 

were compared with analytical predictions using several approaches that had been 

previously validated using push-off and shear panel test data. In addition, the performance 

of different design methods for shear was compared for both slender and short span 

beams. The conclusions and main contributions of this work are summarised in the 

following sections. 
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9.1.1 Transfer of stresses at cracks by means of aggregate interlock 
Aggregate type 

Tests showed that the aggregate type had a larger impact on the crack roughness than the 

concrete strength. Aggregate fractured at the crack in specimens with limestone aggregate 

for concrete strengths of around 50MPa. On the other hand, in gravel specimens, the 

crack went round the aggregate. This was true even for beams with concrete strengths up 

to 80MPa, in which only a small portion of the aggregate fractured at the crack (30%). 

This seems inconsistent with assumptions made in design codes where aggregate fracture 

is dealt only in terms of the concrete strength. 

Push-off tests 

Crack stresses and relative displacements can be studied with standard push-off tests. This 

test arrangement is practical since the entire shear force is transferred through a pre-crack 

surface of which both geometry and normal stresses are known. For normal size stirrups 

and concrete strengths used, the contribution of dowel action to the shear strength was 

negligible. 

The push-off tests carried out by the author using gravel and limestone aggregates showed 

that considerable shear stresses could be transmitted through cracks even in the limestone 

specimens in which the aggregate particles had fractured at the crack surface. 

Shear friction formulae can be used to estimate the ultimate shear strength of crack 

interfaces, although the influence of crack width is ignored. The cohesion factor obtained 

from linear regression of the test data agreed well with the EC2 recommendations. 

However, the value of the friction parameter obtained for the limestone specimens were 

surprisingly high and comparable to the gravel tests. This could be due to a certain level 

of roughness at a macro-level. 

In general, the shear stress predictions from the crack dilatancy models investigated 

tended to overestimate the shear stress for crack displacements near the peak load. On the 

other hand, for low crack slips (s<0.2mm) the stresses were underestimated. The 

predictions of normal and shear stresses were sensible up to slips of around 1mm using 

the linear aggregate interlock relationship proposed by Walraven & Reinhardt [46], 

similarly as the rough crack model (Gambarova & Karakoç [48]). For simplicity the 

former model was adopted in subsequent calculations, although other models such as the 

one suggested in MC90 also provided sensible predictions. 
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Estimation of stresses at critical shear cracks in beam tests 

Shear stresses were estimated at critical shear cracks in both short span beams with and 

without stirrups and slender beams with stirrups by interpolating stresses and relative 

crack displacement data from the push-off tests. This extrapolation was possible due to 

the similar geometry of the crack surface, shear reinforcement crossing the crack and 

concrete strength. Uncertainties arise in the interpolation of stresses due to the differences 

in the inclination of the stirrups with respect the crack plane and differences in crack 

paths between the push-off and beam tests. Nevertheless, the empirically derived crack 

stresses were similar in magnitude to those predicted analytically using different discrete 

crack approaches such as NLFEA with discrete cracking, crack slip model, variable 

inclination truss or strut-and-tie models with shear friction constraints. Moreover, the 

crack opening and slip were reasonably predicted using either crack slip model developed 

by the author for slender continuous beams or NLFE models applicable to both short span 

and slender beams. 

The relative crack displacements were in general very similar for otherwise identical 

gravel and limestone beams, which resulted in similar shear stresses being developed 

along the critical shear cracks. The crack opening and sliding measurements at different 

levels of the crack were fairly constant, which agreed with the NLFE predictions. This 

might be different for larger member depths and lower longitudinal reinforcement ratios. 

The crack paths obtained experimentally, i.e. w-s relationship, varied considerably 

depending on the type of test. Crack sliding was predominant in push-off tests 

(δw/δs~0.5), which was in agreement with the MC90 simple formula w=0.6s2/3 for normal 

values of crack slip. Crack opening was predominant along the critical shear crack in 

short span beams, where the δw/δs ratio was around 3. In general, slender beams with 

stirrups had an intermediate value of δw/δs of around 1.5 near failure. These variations in 

crack dilatancy could result in different contributions of aggregate interlock action, which 

seems to be less critical in short span beams. 
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9.1.2 Modelling of in-plane pure shear stress states by means of 
smeared and discrete crack approaches 

Shear panel tests 

Shear panel tests can be relevant to the prediction of the strength of beams since a pure 

shear stress state is attained, which can be helpful to obtain a better understanding in the 

contribution to shear behaviour of aggregate interlock and compression softening. 

Chapter 5 shows that the MCFT can predict accurately the shear strain-stress response of 

shear panel tests, although shear stresses at previous cracks are ignored since the model 

follows a rotating crack approach. Alternatively, the discrete crack slip model derived by 

the author is a simple whilst rational approach to assess the limit case where the 

behaviour is governed by shear stresses along cracks. Despite the large number of 

simplifications adopted in the model, comparable predictions of the shear stress-strain 

response and ultimate strength to MCFT were obtained. Subsequently, the crack slip 

model was applied to estimate relative displacements and stresses at the crack in 

continuous beams. 

As shown in chapter 5, simple plasticity rotating truss formulas can provide accurate 

predictions of the ultimate strength of shear panel tests. Similar predictions could be 

obtained performing a simple NLFEA using total strain and multi-directional fixed 

smeared cracking models. This analysis showed that compression softening due to 

transverse tensile strains must be taken into account in order to obtain reasonable 

predictions. However, several uncertainties are still found about parameters assumed in 

these models for the softening behaviour of concrete in compression or the yield strength 

assumed for the reinforcement depending on the governing failure mode. 

Non-Linear finite element analysis of beams 

The NLFE models developed in this work, in which only smeared cracking elements were 

applied, showed that sensible predictions of the crack pattern, deflections and ultimate 

loads could be obtained. However, these predictions were highly sensitive to parameters 

assumed in the models such as tensile strength or local values of the compression strength 

assumed for elements near the loading plates. In addition, the brittle nature of some of the 

shear failures studied resulted on several numerical instabilities that were difficult to 

overcome with simple smeared crack elements only. Aspects such as lateral confinement 

near loading plates or debonding and dowel action failure cracks cannot be modelled 

realistically using these simple smeared crack approaches. 
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The multi-directional fixed approach provided accurate predictions, although the model 

faced numerical difficulties near failure and in some instances divergence occurred in the 

last incremental step. The total strain models, which showed a good performance for 

shear panel tests, were robust numerically for beam models, although for slender beams 

without stirrups a spurious post-failure behaviour was obtained. 

In order to assess crack opening-slip and normal-shear stresses using NLFE models, it has 

been shown that combining smeared and discrete cracking elements in the same mesh 

with relatively simple discrete crack models for the interface elements can provide 

sensible predictions. However, estimating parameters used in the models is not 

straightforward. Shear retention factors applied in the interface elements can be estimated 

from push-off test data or simple analytical equations, for which the expected crack width 

at failure is needed. In addition, several assumptions had to be made regarding the normal 

and transverse stiffness transferred into the interface elements by embedded 

reinforcement crossing the discrete crack. Introducing interface elements with complex 

crack dilatancy models and bond slip considerations is not recommended since the FE 

models can become highly unstable. 

9.1.3 Additional experimental evidence provided by beam tests 
Relative crack displacements monitored in beam tests were valuable to obtain a better 

understanding of the aggregate interlock contribution as explained in section 9.1.1. The 

following conclusions can be drawn from the beam test data obtained in this work.  

Crack patterns 

The relative position of the diagonal shear crack had an important role on the shear 

strength of short span beams, especially on members without shear reinforcement. Beams 

in which the diagonal crack formed at early load stages crossing completely the direct 

strut (shear proper failure) showed a relatively low strength compared with others in 

which the diagonal crack formed slightly below and where failure seemed to be more 

related to crushing of the strut. This is relevant since this type of failure might have an 

effect on size effect considerations. 

For the remaining beams the crack patterns varied significantly depending on the load 

arrangement. The critical shear cracks remained independent of flexural cracks in the 

short span beams and continuous beams, but not in the simply supported beams. Shear 

cracks that formed near failure crossed previous 45º shear cracks in the simply supported 
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slender beams with stirrups. However, this was not observed in identical beams loaded 

with a point of contra-flexure. Critical shear cracks formed at service loads and remained 

stable until failure, except in slender beams (a/d=3.5) without shear reinforcement, where 

failure occurred immediately after the diagonal crack had formed. 

Additional conclusions from short span beam tests 

Short span beam tests presented here showed the relevance of size of bearing plates. An 

increase of the bearing length of one of the supports from 125 to 200mmm resulted in 

failure of the opposite shear span in 6 specimens out of 8 beams tested. In general failure 

was due to crushing of the concrete near the load plate, which is not consistent with STM 

assumptions in which the bottom node is assumed to be critical. 

Additional conclusions from slender beam tests 

The shear cracks that formed at early load stages in the continuous beams were 

considerably flatter than in simply supported beams. This could have resulted in a 

different contribution of aggregate interlock action between both types of loading 

arrangements. However, the ultimate shear stress for simply supported and continuous 

beams with rectangular sections and equal shear reinforcement ratios was very similar. 

General conclusions from measuring techniques in lab testing 

In general, the different types of measuring crosses used for recording opening and slip 

displacements at the crak (LVTDs and Demec discs) provided values that were in 

agreement with each other and with visual reading. The more innovative technique used 

for measuring global deflections, which was based on digital photogrammetry, provided 

accurate readings at several points. Although these readings were in good agreement with 

LVTDs measurements, they were not accurate enough to obtain strain values. 

Furthermore, only in few tests where the working distance was small, reasonable 

measurements of crack opening and sliding could be obtained. Although, digital 

photogrammetry is a fairly recent technique and current work is taking place to improve 

its performance, the results shown in this work look quite promising for future 

applications. 
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9.1.4 Shear design of short span beams 
According to the experimental database gathered in this work, which includes beams 

tested by the author, it was concluded that existing design equations for short span beams 

with and without shear reinforcement were in general over conservative. The performance 

of the predictions using the simplified approaches assumed in EC2 and BS8110 for short 

span beams were highly dependent on the stirrup index.  

A strut-and-tie model was developed by the author, which was consistent with EC2 

recommendations for STM, for both short span beams with and without stirrups. These 

models provide more accurate predictions of the ultimate strength than simplified 

formulas in EC2 and BS8110. In addition, the strut-and-tie model provided reasonable 

predictions of the shear strength of short span beams strengthened with externally-bonded 

CFRP sheets to the full depth.  

The factors of safety provided using the strut-and-tie model proposed for specimens with 

steel stirrups was appropriate for concrete strengths up to 80MPa, although a large scatter 

was found for short span beams without stirrups. This scatter was most likely due to 

influence of the position of the diagonal crack relative to the direct strut, as mentioned in 

section 9.1.3. The implementation of a shear friction constraint into the STM as presented 

in this work can be used to relate the effective strength of the direct strut to shear strength 

capacity along the critical crack. More advanced relationships for the ultimate shear 

capacity of the crack can be used in which the crack width or aggregate size are 

considered. Although this type of approach can be used to provide a formal explanation 

for the lower strength obtained for those beams failing in a shear proper type of failure, 

the method is not practical from a design perspective due to the uncertainties in the 

parameters involved. 

The performance of the predictions of the short beams tested in this work using the 

different methods studied, were identical for gravel and limestone specimens. This 

suggests that aggregate fracture was not critical for these beams, which seems to be 

supported by the large crack dilatancy δw/δs ratio obtained experimentally. As suggested 

in next section regarding future work, it would be interesting to verify this conclusion for 

members with different member depths and longitudinal reinforcement ratios. 
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9.1.5 Shear design of slender beams 
Unlike short span beams, aggregate fracture was found to be more critical for slender 

beams without shear reinforcement. The Vcalc/Vtest ratio using EC2 empirical formula for 

beams without shear reinforcement was 16% greater in the limestone beams than in the 

gravel ones due to cracking of the course aggregate at the crack. The performance of this 

equation suggested in EC2 can be questionable since the Vcalc/Vtest ratio was greater than 1 

for both beams tested; the ratio was as high as 1.5 for the limestone beams. These results 

were expected in light of Regan et al. [4] findings for similar beams in which limestone 

and gravel aggregates were used; the Vcalc/Vtest ratios obtained were in excellent 

agreement with interpolated surfaces proposed by Regan et al. [4] in which EC2 

predictions worsen with increasing d and fc
’. 

Imposing the limit of 60MPa for the concrete strength, as recommended in the UK 

National Annex to EC2 provided a slight improvement in the predictions of gravel beams, 

in which the crack went round to a large portion of the aggregate (~70%) and the concrete 

strength was around 80MPa. Interestingly, the prediction of the shear strength in the 

limestone beam, in which the aggregate fractured completely, the limit of 60MPa was 

inefficient, since the concrete strength was only 68MPa. This supports Regan’s [4] 

conclusion that this limit on the concrete strength should be considered only as a 

temporary compromise before a more rational approach is developed.  

A good attempt towards this aim can be seen in MCFT method for dealing with aggregate 

fracture, which consists in reducing the aggregate size in the calculation according to fc
’. 

Although this approach provided a better performance for beams BL0 and BG0 than EC2 

method, the type of aggregate is also ignored. Hence, the approach was inconsistent with 

beam BG0, similarly as EC2, since aggregate was assumed to fracture at the crack 

according to its high value of fc
’. 

The predictions of the slender beams with stirrups tested in this work did not seem to be 

highly influenced by whether limestone or gravel aggregate was used. However, the 

strength of the continuous beams tested, especially those with theoretical values of cotθ 

lower than 2.5, were generally lower than predicted using the variable strut inclination 

method with a conventional value of z equal to 0.9d. These results were verified by 

additional test data of continuous beams carried out in Japan in the late 80’s. According to 

the database gathered of continuous beams, a better fit was obtained using an estimated 

value of the lever arm close to 0.8d.  
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The relatively low strength of the continuous beams studied was unexpected in view of 

experimental data of simply supported beams, which have been widely used to validate 

the variable strut inclination method. The set of experimental data of simply supported 

beams lays considerably above the variable inclination strut predicted strength, especially 

for cases where the predicted cotθ is lower than 2.5. This difference seems to be due to 

the contribution of shear taken by the compression head since many of these simply 

supported beams had large compression flanges. The simply supported beams with 

stirrups tested in this work had similar shear strength to equivalent continuous beams, 

both of which had rectangular sections. However, there is experimental evidence 

available that shows that simply supported beams with flanges have higher strength than 

identical beams with rectangular sections. This seems to support the idea that the 

difference between both sets of data from simply supported and continuous beams was 

mainly due to shear at the compression head.  

Lastly, the VSI method was compared with the design equations given in BS8110 and 

CSA. This comparative analysis showed that the CSA method gave a reasonably 

consistent safety factor for the continuous beams investigated which was independent of 

the stirrup index. The BS8110 predictions were acceptable for stirrup indices ρfy/νfc
’ 

higher than around 0.11, but the method was extremely conservative for lower values of 

the stirrup index. Direct comparison between EC2, CSA and BS8110 predictions is 

difficult since different partial material and load factors are used in each code. Hence, the 

study of the performance of different design codes by using Ptest/Pcalc ratio only, such as 

in the Demerit Point Classification (Collins [148]) can be questionable. The analysis of 

the performance of design methods for short span beams (chapter 7), showed a similar 

conclusion with regards the Demerit Point Classification system. 

The Modified Demerit Classification system proposed by the author seems to be a more 

reasonable method since the design strength is used in the approach, to account for 

variations in material and load factors of safety. The author’s analysis shows that EC2 

gives significantly lower factors of safety than CSA or BS8110 for continuous beams 

with stirrup indices lower than 0.11. However, the lowest FOS (Ptest/Pd) obtained with 

EC2 for the author’s beams was 1.56, which is similar to that used in flexural members. It 

could be argued that a higher FOS should be used for members failing in shear since the 

failure mode is potentially catastrophic. Flexural strength is also potentially increased by 

membrane action. 
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9.2 Suggestions for future work 
The thesis includes new experimental results and develops analytical methods that can be 

used to assess the influence of crack roughness on the shear strength of reinforced 

concrete beams. 

However, the number of tests performed was restricted due to limited resources in the 

project. Future experimental work could include similar tests using other types of 

aggregate such as granite or lightweight aggregates to further validate these results. In 

addition, it could be of interest to carry out these tests using different depths and 

longitudinal reinforcement ratios, in order to assess the influence of potential size effects 

or larger values of crack widths at failure.  

The analytical work carried out in this thesis was largely focused on the development of a 

rational strut-and-tie model for short span beams, which could provide more accurate 

predictions of the shear strength than current simplified design equations given in EC2 

and BS8110. Although the strut-and-tie model was formulated according to the EC2 

recommendations for STM, research on size effects seems timely since large 

discrepancies are found among researches regarding this particular point. Moreover, 

further experimental and analytical work is required to investigate the influence of node 

regions which are frequently critical in STM and non-linear finite element analysis. This 

work would show whether existing strut-and-tie provisions for node regions are realistic. 

Finally, further work is required to develop rational methods for assessing the influence 

of crack roughness on the shear strength of reinforced concrete members. 
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